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Abstract

In this paper a recently developed provably passive and stable 3D FDTD
subgridding technique, based on finite elements principles, is extended to
Body-Of-Revolution (BOR) FDTD. First, a suitable choice of basis functions
is presented together with the mechanism to assemble them into an overall
mesh consisting of coarse and fine mesh cells. Invoking appropriate mass-
lumping concepts then leads to an explicit leapfrog time stepping algorithm
for the amplitudes of the basis functions. Attention is devoted to provide the
reader with insight into the updating equations, in particular at a subgridding
boundary. Stability, grid reflection and dispersion are also discussed. Finally,
some numerical examples for toroidal and cylindrical cavities demonstrate the
stability and accuracy of the method.

Keywords: FDTD methods, BOR-FDTD, Body-Of-Revolution,
subgridding, h-refinement

1. Introduction

The Finite Difference Time Domain (FDTD) method [1] is one of the most
powerful tools in electromagnetic modeling. It is massively parallelizable,
matrix-free in contrast to finite-element (FE) techniques, does not require the
knowledge of suitable Green’s functions, as is the case for integral equation
methods and can handle complex geometries. In the past decades a lot of

∗Corresponding author
Email addresses: Wouter.Tierens@Ugent.be (Wouter Tierens),

Daniel.Dezutter@Ugent.be (Daniël De Zutter)
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advances have been made with respect to absorbing boundary conditions,
dispersion-relation preservation, subgridding, unstructured grids etc. For a
review on these advances we refer to [2, 3] and the references therein and to
the huge body of literature on these topics.
The work presented below was initially motivated by our interest in the
complex phenomena that govern the behavior of Tokamak plasmas [4, 5]
such as to be used in ITER [6, 7]. When using linearized plasma theory, an
FDTD body of revolution (BOR-FDTD) approach can be used, to study each
of the independent toroidal modes describing the plasma. In order to be able
to predict all relevant wave phenomena, one must be able to correctly model
transition regions where the solutions of the dispersion relation can change
quite abruptly, involving the sudden and localized appearance of solutions
with a wavelength many times shorter than the usual wavelength. This is
the so-called mode conversion [5]. As a consequence of the different length
scales of these wave phenomena, subgridding is indicated to alleviate the
computational cost of maintaining an identical cell size over the complete
problem space.
In this paper we report on our efforts to develop a suitable BOR-FDTD
subgridding technique which can of course be used outside the context of
plasma research. For an introduction to BOR-FDTD we refer to Chapter
12 of [1] and to e.g., [8, 9, 10, 11, 12]. Subgridding has been thoroughly
investigated in the past [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. To develop
BOR-FDTD subgridding, our starting point is the work of Chilton et. al. [17,
24] in which conservative, provably stable and explicit 3D FDTD subgridding
methods are developed based on finite-element concepts.
This paper is organised as follows. Following the ideas put forward in [17,
24], Section 2 presents a new set of basis functions particularly tailored for
BOR-FDTD, whereby electric field and magnetic induction basis functions
explicitly satisfy Faraday’s law. It is shown that, under certain assumptions,
the classical BOR-FDTD update equations for a uniform grid [1] can be
recovered. Section 3 introduces subgridding while Section 4 explains how to
assemble a complete grid consisting of coarse and fine meshes. In Section
5 particular attention is devoted to the mass-lumping concepts that have
to be introduced in order to obtain a provably stable and explicit method.
Section 6 then presents the final leapfrog time stepping algorithm, taking
care to provide insight on how the complete mathematical machinery leads to
updating equations at the interfaces between coarse and fine meshes, update
equations that are no longer intuitive. Section 7 presents some numerical
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Figure 1: A Yee-like unit cell in BOR-FDTD showing the anchor points of the basis
functions.

results. First, stability, grid reflection and grid dispersion are discussed.
Next, the field analysis in a toroidal perfectly conducting (PEC) cavity is
used to illustrate the stability and accuracy of the subgridding. Finally,
the resonance frequency of a reentrant cylindrical cavity as encountered in
Alvarez-type particle accelerators, is calculated, showing that subgridding at
the reentrant corner can substantially reduce simulation time and memory
resources while retaining accuracy. The final section formulates a number of
conclusions and future challenges.

2. BOR-FDTD discretisation of Maxwell’s equations

2.1. Basis functions

As our starting point we take the classical BOR-FDTD representation of
[1]. Fig. 1 shows a unit BOR-FDTD cell with material parameters ǫ and µ
centered on the Bθ component, extending from r = R0 to r = R0 + ∆ and
from z = Z0 to z = Z0 +∆. For each angular mode M , the following 8 basis
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functions ~En for the electric field are introduced:

Eri =

({

z−Z0

∆
i = 0

1− z−Z0

∆
i = 1

)

cos(Mθ)~1r (1)

Eθ,ij =

({

z−Z0

∆
i = 0

1− z−Z0

∆
i = 1

)

·

({

f1(r) j = 0
f2(r) j = 1

)

sin(Mθ)~1θ (2)

Ezi =

({

r−R0

∆
i = 0

1− r−R0

∆
i = 1

)

cos(Mθ)~1z (3)

with f1(r) = R0

∆

(

R0+∆
r

− 1
)

and f2(r) = R0+∆
∆

(

1− R0

r

)

. These basis func-
tions are zero outside the considered cell. Their anchor points are also shown
in Fig. 1. Each basis function is equal to one in its anchor point and zero
in the other anchor points of corresponding field components, e.g. Eθ,00 is
equal to one in the upper left corner and zero in the three other corners. In
BOR-FDTD calculations, the counterparts of (1)-(3) with cos(Mθ) replaced
by sin(Mθ) and sin(Mθ) by − cos(Mθ) are also needed but will not be fur-
ther discussed. At this point it should be remarked that the above defined
basis functions are not curl conforming, but the grid assembling procedure
described in Section 4 will result in the fact that the tangential component
of the electric field becomes continuous everywhere. To be able to apply the
procedures outlined in [24], the 5 basis functions ~Bn for the magnetic induc-
tion must satisfy the curl inclusion property: the curl of a linear combination
of electric field basis functions must be a linear combination of magnetic in-
duction basis functions. This is the case for (again see Fig. 1)

Bri =
(R0 + (1− i)∆) sin(Mθ)

r
·

({

r−R0

∆
i = 0

1− r−R0

∆
i = 1

)

~1r (4)

Bθ =cos(Mθ)~1θ (5)

Bzi =
(R0 +∆/2) sin(Mθ)

r
·

({

z−Z0

∆
i = 0

1− z−Z0

∆
i = 1

)

~1z (6)

Note that for R0 ≫ ∆ all basis functions reduce to linear functions in α =
(r−R0)/∆ and z, recovering the cartesian limit. Next, Faraday’s law ~∇× ~E =

−∂ ~B
∂t

is discretized using the above defined basis functions, leading to its
discrete counterpart

Ce(t) = −
db(t)

dt
(7)
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with e the column vector [er0, er1, eθ,00, eθ,01, eθ,10, eθ,11, ez0, ez1]
T of electric

field basis function amplitudes, b = [br0, br1, bθ, bz0, bz1]
T the corresponding

magnetic induction basis function amplitudes and with CT given by
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(8)

Ampere’s law ~∇× µ−1 ~B = ǫ∂
~E

∂t
is satisfied weakly by testing both sides with

the electric field basis functions. This finally leads to

[⋆ǫ]
−1CT [⋆−1

µ ]b(t) =
de(t)

dt
(9)

where [⋆−1
µ ] and [⋆ǫ] are the mass matrices obtained by integrating scalar

products of basis functions over the whole problem volume.

[⋆−1
µ ]n,m =

∫

µ−1 ~Bn · ~BmdV (10)

[⋆ǫ]n,m =

∫

ǫ ~En · ~EmdV (11)

The integration over θ is performed analytically, yielding a factor of π.
The remaining integration over r and z could also be performed analyti-
cally. However, approximating these integrals using second-order accurate
trapezoidal integration for both the integration over r and over z - so-
called mass lumping [25] - makes these matrices diagonal with elements

[⋆ǫ]n,n = ǫπ∆2R0

4
(2 + ∆′, 2 + ∆′, 1, 1 + ∆′, 1, 1 + ∆′, 2 + 2∆′, 2), [⋆−1

µ ]n,n =
µ−1π∆2R0

2
(1 + ∆′, 1, 2 + ∆′, 1 + 0.5∆′, 1 + 0.5∆′) and ∆′ = ∆/R0. The 8

electric field basis functions were ordered as follows: Er0, Er1, Eθ,00, Eθ,01,
Eθ,10, Eθ,11, Ez0, Ez1 and the 5 magnetic basis functions as Br0, Br1, Bθ,
Bz0, Bz1. The above mentioned anchor point property of the basis functions
is a necessary condition for the trapezoidal integration to lead to a diagonal
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matrix. The reader also notices that each entry of the mass matrices is pro-
portional to the r-coordinate of the anchor point of the corresponding basis
function. However, when performing the calculations for the Bz components,
the reader will find out that this is only the case provided terms of the order
of O(∆4) are neglected, totally in line with the fact that the trapezoidal in-
tegration is only second order accurate in ∆. Although this proportionality
with the radius of th e anchor point is not strictly required, it turns out that
in this way the mass-lumped finite element approach that we are using here,
exactly recovers the classical BOR-FDTD update equations.

3. Subgridding basis functions

Starting from the above discretisation of Maxwell’s equations for basis
functions defined on a ∆ by ∆ grid, our aim is to obtain a conservative and
stable subgridding procedure. Suppose that subgrids of size ∆/N × ∆/N ,
with N an integer, are introduced. In order to be able to apply the theory
put forward in [24], asserting that the resulting scheme is indeed conservative
and stable, the basis functions on the ∆/N ×∆/N grid much be such that
a linear combination of them yields the basis functions of the ∆ × ∆ grid.
With this in mind, et us take a look at the four Eθ,ij functions defined in
(2). In eq. 12 they are be cast in a matrix form. The r.h.s. coefficient
matrix is non-singular and hence invertible. Consequently, 1 (the constant),
z, z/r and 1/r (and all linear combinations thereof) can be written as linear
combinations of the four Eθ basis functions.

[

Eθ,00 Eθ,01 Eθ,10 Eθ,11

]T
=

sin(Mθ)

∆2
·









0 −R0 R0(R0 +∆) 0
0 R0 +∆ −R0(R0 +∆) 0

−∆R0 R0 −R0(R0 +∆) ∆R0(R0 +∆)
∆(R0 +∆) −(R0 +∆) R0(R0 +∆) −∆R0(R0 +∆)

















1
z − Z0
z−Z0

r
1
r









(12)

We now define the Eθ subgrid basis functions on the ∆/N ×∆/N grid in the
same way as in (2), replacing ∆ by ∆/N for a subgrid cell extending from
r = R0 to r = R0 +∆/N and from z = Z0 to z = Z0 +∆/N (and similarly
if the origin of the cell is located elsewhere). It then follows that the Eθ

basis functions on a coarse cell, being linear combinations of 1, z, z/r and
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1/r, can be written as linear combinations of the Eθ functions on the finer
cells nested in the coarse cell. The same reasoning applies to the Er basis
functions which form a basis for all linear combinations of 1 and z, the Ez

basis functions for 1 and r, the Br basis functions for 1/r and 1, the Bz basis
functions for 1/r and z/r and the Bθ functions for 1.

4. Grid assembling

Following [24], we now proceed to assemble cells into a complete mesh.
The starting point is a coarse and a fine mesh that are still unconnected.
Next, restriction operators that combine field quantities at each subgridding
edge are introduced. On the edges of the fine grid, only field quantities of the
coarse grid are retained, as will become clear from a small example below.
However, in order to guarantee stability, the restriction operators must obey
certain commutation properties. Let AE be the restriction operator for the
electric fields and AB for the magnetic inductions. Using these operators,
the Maxwell curl equations for the complete mesh become

Cjointe(t) = −
db(t)

dt
(13)

[⋆ǫ]
−1CT

joint[⋆
−1
µ ]b(t) =

de(t)

dt
(14)

[⋆ǫ] = AE[⋆ǫ]disjointA
T
E (15)

[⋆−1
µ ] = AB[⋆

−1
µ ]disjointA

T
B (16)

Cjoint = (ABA
T
B)

−1ABCdisjointA
T
E (17)

with AEC
T
disjoint = CT

jointAB. The subscript disjoint indicates that the cor-
responding curl and mass matrices are those as derived in previous sec-
tions. Suppose the original disjoint grids have NB,c and NB,f magnetic
field discretization points and NE,c and NE,f electric field discretization
points. Subscripts c and f indicate coarse resp. fine grid cells. NE,∩ of
the fine electric field discretization points and NB,∩ of the fine magnetic field
discretization points are on the subgridding edge. For a rectangular sub-
grid, AE is a (NE,c + NE,f − NE,∩) × (NE,c + NE,f ) matrix and AB is a
(NB,c +NB,f −NB,∩)× (NB,c +NB,f ) matrix.
To clarify the above concepts, the reader can of course consult [24], but as
this paper deals with the BOR-FDTD case with its very specific arrange-
ment of basis functions, let us take a look at a typical restriction process.
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We first consider the case in which a complete mesh consisting of identical
cells is assembled, i.e. only coarse cells are present. Let us concentrate on
the magnetic induction, the electric fields can be treated analogously. Fig. 2
shows a simple example consisting of two cells. To the left (Fig. 2a) the cells
are shown separately and the positions of the B-field basis functions are indi-
cated by the black dots. To the right (Fig. 2b) the cells have been assembled
into ”the mesh” and a global numbering is introduced. For this example we
have that NB,c = 2 × 5 and NB,∩ = 1. Collecting all the original magnetic
induction basis functions in the 10× 1 column vector bdisjoint = [b1, ..., b10]

T

and the ones pertaining to the mesh of Fig. 2b in the 9 × 1 column vector
bjoint = [b1, ..., b9]

T , we have that bjoint = ABbdisjoint with AB the 9 × 10
magnetic induction restriction matrix. The non-zero elements of this matrix
are given by: AB,1,1 = AB,1,8 = AB,2,2 = AB,3,3 = AB,4,4 = AB,5,5 = AB,6,6 =
AB,7,7 = AB,8,9 = AB,9,10 = 1. Note that all non-zero values are identical and
equal to one. Of course, adding more cells will lead to additional couplings.
Here only a coupling in a single point occurs. For the electric fields the
same example leads to three coupled basis functions and with an analogous
notation as above we have that ejoint = AEedisjoint with edisjoint a 16 × 1
column vector, ejoint a 13× 1 column vector and AE the 13× 16 electric field
restriction matrix (with 16 non-zero entries equal to one).

Let us now turn to a subgridding example. Fig. 3a shows a single coarse
cell and 3 fine mesh cells (N = 3) before fusing them together. Fig. 3b
displays the resulting connected mesh (see also Fig. 4 ). Note that in the
connected mesh only coarse mesh field values are used at the edge connecting
the coarse and the fine mesh. For this subgridding example we now have that
NB,c = 5, NB,f = 3 × 5 and NB,∩ = 3 + 1 + 1, i.e. the 3 fine mesh points
labeled 8, 13 and 18 and 2 points to connect the fine mesh cells between them,
the points labeled 7 and 12. For points 1, 8, 13 and 18 the corresponding
expansion functions of interest, leaving out the sin(Mθ) factor, are:

Bz,c =
(R0 +∆/2)

r

(

1−
z − Z0

∆

)

(18)

Bz,fi =
(R0 + (i− 1/2)∆/3) sin(Mθ)

r

(

1 + 3
z − Z0

∆

)

(19)

with i = 1, 2, 3, for resp. points 8, 13 and 18. From the above it is clear that
the coarse cell basis function at z = Z0, i.e. at the subgridding edge, can be
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Figure 2: (a) two cells with anchor points and numbering for the magnetic induction basis
functions. (b) assembled cells with global numbering.
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Figure 3: (a) one coarse mesh cell and 3 fine mesh cells with numbering for the magnetic
induction basis functions. (b) assembled cells with global numbering.
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Figure 4: Disjoint ~Bz basis functions combine to form a single joint basis function that is
continuous at the cell boundary.

written as the following linear combination of fine cell functions:

Bz,c|z=Z0
=

(

R0 +∆/2

R0 +∆/6
Bz,f1 +Bz,f2 +

R0 +∆/2

R0 + 5∆/6
Bz,f3

)∣

∣

∣

∣

z=Z0

(20)

This is a simply illustration of the general properties announced in Section 3.
Note that (18) guarantees pointwise Bz flux continuity along the subgridding
edge. In this subgridding example the 15×20 magnetic induction restriction
matrix AB again satisfies bjoint = ABbdisjoint, with bjoint resp. bdisjoint a
15× 1 resp. 20× 1 column vector. The 20 non-zero elements of AB for this
case are given by: AB,1,1 = AB,2,2 = AB,3,3 = AB,4,4 = AB,5,5 = AB,6,6 =
AB,7,7 = AB,7,14 = AB,8,9 = AB,9,10 = AB,10,11 = AB,11,12 = AB,11,19 =

AB,12,15 = AB,13,16 = AB,14,17 = AB,15,20 = 1, AB,1,8 = R0+∆/2
R0+∆/6

, AB,1,13 = 1

and AB,1,18 = R0+∆/2
R0+5∆/6

. The last three elements correspond to the basis

functions coefficients in the r.h.s. of (18) or, put differently, the first row of
AB enforces identity (18).

5. Mass lumping

By now, the grid assembly process should be clear. However, before
turning to the time-stepping part of the algorithm, special attention has
to be devoted to the mass matrices [⋆ǫ] and [⋆−1

µ ] in (14). Although the
original mass matrices for a single BOR-FDTD cell are diagonal (see the end
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Figure 5: Relevant to mass lumping for ~Eθ: (a) one coarse mesh cell and 2 fine mesh cells

with anchor points and numbering for the ~Eθ basis functions; (b) assembled cells with
global numbering.
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Figure 6: The “mass” associated with the fine basis functions that couple to multiple
coarse basis functions is redistributed.
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of Section 2) the assembly operators can reintroduce non-diagonal elements
and here again some type of mass lumping will have to be introduced if
we want to preserve the diagonal character and hence the explicit time-
stepping properties. Let us again look at an elucidating example in which
the assembly process leads to a non-diagonal [⋆ǫ] matrix. Fig. 5 shows a
single coarse cell and, for the sake of simplicity, two fine mesh cells, before
and after fusing them together. We concentrate on the Eθ field components
on the subgridding boundary, six in total in the original configuration with
two of them (the coarse grid points) remaining after assembling the coarse
cell with the two fine ones. The relevant expansion functions are given by:

Eθ,1c = Zc(z)
R0

∆

(

R0+∆
r

− 1
)

Eθ,2c = Zc(z)
R0+∆

∆

(

1− R0

r

)

Eθ,3f = Zf (z)
2R0

∆

(

R0+∆/2
r

− 1
)

Eθ,4f = Zf (z)
R0+∆/2

∆/2

(

1− R0

r

)

Eθ,5f = Zf (z)
R0+∆/2

∆/2

(

R0+∆
r

− 1
)

Eθ,6f = Zf (z)
R0+∆
∆/2

(

1− R0+∆/2
r

)

Zc(z) =
(

1− z−Z0

∆

)

Zf (z) =
(

1 + 2 z−Z0

∆

)

The pertinent linear combination of fine cell basis functions, to obtain the
corresponding coarse ones, is:

Eθ,1c|z=Z0
= Eθ,3f + α (Eθ,4f + Eθ,5f )|z=Z0

(21)

Eθ,2c|z=Z0
= Eθ,6f + β (Eθ,4f + Eθ,5f )|z=Z0

(22)

α =
R0

2(R0 +∆/2)
(23)

β =
R0 +∆

2(R0 +∆/2)
(24)

Only considering the six basis functions in the example, the 2 × 6 electric
field restriction matrix AE has 8 non-zero entries: AE,1,1 = AE,1,3 = AE,2,2 =
AE,2,6 = 1, AE,1,4 = AE,1,5 = α and AE,2,4 = AE,2,5 = β, while the diagonal
entries of the disjoint electric field mass matrix [⋆ǫ]disjoint are:

(τ1,τ2, τ3, τ4, τ5, τ6) =

ǫπ∆2R0

16
(4, 4(1 + ∆′), 1, 1 + ∆′/2, 1 + ∆′/2, 1 + ∆′) (25)

We have, for simplicity, assumed that the value of ǫ does not change from
one cell to the other. All this finally implies that the corresponding electric
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field 2× 2 mass matrix [⋆ǫ] of the joined cells has the following elements:

ǫ11 = τ1 + τ3 + α2(τ4 + τ5) (26)

ǫ12 = ǫ21 = αβ(τ4 + τ5) (27)

ǫ22 = τ2 + τ6 + β2(τ4 + τ5) (28)

showing that the grid assembling process can give rise to non-diagonal mass
matrices.
To prevent the restriction operator from introducing these non-diagonal ele-
ments the following procedure has to be adopted:

1) Identify the disjoint basis functions which couple to multiple joint basis
functions. In the example of Fig. 5 these disjoint basis functions are those
associated with anchor point 4 and 5. In general this amounts to identifying
columns in the restriction matrix with more than one non-zero element.

2) Set the corresponding elements on the diagonal of [⋆ǫ]disjoint to zero.
In our example this implies that τ4 and τ5 must be set to zero.

3) For each of the considered disjoint basis functions, redistribute the
original value on the diagonal over the multiple joint basis functions it cou-
ples with. The relevant joint basis functions are easily identified as they
correspond to the row indices of the non-zero elements in the corresponding
disjoint basis function column. In our example disjoint basis function 4 cou-
ples with joint basis functions 1 and 2 and the same is the case for disjoint
basis function 5. In BOR-FDTD the number of joint basis functions that
couple to multiple disjoint ones is at most two.

4) The redistribution over the two joint basis functions is carried out in
such a way that the value added to [⋆ǫ]disjoint,jj (j = 1, 2), is proportional
to [⋆ǫ]disjoint,jj and that the trace of the [⋆ǫ]disjoint matrix remains unaltered.
The example of Fig. 5, in which a redistribution over two basis functions
has to be carried out, will clarify the procedure. Both τ4 and τ5 have to be
redistributed over τ1 and τ2 as follows:

τ1,new = τ1 +
τ1

τ1 + τ2
τ4 +

τ1
τ1 + τ2

τ5 = τ1 + α(τ4 + τ5) (29)

τ2,new = τ2 +
τ2

τ1 + τ2
τ4 +

τ2
τ1 + τ2

τ5 = τ2 + (1− α)(τ4 + τ5) (30)

with α = τ1
τ1+τ2

. This redistribution is depicted in Fig. 6. Using these new
values τ1,new and τ2,new, with τ4,new = τ5,new = 0, the diagonal entries of
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[⋆ǫ]disjoint,new become:

(τ1,new,τ2,new, τ3,new, τ4,new, τ5,new, τ6,new) =

ǫπ∆2R0

16
(5, 5(1 + ∆′), 1, 0, 0, 1 + ∆′) (31)

It is easily verified that the total sum remains unaltered and that τ1
τ2

= τ1,new

τ2,new
.

5) With this new disjoint mass matrix, the new joint mass matrix can
be determined. By construction, this matrix will now be diagonal. In our
example we have

ǫ11,new = τ1,new + τ3 =
3ǫπ∆2R0

8
(32)

ǫ12,new = ǫ21,new = 0 (33)

ǫ22,new = τ2,new + τ6 =
3ǫπ∆2R0

8
(1 + ∆′) (34)

It should be noted that in BOR-FDTD only the Eθ components can give
rise to a non-diagonal [⋆ǫ] matrix and to which the above procedure must be
applied.

6. Leapfrog time stepping

The final BOR-FDTD equations are given by (12) and (13). Time-
stepping of these equations is straightforward. It suffices to e.g. discretise
b in (12) on whole time steps n∆t and e on half time steps (n + 1/2)∆t to
obtain the following leapfrog updating scheme:

bn = bn−1 − Cjointen−1/2∆t (35)

en+1/2 = en−1/2 + [⋆ǫ]
−1CT

joint[⋆
−1
µ ]bn∆t (36)

This can be cast into the following form

[

ẽn+1/2 b̃n

]T
=

[

I− C̃T
jointC̃joint(∆t)2 C̃T

joint∆t]

−C̃joint∆t I

] [

ẽn−1/2

b̃n−1

]

(37)

or un = Aun−1, with A the so-called amplification matrix, ẽ = [⋆ǫ]
1/2e,

b̃ = [⋆−1
µ ]1/2b and C̃joint = [⋆−1

µ ]1/2Cjoint[⋆ǫ]
−1/2. The reader is referred to
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[24] for a proof of the stability of this leapfrog scheme both in the absence
and presence of subgridding, provided the time step ∆t respects the Courant
limit of the size of the smallest grid, i.e. c∆t ≤ ∆finest/f(M), where f(M) is
roughly proportional to M [1]. All eigenvalues of A are located on the unit
circle.
Equations (35) and (36) suffice to write down an algorithm. However, start-
ing from these equations it is elucidating to see how the proposed method
takes care of the updating at subgridding boundaries. Let us start with br.
Looking at Fig. 1 and supposing that br is on a subgridding edge (say at
r = R0) and because after assembling the grid we only use coarse grid values,
updating of br1 requires the value of ez1 at the same place and the neighboring
eθ,00 and eθ,10 values. To obtain the necessary value of eθ at z = Z0 + ∆/2,
(36) will enforce a linear interpolation, i.e. the eθ value used at z = Z0+∆/2
will simply be

eθ,00+eθ,10
2

. This is of course what we would have expected right
away. An analogous reasoning holds when updating bz. For bz1 e.g. the value
of er1 at the same place and the neighboring eθ,10 and eθ,11 values are needed.
To obtain the necessary value of eθ at r = R0 + ∆/2, (36) now enforces an
interpolation using the functions f1(r) and f2(r) defined in (2), i.e.

eθ,r=R0+∆/2 = f1(r)eθ,10 + f2(r)eθ,11 (38)

Coarse bθ components always have coarse er and ez neighbors and updating
them is never problematic. Fine bθ near the subgridding boundary are up-
dated directly using the neighboring coarse er and/or ez.
Updating e-fields at subgridding boundaries turns out to be more compli-
cated. This will be illustrated by the subgridding example of Fig. 3 studied
above. We will use the numbering convention of Fig. 3b. To update er,1
(r = R0 + ∆/2, z = Z0) we need the coarse value of bz,1 at the same point,
the coarse grid value bθ,5 at r = R0 + ∆/2, z = Z0 + ∆/2 and three fine bθ
values, i.e. bθ,9, bθ,12 and bθ,15 all at z = Z0−∆/6 and resp. at r = R0+∆/6,
r = R0+∆/2 and r = R0+5∆/6. Eqn. (36) leads to the following weighted
value of er,1:

ǫµ
der,1
dt

=
−3

2∆
bθ,5 −Mbz,1

(

1

12

1

R0 +∆/6
+

1

12

1

R0 + 5∆/6
+

10

12

1

R0 + 3∆/6

)

+

(

1

2∆
−

1

6(R0 +∆/2)

)

bθ,9 +

(

1

2∆

)

bθ,12 +

(

1

2∆
+

1

6(R0 +∆/2)

)

bθ,5(39)

We have again restricted ourselves to the simple case of a completely homo-
geneous medium with material parameters ǫ and µ. An analogous reasoning
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holds when updating ez. Suppose that we take a similar example as in Fig.
3 but that we now place the subgridding boundary at r = R0 + ∆. Let
us stick to the numbering of Fig. 3b by counterclockwise rotating the fig-
ure over 90 degrees. To update ez,1 (r = R0 + ∆, z = Z0 + ∆/2) we now
need the course value of br,1 at the same point, the coarse grid value bθ,5 at
r = R0 + ∆/2, z = Z0 + ∆/2 and three fine bθ values, i.e. bθ,9, bθ,12 and
bθ,15 all at r = R0 + 7∆/6 and resp. at z = Z0 + ∆/6, z = Z0 + ∆/2 and
z = Z0 +5∆/6. Eqn. (36) now shows that the corresponding weighted value
of ez,1 is:

ǫµ
dez,1
dt

=
−3

2∆

R0 +∆/2

R0 +∆
bθ,5 −

M

R0 +∆
br,1 (40)

+
1

2∆

R0 +∆(1 + 1/6)

R0 +∆
(bθ,9 + bθ,12 + bθ,15) (41)

The updating formula for ez is simpler than the one for er. This is a con-
sequence of the fact that in the z-direction linear interpolation intervenes
while in the r-direction a more complicated updating as in (38) plays a role:
in cylindrical coordinates, ”up” and ”down” are equivalent, but ”left” and
”right” are not.
The updating strategy for eθ is more complicated and depends on the exact
position of the anchor point. Figs. 7, 8 and 9 shows the three possible situ-
ations. In Fig. 7, eθ is located at an r is constant edge, here at r = R0 +∆
with z = Z0 + ∆. To update eθ neighboring values of bz and br are needed.
From (36) one derives that

ǫµ
deθ
dt

=
3

2∆
bz,1 +

1

∆
(br,2 − br,8)−

1

6∆
(bz,3 + bz,7)−

1

3∆
(bz,4 + bz,6)−

1

2∆
bz,5

(42)

In points 1, 2 and 8 course grid values are used, in the other ones fine grid
values. Fig. 8 shows the analogous case for updating eθ at an z is constant
edge, here at z = Z0 with R = R0 +∆. The update equation now becomes:

ǫµ
deθ
dt

=
3

2∆
br,1 + (bz,2 − bz,8)

(

−1

∆
+

1

6

(

1

6R0 + 11∆
−

1

6R0 + 7∆

))

−
1

6∆
(er,3 + er,7)−

1

3∆
(br,4 + br,6)−

1

2∆
br,5 (43)

Here again, in points 1, 2 and 8 course grid values are used, in the other ones
fine grid values. The most intricate situation arises when eθ is located at a

17



corner point as shown in Fig. 9 for z = Z0 and R = R0. In this case we have
that

ǫµ
deθ
dt

=
9

8∆
(bz,1 + br,2) + (

−3

4∆
+

1

8(6R0 + 5∆)
−

1

8(6R0 +∆)
)bz,3

−
1

8∆
(br,4 + bz,7)−

1

4∆
(br,5 + bz,6)−

3

4∆
br,8 (44)

Coarse grid point are at 1, 2, 3 and 8, fine ones at 4, 5, 6 and 7. By the
dashed lines in Figs. 7, 8 and 9 we have indicated the way in which the anchor
points are ordered when calculating the corresponding time derivative of the
eθ field component. This reminds one of Ampère’s law but one should be
careful when wanting to interpret the obtained formula’s in this way. In
the absence of subgridding the restriction operators AE and AB only have
1 and 0 entries. In the subgridding case however these operators and also
[⋆ǫ] and [⋆−1

µ ] will depend on the explicit form of the curl-operator (8) and
hence on the curl inclusion properties of the basis functions. Consequently,
the proposed method imposes a strong relationship between the time-domain
updating equations at the subgridding boundaries and the specific form of
the curl operator.

7. Numerical results

First, stability, grid reflection and grid dispersion are investigated. Next
the accuracy of the method is illustrated by determining the resonance fre-
quencies of a toroidal cavity. This is followed by the study of a reentrant
cylindrical particle accelerator cavity, showing that subgridding can substan-
tially reduce CPU-time and memory requirements while retaining accuracy.
Further research will focus on plasma applications, the results of which will
be presented elsewhere.

7.1. Stability

In what follows we consider toroidal cavities (except for the cylindrical
cavity example of Section 7.5) with PEC boundaries and focus on a particular
angular mode with index M implying a cos(Mθ) dependence for er, ez and
bθ and a sin(Mθ) dependence for eθ, br and bz.

In a first example we explicitly calculated the 349 eigenvalues of the am-
plification matrix A for the very simple configuration of Fig. 10 and for
M = 27. The problem space counts 5 × 5 course grid cells of 1cm by 1cm,
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Figure 10: A simple configu-
ration for the exact eigenspec-
trum calculation.
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Figure 11: The eigenspectrum of the discrete am-
plification matrix for the simple configuration of
Fig. 10 and for various values of ∆t.

four of which have been subdivided in 9 fine grid cells. The cavity is filled
with air, R0 = 2m and z0 = 0m (but the results remain completely invari-
ant under a change of z0). The behavior of the eigenvalues versus ∆t is
shown in Fig. 11. For a suitable choice of ∆t obeying the Courant condition
(∆t = ∆Courant) for the smallest cells, i.e. c∆t = ∆

3
√
2
≈ 0.236∆, all eigen-

values are on the unit circle. as shown in Fig. 11. For a smaller time step,
these eigenvalues move on the unit circle towards point (1, 0) as in Fig. 11 for
c∆t = 0.8, 0.5 and 0.4∆Courant. However, one remarks that when increasing
∆t slightly beyond the Courant limit, up to c∆t = 1.03492∆Courant, stability
is still preserved. We again refer to [24] for a thorough discussion, proving
that the mass lumping in most cases results in an improved stability. When
further increasing ∆t, as shown in Fig. 11 for c∆t = 1.05∆Courant, a negative
real eigenvalue outside the unit circle is found and the time stepping will no
longer remain stable. Note that in classical BOR-FDTD [1], the time step
must be chosen roughly inversely proportional to the angular mode number.
Since we do not consider cells close to the r = 0 axis, we can use a time-step
much larger than in BOR-FDTD while still preserving stability. As remarked
by one of the reviewers, having all eigenvalues on the unit circle is a necessary
but not a sufficient condition for stability. The eigenvalues on the unit circle
must also be simple or nondefective [26].
Although the eigenspectrum results above indeed confirm the theoretical un-
derpinning of the theory given in [17], asserting that the subgridding method-
ology we used automatically leads to a stable algorithm, we further assessed
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Figure 12: Simulation domain for grid reflection and grid dispersion calculations.

the long term stability in the examples given below in Section 7.4, by letting
the algorithm run for a very large amount of time steps, i.e. several 105 steps.
No instability could be detected.

7.2. Grid reflection

Ideally, waves should propagate into the subgridded area without any re-
flection. To investigate the behavior of our technique, a sinusoidal line source
with a M = 0 (i.e. θ-independent source) in the toroidal direction and with
a wavelength λ = N∆coarse was used, with N ranging between 6 and 100.
The cross-section of the considered configuration is that of Fig. 12. The
simulation domain measures 200 by 200 ∆coarse × ∆coarse cells with the left
boundary located at 40∆coarse from the axis. The intersection point S of
the source loop with the (r,z)-plane is located in the center of the simulation
domain. In the lower part of the simulation domain the course discretization
∆coarse is used, while the upper gray part is subgridded with ∆fine =

∆coarse

2
.

The boundary between the subdomains is located at 50∆coarse from the cen-
ter. To assess the grid reflection, a first simulation is performed only using
the course grid over the entire domain. The total simulation time is chosen
such that the waves do not yet reach the outer boundaries. In the second
simulation the coarse grid is used in the lower subdomain and the fine in the
upper subdomain. The reflection coefficient plotted in Fig. 13 is defined as

Cr =
avg(|(Eθ)2 − (Eθ)1|)

avg(|(Eθ)1|
(45)
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Figure 13: Grid reflection at the subgridding boundary

Cr is the average absolute difference between the θ-component of the electric
field in the second and first simulation, divided by the corresponding value in
the first simulation, whereby the average is taken over all cells of the lower,
i.e. coarse cell, subdomain. This reflection coefficient decreases quickly as the
amount of sampling points per wavelength increases, dropping below 6 · 10−3

or 0.6% when N ≥ 10. More important than the absolute value of Cr is the
fact that Cr decreases as ( λ

∆coarse
)−1.5 which is the value predicted by Monk

[27] for 2D cartesian FDTD.

7.3. Grid dispersion

Another phenomenon commonly encountered in FDTD simulations is the
direction-dependent speed of light due to the regular discretization grid. To
investigate this dispersion, we again start from the configuration of Fig. 12.
At t = 0 the current i(t) in the loop (see also Fig. 14) is simultaneously
switched on in all the points of the loop (corresponding to an M = 0 mode).
The current then starts oscillating sinusoidally with circular frequency ω
(whereby due care is taken to smoothly switch the current on). We now de-
termine all field values in the (z,r)-plane at a fixed instant t0 and we chose ct0
to be 170∆coarse, with c the speed of light in vacuum and ∆coarse = λ/7. This
implies that the wavefront in the (r,z)-plane of Fig. 14 will reach no further
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Figure 15: Distance between S and wave maxima/∆coarse vs. angle. Orange lines are
without subgridding, green lines with subgridding. The black curve is the subgridding
boundary.
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than the circle of radius 170∆coarse centered on S. This particular wavefront
(denominated “1”) originates from the point S itself. Contributions from
other points on the loop have to travel over a longer distance and cannot yet
reach this outer wavefront. However, now consider another circular wave-
front inside “1”, such as the one denominated “2”. Field contributions on
this wavefront, e.g. in the point A, not only come from S but also from other
parts of the loop, e.g. from the points P1 and P2. The smaller the wavefront
radius, the larger the portion of the loop points of which can contribute.
Contributions to “2” coming from S are obviously in phase. It is important
to realize that contributions to “2” e.g. coming from points P1 and P2 on the
loop will also be in phase with the contributions from S. Indeed, although
the fields originating from P1 and P2 have to travel over a larger distance,
the extra phase shift this involves is compensated by the fact that when the
signal was emitted at P1 and P2, the phase of the source loop in these points
lags behind as compared to the phase of S at a later time. Or put differently:
phase variations of the source points as a function of time and phase delays
due to different path lengths compensate each other. The above reasonings
lead to the following conclusion. When registering all fields at the fixed in-
stant t0, the fields will be in phase on circles such as “1” and “2” and indeed
on any other circle centered on S. Consequently, field maxima (minima)
will be found on some of these circles and such circles will be spaced by the
wavelength. It must be emphasized that on such a “maximum” circle, the
value of the maximum is not constant over the whole circle. Points on the
circle closer to the center of the current loop will exhibit higher values than
points further away. This is due to the 1/distance decrease of source point
contributions.
The phenomena described above crucially depend on the direction indepen-
dent velocity of light. Hence, grid dispersion and the influence of subgrid-
ding can be clearly assessed in this way. For the parameters given above
(ct0 = 170∆coarse and ∆coarse = λ/7) and for the non-subgridded case, the
orange lines in Fig. 15 represent the numerically obtained loci of the maxima
of the electric field. In order to give a clear picture of the results, we opted
for a cartesian representation with the angle along the horizontal axis and
with the distance to S, i.e the circle radius, along the vertical axis. Ideally all
lines in Fig. 15 should be horizontal. It can be seen that with increasing dis-
tance to S, increasing dispersion errors become visible as an approximately
90◦-periodic deviation from the ideal circles (i.e. horizontal lines in Fig. 15).
This deviation is approximately 1.3% of the distance to S. One can also
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Figure 16: Electric field amplitude at t0 along the r-axis.

clearly see that the maxima are spaced by λ. The dispersion error decreases
as the amount of discretization points per wavelength increases. For 14 points
per λ we obtained a deviation of 0.4%.
Next, the numerical experiment was repeated while introducing subgridding
(∆fine = 0.5∆coarse) in the gray part of Fig. 12, corresponding to the area in-
side the black curve on Fig. 15. It is clear that the dispersion error decreases
inside the subgridded area as the green lines are flatter than the orange ones
and that little or no additional dispersion error is visible at the subgridding
edge. Finally, to make clear that the value of the maximum varies along
each circle, some additional data are given in Fig. 16. This figure shows the
electric field amplitude along the r-axis (z = 0) starting in the leftmost point
of circle “1” and ending in its rightmost point. Remarks that the position
of the maxima (and minima) is symmetrical with respect to the midpoint S.
R = 0 corresponds to S itself. For corresponding maxima, the absolute value
is higher to the left (R < 0) of S and the closer to S, the higher the value.

7.4. Toroidal cavity examples

As a next example consider a perfectly conducting torus with a square
cross-section of inner radius 2 m, outer radius 4 m and a height of 2 m. As
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coarse discretization length we select ∆ to be 1 cm and this coarse grid is
combined with a fine grid with discretization length ∆/3 = 1/3cm. This fine
grid is an asymmetrically positioned square starting 60 cm from the left of the
cavity (at r = 2.6m), and 60 cm from the bottom of cavity (z = 60cm) with
side length 34cm. A line current in the toroidal direction at the center of the
cavity, i.e. at a radius of 3 m, is used as the excitation. In the time-domain
this source terms takes the form

jθ(t) = cos(ω0t)e
−( t−t0

a )
2

(46)

with a Fourier spectrum proportional to

Jθ(ω) ∝ e−jω0t0e−
a2

4
(ω−ω0)2 + ejω0t0e−

a2

4
(ω+ω0)2 (47)

Choosing appropriate values for a, t0 and ω0 enables us to only excite fre-
quencies within a frequency range of interest, taking care that t0 is large
enough such that jθ(t = 0) ≈ 0. The time step ∆t = 1 · 10−11 s is cho-
sen slightly below the Courant limit with respect to the fine discretization
length. First, we excite a low-frequency M = 0 mode in a vacuum-filled
cavity using a line source of center frequency ω0 = 600 MHz, with t0 = 0.1µs
and a = 0.04µs. From the Fourier transform of the simulation results in
each point of the grid, it is easy to derive the resonance frequency that oc-
curs. Both the subgridded and the non-subgridded simulations show a first
resonance frequency at ω = 672 MHz. The difference is below the frequency
resolution. The analytical solution for the lowest-mode frequency is ω = 660
MHz. The difference between the simulated results and the exact result is
approximately 2%.

To further investigate the influence of the subgridding, a more compli-
cated problem is considered by filling the cavity for r > 3.5 m with a dielectric
material with ǫ = 9ǫ0. Furthermore, we use a toroidal mode M = 5 and a
higher-frequency source with a Gaussian spectrum centered at ω0 = 3.3 GHz,
with t0 = 0.08µs and a = 0.02µs. The resulting spectrum is shown in Fig. 17.
There is very little difference between the location of the resonance frequency
in the subgridded and the non-subgridded case. A typical plot after 104 time
steps of |Eθ| over the cross-section is shown in Fig. 18. The presence of
the dielectric material is clearly visible. |Eθ| is nicely continuous everywhere
and in particular at the subgridding edge. Furthermore, the subgridded area
only barely disturbs the symmetry between the upper and lower halves of
the configuration.
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Figure 17: Comparison between a subgridded and a non-subgridded cavity for a toroidal
M=5 mode with a resonance frequency near 3.25 GHz

Figure 18: |Eθ| after 104 steps. The rectangle indicates the boundary of the subgridded
domain.
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Figure 19: Multilevel subgridding
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Figure 20: Reentrant cavity (gray) with sharp internal corner. The square of side S = 3
mm is the 1/2 subgridded part. r1 = 6.004 mm, r2 = 42.29 mm, z1 = 7.958 mm, and
z = 22.792 mm.

In a last simulation, we examined multilevel subgridding: a part of the sub-
gridded area is itself subgridded (Fig. 19). Compared with a non-subgridded
simulation, the resonance frequencies shift by about 0.4%. In all these exam-
ples, all simulations have run for at least 3 · 105 time steps and, as expected,
no sign of instabilities has been observed.

7.5. Reentrant cylindrical cavity

In [28, 29], the problem of calculating the resonant frequencies of reen-
trant cylindrical cavities, such as those encountered in Alvarez-type particle
accelerators, is discussed. Due to the presence of sharp internal corners at
which the electric field becomes large and varies strongly over a small dis-
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tance, FDTD methods are hard to use for this kind of problem. Here, we
will revisit the configuration of [28] (Fig. 20, Figs. 1 and 2 in [28]), first
with a uniform fine discretisation, and then with subgridding near the sharp
corner. In this way, we can obtain nearly the same result using only about
(1/2)2 = 1/4 of the memory needed for the fine discretization. Note that
this is a cylindrical configuration, not a toroidal one, so some care must be
taken to properly simulate the r = 0 axis. The subgridding does not intersect
with the r = 0 axis, so our method reduces to classical BOR-FDTD there,
allowing the use of the on-axis update equations described in [1]. At M = 0,
it suffices to introduce some minor changes to the mass lumped electric mass
matrix [⋆ǫ] to make this method give the correct BOR-FDTD equations at
r = 0 as well.

The dimensions given in Fig. 20 are those of [28]. In a first simulation a
uniform grid of size ∆ = 0.1 mm is used. After exciting the cavity using a
time-domain source with a broad frequency spectrum, we fourier-transformed
the result to find the lowest resonance peak at 2.1 GHz, as predicted in [28].

In a second simulation the overall discretization length was doubled to
∆ = 0.2 mm, except for a small subgridding square of side S = 3 mm around
the internal corner (Fig. 20), where the discretization length remains fine at
∆ = 0.1 mm. By doing so, we decrease the memory used by the simulation
by almost a factor 4. The running time decreases as well because almost
4 times less unknowns have to be updated every time step. Nevertheless,
we still have to obey the Courant limit of the small cells and thus have to
run the simulation for the same amount of time steps. The resulting fields
are barely distinguishable from those of the uniform fine simulation. Most
importantly, the excited resonance peak is still at 2.1 GHz.

8. Conclusions

We have extended the provably stable subgridding method of [17] to
BOR-FDTD. Using appropriate mass-lumping techniques yields an explicit
and stable time-stepping algorithm provided the Courant limit of the fine
mesh cells is respected (although the mass-lumping can lead to a relaxing
of this limit). The FDTD updating equations at subgrid edges and corners,
resulting from the mathematical machinery, cannot readily be interpreted
intuitively. Some simple cases provide the reader with the necessary insight.
Several numerical examples, using toroidal cavities, have demonstrated that
the proposed subgridding is indeed stable and by considering the eigenmodes
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of such cavities it is also shown that the method remains very accurate even
in the case of multilevel subgridding. We also provided some data on the
subgridding reflection and disperion behavior. Finally, a short study of the
resonant behavior of an accelerator type reentrant cylindrical cavity, shows
that subgridding can lead to savings in CPU time and memory while retain-
ing accuracy.
In the future, we intend to extend our method to be able to subgrid plasmas
instead of simple dielectrics. In that case the current and the constitutive
equation connecting the current to the fields need to be treated in a special
way (using an auxiliary differential equation).
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