160 research outputs found

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    The presentation of sustainable power source assets in the field of intensity age assumes an imperative job

    Get PDF
    DC to DC converters to interface lesser-voltage higher-control supply to the essential stock shows the most raised proficiency was practiced in the full-connect converter. Non-separated converters bury unified inductor help converters with essential voltage gain and furthermore converters hold lesser profitability, yet they huge in structure, even the quantity of latent parts is diminished. In like manner gives proficient utilization of semiconductor switches, have higher voltage yield and are prepared to work in lesser estimation of D interestingly with every single disconnected converter. High addition topologies are regularly outfitted with high voltage security structures. Few non-disengaged topologies gives voltage hang security circuits are pointless since capacitive fragments and circuit plan are progressed to work under higher information voltage and low power. That requires lesser qualities for convincing RAC obstruction and entomb partnered inductance dispersal to achieve more prominent adequacy of intensity change. Larger supply current needs extensive region of core area inter allied inductors

    A current-source DC-AC converter and control strategy for grid-connected PV applications

    Get PDF
    This paper presents a two-stage current-source DC-AC converter for grid-connected PV applications which is composed of an input step-up stage, followed by a step-down stage and an unfolding inverter. A decentralized control strategy of the DC-DC stage allows maximizing the renewable energy harvest using an Incremental Conductance MPPT algorithm and synthesizing an output current to be injected into the grid with low harmonic distortion. Double-loop PI controllers are used for the boost stage. The DC bus voltage of the buck stage is regulated using a PI controller, and an inner Proportional-Resonant (PR) controller tracks a sinusoidal reference. The PR controller proposed in this paper, includes a reduced number of resonant stages meeting the energy quality required by standards, which results in good stability margins. Finally, a SOGI-FLL algorithm synchronizes the inverter operation with the grid. Experimental results show an excellent dynamic response of the system, and the injected current complies with the IEEE Std. 1547–2018 specifications regarding harmonic content using a control law with a low computational burden.Fil: Buzzio, Christian. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Grupo de Electrónica Aplicada; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Poloni, Yamil Sergio. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Oggier, Germán Elías. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: García, Guillermo Osvaldo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentin

    ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE

    Get PDF
    Solar energy is an abundant renewable source, which is expected to play an increasing role in the grid\u27s future infrastructure for distributed generation. The research described in the thesis focuses on the analysis of integrating multi-megawatt photovoltaics (PV) systems with battery energy storage into the existing grid and on the theory supporting the electrical operation of components and systems. The PV system is divided into several sections, each having its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a buffer storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the PSCADTM/EMTDCTM software

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Power electronics technologies for renewable energy sources

    Get PDF
    Over the last decades, power grids are facing significant improvements mainly due to the integration of more and more technologies. In particular, renewable energy sources (RES) are contributing to moving from centralized energy production to a new paradigm of distributed energy production. Analyzing in more detail the requirements of the diverse technologies of RES, it is possible to identify a common and key point: power electronics. In fact, power electronics is the key technology to embrace the RES technologies towards controllability and the success of sustainability of power grids. In this context, this book chapter is focused on the analysis of diverse RES technologies from the point of view of power electronics, including the introduction and explanation of the operating principle of the most relevant RES, both in onshore and offshore scenarios. Additionally, are also presented the main topologies of power electronics converters used in the interface of RES.(undefined

    Energy efficient control for power management circuits operating from nano-watts to watts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-172).Energy efficiency and form factor are the key driving forces in today's power electronics. All power delivery circuits, irrespective of the magnitude of power, basically consists of power trains, gate drivers and control circuits. Although the control circuits are primarily required for regulation, these circuits can play a crucial role in achieving high efficiency and/or minimizing overall system form-factor. In this thesis, power converter circuits, spanning a wide operating range- from nano-watts to watts, are presented while highlighting techniques for using digital control circuits not just for regulation but also to achieve high system efficiency and smaller system form-factor. The first part of the thesis presents a power management unit of an autonomous wireless sensor that sustains itself by harvesting energy from the endo-cochlear potential (EP), the 70-100mV electrochemical potential inside the mammalian inner ear. Due to the anatomical constraints, the total extractable power from the EP is limited to 1.1-6.3nW. A low switching frequency boost converter is employed to increase the input voltage to a higher voltage usable by CMOS circuits in the sensor. Ultra-low power digital control circuits with timers help keep the quiescent power of the power management unit down to 544pW. Further, a charge-pump is used to implement leakage reduction techniques in the sensor. This work demonstrates how digital low power control circuit design can help improve converter efficiency and ensure system sustainability. All circuits have been implemented on a 0.18[mu]m CMOS process. The second part of the thesis discusses an energy harvesting architecture that combines energy from multiple energy harvesting sources- photovoltaic, thermoelectric and piezoelectric sources. Digital control circuits that configure the power trains to new efficient system architectures with maximum power point tracking are presented, while using a single inductor to combine energy from the aforementioned energy sources all at the same time. A dual-path architecture for energy harvesting systems is proposed. This provides a peak efficiency improvement of 11-13% over the traditional two stage approach. The system can handle input voltages from 20mV to 5V and is also capable of extracting maximum power from individual harvesters all at the same time utilizing a single inductor. A proposed completely digital timebased power monitor is used for achieving maximum power point tracking for the photovoltaic harvester. This has a peak tracking efficiency of 96%. The peak efficiencies achieved with inductor sharing are 83%, 58% and 79% for photovoltaic boost, thermoelectric boost and piezoelectric buck-boost converters respectively. The switch matrix and the control circuits are implemented on a 0.35pm CMOS process. This part of the thesis highlights how digital control circuits can help reconfigure power converter architectures for improving efficiency and reducing form-factors. The last part of the thesis deals with a power management system for an offline 22W LED driver. In order to reduce the system form factor, Gallium Nitride (GaN) transistors capable of high frequency switching have been utilized with a Quasi-Resonant Inverted Buck architecture. A burst mode digital controller has been used to perform dimming control and power factor correction (PFC) for the LED driver. The custom controller and driver IC was implemented in a 0.35[mu]m CMOS process. The LED driver achieves a peak efficiency of 90.6% and a 0.96 power factor. Due to the high power level of the driver, the digital controller is primarily used for regulation purposes in this system, although the digital nature of the controller helps remove the passives that would be normally present in analog controllers. In this thesis, apart from regulation, control circuit enabled techniques have been used to improve efficiency and reduce system form factor. Low power design and control for reconfigurable power train architectures help improve the overall power converter efficiency. Digital control circuits have been used to reduce the form factor by enabling inductor sharing in a system with multiple power converters or by removing the compensator passives.by Saurav Bandyopadhyay.Ph.D

    Applications of Power Electronics:Volume 1

    Get PDF

    Design, analysis and control of a magnetically-coupled multi-port multi-operation-mode residential micro-grid

    Full text link
    © 2017 IEEE. This paper proposes topology of a magnetically coupled residential micro-grid consisting of a multi-port DC-DC converter and a single phase grid-connected bi-directional inverter. It integrates photovoltaic (PV) and fuel cell energies to supply the residential load via a common high-voltage dc bus linked to a single phase bidirectional inverter. A battery is used to store the surplus energy of the system and stabilize the bus voltage of the fuel cell port. The multi-port converter includes a three port phase shift converter for integrating renewable sources, a bidirectional buck-boost converter for charging and discharging the battery and an interleaved boost converter for boosting the PV voltage and maximum power point tracking. Using interleaved topology has reduced the effects of both high frequency current ripple and low frequency voltage ripple propagated from inverter on the maximum power point tracking (MPPT) performance. The steady state operation and control strategy of the proposed micro-grid are discussed and simulation results are presented
    corecore