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Abstract 

The piezoresistance coefficient was measured on codoped silicon carbide 
ceramics.  Evaluation samples of α-silicon carbide ceramics were first fabricated by 
glass capsule HIP method using powder mixture of silicon carbide and aluminum nitride 

with various ratios.  The resultant aluminum nitride added silicon carbide ceramics were doped 

with nitrogen by changing the post-HIP nitrogen gas pressure.  The lattice parameter 
increased with the amount of adding aluminum nitride indicating that the incorporated 
aluminum substituted smaller silicon atoms.  After post-HIP treatment, lattice 
parameter then decreased with nitrogen gas pressure.  The piezoresistive coefficient 
increased with the addition of aluminum nitride, it further increased with the nitrogen 
doping pressure. 
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1.Introduction 

A resistivity change accompanied by the strain of a solid is called a piezoresistivity 

effect, which is utilized for the direct strain sensing or stress sensing within its elastic 

deformation range.  Silicon single crystal is almost always used as strain sensing 

element.  This is because it has a favorable sensitivity (piezoresistivity coefficient).  

Furthermore, sophisticated semiconductor technologies such as processing and joining 

can easily be transferred. 

On heating as low as 200C°C, however, its elastic deformation range becomes 
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narrow considerably.  As a result, residual strain would remain after releasing the 

stress needed for sensing.  Another problem on high temperature operation is oxidation 

leading to a soar in electric resistance.  In these reasons, pressure sensor available over 

200°C has not been practicably realized, yet. 

Silicon carbide ceramics is expecting a high temperature structural material since it 

has an excellent thermal durability or maintained mechanical strength at elevated 

temperature.  Silicon carbide also attracted much attention as an electronic material for 

high power devices and high temperature operation, because they possess a wide band 

gap of 2 – 3 eV.  It has already been reported that silicon carbide single crystals exhibit 

the piezoresistive effect similar to the silicon single crystal[1].  There has been no 

practical application of silicon carbide single crystal for strain sensor because of its 

relatively small sensitivity and expensive fabrication cost. 

On silicon carbide polycrystal which is advantageous for fabrication cost and 

mechanical strength, we have already reported a piezoresistivity coefficient comparable 

to that for single crystal [2-7].  Based on these data, we proposed a direct strain or 

pressure sensing at elevated temperature using silicon carbide ceramics of which 

sensitivity is barely feasible [4-6]. For sensing near room temperature, however, silicon 

single crystal is suitable due to its favorable sensitivity and fabrication cost.  If the 

sensitivity of silicon carbide ceramics were enhanced to beyond that for silicon single 

crystal, it could substitute the strain or pressure sensing elements even near the room 

temperature in addition to elevated temperature. 

Compared with the exploring for a new material, it is advantageous to modify silicon 

carbide ceramics by incorporating variety of additives.  This is because the high 

temperature property of silicon carbide ceramics would be maintained with the latter 
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route.  Another merit using polycrystal is a facile examination of doping effect. 

We have already examined the effect of dopant on the practically advantageous 

silicon carbide ceramics to improve the piezoresistive effect.  The piezoresistivity 

coefficient is suggested to increase with increasing the doping amount within the solid 

solution limit in both group III and group V elements doping , e.g., 1.5 mol% in the case 

of aluminum [5,6,8].  We have also examined the codoping of Al metal and 

atomospheric nitrogen.  The effect of both dopants counteracted each other, resulting 

in degrading in piezoresistance coefficient[9]. 

In the present study, the piezoresistance coefficient was measured on codoped silicon 

carbide ceramics.  Evaluation samples of α-silicon carbide ceramics were first 

fabricated by glass capsule HIP method using powder mixture of silicon carbide and 

aluminum nitride with various ratios.  The resultant aluminum nitride added silicon 

carbide ceramics were doped with nitrogen by changing the post-HIP nitrogen gas 

pressure.  The piezoresistive coefficient increased with the addition of aluminum 

nitride, it further increased with the nitrogen doping pressure. 

 

2.Experimental procedure 

α-type silicon carbide powder (Yakushima Dendo Co. Ltd., Yakushima, Japan) and 

aluminum nitride (Tokuyama Co. Ltd., Tokyo, Japan) were mixed with a preditermined 

ratio (0.2, 0.4, 0.6, 0.8, 1.0, 3.0 and 5.0 wt% of AlN).  Powder mixture of SiC and AlN 

were ball-milled in ethanol with zirconia balls for 2h.  The milled slurry was dried and 

subsequently sieved through a 280 μm mesh.  About 0.7 g of this powder mixture was 

uniaxially pressed in a φ10 mm die under a pressure of 60-100 MPa.  Resultant 

cylindrical powder compact was packed in a polyethylene bag, followed by cold 
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isostatic pressing under 350 MPa. 

The green compacts were then coated with BN powder (GP;Denka Co., Tokyo, 

Japan) to prevent reactions with the capsule glass during HIP process.  The BN-coated 

specimens were put into a borosilicate glass tube to be used as the capsule.  The tube 

was evacuated and heated to the softening temperature of the glass, then sealed and cut 

with a as flame burner, closely enveloping the specimen in a glass capsule.  The 

encapsulated specimens were HIP-sintered under argon gas at a pressure of 195 MPa at 

1950 °C for 30 min.  After breaking the capsule glass, once HIP-sintered specimens 

were post-HIPed at 1950 °C for 30 min under various nitrogen pressure (50 – 195 

MPa). 

The resultant sintered body were subjected to density measurement by Archimedes 

method using deionized water as the immersion medium.  The crystalline phases were 

analyzed by X-ray diffraction (XRD) with CuKα radiation. 

The sintered bodies were cut into rectangular bars with a precision diamond saw 

(Step Cutter, Maruto Co. Ltd., Japan), and then surface polished with diamond paste 

(9μm).  The resulting test pieces with dimension of 3 X 4 X 6 mm3 were used to 

estimate the applied stress dependency of electronic resistance.  The electronic 

resistance was measured by a two-probe direct-current (DC) method using a digital 

high-resistance meter (Model R8340A, Advantest Co., Ltd., Tokyo, Japan) with a 

constant voltage supply.  Siliver paste was attached to two of the parallel planes (3 X4 

mm2 planes) to form electrodes.  These test pieces were placed on a mechanical test 

machine (AutoGraph AGS-5kNG, Shimadu Co., Ltd., Kyoto, Japan), and the 

compressive stress was applied to the plane of 4 X 6 mm2 which was perpendicular to 

the plane of the electrodes, increased at a constant rate.  During this process, the 
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electric current change, corresponding to the stress, was measured.  From the effect of 

compressive stress perpendicular to the electric field on the change in electric current, 

the piezoresistance coefficient with applicaiotn of perpendicular stress was calculated.  

The sample setup is shown in Fig.1. 

In any case, resistance changes almost linearly with applied load.  The 

piezoresistance coefficent, π, was obtained form the following relationship between the 

applied stress (σ), resistance without load (R) and change in resistance (ΔR). 

π =(ΔR/R)/σ 

The Hall effects of silicon carbide ceramics with aluminum nitride and nitrogen were 

evaluated using a Hall effect evaluation system (Resitest 8300, Tokyo Technica Co. Ltd., 

Tokyo, Japan). 

 

3.Results and discussion 

3.1 Change in piezoresistive coefficient with AlN doping. 

First, we examined sample doped with only aluminum nitride (AlN), a group III and 

group IV compound.  Obtained silicon carbide ceramics doped up to 5 wt% of AlN 

have favorably densified with relative density over 92 % to theoretical.  Density 

dependency of piezoresistance coefficient can be negligible with these samples [3]. 

Figure 2 illustrates the lattice constant along the c axis and the piezoresistance 

coefficient versus the amount of added AlN up to 5 wt%.  The lattice constant 

increases with AlN up to 1 wt%, then satulated.  The solution limit lies around 1.5 

wt %. 

The piezoresistive coefficient measured on SiC ceramics with different amount of 

AlN is illustrated in Fig.3.  The piezoresistive coefficient increases with AlN content 
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up to 1.5 wt% then saturated.  The profile of doping amont dependency of 

piezoresistive coefficient accords with that for lattice constant. 

In order to examine the electric carrier in AlN doped SiC ceramics, Hall effects were 

measured.  In any doping level, AlN doped SiC was proved to be n-type semiconductor.  

As shown in Fig.2, the lattice constant increase with the doing amount within the 

solution limit.  It has already reported that the impurity solution in SiC lattice is 

usually substitution type.  Considering the covalent radii of respective atoms, Al atom 

(covalent radius:0.125nm) would substitute for Si atom (0.117 nm).  Also N (0.074 

nm) for C( 0.077 nm).  As a result, in the case of doping into SiC ceramics, the 

solution of Al would effect positively on lattice constant while that of N would effect 

negatively.  The increase in lattice constant accompanied by the AlN solution would be 

ascribed that the positive effect of Al solution exceeds that of N solution. 

In the case of AlN doping, equivalent amount of Al and N are incorporated.  The 

electric conductivity increased with AlN amount, which would be interpreted by a larger 

contribution of N doping probably due to the ionization ratio and/or larger mobility of 

electron.  This interpretaion is supported by the type of semiconductor (n-type). 

 

2.3 Atmospheric nitrogen doping into AlN doped SiC ceramics 

Figure 4 illustrates the change in resistivity of 1 wt% AlN doped SiC ceramics with 

different nitrogen doping pressure.  The resistivity decreases with increasing the 

doping pressure.  For example, it decreased to ρ = 4.12 /Ωm after nitrogen doping with 

195 MPa., which is considerable small compared with that before doping.  Change in 

lattice parameter along c-axis are listed in Table 1 on 1wt% and 3 wt% AlN doped SiC 

ceramics before and after nitrogen doping with 195 MPa.  Lattice parameter decreases 
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after nitrogen doping in both AlN doping levels.  It can be noted that the nitrogen is 

incorporated into SiC ceramics even in 3 wt% AlN doped one of which solid solution 

has been saturated as shown in Fig.2. 

Figure 5 shows the piezoresistive coefficient on SiC ceramics doped with 1 wt% or 3 

wt% of AlN followed by atomospheric nitrogen doping.  The piezoresistive coefficient 

increases with increasing the nitrogen doping pressure both in 1wt% and 3 wt% AlN 

doped SiC.  The piezoresistive coefficient reached to 3.4×10-9/m2N-1, which is the 

maximum value reported in SiC ceramics.  This enhancement in piezoresistivity would 

be ascribed to the further incorporation of nitrogen atom from atomosphere with high 

pressure into the AlN doped n-type SiC ceramics. 

We have already reported that the nitrogen doping using HIP treatment degrades the 

piezoresistive effect in Al doped p-type SiC ceramics [9].  In the present case, however, 

the sensitivity or piezoresistivity coefficient increases with the same co-doping of Al 

and nitrogen.  We have already reported that SiC ceramics with a large carrier 

concentration tend to possess a large piezoresistivity coefficient [5,7,8].  The electron 

concentration should be increased by the present two step AlN(s) + N2(g) doping, 

resulting in facilitating the piezoresistivity effect. 

It is noted that the nitrogen solution into the SiC ceramics continued to increase up to 

195MPa post-HIP treatment in the present two step doping, while it saturated at around 

150 MPa treatment in the N2(g) single step doping [8].  In the two step doping, solution 

amount of nitrogen should be enormous since it was incorporated into SiC as AlN(s) 

and N2(g).  The expansion of the nitrogen solubility limit could be ascribed to the first 

step doping or as a result of lattice elongation by the Al doping. 
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4. Conclutions 

The piezoresistivity effect was examined on SiC ceramics doped with aluminum nitride 

followed by atmospheric nitrogen doping with post-HIP treatment.  Without HIP 

treatment, AlN doped SiC became n-type semiconductor, of which piezoresistance 

coefficient increased with the AlN doping amount within the solubility limits.  With 

the post-HIP treatment, nitrogen was solved into the AlN doped SiC, leading to the 

enhancement of the piezoresistance property. 
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Figure Captions 
Fig.1 Schematic setup to measure the piezoresistivity property 
 
Fig.2 Change in lattice parameter in SiC ceramics against aluminum nitride adding 
amount. 
 
Fig.3 Change in piezoresistive coefficienet in SiC ceramics against aluminum nitride 
adding amount. 
 
Fig.4 Change in resistivity without load in 1 wt% and 3 wt% aluminum nitride doped 
SiC ceramics against nitrogen doping pressure. 
 
Fig.5 Change in piezoresistive coefficienet in 1 wt% and 3 wt% aluminum nitride doped 
SiC ceramics against nitrogen doping pressure. 
 
 
 
Table 1  Changes in lattice parameters (c-axis) in aluminum nitride doped silicon 
carbide with and without HIP treatment in nitrogen gas pressure of 195MPa 

AlN addition/HIP pressure                Lattice parameter /nm 

AlN (1 wt%)                          1.5120(5) 

AlN (1 wt%)+195 MPa                   1.5095(2) 

AlN (3 wt%)                          1.5119(5) 

AlN (3 wt%)+195 MPa                   1.5083(4) 
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Fig.1 
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