4,204 research outputs found

    Nanowire Zinc Oxide MOSFET Pressure Sensor

    Get PDF
    Fabrication and characterization of a new kind of pressure sensor using self-assembly Zinc Oxide (ZnO) nanowires on top of the gate of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is presented. Self-assembly ZnO nanowires were fabricated with a diameter of 80 nm and 800 nm height (80:8 aspect ratio) on top of the gate of the MOSFET. The sensor showed a 110% response in the drain current due to pressure, even with the expected piezoresistive response of the silicon device removed from the measurement. The pressure sensor was fabricated through low temperature bottom up ultrahigh aspect ratio ZnO nanowire growth using anodic alumina oxide (AAO) templates. The pressure sensor has two main components: MOSFET and ZnO nanowires. Silicon Dioxide growth, photolithography, dopant diffusion, and aluminum metallization were used to fabricate a basic MOSFET. In the other hand, a combination of aluminum anodization, alumina barrier layer removal, ZnO atomic layer deposition (ALD), and wet etching for nanowire release were optimized to fabricate the sensor on a silicon wafer. The ZnO nanowire fabrication sequence presented is at low temperature making it compatible with CMOS technology

    Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes

    Full text link
    Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical (NEMS) devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nano-electromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nano-electromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.Comment: 20 pages, 3 figure

    Micro Pressure Sensors of 50 μm Size Fabricated by a Standard CMOS Foundry and a Novel Post Process

    Get PDF
    [[abstract]]This paper describes a piezoresistive micro pressure sensor with a size of 50μm made by a standard CMOS foundry and a novel post process. The material of the sensor diaphragm is silicon dioxide, and the piezoresistors are made by polysilicon. For releasing the diaphragms of the micro pressure sensors, this work proposes to use the front-side etching technique with etching holes of 5μm×5μm only. Finally, we use one of the protein stuffs, gelatin, to seal the etching holes. The sensitivity of the piezoresistive pressure sensor is 8.56±0.13 mV/V/psi.[[conferencetype]]國際[[conferencedate]]20060122~20060126[[conferencelocation]]Istanbul, Turke

    Piezoresistive effect of p-type single crystalline 3C-SiC on (111) plane

    Get PDF
    This paper presents for the first time the effect of strain on the electrical conductivity of p-type single crystalline 3C-SiC grown on a Si (111) substrate. 3C-SiC thin film was epitaxially formed on a Si (111) substrate using the low pressure chemical vapor deposition process. The piezoresistive effect of the grown film was investigated using the bending beam method. The average longitudinal gauge factor of the p-type single crystalline 3C-SiC was found to be around 11 and isotropic in the (111) plane. This gauge factor is 3 times smaller than that in a p-type 3C-SiC (100) plane. This reduction of the gauge factor was attributed to the high density of defects in the grown 3C-SiC (111) film. Nevertheless, the gauge factor of the p-type 3C-SiC (111) film is still approximately 5 times higher than that in most metals, indicating its potential for niche mechanical sensing applications

    Improvement of piezoresistance properties of silicon carbide ceramics through co-doping of aluminum nitride and nitrogen

    Get PDF
    The piezoresistance coefficient was measured on co-doped silicon carbide ceramics. Evaluation samples of alpha-silicon carbide ceramics were first fabricated by glass capsule HIP method using powder mixture of silicon carbide and aluminum nitride with various ratios. The resultant aluminum nitride added silicon carbide ceramics were doped with nitrogen by changing the post-HIP nitrogen gas pressure. The lattice parameter increased with the amount of adding aluminum nitride indicating that the incorporated aluminum substituted smaller silicon atoms. After post-HIP treatment, lattice parameter then decreased with nitrogen gas pressure. The piezoresistive coefficient increased with the addition of aluminum nitride, it further increased with the nitrogen doping pressure

    Very high temperature silicon on silicon pressure transducers

    Get PDF
    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance

    High Quality Factor Silicon Cantilever Driven by PZT Actuator for Resonant Based Mass Detection

    Get PDF
    A high quality factor (Q-factor) piezoelectric lead zirconat titanate (PZT) actuated single crystal silicon cantilever was proposed in this paper for resonant based ultra-sensitive mass detection. Energy dissipation from intrinsic mechanical loss of the PZT film was successfully compressed by separating the PZT actuator from resonant structure. Excellent Q-factor, which is several times larger than conventional PZT cantilever, was achieved under both atmospheric pressure and reduced pressures. For a 30 micrometer-wide 100 micrometer-long cantilever, Q-factor was measured as high as 1113 and 7279 under the pressure of 101.2 KPa and 35 Pa, respectively. Moreover, it was found that high-mode vibration can be realized by the cantilever for the pursuit of great Q-factor, while support loss became significant because of the increased vibration amplitude at the actuation point. An optimized structure using node-point actuation was suggested then to suppress corresponding energy dissipation.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators

    Get PDF
    Suspended microchannel resonators (SMRs) are an innovative approach to fluid-based microelectromechanical mass sensing that circumvents complete immersion of the sensor. By embedding the fluidics within the device itself, vacuum-based operation of the resonator becomes possible. This enables frequency shift-based mass detection with high quality factors, and hence sensitivity comparable to vacuum-based micromechanical resonators. Here we present a detailed analysis of the sensitivity of these devices, including consideration of fundamental and practical noise limits, and the important role of binding kinetics in sensing.We demonstrate that these devices show significant promise for protein detection. For larger, biologically-important targets such as rare whole virions, the required analysis time to flow sufficient sample through the sensor can become prohibitively long unless large parallel arrays of sensors or preconcentrators are employed

    Pressure transducer and system for cryogenic environments

    Get PDF
    A silicon pressure die is bonded to a borosilicate substrate above the pneumatic port. A Wheatstone bridge circuit is formed on the silicon pressure die and has bridge elements of silicon doped with boron to a deposit density level of approximately 1 x 10(exp 19)-10(exp 21) boron/cc. A current source is provided to excite the Wheatstone bridge circuit. In addition, a temperature sensor is provided to provide temperature readings. An array may be formed of the resulting pressure transducers. This unique solution of materials permits operation of a pressure transducer in cryogenic environments

    Miniature piezoresistive solid state integrated pressure sensors

    Get PDF
    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented
    corecore