235 research outputs found

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments.Comment: this is a living document - we welcome feedback and discussio

    Variational operator learning: A unified paradigm for training neural operators and solving partial differential equations

    Full text link
    Based on the variational method, we propose a novel paradigm that provides a unified framework of training neural operators and solving partial differential equations (PDEs) with the variational form, which we refer to as the variational operator learning (VOL). We first derive the functional approximation of the system from the node solution prediction given by neural operators, and then conduct the variational operation by automatic differentiation, constructing a forward-backward propagation loop to derive the residual of the linear system. One or several update steps of the steepest decent method (SD) and the conjugate gradient method (CG) are provided in every iteration as a cheap yet effective update for training the neural operators. Experimental results show the proposed VOL can learn a variety of solution operators in PDEs of the steady heat transfer and the variable stiffness elasticity with satisfactory results and small error. The proposed VOL achieves nearly label-free training. Only five to ten labels are used for the output distribution-shift session in all experiments. Generalization benefits of the VOL are investigated and discussed.Comment: 35 pages, 22 figure

    Reconstruction and fast prediction of a 3D flow field based on a variational autoencoder

    Full text link
    Reconstruction and fast prediction of flow fields are important for the improvement of data center operations and energy savings. In this study, an artificial neural network (ANN) and variational autoencoder (VAE) composite model is proposed for the reconstruction and prediction of 3D flowfields with high accuracy and efficiency. The VAE model is trained to extract features of the problem and to realize 3D physical field reconstruction. The ANN is employed to achieve the constructability of the extracted features. A dataset of steady temperature/velocity fields is acquired by computational fluid dynamics and heat transfer (CFD/HT) and fed to train the deep learning model. The proposed ANN-VAE model is experimentally proven to achieve promising field prediction accuracy with a significantly reduced computational cost. Compared to the CFD/HT method, the ANN-VAE method speeds up the physical field prediction by approximately 380,000 times, with mean accuracies of 97.3% for temperature field prediction and 97.9% for velocity field prediction, making it feasible for real-time physical field acquisition.Comment: 43 pages, 23 figure

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Finite-Time Thermodynamics

    Get PDF
    The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples

    The Eightfold Way to Dissipation: Classification of Hydrodynamic Transport

    Get PDF
    Hydrodynamics is the low-energy effective field theory of any interacting quantum theory, capturing the long-wavelength fluctuations of an equilibrium Gibbs density matrix. Conventionally, one views the effective dynamics in terms of the conserved currents, which should be expressed in terms of the fluid velocity and the intensive parameters such as the temperature and chemical potential. However, not all currents allowed by symmetry are physically acceptable; one has to ensure that the second law of thermodynamics is satisfied on all physical configurations. We provide a complete solution to hydrodynamic transport at all orders in the gradient expansion compatible with the second law constraint. The key new ingredient we introduce is the notion of adiabaticity, which allows us to take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid compensates for entropy production. The space of adiabatic fluids admits a decomposition into seven distinct classes. Together with the dissipative class this establishes the eightfold way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms beyond leading order in the gradient expansion are agnostic of the second law. After completing the transport taxonomy, we go on to argue for a new symmetry principle, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics and serves as the emergent version of microscopic KMS conditions. We demonstrate its utility by explicitly constructing effective actions for adiabatic transport (i.e., seven out of eight classes). The theory of adiabatic fluids, we speculate, provides a useful starting point for a new framework to describe non-equilibrium dynamics. We outline briefly the crucial role of the proposed symmetry of gauged thermal translations in the construction of a Schwinger-Keldysh effective action that encompasses all of hydrodynamic transport
    • 

    corecore