1,977 research outputs found

    Position Estimation of Robotic Mobile Nodes in Wireless Testbed using GENI

    Full text link
    We present a low complexity experimental RF-based indoor localization system based on the collection and processing of WiFi RSSI signals and processing using a RSS-based multi-lateration algorithm to determine a robotic mobile node's location. We use a real indoor wireless testbed called w-iLab.t that is deployed in Zwijnaarde, Ghent, Belgium. One of the unique attributes of this testbed is that it provides tools and interfaces using Global Environment for Network Innovations (GENI) project to easily create reproducible wireless network experiments in a controlled environment. We provide a low complexity algorithm to estimate the location of the mobile robots in the indoor environment. In addition, we provide a comparison between some of our collected measurements with their corresponding location estimation and the actual robot location. The comparison shows an accuracy between 0.65 and 5 meters.Comment: (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Fingerprinting-Based Positioning in Distributed Massive MIMO Systems

    Full text link
    Location awareness in wireless networks may enable many applications such as emergency services, autonomous driving and geographic routing. Although there are many available positioning techniques, none of them is adapted to work with massive multiple-in-multiple-out (MIMO) systems, which represent a leading 5G technology candidate. In this paper, we discuss possible solutions for positioning of mobile stations using a vector of signals at the base station, equipped with many antennas distributed over deployment area. Our main proposal is to use fingerprinting techniques based on a vector of received signal strengths. This kind of methods are able to work in highly-cluttered multipath environments, and require just one base station, in contrast to standard range-based and angle-based techniques. We also provide a solution for fingerprinting-based positioning based on Gaussian process regression, and discuss main applications and challenges.Comment: Proc. of IEEE 82nd Vehicular Technology Conference (VTC2015-Fall

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Localization in Long-range Ultra Narrow Band IoT Networks using RSSI

    Full text link
    Internet of things wireless networking with long range, low power and low throughput is raising as a new paradigm enabling to connect trillions of devices efficiently. In such networks with low power and bandwidth devices, localization becomes more challenging. In this work we take a closer look at the underlying aspects of received signal strength indicator (RSSI) based localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI has been used for fingerprinting localization where RSSI measurements of GPS anchor nodes have been used as landmarks to classify other nodes into one of the GPS nodes classes. Through measurements we show that a location classification accuracy of 100% is achieved when the classes of nodes are isolated. When classes are approaching each other, our measurements show that we can still achieve an accuracy of 85%. Furthermore, when the density of the GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus improve the possibility of localizing nodes with an error less than 20m from 20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes is localized with an error of less than 50m in our experiment with non-optimized anchor node locations.Comment: Accepted in ICC 17. To be presented in IEEE International Conference on Communications (ICC), Paris, France, 201

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A Survey of Positioning Techniques and Location Based Services in Wireless Networks

    Get PDF
    International audiencePositioning techniques are known in a wide variety of wireless radio access technologies. Traditionally, Global Positioning System (GPS) is the most popular outdoor positioning system. Localization also exists in mobile networks such as Global System for Mobile communications (GSM). Recently, Wireless Local Area Networks (WLAN) become widely deployed, and they are also used for localizing wireless-enabled clients. Many techniques are used to estimate client position in a wireless network. They are based on the characteristics of the received wireless signals: power, time or angle of arrival. In addition, hybrid positioning techniques make use of the collaboration between different wireless radio access technologies existing in the same geographical area. Client positioning allows the introduction of numerous services like real-time tracking, security alerts, informational services and entertainment applications. Such services are known as Location Based Services (LBS), and they are useful in both commerce and security sectors. In this paper, we explain the principles behind positioning techniques used in satellite networks, mobile networks and Wireless Local Area Networks. We also describe hybrid localization methods that exploit the coexistence of several radio access technologies in the same region, and we classify the location based services into several categories. When localization accuracy is improved, position-dependant services become more robust and efficient, and user satisfaction increases
    • 

    corecore