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Abstract

Hydrodynamics is the low-energy effective field theory of any interacting quantum theory,

capturing the long-wavelength fluctuations of an equilibrium Gibbs density matrix. Conven-

tionally, one views the effective dynamics in terms of the conserved currents, which should be

expressed in terms of the fluid velocity and the intensive parameters such as the temperature

and chemical potential. However, not all currents allowed by symmetry are physically ac-

ceptable; one has to ensure that the second law of thermodynamics is satisfied on all physical

configurations. We provide a complete solution to hydrodynamic transport at all orders in

the gradient expansion compatible with the second law constraint.

The key new ingredient we introduce is the notion of adiabaticity, which allows us to

take hydrodynamics off-shell. Adiabatic fluids are such that off-shell dynamics of the fluid

compensates for entropy production. The space of adiabatic fluids admits a decomposition

into seven distinct classes. Together with the dissipative class this establishes the eightfold

way of hydrodynamic transport. Furthermore, recent results guarantee that dissipative terms

beyond leading order in the gradient expansion are agnostic of the second law.

After completing the transport taxonomy, we go on to argue for a new symmetry princi-

ple, an Abelian gauge invariance that guarantees adiabaticity in hydrodynamics and serves as

the emergent version of microscopic KMS conditions. We demonstrate its utility by explicitly

constructing effective actions for adiabatic transport (i.e., seven out of eight classes). The

theory of adiabatic fluids, we speculate, provides a useful starting point for a new framework

to describe non-equilibrium dynamics. We outline briefly the crucial role of the proposed

symmetry of gauged thermal translations in the construction of a Schwinger-Keldysh effective

action that encompasses all of hydrodynamic transport.

3



4



Declaration

The research described in this thesis is based on work carried out at the Department of

Mathematical Sciences, Durham University. With the permission of the other authors, this

thesis is based substantially on the following collaborative work:

[1] F. M. Haehl, R. Loganayagam, M. Rangamani, “Adiabatic hydrodynamics: The eight-

fold way to dissipation”, JHEP 1505 (2015) 060, [arXiv:1502.00636].

[2] F. M. Haehl, R. Loganayagam and M. Rangamani, “The eightfold way to dissipation,”

Phys. Rev. Lett. 114 (2015) 201601, [arXiv:1412.1090].

Most of this thesis is a reproduction of [1] with omissions and minor changes at numerous

places. As compared to [1], significant modifications and new material can be found in §1,

§2, §16.1, and §22. I have been thoroughly involved in discussing, developing, writing and

editing all parts of [1], which only exists thanks to tight collaboration at all stages. My con-

tributions were particularly significant for computing and/or writing the following sections:

§1,§2, §3, §6, §8.3, §10.2, §10.4, §11, §12.2, §14.2, §15, §16, §17.1, §17.2, §17.3, §17.6, §18,

§19, §20, §22, §D.3, §E, §G, §H, §I. None of the research described in this thesis has been

submitted by me or by anyone else for a degree at Durham University or elsewhere.

During my doctoral studies at Durham University between September 2012 and March

2016, I have furthermore published the original works [3–9]. The results of [3, 4] are men-

tioned at various places and are briefly summarized in §22. The main results of [8, 9] are

re-derived in §11.2, §15, §16 using a more advanced formalism. The content of [5–7] is beyond

the scope of this thesis.

The copyright of this thesis rests with the author. No quotation from it should be published

without the author’s prior written consent and information derived from it should be ac-

knowledged.

5

http://lanl.arxiv.org/abs/1502.00636
http://lanl.arxiv.org/abs/1412.1090


6



Acknowledgments

First and foremost, I am extremely grateful that I had the privilege to work with my advisor

Mukund Rangamani. He taught me a lot about many aspects of physics, always shared with

me his impressive intuition and knowledge of our science in the most stimulating way, and

provided all the guidance and support that a student can wish for.

I am very thankful to Jyotirmoy Bhattacharya, Jan de Boer, Tom Hartman, Micha l

Heller, Don Marolf, Henry Maxfield, and Rob Myers for many insights during extremely

inspiring collaborations, and especially Loganayagam Ramalingam for uncountable hours of

illuminating conversations which taught me a great deal not just about hydrodynamics but

about the art of doing theoretical physics.

My appreciation extends to the many great scientists I met over the last years, who

shared their excitement and knowledge with me, and in particular to the faculty, former

faculty, and students of the CPT for many interesting discussions and for making our de-

partment an interactive and inspiring place.

I thank my parents Christine and Guenther for their invaluable support and encourage-

ment at all stages of my studies. And thanks to the many good friends I made at Hatfield

College and especially to Liz, for all the fun things and adventures beyond physics that made

for a great time in Durham.

During my studies I gratefully acknowledged support by a Durham Doctoral Fellowship

and a Visiting Graduate Fellowship of Perimeter Institute.

7



8



Contents

Abstract 3

Declaration 5

Acknowledgments 7

Table of Contents 9

List of Tables and Figures 13

I Review and Introduction to Relativistic Hydrodynamics 15

1 Quantum field theory, gravity, and fluids 15

2 The hydrodynamic current algebra 18

3 Interesting subsectors of hydrodynamic transport 21

3.1 Equilibrium partition functions 21

3.2 Dissipative transport 22

3.3 Non-dissipative fluids 22

4 Adiabatic fluids 25

II An Invitation to Adiabatic Hydrodynamics 30

5 Adiabatic hydrodynamics 30

5.1 The adiabaticity equation 30

5.2 Physical interpretation of adiabatic fluids 33

5.3 Ideal fluids are adiabatic 34

5.4 The adiabatic free energy current 35

6 Classification of adiabatic transport 37

7 Class H: Hydrostatics from adiabaticity 42

7.1 Hydrostatic partition functions 43

7.2 Currents from the hydrostatic partition function 46

8 Class D: Dissipative terms 48

8.1 Constraints on dissipative transport 48

8.2 Differential operators for dissipation 51

8.3 Examples: Low order Class D differential operators 54

9



III The Classification of Adiabatic Constitutive Relations 56

9 Class L: Lagrangian solutions to adiabaticity equation 56

9.1 Bianchi identities in Class L 57

9.2 Noether current in Class L 59

9.3 Hydrostatic partition function for Class L 61

10 Hydrodynamic Ward identities in Class L 62

10.1 A constrained variational principle for hydrodynamics 62

10.2 Reference fields and conservation equations 64

10.3 Gauge redundancy of reference fields 66

10.4 Variational principle on reference manifold 67

10.5 Static gauge on the reference manifold & hydrodynamic fields 68

10.6 Field redefinitions in Class L 70

11 Applications of adiabatic fluids 72

11.1 Neutral fluids up to second order in gradients 72

11.1.1 Zeroth order in gradients 72

11.1.2 First order in gradients 73

11.1.3 Second order in gradients 75

11.2 Parity-odd fluids in 3 dimensions 78

11.2.1 Zeroth order in gradients 79

11.2.2 First order in gradients 79

12 Class B: Berry-like transport 82

12.1 The Berry constitutive relations 82

12.2 Examples of Class B transport 85

12.3 Embedding Class B in Class L? 86

13 Class C: Conserved entropy 87

14 The Vector Classes: Transverse free energy currents 90

14.1 The hydrostatic Class HV 90

14.2 The non-hydrostatic Class HV 93

14.2.1 General construction of Class HV 93

14.2.2 Example: second order charged fluid 95

15 Class A: Lagrangian solution to anomalous adiabaticity equation 97

15.1 Flavour anomalies 98

15.2 Mixed anomalies 102

15.3 Variational calculus for mixed anomalies 103

15.4 On-shell dynamics of anomalous adiabatic fluids 106

16 Schwinger-Keldysh formalism for Class L and application to Class A 108

16.1 Why doubling? 108

16.2 Schwinger-Keldysh fields on the reference manifold 110

16.3 Hydrodynamic currents in common/difference basis 113

10



16.4 Anomalous Ward identities in the Schwinger-Keldysh formalism 115

16.5 Effective actions for Class D? 118

IV The Eightfold Way to Dissipation and its Lagrangian Unification 120

17 The Eightfold Way 120

17.1 The route to classification 120

17.2 Completeness of the adiabatic taxonomy 124

17.3 Example I: Charged parity-even fluids 127

17.4 Example II: Weyl invariant fluid dynamics 130

17.5 Adiabatic fluids in holography and kinetic theory 132

17.5.1 Holographic fluids and adiabaticity 133

17.5.2 Kinetic theory and adiabatic fluids 135

17.6 Eightfold classification for various fluid systems 137

18 Class LT: Eightfold Lagrangian 140

18.1 Introducing U(1)T invariance 140

18.2 The fields and their transformation properties 142

18.3 Bianchi identities in Class LT 145

18.4 The adiabatic Lagrangian LT 147

19 Hydrodynamic Ward identities and the Second Law in Class LT 148

19.1 The Class LT variational principle 149

19.2 Reference fields for Class LT 150

20 Eightfold adiabatic transport in Class LT 151

20.1 LT for Class L constitutive relations 152

20.2 LT for non-Lagrangian constitutive relations (Classes B, C and HV ) 153

20.3 LT for anomalies (Classes A and HV ) 153

20.4 Field redefinitions 156

V Conclusion and Open Problems 157

21 Discussion 157

22 Outlook on Schwinger-Keldysh and phenomenology of U(1)T 162

VI Appendices 166

A Adiabaticity equation for consistent currents 166

A.1 Bardeen-Zumino currents 166

A.2 The Consistent Gibbs current 167

11



B Topological currents in odd spacetime dimensions 168

B.1 Generalized Euler current 168

B.2 Chern current 169

C Adiabatic hydrodynamics with Weyl invariance 169

C.1 Weyl transformation 170

C.2 Weyl connection 170

C.3 Weyl covariance and conservation equations 172

C.4 Velocity compatible Weyl connection 173

C.5 Class L for Weyl covariant fluids 175

D Useful variational formulae 175

D.1 Mapping variations of hydrodynamic fields 175

D.2 Relating variations of hydrodynamic fields to reference parameterization 176

D.3 Variational rules for anomalous hydrodynamics 177

E Details of the neutral fluid computation at second order 178

E.1 Variational calculus for the second order scalars 178

E.2 Transport coefficients for neutral fluids 183

E.3 Entropy current for the neutral fluid 186

F The hydrostatic entropy current 187

F.1 The entropy analysis of Bhattacharyya 187

F.2 Comparison with the charged fluid analysis of Bhattacharyya 188

G Bianchi identities for anomalous hydrodynamics 189

G.1 Bianchi identities from anomalous part of effective action 189

G.2 On-shell constraints from the full Lagrangian 193

G.3 Bianchi identities of anomalous Schwinger-Keldysh action 194

H Class LT details 196

H.1 Consistency of U(1)T transformations 196

H.2 Deriving Class LT Bianchi identities 198

I Notation and conventions 202

12



List of Tables

1 Hydrostatic, parity-even, charged 2nd order fluids 128

2 Non-hydrostatic, parity-even, charged 2nd order fluids 129

3 Hydrostatic, Weyl invariant, parity-even, neutral 2nd order fluid 131

4 Non-hydrostatic, Weyl invariant, parity-even, neutral 2nd order fluid 131

5 Hydrostatic, Weyl invariant, parity-even, charged 2nd order fluid 132

6 Non-hydrostatic, Weyl invariant, parity-even, charged 2nd order fluid 132

7 Eightfold classification of parity-even fluids 138

8 Eightfold classification of parity-odd fluids 139

9 Hydrostatic, parity-even, neutral 2nd order fluid 184

10 Non-hydrostatic, parity-even, neutral 2nd order fluid 184

11 Notation: basic fields and sources on M 202

12 Notation: basic fields and sources on M 202

13 Notation: variational symbols, derivatives, indices 203

14 Notation: Class A and Schwinger-Keldysh on M 203

15 Notation: Class A and Schwinger-Keldysh on M 204

16 Notation: Class LT quantities 204

List of Figures

1 The eightfold way of hydrodynamic transport 27

2 Pullback maps connecting M and M 64

3 Schwinger-Keldysh time contour 109

4 Pullback maps in Schwinger-Keldysh formalism 111

13



14



Part I

Review and Introduction to Relativistic

Hydrodynamics

1 Quantum field theory, gravity, and fluids

String theory has long been known to have the remarkable feature that the seemingly incom-

patible cornerstones of theoretical physics – the quantum theory of fields and the beautiful

geometric theory of gravity – meet in a unified framework: the quantum theory of strings im-

mediately gives rise to gravity, thus letting both types of theories emerge from the vibrational

patterns of the string. However, it was in an even more subtle way that quantum field the-

ories and gravity have been intimately linked by the study of string theory: string dualities

were found to relate the physics in a particular regime of coupling strength to a vastly dif-

ferent regime. One of the most significant discoveries in modern theoretical physics concerns

the conjectured string duality between (quantum) gravity in d-dimensional asymptotically

Anti-de Sitter (AdS) spacetimes on the one hand, and conformal field theories (CFTs) in

d − 1 dimensions on the other hand [10–12]. The best established version of this duality

concerns the exact equivalence between the physics of string theory on asymptotically AdS5

(in addition to 5 compact dimensions) and SU(N) Yang-Mills gauge theory with N = 4

supersymmetry in 4 dimensions. The fundamental reason for this holographic duality lies in

the fact that at certain points in parameter space, worldvolumes of open string generated

gauge theories can be re-interpreted as solitonic gravitational solutions in supergravity, thus

providing two very distinct description of the same underlying phenomenon [13].

The duality between two so strikingly different physical theories (conformal field theories

and quantum gravity) has been extremely useful in a great number of applications ranging

from particle physics to condensed matter and quantum information theory and other fields.

Much of this success can be traced back to the fact that strongly coupled gauge theories

are dual to weakly coupled gravity, thus allowing for a new and computationally tractable

perspective on the hard questions about strongly coupled quantum fields. For instance, it

is experimentally of crucial interest to understand high energy scattering and equilibration

process of quark-gluon plasmas. Computing the dynamics of such processes directly in

QCD is very hard to do, due to the strong couplings and the associated breakdown of

perturbation theory. However, the power of the AdS/CFT correspondence lies in the fact

that it also encompasses the full dynamics of the theories involved. Many interesting aspects

of strongly coupled non-equilibrium physics become much more approachable if formulated in

a suitable gravitational theory (typically Einstein gravity coupled to matter in a perturbative

way, or supergravity). While there is no known dual description of QCD, it is nevertheless

possible to model certain rather universal aspects of its non-perturbative dynamics in the

deconfined plasma phase by studying (e.g. superconformal) theories with similar properties

in holography.

While this line of thought led to the reformulation of a vast number of problems in terms

of gravity, it is perhaps even more tantalizing that the strong/weak coupling duality can also
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be used in the reverse direction, i.e., string theory or strong gravity in asymptotically AdS

can be described by quantum field theory living at the conformal boundary of the spacetime.

Using this way of thinking, one can hope to pose even more fundamental questions and gain

insight into classical and quantum gravity and the very nature of spacetime geometry as

an emergent phenomenon. In this context it has, for example, been realized that there

exists an intimate and unexpected relation between quantum entanglement and spacetime

geometry [14]. Strikingly, the deeply mysterious physics of black holes is encoded in the field

theory, which thus provides a novel way of asking questions about event horizons, black hole

interiors, and even spacetime singularities. This way, AdS/CFT has the potential to teach

important lessons about quantum gravity, or in fact provide a non-perturbative definition

thereof.

It is these developments, which motivate the work in this thesis. Many questions about

the way holographic dualities work are best to address if one can identify some particular

sector or theory in which one side of the duality is under good control. An intriguing ex-

ample for this is provided by the theory of hydrodynamics, which describes a certain regime

of states for quantum field theory in very generic situations. These are generally states

with interesting off-equilibrium dynamics, in which there is still a local notion of thermal

equilibrium. More precisely, hydrodynamics is the long-wavelength effective description of

near-equilibrium dynamics of interacting quantum systems. Often, interesting questions

about both quantum and spacetime dynamics are independent of the detailed microscopic

physics and can be asked in an effective field theory (i.e., hydrodynamic) regime. While

hydrodynamics only describes the continuum long-wavelength fluctuations of quantum field

theories, it is still an extremely universal theory because at least in this regime it applies in

very generic circumstances. It is also known to be sensitive to many of the most interesting

aspects of dynamical systems, such as dissipation, fluctuations, or even quantum anomalies

[15]. One can therefore expect that similarly universal lessons about real time holography

can be learnt in this regime by understanding the structure of hydrodynamics: any struc-

tural insight about (conformal) fluids should have an analogue in gravitational or stringy

theories on asymptotically AdS spacetimes. This regime of holography has been coined the

fluid/gravity correspondence [16].

What aspects of holography could be interesting to explore in the hydrodynamic regime?

Firstly, an immediate impulse might be to aim for a detailed understanding of strongly

coupled fluids, such as the long-wavelength fluctuations and transport of quark-gluon plasmas

(see, e.g., [17] for a review). Concretely, the equilibration process of heavy-ion collisions is

remarkably well described by hydrodynamics. Often, holographic studies of fluid dynamics

are concerned with the investigation of features that are universal across a wide class of

theories, as these can then be extrapolated from the AdS/CFT laboratory to real world

strongly coupled dynamics. For example, a particular transport coefficient – shear viscosity

– describing the leading order dissipative effects of relativistic fluids, has been famously

investigated as a measure of how much a fluid behaves as a perfect fluid [18]. From studies

of AdS/CFT it has been realized that in the class of plasmas with an Einstein gravity

dual this coefficient is universal (and small compared to the entropy density – a typical

feature of strongly coupled dynamics) [19]. Paradigmatically, after such an observation in

theory, one can then make a case for the existence of such universality in experimental

setups. In particular it has been observed that real-world plasmas are often strikingly well
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described by a perfect fluid and in fact they even roughly exhibit the universal value for

shear viscosity chosen by holographic theories [20, 21]. There are many more intriguing

’practical’ problems in fluid dynamics, where AdS/CFT provides a very valuable toolkit

(see, for example, insightful holographic studies of particular fluid flows of interest, such as

those exhibiting turbulence [22]).

One the other hand, we are again most intrigued by the possibility to turn around the

holographic map and try to use fluid dynamics to learn new lessons about gravity (or even

quantum gravity). The most immediate insight in this direction is the discovery of new

families of solutions to Einstein’s equations by explicitly constructing the fluid/gravity map:

every solution to a particular fluid equations can be mapped to a dynamical black hole

solution parametrized by the same local variables as the fluid flow. On the more abstract

side, one can try to get a good handle on the structural aspects of hydrodynamics and use it

to gain a deeper understanding into how and why holography works. For instance, a lot of

insight might be gained from a first-principles derivation of the fluid/gravity correspondence.

This would involve an identification of the correct low-energy (Goldstone) degrees of freedom

of the field theory and reconstructing their effective theory from the AdS bulk dynamics by

a suitable implementation of holographic renormalization group [23–25]. Perhaps even more

ambitiously (and related to the previously described problem), a good enough understanding

of the structure of hydrodynamics may give direct insights into black hole physics and the

way one should formulate and conceptualize effective low-energy gravitational theories in

the presence of large AdS black holes and their horizons. In particular, dissipation in fluid

dynamics translates into time-dependent horizon physics, which lies at the core of many

recent discussions about quantum gravity. For instance, questions about low-energy effective

field theory, apparent violations of unitarity [26], entanglement patterns [27] etc., can perhaps

be addressed in a controlled framework. Since in general it is not clear yet what quantum

gravity teaches us in such contexts, understanding the dual hydrodynamic regime may prove

insightful. The latter simplifies certain problems by restricting to a particular dynamical

regime, but it still retains a large degree of sensitivity to the important universal subtleties

of the physics. It is this intriguing potential, which ultimately serves as a motivation for the

present work. In [4] a broad framework has already been suggested, which uses hydrodynamic

insights to conjecture a number of useful structures in time-dependent black hole physics and

in the presence of long-wavelength dissipation. In §22, we will return to these insights and

give an outlook on the status of these endeavours.

Motivated by the fluid/gravity correspondence, it would be very desirable to have a

systematic and field theoretic understanding of the structural aspects of hydrodynamics.

This could then be used to learn about non-stationary gravitational physics. Most of this

thesis is concerned with developing tools towards such an endeavour. As we will explain in

the following section, despite the success of the fluid/gravity map, at a structural level the

traditional approach to hydrodynamics is lacking many essential features, which one would

expect in order to make a clear connection with gravity. The goal of this thesis is to develop

a new way of structuring and formulating hydrodynamics and, in particular, to understand

and classify hydrodynamic transport in generality, thus uncovering many interesting (and

hopefully useful) structures. Our classification will be constructive in the sense that we

use physical insights to give an algorithm for constructing all of hydrodynamic transport

explicitly at any desired order in the long-wavelength expansion. While we will be general
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and do not restrict the analysis to conformal fluid dynamics, the language we develop will

be such that it is suggestive for a description in terms of effective field theory and eventually

gravity. We will not make the connection with AdS/CFT precise in this work, but a careful

reader may anticipate the usefulness in holography of some of the structures. Before starting

our classification program, we now turn to a brief review of the standard framework for

hydrodynamics and its deficiencies from a field theorists’ point of view.

2 The hydrodynamic current algebra

Given their wide range of applicability and the simplicity of their dynamical content, it

behooves us to understand the derivation of classical hydrodynamic equations from first

principles. While many attempts have been made to distill the essentials of the theory and

derive the low energy dynamics following rules of effective field theory, it is perhaps fair to

say that to date a completely autonomous theory of hydrodynamics remains in absentia.

The traditional approach to hydrodynamics involves identifying the conserved currents

such as energy-momentum Tµν and charge current Jµ. Firstly, one invokes an appropriate

Gibbsian ensemble to describe equilibrium thermodynamics. The Gibbs free energy, as

a function of temperature T and chemical potential µ, determines the equilibrium data:

pressure p, internal energy ε, charge density q, etc., which constitute the components of

the currents in the inertial frame chosen by the equilibrium configuration denoted by a unit

timelike vector uµ. in particular, we can use these data to explicitly construct the ideal fluid

currents:

Tµν(0) = ε(T, µ)uµuν + p(T, µ)Pµν ,

Jµ(0) = q(T, µ)uµ ,
(2.1)

where Pµν ≡ gµν + uµuν is the projector transverse to uµ. One then allows arbitrary long-

wavelength (infra-red) fluctuations of the intensive variables (T, µ) and the local thermal

frame uµ. The fluctuations of the Gibbs density matrix in a current algebra language trans-

late into higher derivative operators correcting the ideal fluid constitutive relations (2.1). As

in usual effective field theory one allows these operators (respecting requisite symmetries)

with arbitrary coefficients. In the case at hand we should admit local functions of the inten-

sive thermodynamic parameters (T, µ); these are the transport coefficients of hydrodynamics,

which lead to higher order corrections to the constitutive relations:

Tµν =
∑
n≥0

Tµν(0) [T, µ, u
µ; gµν , Aµ] , Jµ =

∑
n≥0

Jµ(0)[T, µ, u
µ; gµν , Aµ] , (2.2)

where subscripts indicate the number of derivatives involved and we indicated the presence

of sources {gµν , Aµ}. At any order in the gradient expansion, the dynamics of the theory is

enforced by the conservation of the currents (with appropriate Joule heating in the presence

of charge currents):

DνT
µν = FµνJν , DµJ

µ = 0 , (2.3)

where Dµ is a suitable diffeomorphism and flavour-gauge covariant derivative to be defined

later. We anticipate at this point that dynamics being just conservation is an important fact

about hydrodynamics, which will crucially determine the course of our discussion.
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Thus far the construction of the low energy hydrodynamic theory seems analogous to

any other effective field theory albeit in a current algebra language. The main novelty of

hydrodynamics is that it has a constraint: one expects that the hydrodynamic evolution

locally respects the second law of thermodynamics. More abstractly, in addition to the

conserved currents which capture the dynamical information, one posits the existence of an

entropy current JµS [T, µ, uµ; gµν , Aµ], which is constrained to have non-negative divergence

on solutions to the fluid equations:

∇µJµS ≥ 0 . (2.4)

For example, the ideal fluid constitutive relations (2.1) should be augmented by an entropy

current

JµS,(0) = s(T, µ)uµ , (2.5)

where s denotes the entropy density. Since (2.4) is an on-shell constraint, its solution con-

strains the transport coefficients appearing in {Tµν , Jµ}. Familiar examples of such con-

straints are typically inequalities such as the positivity of viscosities and conductivities.

What is perhaps less familiar is the recent discovery that one also encounters explicit con-

straints fixing some transport coefficients in terms of others [28]. An example of this is the

Gibbs-Duhem and Euler relations obeyed at zeroth order in derivative expansion. Explicitly,

by imposing (2.4) on the ideal fluid currents given above, one would learn that s(T, µ) is not

an independent transport coefficient, but is constrained by the Euler relation and the first

law:

T s = ε+ p− µ · q , T δs = δε+ µ · δq . (2.6)

Said differently, by a careful analysis one can show that the allowed class of operators respect-

ing the second law is smaller than one might a-priori have imagined. In all known examples

studied so far, the transport coefficients thus constrained can be obtained from analyzing

general hydrostatic equilibria – they are determined in terms of the so called hydrostatic

or thermodynamic response parameters. In particular, these constraints can be understood

in terms of subjecting the fluid to arbitrary stationary sources (background metric, gauge

fields) and obtaining the desired relations by writing down the generating function for the

current correlators, or equivalently the equilibrium partition function [29, 30]. It is one of

the aims of this thesis to solve the entropy constraint (2.4) at all orders in the derivative

expansion, so we will get back to it in much more detail.

The approach to hydrodynamics just described, which we dub as the current algebra

approach, is the canonical method to determining both the constitutive relations and the

constraints on the transport coefficients. This viewpoint has been well appreciated for many

decades now, cf., [31] for a clear discussion. It provides the standard and phenomenologi-

cally well ascertained context to study hydrodynamics. What is unsatisfactory about this

approach from a field theorists’ point of view, is its ad hoc nature. In order to truly under-

stand hydrodynamics as a generic theory of low energy near-thermal quantum field theory,

it would be desirable to formulate the theory in a manner that is more prone to common

techniques of effective field theory. We list here just a few points about the effective field

theory perspective, which are left unanswered by the current algebra approach:

1. The current algebra approach uses {T, µ, uµ} as the hydrodynamic fields. However,

it would be much more natural to formulate the low energy effective field theory in
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terms of Goldstone degrees of freedom associated with the symmetries which are spon-

taneously broken in the fluid phase [32, 33]. The hydrodynamic theory would then be

analogous to the phenomenology of chiral symmetry breaking with pions as the low

energy degrees of freedom (the difference being, of course, that hydrodynamics is a lot

more universal, describing the dynamics of any underlying quantum field theory in its

regime of applicability).

2. Once the proper infrared degrees of freedom and the symmetries of the theory are

established, effective field theory techniques would demand to write down the most

general allowed effective action. Currents {Tµν , Jµ} would then not be constructed

by hand, but would be cleanly derived from a coupling to background sources via

functional differentiation. Further, the dynamics of the theory would not have to be

put in by hand, but would follow from the Lagrangian equations of motion.

3. Since hydrodynamics describes coarse-grained effective dynamics of mixed states in

the underlying quantum theory, one should expect the theory to exhibit a doubling of

degrees of freedom as in the Schwinger-Keldysh, or in-in formalism [34, 35]. Intuitively,

the dynamics of density matrices requires to evolve both states and conjugate states,

thus motivating a formal doubling in the description of the system. There is no sign

of such a doubling in the current algebra approach.

4. Microscopic real-time correlation functions in thermal states satisfy a Lorentzian ver-

sion of Euclidean consistency – the Kubo-Martin-Schwinger (KMS) condition – to

ensure correct analytic properties and fluctuation-dissipation relations [36, 37]. Since

hydrodynamics is a theory of near-thermal processes, there should hence be an analo-

gous statement in fluids. It is not clear what plays the role of the KMS condition in

the phenomenological framework described above.

5. The entropy constraint (2.4) is imposed in the current algebra approach just based

on phenomenological grounds. It is mysterious where such an (inequality) constraint

would come from in a Wilsonian effective field theory picture. A field theoretic un-

derstanding of hydrodynamics should explain its origin. Some connection to the KMS

condition may seem natural, but at this point it is far from obvious what this connec-

tion could be.

6. Finally, since the advent of AdS/CFT and its fluid/gravity version in the hydrodynamic

regime, it is clear that hydrodynamics as an effective field theory should have a natural

interpretation in terms of gravitational degrees of freedom. It would be desirable to

have a formalism where such a correspondence is more manifest. In the current algebra

approach described above, this is not the case.

In the present work we wish to report some progress on these problems and thus provide

a deeper understanding of the emergent origin of hydrodynamics. While partial success

on some of these issues has been achieved over the last years, a complete reconciliation of

the phenomenological framework with effective field theory techniques (and gravity) is still

missing. In the course of this thesis, we will mention and review various approaches, and will

attempt to understand them in a unified manner. Since this endeavour requires a systematic

understanding of the structure of hydrodynamics, we will analyze the latter at all orders
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in the derivative expansion and uncover a rich and insightful structure. While we are not

solving all of the problems mentioned above, we will nevertheless pin down the structural

aspects of fluid dynamics in a language that is well suited for field theoretic analyses in the

future. We hope that the classification of hydrodynamic transport derived here, will provide

a benchmark for what a field theoretic (or gravitational) derivation of hydrodynamics should

achieve and explain. Further, it would be very interesting to see the gravitational analogue

of the structures uncovered.

3 Interesting subsectors of hydrodynamic transport

Before developing new formalism, we will in this section review various approaches that have

been taken in the past to understand certain aspects of hydrodynamics and to partially

address some of the problems listed above. We will be necessarily brief and introductory,

since all the techniques mentioned here will be discussed again in later sections, once a more

advanced formalism will be available for putting everything in a bigger context. We focus on

subsectors of hydrodynamic transport, whose structural aspects are in principal under good

control at all orders in the derivative expansion.

3.1 Equilibrium partition functions

Hydrostatic transport provides a subsector of fluid dynamics, which has been very well un-

derstood. Hydrostatic flows are characterized by stationarity, i.e., time-dependence reduces

to a Euclidean circle fibration and all transport can be formulated in terms of a Euclidean

partition function on the spatial base manifold. Such a partition function typically takes the

Landau-Ginzburg form

WE = −
ˆ

ΣE

(
GµE
T

)
dd−1Sµ , (3.1)

where GµE is the Euclidean free energy current, related to the entropy current JµS by a standard

Legendre transform. Typically, the fields and background sources in this formulation will

be Kaluza-Klein reduced, thus allowing for a convenient formulation in terms of appropriate

Euclidean fields. It is then clear that the study of hydrostatic fluids at any given order in

derivatives reduces to classifying all hydrostatic free energy currents.

We can draw a lesson from this characterization of hydrostatic transport: while the

general current algebra approach of §2 came with a list of deficiencies concerning a systematic

understanding, the partition function formulation seems more natural from a field theorist’s

point of view. It is much closer to the usual effective action framework of low-energy field

theory, and furthermore the entropy current (or its grand-canonical counterpart GµE) has a

natural role to play by providing the ’Lagrangian’ of the theory. We will have more to say

about these features later, and a large part of this work is concerned with generalizing these

ideas to non-stationary situations.

The class of hydrostatic transport coefficients is quite rich. Not only does it comprise

of novel constraints on higher order hydrodynamic data, but it also importantly includes

the class of anomalous transport coefficients which provide an interesting insight into the

underlying quantum dynamics in thermodynamic systems. While the presence of anomalous

transport coefficients was first clearly encountered in fluid/gravity computations of [38, 39],

they were soon understood as being necessary from the canonical current algebra framework
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of fluid dynamics in [15]. More recently, starting from the work of [40], it has been appreciated

that the anomalous contribution to transport belongs to the hydrostatic class. We now have

clear picture of how to derive the constraints on them using the equilibrium partition function

[29, 41–45] (for related work on anomaly induced transport we refer the reader to [8, 46–

66]). We will have occasion to describe these results in due course, but for now we simply

record the fact that the equilibrium partition function provides a powerful way to study the

constraints on hydrodynamic transport.

3.2 Dissipative transport

Recently, building on the hydrostatic analysis, Bhattacharyya [67, 68] derived a remarkable

theorem about dissipative hydrodynamic transport. She proved that:

• All the dangerous terms in hydrodynamics which could potentially lead to entropy

destruction, are constrained to vanish from the hydrostatic analysis and there are no

further equality constraints beyond hydrostatics.

• Of the entropy producing dissipative terms, only the ones at leading order in the

gradient expansion are constrained to be sign-definite.

Essentially the upshot of this analysis is the following: once one understands the leading

deviations from a perfect fluid and is able to analyze hydrostatic configurations, one has

completed the task of constructing the hydrodynamic effective field theory (at least as a

current algebra).

While this result captures the essence of the second law constraints, it still leaves unan-

swered questions about the structure of hydrodynamics. One may think of the situation in

the following vein: a-priori in the current algebra approach, constructing tensor valued oper-

ators which correct the ideal fluid conserved currents is a question in representation theory.

Given the intensive parameters {T, µ} and the hydrodynamic velocity field uµ (which is a

unit timelike vector), we simply have to build tensors with suitable symmetries to appear in

the energy-momentum tensor Tµν and charge currents Jµ. The number of such tensors can

be inferred from a straightforward counting exercise at any desired order. Complications

start to arise when we impose the constraints of the second law since this poses a non-linear

constraint, potentially mixing terms across derivative orders. Indeed the proof of the state-

ments quoted above in [67] relies on a careful unpacking of such mixing (see [28, 68]). It

would be ideal if we could understand the second law constraints in a more straightforward

fashion. Ideally, one would like to have a complete classification of hydrodynamic transport,

both dissipative and non-dissipative, which respects the democratic ordering of the gradient

expansion.1

3.3 Non-dissipative fluids

To explain more precisely the rationale behind our analysis, we start with the following

observation. In order to ascertain the structure of hydrodynamics, it would be ideal if we

could formulate the effective field theory, not in terms of the currents as described in §2,

but rather directly in terms of a Wilsonian effective action. While the hydrostatic partition

1 In many circumstances one also demands that the Onsager relations [69, 70] are upheld, by invoking

the microscopic time-reversal symmetry. We will for the most part be agnostic about these relations, and

relegate comments regarding them to §21.
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function is a first step in this direction, it leaves unanswered questions about dynamics and

dissipation. Further, it does not address the question of what are the natural variables for

an effective action?

As a toy problem, one can focus on the structure of hydrodynamic effective actions in the

absence of dissipation. At the very least this attempt can help us learn about the constraints

resulting from demanding an off-shell (by definition), off-equilibrium, effective action for

hydrodynamics. Happily, such a formalism exists. It was invented in the distant past to

formulate the dynamics of ideal fluids coupled to gravitational degrees of freedom [71, 72].

In recent years this effective action formalism has been revived starting from the work of

[32, 33]. These works formulate the non-dissipative fluids in terms of the Goldstone degrees

of freedom associated with individual fluid elements. A systematic exploration for neutral

fluids was undertaken in [73] wherein a detailed comparison with the conventional current

algebra approach to hydrodynamics was made.2 In particular, it was noticed that demanding

the presence of an effective action appears to pose stronger constraints than what would be

encountered by the existence of an entropy current with desired properties.3 Said differently,

there were relations amongst transport coefficients (the functions of intensive parameters

multiplying higher order tensor structures in the currents) which remained inexplicable.

Curiously, some of these relations are also manifested in the class of holographic fluids,

which prompted us to examine the situation further.

A crucial check of this effective action formalism was provided in [8] where it was shown

that one can recover the anomalous transport data for non-abelian flavour anomalies in

arbitrary even dimensions (see [52] for abelian anomalies in 2 dimensions). This analysis

highlighted two important facts about the effective action approach: (i) the symmetries of

the theory (ii) the necessity of doubling the degrees of freedom, a la Schwinger-Keldysh

along with non-trivial cross terms (a.k.a. influence functionals of Feynman-Vernon [76])

in the effective action. We will postpone a discussion of the doubling to later, but the

symmetries are worth examining at present.

The effective action for d-dimensional hydrodynamics is constructed in terms of d − 1

scalar fields φI which capture energy-momentum transport along with a set of fields c which

transform in a bifundamental representation of the flavour symmetry. One allows arbitrary

volume preserving field reparametrizations of the fields, φI 7→ f I (φ) and c 7→ c g(φ). This

implies that the effective action is invariant under a generalized volume-preserving diffeo-

morphism group; this guarantees entropy non-production. More specifically the conservation

of configuration space volume dφ1 ∧ · · · ∧ dφd−1 is interpreted as the statement of entropy

current conservation. That is one identifies ?JS = ?(su) = dφ1 ∧ · · · ∧ dφd−1 as the 1-form

entropy current, with s being the entropy density and u the fluid velocity. Note that the

formalism forces the entropy current to take its ideal fluid form at all orders in the hydrody-

namic gradient expansion. The resulting constitutive relation may then said to be presented

in the entropy frame.4

2 This approach has also been used to study parity-odd transport in 3 dimensions [9, 74, 75].
3 For non-dissipative fluids one imposes a strong constraint on the entropy current: we demand it to be

divergence free off-shell. So the theory actually has an additional conserved current due to entropy non-

production.
4 Frame choices in hydrodynamic current algebra are a reflection of field redefinitions. For example, there

being no a-priori canonical choice for the velocity field in a relativistic fluid one can choose to define it

conveniently. The above choice is just as natural as the often made choice of Landau frame, wherein the
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While one can tie in the entropy conservation with the presence of the enlarged sym-

metry, one would as such like to understand the rationale behind its existence and check

the consistency of employing it to define a conserved entropy current. Moreover, if we were

to extend the effective action approach to physically relevant dissipative fluids, we need to

understand how to allow for entropy production. In fact, empirically the failure point of the

formalism appears to be at an even simpler situation. An attempt to extend the considera-

tions of anomalous transport to mixed flavour-Lorentz anomalies suggests that modifications

to the entropy current from the form JS = su are imperative.5 This being impossible in the

framework described above one is led to look elsewhere.

Let us therefore step back and ask the following: what is the canonical choice of variables

for a hydrodynamic effective action? We have already seen that, when working with a

spatial geometry p̄IJ ≡ gµν∂µφI∂νφJ , we can write entropy density in this formalism as

the determinant s ≡ 1/
√
p̄. A natural set of hydrodynamic variables in terms of which an

effective action ought to be written, one would guess, are simply the intensive thermodynamic

variables that characterize the Gibbs ensemble T, µ etc., and the fluid velocity uµ. In the

non-dissipative effective action temperature is viewed as a function of its thermodynamic

conjugate entropy density, while the velocity and chemical potential (and entropy itself) are

indirectly defined in terms of the fields φI and c via

uσ =
1

(d− 1)!
εσα1···αd−1 ε(p̄)

I1
...Id−1

d−1∏
i=1

∂αiφ
I i ,

µ = uσ
[
(∂σc)c−1 +Aσ

]
,

(3.2)

where ε(p̄)
I1
...Id−1

is the spatial volume form associated associated with p̄IJ . This way, although

built out of the Goldstone degrees of freedom φI , the non-dissipative effective action can now

simply be written as a functional of the {s, uµ, µ} and sources.

As such the on-shell action computes not quite the thermodynamic Gibbs potential, but

rather, its Legendre transform with respect to the entropy density. If one were interested in

allowing deformation of the entropy current, working with Gibbs potential is more natural.6

However, in the hydrodynamic gradient expansion computing the Legendre transformation

is non-trivial.7 Inspired by the structural aspects of the formal Legendre transformation we

will establish a new formalism that naturally incorporates the hydrodynamic variables as

the basic fields and provides a framework to describe what we call adiabatic fluids, which

are a generalization of the non-dissipative fluids discussed hitherto.

This overview on some rather well-understood subsectors of hydrodynamic transport

provides us with various hints and insights as to what features a completely systematic and

autonomous theory of fluid dynamics should involve. However, neither partition functions,

nor an understanding of dissipation or of non-dissipative effective actions provide enough

velocity field is taken to be the unit-timelike eigenvector of the energy-momentum current.
5 We do not have a complete proof of this statement, but the ease with which we are able to recover all

the results in the formalism described below suggests to us that this is the correct intuition.
6 Hence the common use of Landau-Ginzburg free-energy funtionals to describe condensed matter systems.
7 This has the insalubrious effect of making comparisons between the effective actions and the equilibrium

partition functions rather complex and involved. In special cases such as the anomalous effective action one

can carry out the Legendre transformation trivially owing to independence of such terms from the entropy

density, cf., [8].
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structure to immediately achieve this goal. We will now introduce the notion of adiabatic

fluids, which will provide a controlled setup to uncover some of the missing structures.

4 Adiabatic fluids

To motivate the study of adiabatic fluids, let us ask the following question: “what is the

most convenient way to implement the second law of thermodynamics, which a-priori is

stated as an inequality, in practice?” As we discussed before the conventional current-

algebraic approach is to work on-shell by classifying independent tensors, but this is limiting

from the point of view of constructing an action principle. A useful trick for implementing

inequality constraints is in fact to go off-shell using a suitable set of Lagrange multipliers,

which sometimes is referred to as the Liu procedure [77]. The basic idea can be explained

as follows: suppose we want to constrain the solutions of a set of linear equations with an

inequality constraint. We add to the inequality of interest a suitable linear combination of

the dynamical equations with Lagrange multipliers. While the new quantity defined thus,

also satisfies the same inequality, it has the distinct advantage that we are no longer on-shell.

Said differently, incorporating the dynamical equations of motion into the inequalities, we can

uplift the constraints off-shell and analyze them without having to solve for the dynamically

independent set of data.

Specifically, we take the on-shell statement of non-negative entropy production∇µJµS ≥ 0

and upgrade it to an off-shell statement which reads:

∇µJµS + βµ

(
∇νTµν − Jν · Fµν − Tµ⊥

H

)
+ (Λβ + βλAλ) ·

(
DνJ

ν − J⊥H

)
≡ ∆ ≥ 0 .

(4.1)

Here βµ is the Lagrange multiplier for the energy-momentum conservation equation involv-

ing the energy-momentum tensor Tµν and the charge current Jµ, and (Λβ + βλAλ) is the

Lagrange multiplier for the charge conservation equation. We have denoted the background

metric and flavour gauge fields by {gµν , Aµ} respectively and Fµν denotes the field-strength

associated with Aµ. Note that we have written the conservation equations for a general

situation including contributions from sources and anomalies (which are captured by the

Hall currents J⊥H and Tµ⊥H ).8 The notation will become clear when we set-up the problem in

greater detail in due course.

It is convenient to take these Lagrange multiplier fields to be the basic hydrodynamic

fields. At zeroth order in derivative expansion, thermodynamics demands that

βµ =
uµ

T
and Λβ + βλAλ =

µ

T
(4.2)

be the velocity field rescaled by the temperature and the chemical potential measured in

thermal units, respectively. We will use a part of the field redefinition freedom to assume

that these simple relations hold to arbitrary orders in derivative expansion. In fact, these

variables naturally encompass all of the hydrodynamic degrees of freedom; by rescaling the

normalized velocity field by the temperature we have ensured that βµ is an unconstrained

8 If the underlying quantum system of interest is anomaly-free then we can set the Hall currents to zero;

we refer to the corresponding version of (4.1) (with ∆ = 0) as the non-anomalous adiabaticity equation for

definiteness.
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vector field. We refer to these fields as the thermal vector and the thermal twist respectively;

they are the physical degrees of freedom in local equilibrium.

The off-shell rewriting of the second law of thermodynamics in (4.1) turns out to provide

sufficient control to classify all hydrodynamic transport. A-priori, we can distinguish between

two kinds of transport coefficients: on the one hand those that contribute to off-shell entropy

production, i.e., lead to positive definite ∆ 6= 0 – these are the dissipative (Class D) parts of

transport. On the other hand we have those which comprise the marginal case of no entropy

production, i.e., those where the production of entropy is compensated for by the flow of

energy-momentum and charge. The latter form the boundary of the domain of physically

admissible constitutive relations and have ∆ = 0. Understanding this marginal case turns

out to be the crucial step that allows us to complete our classification. This therefore

motivates for us the study of adiabatic hydrodynamics, defined as the constitutive relations

which solve (4.1) with ∆ = 0, which we will refer to as the adiabaticity equation.9 The

class of adiabatic constitutive relations subsumes (but is not identical to) the pre-existing

discussions of non-dissipative fluids.

A large part of our work will be devoted to identifying and classifying all constitutive

relations {Tµν , Jµ, JµS} that solve the adiabaticity equation (4.1) with ∆ = 0. At a broad

brush level there are two types of adiabatic transport: hydrostatic (Class H) and non-

hydrostatic or hydrodynamic (Class H). The former can be inferred from the dynamics of

the fluid in hydrostatic equilibrium described earlier by subjecting it to time-independent

spatially varying external sources. The latter are more diverse; some can be obtained using

a simple Lagrangian formalism involving the hydrodynamic fields {βµ,Λβ}, but there are

others which evade such a simple description. We have found it convenient to isolate the

solutions of the adiabaticity equation into seven classes based on their origins. Together

with the dissipative Class D, we are led to the eightfold way of hydrodynamic transport, as

illustrated in Fig. 1.10

We emphasize that we classify (off-shell inequivalent) constitutive relations i.e., give

combinations of currents that satisfy the adiabaticity equation. However, it is convenient for

purposes of taxonomy to refer to some more primitive object that generates such constitutive

relations. The classification turns out to be canonically motivated by the choice of the grand

canonical free energy current (obtained by Legendre transforming the entropy current) which

is a spacetime vector. This vector can be either longitudinal (aligned to the thermal vector)

or transverse. Since longitudinal vectors are characterized by their magnitude, we can refer

to it as the scalar component. Hence all the classes in Fig. 1 refer to either scalar or vector

structures. For example, HS and HS refer to hydrostatic and hydrodynamic terms that

can be encoded in a scalar Lagrangian. Similarly, HV and HV are classes of transport that

transform as transverse vectors. Whether at the end of the day such terms show up as

tensors, vectors or scalars in the constitutive relations, is largely a matter of convention and

frame choice.

We also provide evidence that certain well studied hydrodynamic systems respect the

adiabatic classification. In particular, strongly coupled conformal plasmas which can be

described holographically via the fluid/gravity correspondence [16, 78], as well as existing

9 The adiabaticity equation we study in some detail below was first introduced in [40] to aid the analysis

of anomaly induced hydrodynamic transport using the standard current algebra approach to hydrodynamics.
10 We give a preview of this classification in some detail in §6.
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Fig. 1: The eightfold way of hydrodynamic transport.

results in kinetic theory [79] manifestly exhibit the eightfold path. Furthermore, as noted

in our short companion paper [2], second order transport for a neutral holographic fluid, is

encapsulated in a simple effective action (built out of the sources and the thermal vector

and twist)! We take this as striking evidence of physical fluid systems being cognizant of the

adiabaticity equation and the sevenfold constitutive relations which solve it.

To demonstrate that our classification is exhaustive, we argue that all solutions to the

adiabaticity equation can be obtained from a master effective action. This eightfold effective

action clearly is a functional of the hydrodynamic fields {βµ,Λβ} and the background sources

{gµν , Aµ}. Rather surprisingly, a complete picture emerges only upon including a second set

of background sources, {g̃µν , Ãµ}, which morally speaking appear to be a proxy for the

Schwinger-Keldysh partners of the basic sources. Furthermore, this doubling of sources

comes with an interesting new Abelian gauge symmetry with an associated gauge field A(T)
µ.

We christen this U(1)T symmetry as KMS-gauge invariance. While we will refrain from fully

justifying this name in the present work, we intuit that its role is to ensure the consistency of

the hydrodynamic description with the microscopic KMS conditions underlying near-thermal

physics [3, 4].

In the in-in Schwinger-Keldysh construction one has sources for the left (L) and right

(R) degrees of freedom; these are specific linear combinations of the sources {gµν , Aµ} and

{g̃µν , Ãµ}. The necessity to double of the degrees of freedom, whilst curious for adiabatic

transport, has already been encountered previously in attempts to construct effective actions

for anomalous hydrodynamic transport, which forms a special case, in [8]. What is really

intriguing is the gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with
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the diffeomorphism and gauge invariance forms the symmetries of the effective action.11 The

latter act canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially.

All fields carry U(1)T charges, with the gauge transformation acting as a diffeomorphism

or flavour gauge transformation in the direction of βµ,Λβ. In addition, g̃µν and Ã further

undergo transformations depending on the physical fields {βµ,Λβ, gµν , Aµ}. The Bianchi

identity associated with U(1)T gauge invariance immediately leads to the adiabaticity equa-

tion. In fact, armed with this enlarged space of fields one can immediately write down a

diffeomorphism, flavour gauge and U(1)T invariant effective action which captures all of the

adiabatic transport.

Part II: We begin in §5 with a definition of the basic statement of the adiabatic fluids

and explain some of the general properties of such fluids directly from the study of the

adiabaticity equation. In §6 we present a quick overview of the diverse classes of adiabatic

constitutive relations; this provides a short synopsis of Part III. We then turn in §7 to

connecting our construction with the hydrostatic analysis of [29, 30]. We go on to argue

that the adiabaticity equation we introduce can be thought of as an off-equilibrium off-shell

extension of the hydrostatic constitutive relations. In §8 we discuss dissipative constitutive

relations, reviewing the results of [67, 68] in a language adapted to our analysis. This allows

us to give an alternate proof of the theorem, classifying dissipative transport coefficients into

those constrained by the second law, and those that are agnostic to entropy production.

Part III: This is the central part of the thesis where we study adiabatic constitutive

relations. For the most part we focus on the non-anomalous adiabaticity equation as inclusion

of anomalies ends up providing a specific particular solution. We first show in §9 how to

construct Lagrangian solutions to the adiabaticity equation in the absence of anomalies. Any

diffeomorphism and gauge invariant Lagrangian has a set of Bianchi identities which together

with the canonical definition of the entropy current leads to the adiabaticity equation. Having

established that the background symmetries guarantee adiabaticity we turn to describing

how to obtain hydrodynamic Ward identities in §10 in terms of a constrained variational

principle. To illustrate the efficacy of our formalism, we quickly review some basic examples

discussed in the context of non-dissipative fluids in §11.

In §12-§14 we turn to the set of adiabatic constitutive relations which do not belong to

Class L, i.e., they don’t admit a Lagrangian description. Our first example is the Berry-

like class of adiabatic transport §12 – these are non-hydrostatic, non-dissipative parts of

transport which include well studied examples of transport such as Hall viscosity and Hall

conductivity, but also others which have been encountered in holographic fluids. In §13

we describe the class of conserved entropy currents which are agnostic to physical current

transport. We argue in particular that such constitutive relations will be encountered in the

presence of topological ground state degeneracy. In §14 constitutive relations determined

by transverse vector currents are described; there are some new ingredients here for such

transport appears to have never been studied in the literature (outside hydrostatics).

In §15 we turn to the problem of finding Lagrangian solutions to the anomalous hy-

drodynamic transport. We also demonstrate that a complete story for obtaining anomalous

Ward identities requires working in a Schwinger-Keldysh doubled theory. We review the

11 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [45].
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thermofield doubled Schwinger-Keldysh construction for hydrodynamics in §16, taking the

opportunity to highlight certain obvious tension with adiabaticity and the role of influence

functionals. We also explain why the terms we introduce in the anomalies both in the current

and in our previous discussion [8] are necessary and sensible.

Part IV: We discuss how we can use adiabatic hydrodynamics to provide a complete

classification of hydrodynamic transport in §17. Not only do we provide an algorithm for the

eightfold classification, amplifying on the results presented in [2], but we also finally prove

that the classification is exhaustive. To exemplify our construction, we provide evidence that

various hydrodynamic systems are cognizant of the eightfold classification (§17.5) and give

a concise summary of a variety of fluid systems (up to second order in gradients) in §17.6.

We also outline the basic construction of an effective action which encompasses all of the

adiabatic constitutive relations in §18 and §19, though we leave a fuller exposition of the

construction to a later publication [80]. In §20 we show how the eightfold way of adiabatic

transport is captured by this effective action.

Part V: We end the main thread of the thesis with a discussion in §21 and highlight some

open questions which we think can be addressed with existing technology. We take stock of

some more recent developments concerning Schwinger-Keldysh theories in §22.

Part VI: There are several extensions to our general analysis of adiabatic constitutive

relations which are interesting to explore. We have chosen to present some of these outside

the main line of development so as to keep the flow of the thesis more straightforward. In

Appendix A we provide a translation from the covariant to the consistent form of anomalous

adiabaticity equation. Appendix B provides a construction of topological currents which

play a role in constructing Class C adiabatic constitutive relations. Finally in Appendix C

we give a complete characterization of Weyl invariant adiabatic fluids relevant in the study of

holographic fluids, generalizing the discussion of [81]. In the remaining appendices we provide

some technical details, which we elided over in the main text. Appendix D provides useful

technical details for implementing the variational calculus in Class L theories. Appendix E

gives a detailed discussion of second order neutral fluid hydrodynamics. In Appendix F we

compare our construction with that of [67, 68]. Appendix G contains details of the derivation

of Bianchi identities in the presence of anomalies. Appendix H verifies that the symmetries

of the eightfold Lagrangian are consistent and provides some details for deriving the various

Bianchi identities quoted in the text.

Appendix I provides a quick reference of the various symbols we introduced through the

course of or discussion.

29



Part II

An Invitation to Adiabatic

Hydrodynamics

5 Adiabatic hydrodynamics

We would like to construct a hydrodynamic effective field theory which not only incorporates

the fundamental symmetries present in the underlying microscopic quantum system, but

also and in addition is cognizant of the basic constraint of such effective theories, viz.,

the second law of thermodynamics. As described in §4 the complications of the inequality

constraints imposed by the second law can be tackled by taking the constraints off-shell

using a suitable combination of the dynamical equations of motion [77]. While this procedure

allows exploration of the off-shell constraints, it is actually more efficacious to first undertake

a full classification in the marginal situation where the second law is imposed as a statement

of entropy conservation (as opposed to entropy production). This split is guided by the

fact that hydrodynamic transport can a-priori be categorized as being either adiabatic12 or

dissipative.

Aided by this intuition we therefore propose to study a class of hydrodynamic theories

which we call adiabatic fluids. These are fluids where entropy production is compensated for

off-shell by the dynamics of the theory. Having an off-shell formalism allows much insight

into how one might construct hydrodynamic effective actions. In fact it will turn out that

much of the constraints of the second law can be gleaned from an analysis of adiabatic

transport; explicitly dissipative terms will turn out to be quite tractable in the sequel.

5.1 The adiabaticity equation

Consider a fluid characterized by normalized velocity field uµ (with uµuµ = −1), temperature

T and chemical potential µ moving in a background geometry M with metric gµν and a

background flavour gauge field Aµ which generically will be taken to be non-abelian.13 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµν , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a

simple redefinition we therefore introduce the hydrodynamic fields (denoted collectively by

B)

B ≡ {β,Λβ} , βµ ≡ uµ

T
, Λβ ≡

µ

T
− uσ

T
Aσ . (5.1)

The fields {βµ,Λβ} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

12 We use the word adiabatic in a precise technical sense defined below. Reference [67] uses this word

synonymously with hydrostatics, which we prefer not to do. There is more to adiabaticity than equilbirum,

as we shall unearth in the course of our discussion.
13 Generalizations to arbitrary number of flavour symmetries is straightforward.

30



to get

uµ =
βµ√

−gαλβαβλ
, T =

1√
−gαλβαβλ

, µ =
Λβ + βσAσ√
−gαλβαβλ

. (5.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field βµ and scalar field Λβ.

A general hydrodynamic system as reviewed in §2 is characterized by a set of currents: we

have the energy-momentum tensor Tµν and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current JµS which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (5.18). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ≡ {Tµν , Jµ, JµS} , (5.3)

where instead of JµS we often equivalently consider the Gibbs free energy current Gµ to be

defined in due course.

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as Ψ

Ψ ≡ {gµν , Aµ,βµ,Λβ} . (5.4)

Then we can write for our currents CH = CH [Ψ] or more explicitly, for the fundamental

currents we have

Tµν = Tµν [Ψ] = Tµν [gαβ, Aα,β
α,Λβ]

Jµ = Jµ [Ψ] = Jµ [gαβ, Aα,β
α,Λβ]

JµS = JµS [Ψ] = JµS [gαβ, Aα,β
α,Λβ] .

(5.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

∇νTµν = Jν · Fµν + Tµ⊥
H DνJ

ν = J⊥H . (5.6)

Here, Fµν and Dµ denote the field-strength and gauge-covariant derivative associated with

Aµ while {Tµ⊥
H , J⊥H} are the covariant Lorentz and flavour anomalies respectively.14 The

center-dot “·” is reserved for gauge index contraction which we will never write explicitly.

The gauge-covariant derivative acts on tensors Xµ···ν
ρ···σ in a familiar fashion, viz.,

DαX
µ···ν

ρ···σ = ∇αXµ···ν
ρ···σ + [Aα, X

µ···ν
ρ···σ] (5.8)

14 If P[F ,R] is the anomaly polynomial, then the covariant anomalies are determined using the following

equations:

J⊥H
?1 ≡ ∂P

∂F
, Σ⊥νH µ

?1 ≡ 2
∂P
∂Rµ

ν
, Tµ⊥H ≡ 1

2
∇νΣ⊥µνH . (5.7)

Here Σ⊥µνH is the torque on the system due to Lorentz anomaly. We adopt a bold-face notation for differential

forms. In general our notation follows that of [8, 44, 45] where the reader will find further details on the

conventions used herein. We will be more explicit when we solve the anomalous adiabaticity equation in §15.

Some further useful details are collected in Appendices A and I.
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with

∇αXµ···ν
ρ···σ = ∂αX

µ···ν
ρ···σ + ΓµλαX

λ···ν
ρ···σ + . . .+ ΓνλαX

µ···λ
ρ···σ

− ΓλραX
µ···ν

λ···σ − . . .− ΓλσαX
µ···ν

ρ···λ .
(5.9)

Here [ , ] represents the appropriate adjoint action of the flavour algebra. The equations

(5.6), which we term as the hydrodynamic Ward identities, together with∇µJµS ≥ 0 capturing

the essence of the second law, complete the specification of the hydrodynamic effective field

theory in the current algebra language.

The task of a hydrodynamicist is to provide these constitutive relations, order by order

in gradients of the fields Ψ, subject to symmetry and second law requirements, cf., [31]

for the classic treatment. We will refer the reader to the vast literature on hydrodynamic

constitutive relations which have been computed (in certain cases up to the second order in

the gradient expansion); see [78, 82] for a partial summary of certain results in the past few

years.15

While most analyses of the second law constraints are done by classifying first on-shell

independent data, as explained in §2 it is useful to work off-shell. To this end we want to

extend the statement of the second law, viz.,

∃ JµS [Ψ] : ∇µJµS ≥ 0 , (5.10)

to a more amenable one which is agnostic of dynamics. The simplest way to proceed is

to use the fact that linear combinations of the equations of motion can be added to (5.10)

without affecting the inequality [77]. All we need is appropriate Lagrange multipliers to

ensure that the vectorial energy conservation and the scalar charge conservation equations

can be combined with the gradient of the entropy current. The canonical choice is simply

to take the Lagrange multipliers to be the hydrodynamic fields B = {βµ,Λβ} themselves.

One way to motivate this choice is to exploit the field redefinition freedom inherent in fluid

dynamics, to align the Lagrange multiplier fields to the velocity (rescaled by the temperature)

and chemical potential.

This then leads us to the following statement of the second law of thermodynamics:

∇µJµS + βµ

(
∇νTµν − Jν · Fµν − Tµ⊥

H

)
+ (Λβ + βλAλ) ·

(
DνJ

ν − J⊥H

)
= ∆ ≥ 0 .

(5.11)

We have introduced ∆ as the placeholder for the entropy production resulting from the

dissipative constitutive relations.

Often when confronted with solving constraints given as inequalities, it is simplest to

examine the boundary of the acceptable domain. In the present case this amounts to switch-

ing off dissipation by setting ∆ = 0. The part of the constitutive relation which does not

contribute to ∆ will be termed adiabatic.

This canonical split allows us to motivate the adiabaticity equation. By definition it

captures the marginal situation where dissipation is turned off, i.e., ∆ = 0:

∇µJµS + βµ

(
∇νTµν − Jν · Fµν − Tµ⊥

H

)
+ (Λβ + βλAλ) ·

(
DνJ

ν − J⊥H

)
= 0 .

(5.12)

15 These computations are typically done by fixing a fluid frame (e.g., in the Landau frame one demands

that the non-ideal parts of Tµν and Jµ are transverse to velocity). We will a-priori make no such assumptions

though at various stages of our analysis we will present results by making certain frame choices.
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The constitutive relations which satisfy the adiabaticity equation are called adiabatic consti-

tutive relations.16 Note that this relation is being imposed off-shell on the hydrodynamical

system of interest, a fact that will be of crucial import in our discussion. For most of this

thesis we will be concerned with the adiabatic case. However, we will, at some early stage

of the discussion (cf., §8), describe the dissipative part of hydrodynamics building on the

results of [67, 68] using the lessons learned from our adiabatic analysis.

It is worthwhile recording here a version of the adiabaticity equation that holds when we

consider non-anomalous fluids. Since the quantum anomaly manifests itself through the Hall

current terms Tµ⊥H and J⊥H setting them to zero allows us to capture the desired equation

for non-anomalous adiabatic fluids, viz.,

∇µJµS + βµ (∇νTµν − Jν · Fµν) + (Λβ + βλAλ) ·DνJ
ν = 0 . (5.13)

In the initial part of our discussion we will find it convenient to work with the non-

anomalous case first, and then build up to include the presence of anomalies. There is in

fact a useful perspective that helps to segregate the anomalous contribution from the rest.

Apart from anomalies appearing via the Hall currents, the adiabaticity equation is linear in

the constitutive relations and relates terms of the same derivative order in the constitutive

relations. This means that we can treat anomalous terms in (5.12) as “inhomogeneous source

terms”. Thus they can be removed by picking a suitable particular solution of adiabaticity

equation. As a result we will for the most part assume that such anomalous terms have been

appropriately dealt with and focus on the non-anomalous adiabaticity equation by setting

them to zero, i.e., work with the homogeneous equation (5.13). In §15 we will describe how

the particular solutions to incorporate anomalous effects can be obtained.

It is important to appreciate the following fact: when we refer here and in the sequel to

finding solutions to (5.12) we mean that we would like to find a set of hydrodynamic cur-

rents CH [Ψ] which satisfy this equation off-shell. Thus we would like to determine families

of constitutive relations parameterized by the transport coefficients that are adiabatic. As in

any structural analysis of hydrodynamic transport we will not be interested in fixing values

of transport coefficients. That can only be accomplished once we have an understanding of

the microscopic quantum system whose hydrodynamic description we seek.17 With this un-

derstanding we will continue to speak of solving the adiabaticity equation, hopefully without

causing any confusion.

5.2 Physical interpretation of adiabatic fluids

Let us physically understand the nature of the fluid systems that satisfy (5.12), by qualifying

the adjective ‘adiabatic’. Suppose we restrict ourselves to fluid configurations {βµ,Λβ} which

satisfy the hydrodynamic equations of motion (5.6). Let us re-characterize them for the

present discussion as

∇νTµν ' Jν · Fµν + Tµ⊥
H

DνJ
ν ' J⊥H

(5.14)

16 We provide a translation of the adiabaticity equation in terms of the consistent currents which are

sometimes more natural when working with effective actions in Appendix A.
17 In the interest of full disclosure, we should add that certain constitutive relations which are forbidden

by demanding existence of hydrostatic equilibrium can be viewed as fixing certain transport coefficients to

being functions of others (which are the only physical ones).
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with the symbol ' referring to the fact that these equations hold only in this restricted

sense (i.e., on-shell). We can then assign a conserved entropy current to this restricted set

of fluid configurations, i.e., ∇µJµS ' 0. Thus, the constitutive relations which solve adia-

baticity equation describe entropy-conserving (i.e., adiabatic) transport once hydrodynamic

equations are imposed. In this sense the adiabatic fluids are on-shell equivalent to the non-

dissipative fluids as defined in [73]. One way to interpret the adiabaticity equation is to take

the view that we have taken entropy conservation off-shell using the hydrodynamic fields as

Lagrange multipliers, along the lines espoused in [77].

Alternately, the adiabaticity equation is actually a stronger assertion than just entropy

conservation. Say, instead of taking hydrodynamics on-shell via (5.14), we impose

∇νTµν ' Jν · Fµν + Tµ⊥
H + fµext

DνJ
ν ' J⊥H +Qext

(5.15)

where fµext is the force per unit volume due to an external system and Qext is the charge

injected per unit time per unit volume by the external system. Let us assume that this

injection of energy-momentum and charge happens adiabatically and the entropy injected

into the fluid is ∇µJµS ' Sext. The adiabaticity equation is the statement that all these

cannot be together true for arbitrary {fµext, Qext, Sext}. In fact this transfer can be adiabatic

if and only if TSext + uνf
ν
ext + µ · Qext ' 0, i.e., if and only if external system satisfies

adiabaticity equation. Thus, any two systems which satisfy adiabaticity equation can be

combined to a bigger system which satisfies adiabaticity equation, in a way reminiscent of

the classical discussions on thermodynamics by Carnot and others.

Thus the adiabaticity hypothesis brings in a sense of linearity into hydrodynamics, much

like the superposition principle of quantum mechanics. This allows us to focus the discussion

on isolated systems, with the potential downside that we do not have access to the dissipative

part of hydrodynamics.

The main motivation for considering adiabatic hydrodynamics is the observation that

non-dissipative parts of many actual hydrodynamic theories coincide with what one finds in

adiabatic hydrodynamics. We note that not all solutions of adiabaticity equation might arise

in a given microscopic QFT. For example one might want to impose additional constraints

(like Euclidean consistency [43, 45]) and identify on-shell equivalent or fluid frame-equivalent

expressions to eliminate potentially unphysical solutions. Thus, we generally expect the so-

lutions of adiabaticity equation to furnish a super-set of physically admissible non-dissipative

constitutive relations up to field redefinitions.

5.3 Ideal fluids are adiabatic

Having presented the basic equation of interest, we now turn to asking how one might

characterize the solutions to the adiabaticity equation. After all we are interested in using

these as the first step in understanding more realistic fluid systems (including dissipation).

To this end we need to show that we have a non-empty solution set to (5.12).

It is natural to study the non-anomalous adiabatic constitutive relations order by order in

derivative expansion. Let us illustrate how this works at zeroth order in derivative expansion.

The most general constitutive relation with zero derivatives of the hydrodynamic data is18

JµS = s uµ , Tµν = ε uµuν + pPµν , Jµ = q uµ. (5.16)

18 We have reverted to {uµ, T, µ} so as to write the constitutive relations in their familiar form.
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where the entropy density s, energy density ε, pressure p and charge density q are scalar

functions of T and µ. The tensor Pµν = gµν+uµ uν is the projector transverse to the velocity.

The adiabaticity condition (5.13) can then be written quite simply as

uα (T ∇αs+ µ · ∇αq −∇αε) + (T s+ µ · q − ε− p) Θ = 0 , (5.17)

where Θ ≡ ∇µuµ is the fluid expansion. If we insist that this hold for an arbitrary fluid

configuration, then the combination in each of the parentheses should individually vanish.

This then implies that the fluid should satisfy the first law

δε = T δs+ µ · δq ,

and the Euler relation

ε+ p = T s+ µ · q.

Thus, we recover standard constitutive relations describing thermodynamics from the for-

malism of adiabatic hydrodynamics.

We will soon see that the family of adiabatic fluids is far richer as evidenced by our

eightfold classification illustrated in Fig. 1. We will shortly provide a short synopsis of the

different classes in §6. The reader impatient to see some more examples is invited to consult

§11 where we study neutral fluids and parity-odd charged fluids at higher orders.

5.4 The adiabatic free energy current

We have phrased our discussion of the adiabaticity equation in terms of the entropy current.

However, since we are describing via the hydrodynamic expansion the fluctuations in the

Gibbsian density matrix, it makes more sense to ask about the behaviour of the free energy

current itself. This involves using the standard definition of the grand canonical free energy

current. In terms of the other hydrodynamic currents introduced hitherto:19

Gσ = −T Nσ ,

≡ −T [JσS + βνT
νσ + (Λβ + βνAν) · Jσ] .

(5.18)

Assuming we know the free energy current we can solve for the entropy current by

inverting the above relation

JσS = −
[
βνT

νσ + (Λβ + βνAν) · Jσ +
Gσ

T

]
≡ (JσS )can −

Gσ

T
.

(5.19)

This expression is useful in that it segregates the various contributions to the entropy current.

The terms − [βνT
νσ + (Λβ + βνAν) · Jσ] are usually interpreted as the canonical part of the

entropy current (JµS )can. On the other hand the vector −Gσ/T is called the non-canonical

part of the entropy current. Thus, passing to grand canonical ensemble can be thought of

as focusing our attention on the part of entropy flow which is not simply related to energy

and charge flow. We can think of free energy (up to a factor of T ) as just the name given to

this part of entropy.

19 While the physical free energy current is Gσ, it is often convenient to write expression for Nσ (which

is the free energy rescaled by −T−1). This quantity naturally appears as a Noether charge in our effective

action constructions. As a result we will use both quantities interchangeably for much of our discussion.
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While in the present discussion the grand canonical free energy current appears as a

convenient book keeping device for the non-canonical part of the entropy current, it will

soon transpire when we consider hydrostatics that it has a natural interpretation in terms

of a partition function.

The notion of the free energy current is quite useful in the context of anomalous hydro-

dynamics. While the presence of a quantum anomaly does not necessarily introduce entropy

into the fluid,20 the charge and energy-momentum injection is inevitably accompanied by a

free energy injection. The free energy per unit time per unit volume injected by anomalies

is

G⊥
H
≡ −T

[
βνTν⊥

H + (Λβ + βνAν) · J⊥H
]

= −
[
uνTν⊥

H + µ · J⊥H
]
.

(5.20)

Using this definition, we can now write the grand canonical version of the adiabaticity

equation (5.12) as (we include ∆ for completeness)

−

[
∇σ
(
Gσ

T

)
−
G⊥
H

T

]
=

1

2
Tµνδ

B
gµν + Jµ · δ

B
Aµ + ∆

= Tµν∇µ
(uν
T

)
+ Jσ ·

[
Dσ

(µ
T

)
− Eσ

T

]
+ ∆ .

(5.21)

Here Eµ = Fµν uν is the electric field and δ
B

represents the Lie derivatives using the diffeo-

morphism and flavour transformations generated by {βµ,Λβ}:

δ
B
gµν ≡ £βgµν = ∇µβν +∇νβµ ,

δ
B
Aµ ≡ £βAµ + ∂µΛβ + [Aµ,Λβ] = Dµ(Λβ + βνAν) + βνFνµ .

(5.22)

In this expression, we used £β to denotes the Lie derivative along the vector field βµ.

It is useful to record the expression for the Lie derivative in terms of the more familiar

hydrodynamic decomposition. A quick evaluation leads to

δ
B
gµν = 2∇(µβν) =

2

T

[
σµν + Pµν

Θ

d− 1
−
(
a(µ +∇(µ log T

)
uν)

]
δ
B
Aµ = Dµ(Λβ + βνAν) + βνFνµ = uαDα

(µ
T

)
uµ −

1

T
vµ .

(5.23)

We use the standard decomposition of the gradient of the velocity field into the transverse

traceless shear-strain rate σµν , the anti-symmetric vorticity ωµν , the vectorial acceleration

aν and scalar expansion Θ respectively, viz.,

∇µuν = σ(µν) + ω[µν] − uµ aν + Pµν
Θ

d− 1
, (5.24)

and the flavour fields decompose as

vµ = Eµ − T Pµν ∇ν
(µ
T

)
, Eµ = Fµν uν . (5.25)

20 The anomalous contribution to the entropy current can typically be chosen to vanish for flavour anomalies.

The story for Lorentz anomalies is a bit more involved and is discussed in §15.
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An alternate form of (5.21) can be given by using the fluid acceleration aα ≡ uµ∇µuα

to eliminate the thermal gradients:

−
[
(∇σ + aσ)Gσ − G⊥

H

]
= JσS (∇σ + aσ)T + Tµν(∇ν + aν)uµ + Jσ · [Dσµ+ aσµ− Eσ] + T∆ .

(5.26)

This form of the equation is quite useful in making comparisons with traditional hydrody-

namic analysis.21

6 Classification of adiabatic transport

We now provide a telegraphic summary of the different solutions (i.e., constitutive relations)

to the adiabaticity equation (5.12) we will encounter in the course of our discussion.

• Class H (hydrostatic constitutive relations) §7: Consider placing a fluid on a

stationary background wherein there exists a timelike Killing vector and a Killing gauge

transformation, {Kµ,ΛK}, that leave the background sources gµν and Aµ invariant. In §7
we explain our reasoning for taking it as an axiom that the obvious hydrostatic fluid con-

figuration given by {βµ,Λβ} = {Kµ,ΛK} immediately gives solutions to the adiabaticity

equation. We dub this premise as the hydrostatic principle. This gives us the hydrostatic

(i.e., time-independent) configurations of a generic fluid dynamical system. These configura-

tions lead to hydrostatic constitutive relations which capture the thermodynamic response

parameters that are encoded in terms of an equilibrium partition function.

We emphasize here that we want to classify adiabatic constitutive relations, i.e., currents

CH [Ψ] solving (5.12). In some cases the solutions can be efficiently encoded in a generating

function that may be parametrized in terms of other tensor structures. The physical cur-

rents should thus be treated as functionals of these auxiliary (solution generating) tensor

structures. With this clarification we record here that the hydrostatic class can be further

sub-divided into two:

• Class HS: Hydrostatic partition functions transforming as thermal scalars,22 which

comprise the class of non-anomalous equilibrium generating functions discussed in [29,

30].

• Class HV : Hydrostatic partition functions transforming as thermal vectors such as

those relevant for understanding transcendental anomaly induced transport which gen-

eralizes the parity-odd part of Cardy formula to higher dimensions [45]. Further details

are provided in §14.

• Class HF (hydrostatic forbidden) §7: At a given order in derivatives, Classes HS

and HV are exhausted after classifying all independent scalars and vectors that survive

the hydrostatic limit. Together they parameterize the (Euclidean) equilibrium partition

function. However, this counting generically does not match the classification of all possible

21 Recall that in the current algebra approach one typically chooses to eliminate thermal gradients in

favour of velocity derivatives. Some useful formulae and commonly used notation are collected in the tables

of Appendix I.
22 The transformation property here refers to behaviour under Kaluza-Klein gauge transformations where

we treat the Euclidean thermal circle relevant in hydrostatic as the compact direction we reduce on.
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tensor structures in the equilibrium constitutive relations at this order. The mismatch is

due to a number of hydrostatic relations HF which arise as constraints from the existence of

an equilibrium configuration.

As the simplest example, consider a neutral fluid at zeroth order in derivative expansion.

A-priori there are two possible tensor structures in the stress tensor constitutive relations:

uµ uν and Pµν . The pressure which multiplies Pµν parameterizes hydrostatic partition func-

tion. Moreover, the existence of hydrostatic equilibrium at this level is equivalent to the

Euler relation, ε + p = T s, which enforces that the coefficient of uµ uν (energy density) is

not independent, but rather is determined in terms of pressure (this is the hydrostatic version

of the analysis in §5.3). This statement can be viewed as saying that there is one relation

between two a-priori independent pieces of transport data, a feature that characterizes Class

HF more generally.

• Class L (Lagrangian solutions) §9, §10: If we are on-shell the content of (5.12) with

∆ = 0 is simply that of entropy conservation, but we have now allowed ourselves to take this

off-shell. By doing so we have gained the distinct advantage of being able to ask the following

question: “What are the Lagrangian theories that respect the adiabaticity equation?” This

turns out to be surprisingly easy to answer. Consider any local diffeomorphic and gauge

invariant Lagrangian density L [gµν , Aµ,β
µ,Λβ] viewed as a functional of the background

metric gµν , background gauge potential Aµ and the hydrodynamic variables {βµ,Λβ}. βµ is

a vector field under diffeomorphisms and Λβ transforms as appropriate for a gauge parameter.

We then have a set of Bianchi identities arising from these background symmetries. These

identities then simply imply the adiabaticity equation with the entropy current JµS = s uµ

where s is taken to be the Euler-Lagrange derivative of the Lagrangian with respect to

the temperature, keeping fixed the chemical potentials and the background sources. In

other words the adiabaticity equation follows quite trivially in a wide class of Lagrangian

hydrodynamic theories.23

Given a Lagrangian theory of hydrodynamics, we not only want to show that the adi-

abaticity equation is satisfied, but also obtain the correct dynamical equations, which as

we have emphasized, are simply conservation equations. Unfortunately, the simple uncon-

strained variational principle with respect to hydrodynamic variables {βµ,Λβ} does not

result in the desired energy-momentum and charge conservation Ward identities. So the

non-trivial part of the construction involves demonstrating the existence of a novel con-

strained variational principle that obeys the desired dynamics. In fact, such a principle is

easy to state: fixing {gµν , Aµ}, and extremizing
´
M
√
−gL [Ψ] under constrained variations

that stay on Lie orbits of {βµ,Λβ} gives on-shell hydrodynamic configurations.

There is an equivalent but more convenient way of parameterizing such variations. Start

by fixing a reference hydrodynamic configuration {�a,Λ�} on a (fiducial) reference manifold

M which is diffeomorphic to the physical spacetimeM. Then consider a diffeomorphism field

ϕa(x) and a gauge transformation c(x) which relate M and M. Said differently, the true

physical configuration {βµ,Λβ} onM is given by the pullback of the reference configuration

23 For the moment, we are ignoring situations with anomaly induced transport. We will later explain

how to find Lagrangian solutions to anomalous hydrodynamics, which is indeed possible, albeit with some

interesting technical complications.

38



{�a,Λ�} along ϕa(x), c(x):

βµ(x) =
∂xµ

∂ϕa
�a[ϕ(x)]

Λβ(x) = c(x) Λ�[ϕ(x)] c−1(x) + βσ(x) ∂σc(x) c−1(x)

(6.1)

The fields ϕa(x) and c(x) are just a convenient parametrization of a given Lie orbit of

{βµ,Λβ}. So instead of doing a constrained variation of {βµ,Λβ} along Lie orbits, we

can equivalently do an unconstrained variation of the fields {ϕa(x), c(x)} holding fixed the

hydrodynamic reference configuration. We demonstrate that this prescription leads to the

desired Ward identities.

In addition, as suggested by choice of notation for the fields, we have a wonderful bonus

– we can derive and explain the symmetries of the non-dissipative effective action in a simple

and effective manner, see Appendix B of [1]. This analysis is tantamount to saying that all

transport described by the non-dissipative action formalism (Class ND) is contained within

the Class L constitutive relations. Furthermore, we will demonstrate that Class HS ⊂ Class

L by showing that the equilibrium limit of the Lagrangians we construct, reproduces the

(scalar part of) hydrostatic partition function. However, the scalar Lagrangian density also

has hydrodynamic scalar densities (Class HS) (which vanish in equilibrium); strictly speaking

L = HS ∪HS with the hydrostatic scalars forming the coset HS = L/HS .

The simplest non-trivial example of non-dissipative fluids is a neutral fluid at second

order in gradient expansion. This system has been studied from an effective action per-

spective in [73]. We revisit this example in §11 (see also Appendix E) where we describe

how we can exploit our new Lagrangian formalism to understand features of the transport.

The neutral fluid Lagrangian is parameterized by five scalar functions which determine 15

transport coefficients. This implies 10 linear differential relation amongst transport coeffi-

cients. 5 of these are hydrostatic and were obtained earlier in [29] – they make up Class

HF . The remaining 5 relations are adiabatic combinations of transport that do not lead to

any dissipation. Curiously as reported in [2] all second order transport for strongly coupled

Weyl invariant holographic fluids is obtained from Class L.

• Class B (Berry-like transport) §12: These comprise of the class of solutions to the

adiabaticity equation which are non-hydrostatic but explicitly non-dissipative. They turn

out to satisfy the adiabaticity equation trivially and as a result such transport coefficients are

completely unconstrained in the current algebra approach. The nomenclature owes its origin

to the fact that these can be viewed as Berry curvature induced transport. Heuristically

these arise when we adiabatically traverse a closed loop in the fluid configuration space [83].

To wit, consider the following constitutive relations:

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gαβ + X (µν)α · δ

B
Aα

(Jα)B ≡ −
1

2
X (µν)αδ

B
gµν − S [αβ] · δ

B
Aβ

(JαS )B ≡ −
uσ
T

(Tασ)B −
µ

T
· (Jα)B

(6.2)

where {N µναβ ,X µνα,Sαβ} are arbitrary tensors and δ
B

denotes the Lie derivative associated

to the diffeomorphism and gauge transformation generated by {βµ,Λβ}. A prime example for

structures of the type (6.2) are the parity-odd shear tensor in 3 dimensions which contributes
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to Hall viscosity. There also turn out to be some novel combinations in parity-even neutral

fluids; the (shear)×(vorticity) term which is present in conformal fluids is of this type (as is

a combination seen in the analysis of [73]).

• Class C (conserved entropy) §13: This is the simplest class of adiabatic transport,

comprising of identically conserved entropy current, with vanishing physical currents. Since

we want non-trivial entropy current, we classify such terms up to exact gradients, i.e., coho-

mologically. Wen-Zee currents [84] and their generalizations discussed by [85, 86] which we

explore (and extend) in §B provide examples of such terms. One can view this as capturing

the transport of topological states of the hydrodynamical system. These are finite since they

arise as solutions to a cohomology problem.

• Class HV (Hydrodynamic vectors) §14: Just as Class HV contains hydrostatic vec-

tors that give rise to transverse free energies, Class HV does the same for hydrodynamic

vectors which are vanishing in equilibrium.24 In particular, consider the following constitu-

tive relations:

(Tµν)HV
≡ 1

2

[
DλC

λ(µν)(αβ)
N δ

B
gαβ + 2 C

λ(µν)(αβ)
N DλδBgαβ

]
+DλC

λ(µν)α
X · δ

B
Aα + 2 C

λ(µν)α
X · DλδBAα

(Jα)HV
≡ 1

2

[
DλC

λ(µν)α
X δ

B
gµν + 2 C

λ(µν)α
X DλδBgµν

]
+DλC

λ(αβ)
S · δ

B
Aβ + 2 C

λ(αβ)
S · DλδBAβ

(6.3)

where C
λ(µν)(αβ)
N = C

λ(αβ)(µν)
N and {CλµναβN ,CλµναX ,CλαβS } are transverse in their first index

and are otherwise arbitrary local functionals of Ψ. This trivially solves the adiabaticity

equation with a particular choice of transverse free energy current. The simplest examples

of such transport can be found at second order charged fluid dynamics. The constitutive

relations are messy, cf., (14.22) and (14.24), but the free energy current is simpler and given

by the transverse vectors σµν vν and Θ vµ.

• Class A (anomalous transport terms) §15, §16: Anomalous transport is hydrostatic

[41–45, 55]. It is however instructive to extract anomalous transport from an off-shell, off-

equilibrium approach, as it provides non-trivial checks on our formalism. By generalizing

the arguments of [8] for flavour anomalies we construct an off-shell effective action for mixed

flavour and gravitational anomalies in Class HS . This procedure however does not capture

the HV terms that are necessary for ensuring Euclidean consistency (the transcendental

terms of [43]).

The construction of an action Sanom, which can be added to any non-anomalous action

from Class L to account for the presence of mixed anomalies, proceeds in two steps. Firstly,

we need to use the anomaly inflow mechanism which extends the physical spacetime M to

a (d+ 1)-dimensional bulk spacetime Md+1 with ∂Md+1 =M. The gauge and gravitational

connections of the latter are such that their boundary inflow compensates for the gauge

non-invariance of the physical theory on M. In §15 we consider the following bulk action:

Sanom =

ˆ
Md+1

VP [A,Γ, Â, Γ̂] , (6.4)

24 Given that these constitutive relations are primarily determined by the free energy current, it might be

more natural to call this the Gibbsian vector class.
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where VP is the transgression form that interpolates between the gauge and gravitational

connections A,Γµν and their “shadows” Â = A + µu and Γ̂µν = Γµν + Ωµ
ν u. Here

Ωµ
ν is the out-of-equilibrium spin chemical potential extending the definition of [44]. The

transgression form VP is itself given in terms of the anomaly polynomial.

As expected, the stress tensor and charge current derived from Sanom are non-equilibrium

generalizations of the anomalous currents found in [40, 44]. In the presence of gravitational

anomalies the entropy current is modified by an anomalous contribution (which vanishes in

equilibrium) from its canonical form JµS = s uµ.25

Secondly, an anomalous effective action should also lead to the correct hydrodynamic

Ward identities; this however fails if we just consider (6.4). As discussed by us in the context

of flavour anomalies [8], getting the Ward identities to work requires a Schwinger-Keldysh

doubled theory. We describe the general framework of such doubled constructions in §16 and

show how to obtain the correct anomalous constitutive relations and Ward identities using

two copies (R and L) of the transgression form (6.4) together with a third transgression form

that acts as an influence functional connecting the two copies,

Stot,anom =

ˆ
Md+1

(
VP [AR,�R, ÂR, �̂R]− VP [AL,�L, ÂL, �̂L] + VP [ÂR, �̂R; ÂL, �̂L]

)
. (6.5)

A rather pleasant consequence of viewing hydrodynamic fields {ϕa, c} as maps from a

fiducial reference spacetime to a physical configuration is that one has a clear picture of

the doubled gauge symmetries (especially diffeomorphisms) encountered in the Schwinger-

Keldysh constructions. While there are indeed two sets of gravitational sources, they are

both obtained by pushing-forward data from a single reference manifold Md+1.

? The Eightfold Lagrangian (Class LT) §18: The classification of adiabatic constitutive

relations described above can be motivated on physical grounds. Furthermore, one can show

that the 7 classes above (Classes HS , HV , HS , HV , B, C, A) exhaust all adiabatic transport.

One can in fact obtain all of these solutions from a single master action. This effective action

is parameterized by the hydrodynamic fields {βµ,Λβ}, the background sources {gµν , Aµ},
their Schwinger-Keldysh like doubles {g̃µν , Ãµ}, and a new Abelian gauge field A(T)

µ. While

the doubling of the sources, whilst perhaps unanticipated, could be reconciled with the fact

that non-equilibrium dynamics is incomplete without such a construction, the new gauge

principle hints at some hidden underlying structure. We describe why this is necessary and

point out some of its physical implications below. For now we shall simply record that a set

of hydrodynamic currents CH [Ψ] satisfying the adiabaticity equation can be derived rather

straightforwardly from the effective action

ST =

ˆ
ddx
√
−g

(
1

2
Tµν g̃µν + Jµ Ãµ −

1

T
Gµ A(T)

µ

)
. (6.6)

Before proceeding to a detailed discussion of the specific classes of solutions to the

adiabaticity equation, let us remark on how this construction is related to the earlier work

on non-dissipative fluids and how the knowledge of adiabatic transport enables us to complete

the classification of hydrodynamic transport.

25 The modification of the entropy current was one of the main reasons for us to upgrade from the non-

dissipative effective action formalism used to analyze flavour anomalies in [8, 52].

41



◦ Class ND (non-dissipative fluids) (Appendix B of [1]): This class encompasses

non-dissipative fluids as described in the formalism of [33] with the fundamental degrees

of freedom expressed in terms of fluid element Goldstone fields as reviewed in §3.3. This

family of fluids can be embedded into Class L by starting with the Lagrangian written in

terms of the hydrodynamic fields and implementing a Legendre transformation with respect

to temperature. The fundamental variable is then the entropy current itself in the new pa-

rameterization. By passing to the reference manifold and examining the redundancies in the

map from the fiducial spacetime M to the physical spacetime M implemented by the fields

{φI , c} mentioned in §3.3, we unearth the origins of the volume-preserving diffeomorphism

and chemical shift symmetries postulated in the effective action constructions of [33, 73].

Since this development is not essential for the goals of this thesis, we choose to omit the

formal derivation of Class ND. The interested reader is referred to Appendix B of [1].

• Class D (dissipative transport) §8: Having classified all terms that solve the adia-

baticity equation (5.12) with ∆ = 0, we are left with some terms that are genuinely dissipa-

tive, i.e., terms for which no choice of entropy current exists that would remove them. These

dissipative terms can be further subdivided: on the one hand, we have transport coefficients

whose sign is constrained by the requirement of ∇µJµS ≥ 0 for arbitrary fluid flows (Class

Dv). Such terms only show up at the leading order in derivative expansion. On the other

hand, there are sub-dissipative terms which are completely unconstrained (Class Ds). It

transpires, using a result established in [67] that Dv terms appear only at the first order in

gradient expansion. We describe this argument in our language, providing at the same time

a simple characterization of dissipative constitutive relations.

7 Class H: Hydrostatics from adiabaticity

We have defined adiabatic fluids to be the set of hydrodynamic constitutive relations that

satisfy (5.12). While in §5 we have argued that this set comprises of the obvious example

of ideal fluids, we would like to ascertain and classify other solutions to the adiabaticity

equation. We will proceed to establish the existence of various classes of solutions to (5.12) in

the reminder. To keep the logical flow of the arguments simple we will start with statements

that hold in great generality and subsequently specialize to more special cases.

Our first case of interest is what we called Class H in §6. We specialize to time-

independent configurations in hydrodynamics (i.e., we limit ourselves to hydrostatics). In

order to ascertain non-trivial constraints on fluids from this hydrostatic restriction we need

to turn on external sources, e.g., background metric and gauge fields, which themselves are

time-independent to begin with. Therefore let us assume that there exists a Killing vector

and Killing gauge transformation collectively denoted by K ≡ {Kµ,ΛK} such that δ
K
gµν = 0

and δ
K
Aµ = 0. We will further assume that Kµ is timelike everywhere on the manifold the

fluid propagates on.26 To wit, a stationary background source configuration is encoded as

K ≡ {Kµ,ΛK} , gµν K
µKν ≤ 0 −→ δ

K
gµν = δ

K
Aµ = 0 . (7.1)

There is a natural hydrostatic configuration associated with this background given by

{βµ,Λβ} = {Kµ,ΛK}. This configuration is time-independent since δ
K
βµ = δ

K
Kµ = 0 and

26 In particular, we demand by virtue of K being globally timelike on M that the background the fluid

propagates on is free of ergosurfaces. This is necessary in order for the fluid configuration to have a stationary

solution aligned with the Killing field.
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δ
K

Λβ = δ
K

ΛK = 0. It therefore follows that for any functional Z [Ψ] of the fluid dynamical

variables we have

δ
B
Z [gαβ, Aα,β

α,Λβ] = δ
K
Z [gαβ, Aα,K

α,ΛK ] = 0 . (7.2)

The Hydrostatic Principle: We now formulate an important non-trivial statement about

the configurations we have just described. A-priori by aligning the fluid velocity and the

gauge parameter to the background Killing structure only results in an off-shell configuration

of the system. The hydrostatic principle asserts that these off-shell hydrostatic configura-

tions constructed above are also automatically on-shell, i.e., they automatically solve the

hydrodynamic equations (5.6). We will see that this holds true for all adiabatic constitutive

relations that we will consider in the sequel.

Let us now define the hydrostatic limit of various currents we have defined in the previous

sections by just substituting {βµ,Λβ} = {Kµ,ΛK}. The hydrodstatic currents are then

simply obtained as

(CH)Hydrostatic = CH
∣∣
{βµ,Λβ}={Kµ,ΛK}

. (7.3)

The utility of these currents is that they allow us to write down an expression for the

hydrostatic partition function, the generating function for correlators of the currents CH.

7.1 Hydrostatic partition functions

Consider a fluid on a background manifold M with metric gµν and gauge field Aµ. When

the background sources satisfy (7.1) we can construct a Wick-rotated manifold over which

a partition function can be defined. We begin by identifying every point p ∈ M, with the

point p′ in its future separated from it by a unit affine distance along the vector Kµ. More

precisely, we identify the points p and p′ if there is a curve xµ(τ) such that

xµ(τ = 0) = xµ(p) , xµ(τ = 1) = xµ(p′) ,
dxµ

dτ
= Kµ . (7.4)

We will also assume that {gµν , Aµ} are sufficiently slowly varying (spatially) so that there

are no caustics within a unit affine distance. This identification then converts the original

spacetime M into a fibre bundle with a timelike circle fibred over a spacelike base space

ΣM.27 For definiteness, we will also choose an embedding of the base space into the original

spacetime as a spatial hypersurface (this is equivalent to fixing a gauge for the Kaluza-Klein

(KK) gauge field which arises when we reduce along the timelike circle). For consistency, we

will require that our final results should not depend on this (arbitrary) choice of embedding.

Since Kµ is a Killing vector field, we can Wick rotate the background M 7→ ME by a

suitable analytic continuation of its orbits. Likewise we also Wick-rotate all the hydrostatic

currents to obtain suitable Euclidean currents28

(CH)Hydrostatic 7→ (CH)E . (7.5)

With these manipulations we are now in a position to define the grand canonical partition

function eiWE following [29, 30]. It is given as the path integral over the manifold ME

27 In order to do this without any ambiguity, one needs to prescribe how the flavour fibres at p and p′

should be identified – we will identify these flavour fibres with a flavour transformation given by ΛK , i.e., we

take the local gauge choice at p and p′ to be related by the gauge transformation generated by ΛK . This then

gives fibre bundles charged under the flavour group over the spatial base space.
28 In this section we will use the subscript E uniformly to denote the Wick rotated fields of interest.
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constructed above with thermal boundary condition along the τ -circle. This path integral

is dominated by the hydrostatic saddle point we have just described so it is trivial to write

down the final answer. Let us distinguish situations with and without anomalies since the

final answer for the generating function depends on the microscopics of the theory.

(i). Non-anomalous hydrostatic partition functions: In the absence of anomalies,

WE is just the Wick rotation of the total hydrostatic free energy, viz.,

WE = −
ˆ

ΣE

(
GµE
T

)
dd−1Sµ (7.6)

where dd−1Sσ is the area form on the base space ΣE which is defined using the choice of

base space embedding we described above (thus ΣE = ΣM).

One can easily check that this answer for WE is embedding independent. Setting

{βµ,Λβ} = {Kµ,ΛK} in (5.21) and using (7.1) we get

∇µ
(
Gµ

T

)
Hydrostatic

= 0 . (7.7)

This means that its Wick-rotated counterpart
GµE
T is also divergenceless (i.e., it is conserved).

This then implies that WE is embedding independent. As advertised earlier, knowledge of

the Euclidean Gibbs current is sufficient information to recover the generating function of

current correlators.

(ii). Anomalous hydrostatic partition functions: The above argument can be ex-

tended to situations where we have quantum anomalies with some minor modifications. As

evident from (5.21), the covariant free energy current is no longer conserved in the adiabatic

limit because of the free energy injection due to anomalies. This issue can be solved however

if we choose to work with consistent free energy current instead.29

For the present discussion we simply assume that the consistent current is obtained from

the covariant one by a well-defined prescription. Once this is done, the adiabaticity equation

can be written directly in terms of the consistent currents, see (A.11). Given the consistent

currents, using (7.1) in (A.11) we get

∇µ
(
Gµcons
T

)
Hydrostatic

= 0 , (7.8)

provided we choose to work in hydrostatic gauge defined via

Hydrostatic Gauge: ∂νK
µ = 0, ΛK = 0 .

As in the preceding discussion this then suffices to define a generating functional, since we can

consider the integral of
Gµcons,E

T over the base space ΣE in analogy with (7.6). Thus modulo

a restricted gauge choice, the consistent free energy current leads to a Euclidean partition

29 The distinction between the covariant and the consistent currents is that the latter is naturally obtained

from a (anomalous) quantum effective action by varying with respect to sources and is so named because it

satisfies the Wess-Zumino consistency conditions. We provide a quick review of the translation between the

covariant and consistent currents in Appendix A. A detailed account of the issues can also be found in [29, 42]

and in standard references such as [87, 88].
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function that is well-defined, and independent of the choice of base-space embedding, even

in the presence of anomalies.

It is convenient to perform an inverse Wick-rotation of the Euclidean partition function

WE so that we may use the metric with Lorentzian signature. This amounts to

WHydrostatic = −
[ˆ

ΣE

(
Gµcons
T

)
dd−1Sµ

]
Hydrostatic

(7.9)

As we will see shortly, this hydrostatic partition function is a very powerful way to charac-

terize a large subset of adiabatic constitutive relations.

A classification of hydrostatic partition functions: The basic lesson from the above

discussion is that the choice of hydrostatic partition functions is characterized by the (consis-

tent) free energy current Gµcons. Being a vector in spacetime, it can naturally be decomposed

into a longitudinal part along βµ and transverse part, i.e., Gµ = Sβµ +Vµ with Vµ β
µ = 0.

Accounting for the presence of anomalies as well, this prompts a further subdivision of the

hydrostatic partition functions into three sub-classes.

1. Class HS : These are hydrostatic partition functions that lift to spacetime scalars. In

this case we can extend the definition (7.9) to write the final answer as a complete

spacetime integral (as opposed to a spatial integral) over M = ΣE × IK where IK is

an interval of unit affine length along the Killing direction K.

WHydrostatic =

ˆ
ΣE

PS [ΨK] Kσ dd−1Sσ =

ˆ
ΣE×IK

ddx
√
−g PS [ΨK] , (7.10)

where ΨK = {gµν , Aµ,Kµ,ΛK}. This is the canonical form in which we expect to see

generating functions for correlators of currents.

2. Class HV : These are terms in the hydrostatic partition function which lift to transverse

spacetime vectors as suggested by (7.9). More explicitly, they are allowed contributions

of the form

WHydrostatic =

ˆ
ΣE

(
P σ
V [ΨK]

)
Hydrostatic

dd−1Sσ , (7.11)

with (
βσP

σ
V [ΨK]

)
Hydrostatic

= Kσ

(
P σ
V [ΨK]

)
Hydrostatic

= 0 . (7.12)

Note that in order for this to be independent of embedding, we will also require that the

vector field P σ
V be conserved,

(
∇σP σ

V

)
Hydrostatic

= 0. We will discuss these constitutive

relations further in §14.1.

3. Class A: These are non-gauge invariant, non-diffeomorphism invariant terms that are

added to the hydrostatic partition function to reproduce flavour and gravitational

anomalies. We will explain how to obtain the anomalous constitutive relations in an

off-shell Lagrangian formalism extending the analysis of [8] in §15.

One of the main outcomes of demanding the existence of equilibrium on arbitrary time-

independent backgrounds is that it serves to delineate a set of constraints on the transport

due to the second law. Certain terms if present in the constitutive relations will give rise to

sign-indefinite contributions to ∇µJµS – these have to be forbidden if we want to ensure that

the divergence of the entropy current is positive definite. This leads us to an important class

of terms which are the hydrostatic forbidden terms (HF ). To wit,
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Class HF : Transport coefficients in Classes HS and HV can be enumerated by listing all

off-shell independent hydrostatic scalars and vectors at a given order in derivative expansion.

The existence of equilibrium imposes that all other hydrostatic tensor structures that can

appear in the constitutive relations be constrained to occur as linear combinations of the

unconstrained ones. This consistency of the equilibrium partition function gives a number

of hydrostatic relations that we call as HF (for hydrostatic forbidden).30

We will have more to say about these various categories in the course of our discussion.

7.2 Currents from the hydrostatic partition function

Given a hydrostatic partition function the constitutive relations can be derived from a

straightforward variational principle. One can effectively think of the partition function

as a generating function, from which one derives the currents by varying with respect to

the sources [29]. One can also obtain the entropy current using the boundary terms of the

variational calculus. We review how this can be done as described in the recent discussion

of [67, 68]. We will recast this in a language that will be at once familiar, and at the same

time set the stage for further discussions in §9.

First let us see how one can recover the hydrostatic energy momentum tensor and cur-

rents from (7.9). Consider the variation of the partition function under a small change of

sources {gµν , Aµ}. It is useful to think of this variation as arising from a very slow time-

dependence of the sources. Indeed any deviation from equilibrium can be measured by the

temporal changes – we will make extensive use of the fact that δ
B
gµν and δ

B
Aµ will capture

the linear time dependence away from equilibrium in what follows.

We want to calculate the change in WHydrostatic between two time slices separated by an

infinitesimal displacement βα δt. This can be done by using Gauss law:

δWHydrostatic = −δ
[ˆ

ΣE

(
Gµcons
T

)
dd−1Sµ

]
Hydrostatic

= δt

[ˆ
ΣE

[
−∇σ

(
Gσcons
T

)]
βαdd−1Sα

]
Hydrostatic

+ δt

[ˆ
∂ΣE

(
Gjcons
T

)
dd−2Sj

]
Hydrostatic

(7.13)

The bulk piece can then be simplified using the adiabaticity equation for the consistent

free energy current (A.11). Restricting to the hydrostatic gauge we obtain with a single

variation31

δWHydrostatic =

[ˆ
ΣE

(
1

2
Tµνcons δgµν + Jµcons · δAµ

)
βαdd−1Sα

]
Hydrostatic

+ δt

[ˆ
∂ΣE

(
Gjcons
T

)
dd−2Sj

]
Hydrostatic

(7.14)

where δgµν = δt δ
B
gµν and δAµ = δt δ

B
Aµ. Further, we have chosen our time slices such

that there is no linear time dependence in {βα,Λβ}, i.e., δβα = δt δ
B
βα = 0 and δΛβ =

δt δ
B

Λβ = 0.

30 Empirically, terms in Class HF appear to account for about a third of the total number of transport

coefficients at a given order in the gradient expansion (beyond leading order). See Tables 7 and 8 for a

summary of the counting in a variety of examples.
31 If we are dealing with non-anomalous systems, the subscript cons may be freely omitted.
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Since any variation can be mimicked by a slow time-dependence, we conclude that, in

general

δWHydrostatic =

[ˆ
ΣE

(
1

2
Tµνcons δgµν + Jµcons · δAµ

)
βαdd−1Sα

]
Hydrostatic

+

[ˆ
∂ΣE

(/δΘPS)j dd−2Sj

]
Hydrostatic

(7.15)

where (/δΘPS)j is a boundary term linear in variations of fields, arising out of integration by

parts.

For the particular kind of slow time dependence under consideration, we can write

(/δΘPS)j = δt(/δBΘPS)j where /δBΘPS is obtained by changing all the variations δ(. . .) into

Lie-derivative δ
B

(. . .). A comparison of (7.15) against (7.14) then yields

(/δBΘPS)j =
Gjcons
T

(7.16)

Thus, when we vary the sources in the hydrostatic partition function, we get a bulk variation

which allows us to figure out the consistent currents and a boundary variation which gives

us the information about the spatial component of free energy current. Since the temporal

component of free energy current (i.e., free energy density) is already captured by the par-

tition function before variation, we can then reconstruct the entire free energy current. By

using the free energy current thus obtained as the non-canonical part of the entropy current,

we can finally compute the entropy current associated with the partition function.

A clear algorithmic procedure for doing this which is inspired by our Class L discussion,

can be phrased as follows (cf., also Appendix F):

1. From WHydrostatic determine G0
cons. By varying it, determine the currents {Tµν , Jµ} and

the boundary term gives Gjcons. When covariantized, the latter is just the pre-symplectic

potential (/δΘPS)µ which arises as the surface term when varying the hydrostatic par-

tition function.

2. Having obtained the hydrostatic currents, one then takes them off-shell by giving them

linear time dependence. To do so, one adds in non-hydrostatic terms in {Tµν , Jµ} by

unlinking B from K. Effectively what this amounts to is that the linear variation of

the background fields, in the direction of {βµ,Λβ}, i.e., δ
B

defined in (5.22) plays the

role of time derivative.

3. One similarly upgrades the boundary term from (/δΘPS)µ to (/δBΘPS)µ to obtain the

linear time dependence in the spatial component of free energy current.

4. In Class HS the non-canonical part of the entropy current is simply obtained by com-

bining the temporal and the spatial components of the free energy current:

(JµS )non−can = βµ PS [Ψ]− (/δBΘPS)µ . (7.17)

We note in passing that we can add a total derivative term ∇νK[µν] (Komar terms) to

the above whilst still retaining a conserved entropy current, cf., §9.3.

5. In Class HV the vector in the partition function can be just covariantised to give the

non-canonical part of the entropy current [42].
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6. By adding this non-canonical part to the canonical part of entropy current (JµS )can =

−βν Tµν − µ
T J

µ , we thus reproduce the prescription for computing the hydrostatic

entropy current given in [68].

With this, we have thus given a direct, covariant and off-shell rederivation of the entire

theory of hydrostatic partition function and its associated entropy current developed in

references [29, 68]. Before moving away from hydrostatics, we remark on two crucial ideas

we have used above to considerably simplify the existing derivations. First is the relation

between consistent free energy current and hydrostatic partition function first proposed in

[42]. The second idea is the off-shell adiabaticity equation (5.12) (first introduced in [40])

which will continue to play a crucial role in what follows.

To summarize, given a hydrostatic partition function which is a functional of the back-

ground (time-independent) sources we can recover on-shell currents CH which satisfy the

adiabaticity equations (5.12). This provides us with our first class of examples of non-trivial

adiabatic fluids, though soon we will be enlarging our repertoire.

8 Class D: Dissipative terms

In our discussion thus far we have motivated focusing on the solutions to the adiabaticity

equation (5.12) which switches off dissipation, viz., ∆ = 0. While we will explore a rather

intricate structure of adiabatic constitutive relations in Part III, one would imagine that

this would be a small part hydrodynamic transport. After all, most of the phenomena

we intuitively grasp in hydrodynamics have to do with dissipation. Strangely enough, this

turns out not to be true. Nevertheless, any complete classification of transport has to tackle

the constraints on such dissipative terms as well. We will now argue that this is relatively

straightforward and, using a key result proved in [67, 68], make a case for a complete transport

classification, once the adiabatic part of it is complete.

8.1 Constraints on dissipative transport

The second law of thermodynamics requires ∆ ≥ 0, so let us recall what is known about

dissipative transport. The simplest dissipative terms are the shear and bulk viscosities and

charge conductivity, usually denoted as {η, ζ, σ} respectively and enter at first order in

gradients. Recall that at leading order in the gradient expansion, the currents are (see [82]):

Tµν = ε uµ uν + pPµν − 2 η σµν − ζ ΘPµν ,

Jµ = q uµ + σ
Ohm

vµ , JµS = s uµ − µ

T
σ

Ohm
vµ . (8.1)

which leads to entropy generation

∆ =
1

T

(
2 η σµν σ

µν + ζ Θ2 + σ
Ohm

v2
)
. (8.2)

This is consistent with the second law and positive definite for

η ≥ 0 , ζ ≥ 0 , σ
Ohm
≥ 0 . (8.3)

The fact that there are no adiabatic terms at first order, as well as absence of (non-canonical)

corrections to the entropy current, are well known. These statements can be easily derived
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from the standard current algebra perspective. However, one may intuitively expect the

higher order version to be much more complex, making it unclear how to proceed. This

intuition turns out to be wrong.

For the moment assume that the adiabatic part of the constitutive relations has been

dealt with. First, let us use the positivity of viscosities and conductivities to define a sub-

class Dv ⊂ D which contains genuinely dissipative/viscous transport. These are terms that

are constrained to be sign-definite by the second law. Terms which are not of this form will

be called sub-dissipative (Ds ⊂ D); these will be allowed to take on any value without causing

trouble for the second law. Much of the material that follows in this subsection was first

explained in [67, 68]. We are mostly going to paraphrase the results first, before unveiling a

more abstract proof inspired by our analysis of adiabaticity in Part III.

Let us understand why the split D = Dv ∪ Ds exists. In the hydrodynamic gradient

expansion the divergence of the entropy current captured by ∆ itself admits a gradient

expansion (starting at second order as ideal fluids are non-dissipative):

∆ = ∆2 + ∆3 + · · · (8.4)

where ∆2 is the quantity given in the r.h.s. of (8.2) (or generalizations thereof). The higher

order ∆k arise from gradient corrections to both the entropy current and the constitutive

relations. When we compute ∆k we can assemble this into a linear combination of scalar

operators with exactly k derivatives (∂k) . There is a basis of such operators; in the cur-

rent algebraic approach one usually works with a basis of on-shell independent scalars at a

given derivative order, but this is not necessary (as we shall see). The statement about the

splitting of Class D is equivalent to the statement that the scalar operators admit such a

decomposition.

Scalars of interest at O(∂k) are composite operators and can either be (i) ‘descendants’ of

operators constrained at lower orders or (ii) simple ‘product-composites’ of lower order opera-

tors. The descendant operators are obtained by acting with derivatives on lower order tensor

structures, while product-composites are simply obtained by contraction. Examples of the

former are operators such as {Θuµ∇µΘ, σµν uα∇ασµν}, while {Θ3, σαβσβγσ
γ
α,Θσµν σ

µν}
exemplify the latter at O(∂3).32

The product-composites are simple; since they are invariants built out of terms that are

already constrained, their coefficients can be arbitrary whilst still respecting the second law

(in the gradient expansion). For example, taking the viscosities and conductivities to be

positive, we ensure ∆2 ≥ 0 and thence the contribution to ∆3 from such product-composite

form, is simply sub-dominant and poses no obstruction to the second law. To wit,

2 η σµν σ
µν + ζ Θ2 + γ1 Θ3 + γ2 σ

αβσβγσ
γ
α + γ3 Θσµν σ

µν ≥ 0

=⇒ η, ζ ≥ 0 , and {γ1, γ2, γ3} unconstrained. (8.5)

The descendants are a-priori trickier to handle; at any given derivative order they give rise to

new scalar invariants which have not been encountered at lower orders. Their contribution to

∆ cannot be subsumed into lower order terms. One way to argue for their importance is to

note that one can find fluid configurations where the lower order gradients are locally made

32 It is useful at this stage to infer from our hydrostatic discussion that the operator δ
B

serves the role of

capturing time derivatives about equilibrium configuration. All the aforementioned operators can be written

directly in terms of δ
B
gµν (likewise occurrences of vµ can be expressed in terms of δ

B
Aµ).
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to vanish, making the descendants important in some domain. Since we want the second

law to hold in all possible scenarios, one must therefore control the descendants. The rather

non-trivial fact is that these are also easy to handle beyond the leading order.

Let us understand this a bit more carefully following the impressively clear and complete

analysis of dissipative transport of [68] (see [28, 67] for earlier results). As explained there,

scalar operators contributing to ∆ are of three types:33

• Terms that contribute to ∆2 at leading order which need to be controlled to ensure

∆ ≥ 0. They belong to Dv and impose constraints on transport (such terms were called

∆2nd−order in [68]). Note that we can write them effectively in terms of (δ
B
g)2 and

(δ
B
A)2 for they appear only at quadratic order.

• Descendant terms at any given order which are composite scalars built from a (k−1)st

order independent operator and a first order operator, i.e., of the form δ
B
g DOk−2

where Ok−2 could be a composite-product. Such terms were denoted as ∆diss−imp in

[68].

• Composite-product terms which simply take the form (δ
B
g)k and (δ

B
A)k. Terms of

this type were called ∆diss−product in [68].

Given this decomposition, we have schematically

∆ = α2g (δ
B
g)2 + α2A (δ

B
A)2 +

∞∑
k=3

[
κkg δBg DOk−2 + γkg (δ

B
g)k + · · ·

]

∼ α2g

[
δ
B
g +

∞∑
k=3

κkg
2α2g

DOk−2

]2

+

∞∑
k=3

γkg (δ
B
g)k + · · · (8.6)

where we have only written out the composite higher order terms explicitly for the metric

variation and elided over writing the gauge variations. In the second line we have indicated

a merger of the descendant and leading order terms into a quadratic form which plays a role

in the argument below. With this parameterization

• α2g, α2A ≥ 0 for the second law to hold.

• γk are unconstrained since they multiply terms which are parametrically smaller than

the leading order contributions. These are clearly in the sub-dissipative Class Ds.

• By completing squares, one can take care of the descendant terms as well (they are

effectively in Class Ds despite appearances). Indeed, as written, positivity of the second

line of (8.6) is ensured once we demand α2g, α2A etc., to be positive definite. One

further needs to ensure that the cross-terms obtained in the process can be assembled

into positive-definite quadratic form.

The remarkable statement of [68] is that this can always be done, recursively order by

order in the gradient expansion! More specifically, the aforementioned reference used the

33 In [68] a fourth type was introduced called ∆non−diss – these will be accounted for in our adiabatic

story as they end up having net zero contribution to entropy production. Note that we will not include them

explicitly in our counting of Class C constitutive relations as these terms are exact differentials and thus

trivial in cohomology.
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specific example of (parity-even) charged fluid at third order in gradients to illustrate the

general picture proposed in [67]. But the general structure emerging from that analysis

makes it clear that the construction can be extended to higher orders. The argument in [68]

can be worded as follows: given a hydrostatic entropy current, there exists a hydrodynamic

correction Jµextra which serves to absorb the contributions from the descendant contribution

∆diss−imp to convert them into a positive-definite quadratic form. Inspired by our construc-

tion of solutions to the adiabaticity equation we give a more abstract discussion below in

§8.2 using a class of tensor-valued differential operators that subsume the above statements

efficiently.

The upshot of this discussion is that Class D = Dv∪Ds with Dv contributions which are

sensitive to the second law making their appearance only at the leading order in the gradient

expansion. So while there are many potential contributions to Class D, most of them are

agnostic to the constraints and thus can be treated democratically.

8.2 Differential operators for dissipation

We will now give a succinct summary of the results of [67, 68], using a compact notation

that is inspired by our construction of adiabatic constitutive relations. The impatient reader

may choose to skip this section at first reading.

We begin our discussion by constructing a set of tensor structures that provide Class D

constitutive relations. We will see in the sequel that these will be quite useful in demarcating

the second law constraints quite effectively for they provide us with a simple way to assemble

both the product-composite and descendant operators into a positive definite form.

Let us begin with the non-anomalous grand canonical adiabaticity equation (5.21)

−∇σ
(
Gσ

T

)
=

1

2
Tµνδ

B
gµν + Jµ · δ

B
Aµ + ∆ (8.7)

where we have included ∆ denoting entropy production and dissipation. Second law of

thermodynamics demands that ∆ ≥ 0. We will now arrange our conserved currents in an

appropriate form where this condition can be imposed readily.

Consider a differential operator Υ which is tensor valued, i.e., it is a map from the space of

tensors to themselves involving some derivations. For the moment we will be rather abstract

about the precise form of this operator, but we have here in mind operators constructed

from Ψ and quantities such as δ
B
gµν and δ

B
Aµ. Since in the course of manipulations we will

have to reshuffle derivatives around, we also denote the corresponding adjoint differential

operator obtained via integration by parts as Υ†.

Let us examine the following constitutive relations, which we suggestively refer to as

Class D constitutive relations:

(Tµν)D ≡ −
1

2

[
Υ†ηg η Υηg + Υ†σg σ Υσg

](µν)(αβ)
δ
B
gαβ

−
[
Υ†ηg η ΥηA + Υ†σg σ ΥσA

](µν)α
· δ

B
Aα

(Jα)D ≡ −
1

2

[
Υ†ηA η Υηg + Υ†σA σ Υσg

]α(µν)
δ
B
gµν

−
[
Υ†ηA η ΥηA + Υ†σA σ ΥσA

]αβ
· δ

B
Aβ .

(8.8)
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By construction these currents vanish in hydrostatics, so they potentially contribute to ∆.

Furthermore, by exploiting the structure of (8.8) we have ensured that the r.h.s. of (8.7) is

at least quadratic in δ
B
g and δ

B
A as expected.

We need to now specify the representation content of the operators Υ that appear

above. We denote the vector representation as Vect and the two-index symmetric tensor

representation by Sym2. Clearly, Aµ ∈ Vect and gµν ∈ Sym2, where we shall use the

isomorphism provided by metric onM to raise and lower indices when necessary. With this

understanding

• {Υηg ,Υσg} are tensor-valued differential operators which take two-indexed symmetric

tensor fields (Sym2) to diffeomorphism representations denoted by Tensη and Tensσ
respectively, where the latter are those which are direct sums of tensor representations,

viz.,

Υηg : Sym2 → Tensη , Υσg : Sym2 → Tensσ (8.9)

• Similarly, {ΥηA ,ΥσA} are tensor-valued differential operators which take vector fields

(Vect) to diffeomorphism representations Tensη and Tensσ respectively.

ΥηA : Vect→ Tensη , ΥσA : Vect→ Tensσ (8.10)

• The adjoints of these differential operators act in the opposite direction, mapping direct

sums of tensor representations back to Sym2 and Vect representations respectively.

Υ†ηg : Tensη → Sym2 , Υ†σg : Tensσ → Sym2 ,

Υ†ηA : Tensη → Vect , Υ†σA : Tensσ → Vect
(8.11)

• Finally, the symbols {η,σ} denote arbitrary tensor fields in the product representations

{Tensη ⊗ Tensη,Tensσ ⊗ Tensσ}

which can be thought of as intertwiners to ensure that the net operator acting on either

Sym2 or Vect is in the representations indicated by the index structure in (8.8).

It is useful to note that we can write the Class D constitutive relations also in a matrix

form (
Tµν

Jα

)
D

= −

(
Υ†ηg Υ†σg
Υ†ηA Υ†σA

)(
η 0

0 σ

)(
Υηg ΥηA
Υσg ΥσA

)(
1
2δBg

δ
B
A

)
(8.12)

which better exhibits the algebraic structure of this class of constitutive relations.
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Substituting the above expression back into the right hand side of grand canonical adi-

abaticity equation and removing the adjoint operators via integration by parts, we obtain

1

2
(Tµν)D δBgµν + (Jα)D · δBAα

= −1

2
δ
B
gµν

[
Υ†ηg η Υηg + Υ†σg σ Υσg

](µν)(αβ) 1

2
δ
B
gαβ

− 1

2
δ
B
gµν

[
Υ†ηg η ΥηA + Υ†σg σ ΥσA

](µν)α
· δ

B
Aα

− 1

2
δ
B
Aα ·

[
Υ†ηA η Υηg + Υ†σA σ Υσg

]α(µν)
δ
B
gµν

− δ
B
Aα ·

[
Υ†ηA η ΥηA + Υ†σA σ ΥσA

]αβ
· δ

B
Aβ

= −
[

1

2
ΥηgδBg + ΥηAδBA

]
η

[
1

2
ΥηgδBg + ΥηAδBA

]
−
[

1

2
ΥσgδBg + ΥσAδBA

]
σ

[
1

2
ΥσgδBg + ΥσAδBA

]
+∇α(Nα)D

(8.13)

where we have kept the total derivative term from integration by parts.

Let us take (Gα)D = −T (Nα)D, which in the micro-canonical ensemble is equivalent to

taking the entropy current to be

(JαS )D ≡ −
uβ
T

(Tαβ)D −
µ

T
· (Jα)D + (Nα)D . (8.14)

With this choice we have a simple expression for the entropy production within this class

of constitutive relations (using (8.7)):

∆ =

[
1

2
ΥηgδBg + ΥηAδBA

]
η

[
1

2
ΥηgδBg + ΥηAδBA

]
+

[
1

2
ΥσgδBg + ΥσAδBA

]
σ

[
1

2
ΥσgδBg + ΥσAδBA

] (8.15)

which is completely parameterized by the differential operators Υ and the intertwiners be-

tween different representations {η,σ}. We want to ensure that ∆ ≥ 0 for the second law,

which is easy to insist for (8.15) has the structure of a quadratic form with the intertwin-

ers playing the role of the metric. Then demanding that {η,σ} transform in appropriately

symmetric representations to provide a positive definite quadratic form, viz.,

η ∈ Sym+ (Tensη ⊗ Tensη) , σ ∈ Sym+ (Tensσ ⊗ Tensσ) (8.16)

with the subscript + denoting that the eigenvalues are non-negative definite. This gives us

a solution to ∆ ≥ 0.

Should we consider intertwiners not transforming in the symmetric tensor product rep-

resentation we will find that they would correspond to adiabatic or hydrostatic forbidden

constitutive relations. For instance taking the anti-symmetric representation will lead to

Class B adiabatic constitutive relations as we shall discuss in §12.

To summarize the above construction, by suitably picking tensor structures we are in a

position to engineer constitutive relations that are guaranteed to satisfy the second law of

thermodynamics.
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8.3 Examples: Low order Class D differential operators

Let us now examine the results of our earlier discussion in §8.1 in light of this renewed

understanding. The easiest way to proceed is to start with the leading order in gradients.

Since (8.15) already has two factors of δ
B

on the r.h.s., a contribution to ∆2 necessarily

requires Υ to be a tensor operator involving no derivatives. For instance, picking

Υηg = ΥσA = Id , ΥηA = Υσg = 0 , (8.17)

and η ∈ Sym2 ⊗ Sym2 and σ ∈ Vect⊗Vect to be also zero derivative tensors built from the

background metric gµν and the hydrodynamic field βµ we can recover (8.2). To be specific,

(8.2) is reproduced by taking (8.17) combined with

ηµνρσ
(0)

= T ζ PµνP ρσ + 2T η P ρ<µP ν>σ , σαβ
(0)

= T σ
Ohm

Pαβ , (8.18)

where the subscript (0) means that these intertwiners are the contributions at lowest order

in a derivative expansion (the corresponding constitutive relations are first order, of course)

and < · > denotes the symmetric transverse traceless projection34.

At higher order in derivative expansion an interesting subset of Class D constitutive

relations can be obtained by restricting to Υ-operators which do not act as derivatives. For

instance, in the case of second order constitutive relations, we can consider arbitrary first

order transverse tensors X (µν)α and the following correction to (8.17):

Υηg = ΥσA = Id , Υσg = 0 ,

(ΥηA)ρσ
α = − 1

Tζ

1

(d− 1)2
Pρσ Xλλα −

1

2Tη
X<ρσ>α ,

(8.19)

together with the following first order correction to the intertwiners (8.18):

ηµνρσ
(1)

=
1

2

(
N (µν)(ρσ) +N (ρσ)(µν)

)
, σαβ

(1)
= S(αβ) , (8.20)

where {N µναβ ,Sαβ} are arbitrary tensors involving one derivative. From (8.19) and inter-

twiners {(η
(0)

+η
(1)

)µνρσ , (σ
(0)

+σ
(1)

)αβ} we get a large set of Class D constitutive relations

at second order:

(Tµν)D ≡ (−2 η σµν − ζ ΘPµν)− 1

4

(
N (µν)(αβ) +N (αβ)(µν)

)
δ
B
gαβ + X (µν)α · δ

B
Aα +O(∂3) ,

(Jα)D ≡ (σ
Ohm

vα) +
1

2
X (µν)αδ

B
gµν − S(αβ) · δ

B
Aβ +O(∂3) ,

(Gσ)D = 0 , (8.21)

As we will see in §17.3, classifying first order transverse tensors {N µναβ ,X µνα,Sαβ} captures

all Class D constitutive relations of the parity-even charged fluids at second order via (8.21).

At any given order in derivatives we can construct further constitutive relations by con-

sidering non-trivial Υ-tensors in such a way that the entropy production (8.15) is manifestly

a quadratic form. For example, a simple subset of Class D constitutive relations at any order

is obtained by the parameterization (8.21) with arbitrary tensor structures {N µνρσ,Sαβ} for

the entropy production of these terms automatically assembles itself in a quadratic form.

34 Explicitly, the projector is given by X<αβ> =
(
Pαµ P

β
ν − 1

d−1
PαβPµν

)
Xµν .
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Note that the contribution of the object X µνα is more complicated and it only takes the

form of (8.21) at second order. At higher orders its mixing with other terms in (8.21) must

be taken into account. With non-trivial choice of Υ we can easily obtain the descendant

terms while composite-products are obtained by making judicious choices for the intertwin-

ers {η,σ} themselves. We discuss more examples where Class D transport shows up in

§17.3.

Before we conclude our discussion of dissipative terms, it is worth highlighting the fol-

lowing point. In most of the preceding analyses of hydrodynamics (such as the discussion of

second order Weyl invariant neutral fluids in [89, 90], generic neutral fluids in [28], or charged

fluids in [68]) the modus operandi has always been to write down the constitutive relations

for the conserved currents at a given order in the gradient expansion. One then ascertains

the form of the entropy current which ensures that the second law of thermodynamics is up-

held. Usually the entropy currents are determined modulo certain ambiguities (see below).

However, to ensure that the entropy production is sign-definite ∆ ≥ 0, say by completing the

contributions into a positive definite quadratic form, one needs to understand contributions

to the conserved currents at higher orders as well. This is most clearly illustrated in the

neutral fluid analysis of [28]. One of the advantages of working with the operators Υ and the

intertwiners {η,σ} is that we can in one fell swoop ascertain the combination of transport

that ensures ∆ ≥ 0. This makes the analysis at higher orders much more straightforward.

We note that when we shift the entropy current by

JµS 7→ JµS +
1√
−g

£V

[√
−gJµS

]
= JµS + V µDσJ

σ
S +Dν

(
V νJµS − J

ν
SV

µ
)

(8.22)

the amount of entropy produced ∆ shifts by a Lie derivative ∆ 7→ ∆+ 1√
−g£V [

√
−g∆] which

preserves the condition ∆ ≥ 0. Thus such a shift moves us within the space of admissible

Class D constitutive relations. In the holographic context this is reflected in the pullback

ambiguity in the construction of the entropy current [89].

The explicit construction of Class D constitutive relations in §8.2 establishes the main

statement we made at the end of §8.1; all of the product-composite and descendant scalar

operators can be assembled into a form where the only operative restriction from the second

law of thermodynamics applies at ∆2 order. Thus as claimed in [67, 68] the only inequality

constraints of interest arising from the second law operate at the leading order in the gradient

expansion. All higher order terms can be subsumed via the derivative operators into the sub-

dissipative Class Ds.

As far as the constraints arising from the second law are concerned, our analysis ends

here. As described in [67] once we figured out the terms in Classes HF and Dv, we are done.

There is no more information from the second law. However, those intrepid souls willing to

brave the winding pathways of the eightfold way are encouraged to continue onto Part III.
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Part III

The Classification of Adiabatic

Constitutive Relations

9 Class L: Lagrangian solutions to adiabaticity equation

Following the analysis of §7 we have seen that the set of adiabatic fluids is much larger

than just the ideal fluid family. In principle, we could continue on from our analysis at zero

derivative level as in §5.3, and solve the adiabaticity equation at higher derivative orders,

to find new families of adiabatic constitutive relations. In practice, however, the number

of terms proliferates very fast and the analysis becomes complicated. Hence, one therefore

would like to seek more practical ways of solving adiabaticity equation or writing down

adiabatic constitutive relations. The most elegant solution would be to mimic our discussion

in hydrostatics (Class H) and construct the generating function for the adiabatic constitutive

relations, consistent with our desire of being off-shell and off-equilibrium.

In this section, we will describe a method to generate a large class of adiabatic constitu-

tive relations in the absence of anomalies. Though this does not give all possible solutions, at

any given derivative order, many solutions seem to fall into this class. We will call this class

of adiabatic constitutive relations as Class L (where L stands for Lagrangian-derivable) as

one can find a local Lagrangian or Landau-Ginzburg free energy functional which succinctly

encodes the constitutive relations. As presaged this will be quite close to the Euclidean

partition function in hydrostatics. In particular, observe that in Class HS , the generating

functional was given by the longitudinal part of the free energy current. That is, the natural

decomposition of any covariant free energy current,

Gµ = Sβµ + Vµ , Vµ βµ = 0 , (9.1)

gives a natural scalar object S which in hydrostatics took the role of the partition function

scalar density PS [ΨK] in (7.10). If we consider the full set of scalar invariants (up to field

redefinitions), including ones that vanish in equilibrium, then we can write down an off-shell

Lagrangian density L ∼ fS S which parameterizes Class L. The non-hydrostatic part of

this construction comprises of those scalars which identically vanish in equilibrium. All in

all such Lagrangian densities will completely parameterize the longitudinal part of the free

energy current in (9.1).

Let us now carry out this construction in detail. Constitutive relations in Class L are

parametrized by a Lagrangian density L [gµν , Aµ,β
µ,Λβ] which we will assume to be a local

scalar functional of its arguments, i.e., under gauge transformations and diffeomorphisms L
transforms like a scalar field. Intuitively, L can be thought of as some sort of a generalized

pressure functional for the adiabatic fluid.35 We may write

Shydro =

ˆ
ddx
√
−g L [Ψ] . (9.2)

35 We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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Consider now a variation of this Lagrangian functional which, after sufficient number of

integration by parts, can be brought to the form

1√
−g

δ
(√
−g L

)
−∇µ(/δΘPS)µ

=
1

2
Tµν δgµν + Jµ · δAµ + T hσ δβ

σ + T n · (δΛβ +Aσ δβ
σ) .

(9.3)

Here (/δΘPS)µ denotes the surface terms generated due to integration by parts and is related

to the pre-symplectic potential. The symbol /δ denotes that it is linear in variations of fields.

The reader may simply take (9.3) as the defining statement of the variational principle.

So far hσ and n which multiply variations of the hydrodynamic fields (and are thus

conjugate to them) are simply defined by the above variational principle; they will have a

role to play in the sequel. We will refer to them as the adiabatic heat current and adiabatic

charge density respectively.

The variation of the Lagrangian makes it easy to obtain the currents CH. For instance

we read off {Tµν , Jµ} from the above variation and take JµS = s uµ with

s ≡
(

1√
−g

δ

δT

ˆ √
−g L [Ψ]

) ∣∣∣∣
{uσ , µ, gαβ , Aα}=fixed

(9.4)

Here δ
δT is the variational (i.e., Euler-Lagrange) derivative. The free energy current can be

obtained using (5.18). It is convenient to rewrite this expression in terms of the adiabatic

currents {hσ, n} for simplification of future computations. Note that

T hσ δβ
σ + T n · (δΛβ +Aσδβ

σ) = (hσ + n ·Aσ) δuσ + n · δ (µ− uσAσ)

− [hσ β
σ + n · (Λβ +Aσβ

σ)] δT
(9.5)

which in turn implies that

s = − [hσ β
σ + n · (Λβ +Aσβ

σ)] = − 1

T
[hσu

σ + n · µ]

=⇒ T s+ µ · n + uσ hσ = 0 .
(9.6)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {uσ, T, µ} in terms of variations of {βµ,Λβ} and vice versa. This can readily

be done by using the defining equation (5.1) and explicit expressions can be found in (D.1)

for convenience. In sum from L we have access to both the physical and adiabatic currents

respectively, with the latter determining the entropy current.

9.1 Bianchi identities in Class L

The invariance of Shydro under gauge/diffeomorphisms implies certain identities obeyed by

{Tµν , Jµ, hσ, n}.36 Interpreting these identities in a particular manner will prove conducive to

showing that having a Lagrangian L [Ψ] = L [gµν , Aµ,β
µ,Λβ] leads to currents which solve

the adiabaticity equation.

To see this, consider the diffeomorphism and gauge variations induced by a pair of arbi-

trary vector field and scalar collectively denoted as X ≡ {ξµ,Λ} on the basic hydrodynamic

36 The material in this subsection was worked out in collaboration with Kristan Jensen.
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fields:

δ
X
gµν ≡ £ξgµν = ∇µξν +∇νξµ ,

δ
X
Aµ ≡ £ξAµ + [Aµ,Λ] + ∂µΛ = Dµ [Λ + ξνAν ] + ξνFνµ ,

δ
X
βµ ≡ £ξβ

µ = ξν∇νβµ − βν∇νξµ ,
δ
X

Λβ +AνδXβ
ν ≡ ξµDµ [Λβ + βνAν ]− βµDµ [Λ + ξνAν ]

− ξµβνFµν + [Λβ + βνAν ,Λ + ξλAλ] ,

(9.7)

where the symbol £ξ denotes the Lie derivative along the vector field ξµ.

Plugging this variation into the expression appearing on the r.h.s. of (9.3) followed by

a straightforward integration by parts gives

1

2
Tµνδ

X
gµν + Jµ · δ

X
Aµ + T hµδXβ

µ + T n · (δ
X

Λβ +AµδXβ
µ)

= ∇µNµ[X] + ξµ

[
−∇νTµν + Jν · Fµν +

gµν√
−g

δ
B

(√
−g T hν

)
+ gµνT n · δ

B
Aν

]
+ (Λ + ξλAλ) ·

[
−DνJ

ν +
1√
−g

δ
B

(√
−g T n

) ]
,

(9.8)

with Nµ[X] defined as

Nµ[X] ≡ ξνTµν + (Λ + ξλAλ) · Jµ − Tβµ
[
ξνhν + (Λ + ξλAλ) · n

]
. (9.9)

We have denoted the diffeomorphism and gauge variation induced by {βµ,Λβ} as δ
B

which

is defined in (5.22). The Noether current Nµ [B] will play a role in constructing the non-

canonical part of the entropy current or equivalently the free energy current.37

We can now plug the expression (9.8) into (9.3) and integrate over the background

geometry to obtain a statement for the total variation

δ
X

ˆ √
−g L [Ψ] =

ˆ √
−g ξµ

[
−∇νTµν + Jν · Fµν +

gµν√
−g

δ
B

(√
−g T hν

)
+ gµνT n · δ

B
Aν

]
+

ˆ √
−g (Λ + ξλAλ) ·

[
−DνJ

ν +
1√
−g

δ
B

(√
−g T n

) ]
+ Boundary terms . (9.11)

Since L is a scalar under the background diffeomorphism and gauge transformation, the

integral on the l.h.s. has to vanish, δ
X
Shydro = 0, up to boundary terms. This immediately

implies for arbitrary {ξµ,Λ} one has the diffeomorphism and gauge Bianchi identities:

∇νTµν = Jν · Fµν +
gµν√
−g

δ
B

(√
−g T hν

)
+ gµν T n · δ

B
Aν

DσJ
σ =

1√
−g

δ
B

(√
−g T n

) (9.12)

37 In the process of deriving various variational expressions we find the following identities quite useful to

collect terms:

1√
−g

δ
B

(√
−g S

)
= ∇α (βα S) ,

1√
−g

δ
B

(√
−g Vσ

)
= £β Vσ + Vσ∇αβα (9.10)

where S and Vα are arbitrary scalar and one-form fields, respectively. We have made use of the latter in

derving (9.8) and will use the former in, e.g., (9.13).
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These are the Bianchi identities we are after and per se they hold off-shell. If we think of

{Tµν , Jµ, hσ, n} as tensor-valued functionals of Ψ, obtained from the variational principle

(9.3), then these equations hold identically for the currents for all configurations.

We can supplement (9.12) with another identity which follows from our definition of the

entropy current (9.4)

∇σJσS = ∇σ(T sβσ) =
1√
−g

δ
B

(√
−g Ts

)
, (9.13)

which is again valid off-shell.

We can now easily check that (9.12) and (9.13) together imply the adiabaticity equation

(5.13) in the absence of anomalies, for

∇µJµS + βµ (∇νTµν − Jν · Fµν) + (Λβ + βλAλ) ·DνJ
ν

=
1√
−g

[
δ
B

(√
−g Ts

)
+ βσ δ

B

(√
−g T hσ

)
+
√
−g T βσ n · δ

B
Aσ +

µ

T
· δ

B

(√
−g T n

) ]
=

1√
−g

δ
B

(√
−g [T s+ uσ hσ + µ · n]

)
= 0 . (9.14)

We have used the basic definitions (5.1) and the relation (9.6) derived earlier. We should

emphasize that by virtue of the Bianchi identities (9.12) holding off-shell we have demon-

strated that the Lagrangian system defined by L [Ψ] satisfies the non-anomalous adiabaticity

equation (5.13) off-shell. We will postpone a more detailed discussion of the anomalous sit-

uation until §15; suffice it to say for now that there is a Lagrangian construction that gives

a particular solution to (5.12).

Sometimes it is convenient to write the combinations that occur above in a conventional

hydrodynamic expansion. Upon explicit evaluation one finds

1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ

= ∇λ(hσ u
λ) + hλ (∇σ + aσ)uλ + s(∇σ + aσ)T − n · [Eσ −Dσµ− aσµ]

(9.15)

and

1√
−g

δ
B

(√
−g T n

)
= Dσ(nuσ) + [n, µ] (9.16)

In the above expressions we encounter the fluid acceleration vector aσ and the rest frame

electric field Eσ = Fσλu
λ introduced earlier.

9.2 Noether current in Class L

Having seen that Lagrangian systems of hydrodynamics as formulated above satisfy adia-

baticity equation off-shell, we now proceed to extract some more basic lessons. Most of these

follow from the basic variational principle and are encoded in the Noether current for the

Class L constitutive relations which is related to the free energy current of the system.

We proceed by first deriving the Noether theorem for our Lagrangian system. By sub-

stituting (9.12) into (9.8), we get

∇µNµ[X] =
1

2
Tµν δ

X
gµν + Jµ · δ

X
Aµ + T hµ δXβ

µ + T n · (δ
X

Λβ +Aµ δXβ
µ) (9.17)
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with Nµ[X] as given in (9.9). The primary content of Noether theorem is that a current

Nµ[X] satisfying the above equation exists.

It is easy to see that every Noether current satisfying (9.17) gives a free energy current

satisfying the adiabaticity equation (5.21) with G⊥
H

= 0 (for non-anomalous fluids). In

particular, we see that we solve (5.21) by identifying {ξµ,Λ} = {βµ,Λβ} (but we will still

keep {gµν , Aµ} general) and take

Gσ = −T Nσ[B]

= − T
(
βν T

σν + (Λβ + βλAλ) · Jσ − T βσ
[
βν hν + (Λβ + βλAλ) · n

])
G⊥
H

= 0 .

(9.18)

Thus we see that the free energy current coincides (up to a factor of T ) with the Noether

current (or the non-canonical part of the entropy current) Nσ[B], cf., (5.18).

The corresponding entropy current is also easily constructed: we remind the reader that

the non-canonical part of the entropy current is −Gσ/T = Nσ[B] so that the total entropy

current is given by

JσS = Nσ[B]− βλ T σλ − (Λβ + βλAλ) · Jσ

= Nσ[B]− uλ
T
T σλ − µ

T
· Jσ

= −T βσ
[
βν hν + (Λβ + βλAλ) · n

]
.

(9.19)

Thus, the choice of free energy/entropy currents is in one to one correspondence with the

choice of the Noether current, consistent with our identification in (9.6).

Let us now try to get an alternate expression for Nµ[X] which will be useful later on.

We have from (9.3) and (9.17) the simple identity

∇µNµ[X] =
1√
−g

δ
X

(√
−g L

)
−∇µ(/δXΘPS)µ

= ∇µ
[
ξµL − (/δXΘPS)µ

]
,

(9.20)

where we have assumed that L transforms as a scalar. This shows that the vector ξµL −
(/δXΘPS)µ (which is often called the canonical Noether current) has the same divergence as

Nµ[X]. Assuming there are no cohomological obstructions, we can then write

Nµ[X] = ξµL − (/δXΘPS)µ +∇νKµν [X] , (9.21)

where Kµν [X] = −Kνµ[X] is called the Komar charge of the system. We will call this

decomposition of Nµ[X] as Komar decomposition. This gives an alternate expression for free

energy current as

Gσ = −T Nσ[B] = −T
(
βσL − (/δBΘPS)σ +∇νKσν [B]

)
, (9.22)

and

JµS = s uµ

= −βνTµν − (Λβ + βλAλ) · Jµ + Nµ[B]

= −βν Tµν − (Λβ + βλAλ) · Jµ + βµL − (/δBΘPS)µ +∇νKµν [B] .

(9.23)
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Note that the pre-symplectic potential (/δΘPS)µ appears in these expressions only through

(/δBΘPS)µ. Since δ
B
βµ = 0 and δ

B
Λβ = 0, this means to get the free energy current or

the entropy current, we need not actually get the contributions to (/δBΘPS)µ from varying

{βµ,Λβ}. The contribution to the pre-symplectic potential can be obtained by just varying

{gµν , Aµ} and then see what we obtain when we integrate by parts.

9.3 Hydrostatic partition function for Class L

Our discussion of the Class L solutions to the adiabaticity equation has so far been uncon-

strained, in that we have only assumed that the currents can be derived from a Lagrangian

L [Ψ]. We now relate this to the analysis of §7 where we also derived the currents from a

generating function. In order to ascertain the connection we now specialize to hydrostatics.

Since we have an explicit expression for the free energy current in Class L, we can invoke the

arguments that led to (7.6) to come up with a hydrostatic partition function for theories in

Class L.

We will now argue that Class L provides an off-shell generalization for hydrostatics.

Note however, that Class L can at best incorporate Class HS as we are required to write the

integral of a spacetime scalar density for the effective action Shydro.

First we constrain the sources to support a Killing field configuration K ≡ {Kµ,ΛK}
which we will momentarily identify with B = {βµ,Λβ}. Further using (9.22) we can write

on the base space ΣE

WHydrostatic = −
[ˆ

ΣE

Gσ

T
dd−1Sσ

]
Hydrostatic

=

[ˆ
ΣE

Nσ[B] dd−1Sσ

]
Hydrostatic

=

[ˆ
ΣE

(
βσL − (/δBΘPS)σ +∇νKσν [B]

)
dd−1Sσ

]
Hydrostatic

=

ˆ
ΣE

LHydrostatic K
σ dd−1Sσ +

[ˆ
∂ΣE

1

2
Kσν [B] dd−2Sσν

]
Hydrostatic

(9.24)

where we have used the fact that δ
B

annihilates functions in hydrostatics (7.2) to drop the

(/δBΘPS)σ contribution. Here, LHydrostatic denotes L [Ψ] with {βµ,Λβ} replaced by {Kµ,ΛK}.
We finally obtain

WHydrostatic =

ˆ
ΣE×IK

ddx
√
−g LHydrostatic + Boundary contributions , (9.25)

where the integral is performed over the manifold ΣE × IK where IK is an interval of unit

affine length along Kµ. So in the end we get the simple result that the hydrostatic partition

function is just the integral over the Lagrangian after taking the hydrostatic limit of L [Ψ].

Lest the reader be misled into thinking that we recover the complete set of hydrostatic

partition functions (Class H) from the Class L family of adiabatic fluids we hasten to add

an important caveat alluded to earlier. It should be clear from (9.25) that we obtain from

L [Ψ] only those hydrostatic partition functions that can be written as spacetime scalars,

since we have an integral over the entire manifoldM = ΣE × IK . This is what we called HS

in our discussion in §7. From the categorization explained there, there are two other classes

of terms in the partition function which do not obviously arise from Class L Lagrangians:

the Class HV terms involving integrals over transverse vectors and the Class A terms which
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play a role in anomalous hydrodynamic transport.38 Thus, apart from these terms (which

seem to be a finite set of terms in any spacetime dimension) we recover most of the theory

of partition functions and the adiabatic constitutive relations that they lead to.

Given the connections to hydrostatics, it is useful therefore to decompose Class L into

explicit contributions from hydrostatics HS and genuine hydrodynamic scalars HS . To wit,

one has L = HS ∪HS . The hydrodynamic scalars, which necessarily involve one δ
B

insertion

(by definition), are identically vanishing in equilibrium – they require us to turn on time

dependence to contribute. Moreover, as a result the values of the hydrostatic scalars can

be freely changed by contributions proportional to the Class HS terms. Hence, hydrostatic

scalars HS ⊂ L take values in a coset: HS = L/HS .

Finally, we can make a precise connection between the Noether current construction

outlined in §9.2 and the entropy current constrained by hydrostatics. As explained in §7 the

hydrostatic entropy current has been studied in some detail in [67, 68]. As we now under-

stand, varying (9.25) with respect to the metric and gauge field (we do not vary {βµ,Λβ}
since they are fixed to {Kµ,ΛK} in the hydrostatic limit) we obtain

δWHydrostatic =

ˆ
ddx
√
−g

[
1

2
Tµν δgµν + Jσ · δAσ

]
Hydrostatic

+ Boundary contributions

(9.26)

which agrees with the rule given in [29]. Further, if we just keep the first order deviations

from hydrostatics in the equation for the non-canonical part of the entropy current Nσ[B] =

βσL − (/δBΘPS)σ + ∇νKσν [B], we get the prescription given in [68]. This was explained in

detail in §7.2 and we elaborate on the connections further in Appendix F.

10 Hydrodynamic Ward identities in Class L

Up to this point our discussion of Class L has been quite abstract. We have only exploited

the diffeomorphism and gauge symmetry to extract the Bianchi identities (9.12), which in

turn led to the adiabaticity equation. As such we have in fact been treating the hydro-

dynamic fields {βµ,Λβ} effectively as non-dynamical fields, thus working off-shell as far as

the hydrodynamic fields are concerned. The only exception is the hydrostatic limit studied

in §9.3, where we went on-shell by simply setting {βµ,Λβ} = {Kµ,ΛK} and invoking the

hydrostatic principle.

This is clearly unsatisfactory; the utility of a Lagrangian is that it not only allows us

to construct an off-shell action, but that it also comes equipped with a variational principle

that captures the on-shell dynamics by giving us the equations of motion. We will now

proceed to address this lacunae and give a variational procedure to go on-shell. Our goal

is to simply to give the hydrodynamic fields {βµ,Λβ} appropriate dynamics which enforces

the conservation equations in (5.6) (with Tµ⊥H = J⊥H = 0 in the absence of anomalies).

10.1 A constrained variational principle for hydrodynamics

Let us go back to the derivation of the Bianchi type identities in §9.1. Inspection of the

Bianchi identities (9.12) which are obeyed by all Class L constitutive relations suggests that

38 Since we have focused on Lagrangian solutions to non-anomalous adiabaticity equation (5.13) it is not

surprising that we have not yet encountered Class A. We will encounter Class A terms when we turn to a

detailed discussion of anomalies in §15.
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on-shell equations of non-anomalous hydrodynamics (5.6) would be satisfied (with anomaly

terms set to zero) if the fields {βµ,Λβ} obeyed the following equations:

1√
−g

δ
B

(√
−g T hµ

)
+ T n · δ

B
Aµ ' 0 ,

1√
−g

δ
B

(√
−g T n

)
' 0 .

(10.1)

These equations have to arise for consistency of our formalism as the dynamical equations

of motion obtained by varying the fields {βµ,Λβ}. It is clear a-priori that this is not going

to happen naturally; the basic variational equation (9.3) if interpreted näıvely would lead

to hσ + n · Aσ = 0 and n = 0 (assuming T 6= 0), which is certainly not what we would like

to have. The key point we have to understand is the following: given that the dynamical

degrees of freedom comprise of a vector βµ and a scalar Λβ, we have to decide what variations

of these fields to admit as being physical. Our argument above shows that an unconstrained

variation of these fields is inconsistent with the dynamics we seek, so the question is whether

a suitable constrained variational principle exists.

We would like to claim now that such a constrained variation of {βµ,Λβ} exists and it

naturally leads to the correct hydrodynamic Ward identities upon using the Bianchi identities

(9.12). To see how the desired equations can be obtained from a variational principle,

consider the following: Fix the metric and gauge field and extremize Shydro [Ψ] among a

family of B = {βµ,Λβ} which are related to each other via Lie transport. We will denote

this class of variations by � to distinguish it from the variation we have considered hitherto

without the Lie transport constraint.

To wit, given an arbitrary X = {ξµ,Λ} we define this constrained variation as:

� : �βµ = δ
X
βµ , �Λβ = δ

X
Λβ , �gµν = �Aµ = 0 . (10.2)

Our claim is that the on-shell hydrodynamic configurations are precisely those {βµ,Λβ}
which satisfy �Shydro [Ψ] = 0 up to boundary contributions.

To show this, we use the definition of �, (10.2), in (9.3) to write

1√
−g

�
(√
−g L

)
−∇µ(/�ΘPS)µ = T hσ δXβ

σ + T n · (δ
X

Λβ +AσδXβ
σ)

= −T hσ δBξ
σ − T n · (δ

B
Λ +AσδBξ

σ) ,

(10.3)

where we have used δ
X
β = £ξβ = −£βξ = −δ

B
ξ. Integrating the above equation by parts

to move the derivatives over from the variational parameters {ξµ,Λ} results in

1√
−g

�
(√
−g L [Ψ]

)
=

(
1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ

)
ξσ

+
1√
−g

δ
B

[√
−g T n

]
· (Λ +Aσ ξ

σ)

+∇µ
{

(/�ΘPS)µ − T βµ [hσ ξ
σ + n · (Λ +Aσ ξ

σ)]

}
.

(10.4)

Insisting that this be zero for arbitrary X = {ξµ,Λ} then directly leads to the required

equations (10.1).

Thus as advertised Lagrangian theories of hydrodynamic fields equipped with a suit-

able variational principle, give rise to the correct hydrodynamic equations of motion and

simultaneously provide an off-shell solution to the adiabaticity equation.
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MM

xµ

{gµν , Aµ}

B ≡ {βµ,Λβ}

{ϕa, c}
xa = ϕa(x)

{gab,Aa}

B ≡ {�a,Λ�}

Fig. 2: Illustration of the connection between the physical and reference fields for Class L adiabatic

fluids. The fields on the physical spacetime manifold M are related to those on the reference

manifold M by a pull-back using the dynamical fields {ϕa, c}. The constrained variation on

M which gives the correct equations of motion corresponds to varying {ϕa, c} while holding

{�a,Λ�} fixed.

10.2 Reference fields and conservation equations

In §10.1 we gave a constrained variational principle which enabled us to derive the hydrody-

namic equations from the Lagrangian L [Ψ]. While prescriptive, it is cumbersome to work in

the space of constrained variations to derive dynamics. It is somewhat more satisfactory to

shift to a description where these constraints are automatically implemented by an action,

rather than being imposed by hand.

To do this, we need to decompose the variations of {βµ,Λβ} into those allowed by

the constraint, and those in the orthogonal space of variations (which are forbidden by the

constraint). The former lie in the Lie orbit of an admissible configuration. We can exploit

this characterization in decomposing the degrees of freedom into the truly dynamical ones

and the ones held rigid under the variation. To ascertain the physical space of variations, we

pick a reference configuration {�µ,Λ�} in each Lie orbit and then express the actual {βµ,Λβ}
by Lie dragging this reference configuration by a gauge transformation and diffeomorphism.

We thus seek to decompose the hydrodynamic fields into

(i). A heavy component which is the reference configuration that one does not vary when

extremizing (denoted by the blackboard bold font characters).

(ii). A light component which is given by the Lie drag modes that one varies when extrem-

izing.

We begin by systematically first establishing a reference configuration. It is convenient

to imagine that these reference configurations live on some other spacetime M which is gauge

equivalent and diffeomorphic to the original spacetime. We will use the (first half of the)

lowercase Latin alphabet to denote the spacetime indices on M to distinguish them from

lowercase Greek indices used for the original spacetime M.

Let xµ be coordinates on M and xa be coordinates on M. B ≡ {�a,Λ�} be the ref-

erence hydrodynamic fields living on M. The actual {βµ,Λβ} are obtained by introducing

a diffeomorphism field ϕa(x) and a gauge transformation field c(x) from physical spacetime

M to M and then using them to pull-back {�a,Λ�}. In order to do this, let us introduce the
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matrix ∂µϕ
a ≡ ∂ϕa

∂xµ and its inverse eµa ≡ ∂xµ

∂ϕa that can be used to pull-back tensor indices.

For definiteness, let us think of these matrices as functions of x, viz., living on the actual

spacetime M. They satisfy

eµa ∂νϕ
a = δµν , eµa ∂µϕ

b = δab . (10.5)

With this definition the pull-back of the reference configuration is given by

βµ = eµa(x) �a[ϕ(x)]

Λβ = c(x) Λ�[ϕ(x)] c−1(x) + βσ(x) ∂σc(x) c−1(x) .
(10.6)

Note that Λβ transforms with the correct inhomogeneous piece so that Λβ+Aσ β
σ transforms

covariantly. More precisely, consider a flavour transformation Aσ 7→ g−1Aσ g + g−1 ∂σg

and (Λβ +Aσ β
σ) 7→ g−1 (Λβ +Aσβ

σ) g. It follows from the above expressions that this

corresponds to a left transformation of c given by c 7→ g−1c with Λ� kept fixed.

The decomposition given in (10.6) means that changing {ϕa, c} takes {βµ,Λβ} along

a Lie orbit whereas changing the functional form of {�a,Λ�} takes {βµ,Λβ} from one Lie

orbit to another Lie orbit. So, in order to get the hydrodynamic equations, we should

extremize Shydro [Ψ] with respect to variations of the {ϕa, c} fields keeping the functional

form of {�a,Λ�} fixed. See Fig. 2 for an illustration of the situation.

It is easy to intuit how this has to work in principle. We simply have to consider the

variation of the relation (10.6) between the physical fields and the reference parameterization

introduced above. We would then plug this into (9.3) to ascertain the variations of the

Lagrangian in the physically admissible directions. To see how this actually works in practice,

let us begin by recording out the variation of βµ and Λβ in terms of the reference and physical

fields. Relegating the details of the actual computation to Appendix D we quote here the

final result of import:

δβµ = eµa δ�
a − δ

B
(eµa δϕ

a)

δΛβ = c δΛ� c
−1 + eσa δ�

a (∂σc)c
−1 + δ

B

[
δc c−1 − eσaδϕa ∂σc c−1

]
,

(10.7)

where the variations of {ϕa, c} appear as variations along Lie orbit as we wanted.

We can now substitute the above equation into (9.3). Once again we have to do an

integration by parts to isolate the terms proportional to the dynamical degrees of freedom.

After a bit of algebra we get

1√
−g

δ
(√
−g L

)
−∇µ

{
(/δΘPS)µ + uµn · δc c−1 − uµ eσa δϕa

[
hσ + n · (∂σc c−1 +Aσ)

]}
=

1

2
Tµν δgµν + Jµ · δAµ + eσa

[
hσ + n · (∂σc c−1 +Aσ)

]
T δ�a + c−1 n c · T δΛ�

− 1√
−g

δ
B

(√
−g T n

)
·
{
δc c−1 − eσa δϕa( ∂σc c−1 +Aσ)

}
+ eσa δϕ

a

[
1√
−g

δ
B

(
√
−g T hσ) + T n · δ

B
Aσ

]
.

(10.8)

The dynamical equations of motion can be now read off from the terms proportional to δϕa

and δc respectively. Inspection of (10.8) make it clear immediately that isolating these terms

we end up with the equations of motion (10.1).
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Thus, extremizing Shydro [Ψ] with respect to {ϕa, c} variations gives the correct energy-

momentum and charge conservation equations as required. As such we have transplanted a

constrained variational problem into one where the variation is unconstrained for the physical

fields {ϕa, c} but the price one pays is to introduce a set of reference fields which are held

rigid in the process.

10.3 Gauge redundancy of reference fields

In §10.2 we decomposed the hydrodynamic fields {βµ,Λβ} into fixed reference fields {�a,Λ�}
and dynamical fields {ϕa, c} parameterizing the Lie orbits of this reference configuration. Let

us now scrutinize the decomposition (10.6) more closely to ascertain the symmetries of our

new parameterization.

The decomposition (10.6) introduces a new redundancy in description. We can always

do a gauge transformation or diffeomorphism on the reference configurations and compensate

for it, say, by changing {ϕa, c}, so that we end up getting the same physical hydrodynamic

configuration. For example, consider the following gauge transformation for the charged

fields:

Λ� 7→ f−1 Λ� f − f−1 βσ ∂σf

c 7→ c f ,
(10.9)

where f is any flavour gauge transformation on M. It is then simple to see that this transfor-

mation leaves Λβ unaffected. Hence, these transformations should be thought of as a gauge

redundancy in our description which forces us to identify

{Λ�, c} ∼ {f−1 Λ� f − f−1 βσ∂σf, c f}. (10.10)

as they give the same hydrodynamic field Λβ.

There is a similar redundancy in diffeomorphisms on the reference manifold M given by

ϕa 7→ fa(ϕ)

Λ�[ϕa] 7→ Λ�[fa(ϕ)]

�a[ϕb] 7→ ∂fa

∂ϕc
�c[f b(ϕ)]

(10.11)

where ϕa(x) are understood to be the coordinates on M obtained by pushing forward x-

coordinates. Hence, any two configurations which differ by such ϕ-diffeomorphisms should

also be thought of as the same fluid configuration as they lead to identical hydrodynamic

fields {βµ,Λβ}.
As with any gauge redundancy, it is convenient to pass to a formalism which is covariant

with respect to this set of transformations. Moreover, since the redundancy is the gauge and

diffeomorphism properties of our fields, we can just introduce a metric and flavour gauge

fields on M to properly account for it. Endowing M with these structures would allow us to

covariantize all the transformations. We will do this by first pushing forward the metric and

flavour gauge fields on the actual spacetime M to M using {ϕa, c} i.e., we define

gab[ϕ] ≡ eµa eνb gµν
Aa[ϕ] ≡ eµa

[
c−1Aµc+ c−1∂µc

]
.

(10.12)
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Given the push-forward relation for the metric, the Christoffel connection transforms in a

related fashion:

�abc[ϕ] ≡ eλc ∂µϕa
[
Γµνλ e

ν
b + ∂λe

µ
b

]
. (10.13)

We can use the connections A,� to define covariant derivatives on M which can then be

used to construct invariants of ϕ-diffeomorphisms and c gauge transformations. One can

also easily check that the connections onM and M are consistent with Lie transport. That

is, for the pushforward of a general tensor field,39

Ta1a2···
b1b2···[ϕ] ≡ (∂µ1ϕ

a1)(∂µ2ϕ
a2) · · · eν1

b1
eν2
b2
· · · · · ·Tµ1µ2···

ν1ν2··· , (10.14)

we have

(∂µ1ϕ
a1)(∂µ2ϕ

a2) · · · eν1
b1
eν2
b2
· · · [£ξT

µ1µ2···
ν1ν2···] = £(ξ.∂)ϕT

a1a2···
b1b2··· . (10.15)

10.4 Variational principle on reference manifold

We can now reformulate the variational principle that gives rise to the hydrodynamic equa-

tions in terms of {gab,Aa}. We begin by observing that invariance of Shydro [Ψ] under

diffeomorphisms and gauge transformations means that

Shydro [Ψ] =

ˆ
M

√
−g L [Ψ] =

ˆ
M

√
−g L [g,A, �,Λ�] ≡

ˆ
M

√
−g L [	] (10.16)

where we use the condensed notation 	 to denote the collection of “hydrodynamic” fields on

the reference manifold.

It follows then that we can get hydrodynamic equations by extremising
´
M

√
−g L [	] by

varying {ϕa, c} inside {g,A} keeping {�,Λ�} fixed. To see how this works, we will begin by

decomposing the variations of {g,A} into (i) variation of reference sources and (ii) variation

of the dynamical fields {ϕa, c}. Using (10.12), we obtain

δgab[ϕ] = δ(gab[ϕ])− δϕc ∂

∂ϕc
gab[ϕ] = eµa e

ν
b δgµν − δϕgab

δAa[ϕ] = δ(Aa[ϕ])− δϕc ∂

∂ϕc
Aa[ϕ] = eµa c

−1(δAµ) c− δϕAa

(10.17)

where δϕ is the Lie drag on M along {δϕa,−c−1δc}, viz.,

δϕgab ≡ Daδϕb +Dbδϕa ,

δϕAa ≡ Da

(
−c−1δc+Ab δϕ

b
)

+ δϕb Fba .
(10.18)

In the above expressions we have introduced the covariant derivatives D and field strength

F which are defined with the reference connections A,� respectively in the usual fashion.

With these definitions in place, let us then translate the variational calculus onto the

reference manifold M. First, when we vary
´
M

√
−g L [	] with respect to {gab,Aa}, we get

the currents:

δ

ˆ
M

√
−g L [	] =

ˆ
M

√
−g

(
1

2
Tab δgab + Ja · δAa +Tha δ�

a +Tn · (δΛ� +Ab δ�
b)

)
,

(10.19)

39 We have written here the expression for an uncharged tensor field transforming solely under diffeomor-

phisms; including gauge transformations is straightforward which we leave as an exercise.
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where all boldface currents are understood as the pushforwards of physical currents onM to

the reference manifold. If we further extremize
´
M

√
−g L with respect to just the ϕ-part of

{gab,Aa} (holding fixed the functional form of {�a,Λ�}), we are led to conservation equations

for the energy-momentum tensor and similarly for the charge current. To obtain these we

have to perform the constrained variation � which amounts to Lie drags of the sources along

{δϕa,−c−1δc}. Using (10.17) we learn that one should employ the variations

�gab = −δϕgab , �Aa = −δϕAa , ��a = 0 , �Λ� = 0 . (10.20)

Applying this variation to (10.19) leads to

�
ˆ
M

√
−g L [	] =

ˆ
M

√
−g
{
δϕc [DaT

a
c − Ja ·Fca] + (−c−1δc+Aaδϕ

a) ·DcJ
c

}
. (10.21)

We can now read off the hydrodynamic conservation equations on the reference manifold:

DaT
a
c − Ja ·Fca = 0 , DcJ

c = 0 . (10.22)

This makes the variational principle on the reference manifold very simple in practice be-

cause it allows us to skip the computation of Bianchi identities40 and obtain the correct

hydrodynamic Ward identities directly. The covariance of our reference manifold formalism

makes it very easy to translate these results back to equations of motion on the physical

spacetimeM: one just replaces Latin indices by Greek indices and switches bold-face letters

back to normal font. This prescription is thus equivalent to the one given in §10.2.

10.5 Static gauge on the reference manifold & hydrodynamic fields

Given a covariant form of an action with some redundancies it is sometimes convenient to

pass to a gauge fixed version and focus on the physical degrees of freedom. To this end we can

partially fix the gauge symmetries in the reference fields. Ignoring any possible Gribov type

topological ambiguities, let us use the gauge transformation and diffeomorphism freedom on

M to set

Λ� = 0, �a=0 = 1 and �a=I = 0 for I ∈ {1, . . . , d− 1}. (10.23)

In what follows, we will refer to this as the static reference gauge. As is clear from above,

we will henceforth use uppercase Latin alphabets to denote spatial indices on M.

Let us now examine the residual gauge redundancy that is left unfixed in the static

reference gauge. The following set of ϕ-diffeomorphisms and c gauge transformations survive

the static reference gauge fixing of (10.23)

ϕJ 7→ hJ (ϕI ) , det

(
∂hJ

∂ϕI

)
6= 0 ,

ϕ0 7→ ϕ0 + g(ϕI ) ,

c 7→ c f(ϕI ) .

(10.24)

40 While we have not explicitly indicated how to get the Bianchi identities, these follow in the same manner

as on the physical spacetime M. We simply vary
´
M

√
−g L with respect to 	 and follow the same set of

arguments as in §9.1. Modulo a font and index change, the algebra remains identical.
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We will refer to the transformations in first line as transverse diffeomorphisms in ϕ-space.

Further, we will call the shift symmetry in ϕ0 in the second line as the thermal shift and the

(right) spatial gauge transformations of c in the third line as the chemical shift.41

The static reference gauge has the merit that once we adopt it, only dynamical fields

show up in the description; all gauge redundancies are eliminated. Hydrodynamics in static

reference gauge is then completely described by the following set of degrees of freedom:

• (d− 1) spatial ϕI s which satisfy uσ ∂σϕI = 0,

• a field ϕ0 such that T = uα ∂αϕ
0 and

• a field c such that µ = uα(∂αc)c
−1 + uαAα.

Further, we can solve for uσ itself directly in terms of these dynamical fields. We get

uσ =
1√

detd−1 (gµν ∂µϕI∂νϕJ )
εσα1...αd−1 ∂α1ϕ

1 · · · ∂αd−1
ϕd−1 . (10.25)

This follows from the fact that uσ is orthogonal to the (d − 1) vector fields ∂σϕI and is

hence parallel to εσα1...αd−1 ∂α1ϕ
1 · · · ∂αd−1

ϕd−1. The square-root pre-factor then ensures the

correct normalization appropriate for a d-velocity.

A more elegant way of writing the above expressions is to introduce a spatial volume

form on the space of ϕI s using the spatial part of the pushforward co-metric gab, i.e., we

define pIJ ≡ gµν ∂µϕI∂νϕJ whose inverse then defines a thermal shift invariant spatial metric

pIJ in a Kaluza-Klein reduction of the metric on M in static reference gauge:

gab dϕ
adϕb = − 1

T2

(
dϕ0 + aI dϕ

I
)2

+ pIJ dϕ
IdϕJ , (10.26)

where aI is the Kaluza-Klein gauge field for the thermal shift. Using this expression one

can work out the parameterization of hydrodynamic fields {βµ,Λβ} in terms of {ϕa, c}. For

completeness let us record these expressions which read:

uσ =
1

(d− 1)!
εσα1...αd−1 ε(p)

I1
...Id−1

d−1∏
i=1

∂αiϕ
I i ,

T =
1

(d− 1)!
εσα1...αd−1 ε(p)

I1
...Id−1

∂σϕ
0
d−1∏
i=1

∂αiϕ
I i

=
1

(d− 1)!
εσα1...αd−1ε(p)

I1
...Id−1

(
∂σϕ

0 + aI ∂σϕ
I
) d−1∏
i=1

∂αiϕ
I i

µ =
1

(d− 1)!
εσα1...αd−1ε(p)

I1
...Id−1

(
(∂σc)c

−1 +Aσ
) d−1∏
i=1

∂αiϕ
I i

(10.27)

where ε(p)
I1
...Id−1

is the spatial volume form associated with pIJ . We can also give a similar

expression for thermal shift invariant vectors {P σ
I
}, which replace the thermal shift non-

invariant tetrads {eσ
I
}:

P σ
I

=
1

(d− 2)!
εσαβ1...βd−2 ε(p)

IJ1
...Jd−2

uα

d−2∏
i=1

∂βiϕ
J i (10.28)

41 The rationale for this terminology is inspired from the formalism of non-dissipative fluids [33].
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The expressions derived above, express the hydrodynamic fields as gauge-invariant com-

posite fields formed out of the basic dynamic fields {ϕ0, ϕI , c}. While this is the most

economical presentation in terms of the dynamical degrees of freedom, the gauge fixing

introduces a degree of non-linearity in the mapping between the physical fields and the hy-

drodynamical variables. Nevertheless, there is a certain simplicity to the parameterization:

the hydrodynamic equations can then be obtained by writing
´ √
−g L [Ψ] or

´
M

√
−g L [	]

as a functional of {gµν , Aα, ϕ0, ϕI , c} and extremising with respect to the dynamical fields

{ϕ0, ϕI , c}. Moreover, the hydrostatic limit in the static reference gauge can be obtained by

setting

c = 1 , ∂σϕ
0 = T0 δ

0
σ , ∂σϕI = δIσ , (10.29)

i.e., we can just pull-back the reference configuration through what is essentially an iden-

tity map between the spacetime and M. Then the formalism we just described reduces to

the hydrostatic formalism described in [29, 30] as expected. One can easily derive explicit

expressions for the partition function by recasting the results of §9.3 in the static reference

gauge.

The reader familiar with the discussion of non-dissipative fluids [33, 73] will undoubt-

edly see some similarities with the variables used in that context (compare, e.g., (3.2) with

(10.27)). However, there are some subtle (but important) distinctions; we are not yet within

the remit of that framework.42 The connection between the formalism outlined herein and

that used in the aforementioned references is explained in Appendix B of [1], where we

demonstrate that non-dissipative fluids (Class ND) are a subclass of adiabatic fluids. The

main ingredient of such a proof is a Legendre transform: the physical fields in the adiabatic

fluid formalism are the fluid velocity and the intensive (local) thermodynamic parameters

characterizing the fluctuating Gibbs density matrix. On the other hand the non-dissipative

fluids use entropy density as a primary variable instead of the temperature. Since temper-

ature and entropy are conjugate variables, one can pass to the Class ND formalism by a

simple Legendre transform. This then establishes that the non-dissipative Class ND fluids

are contained within Class L, thus making transparent the origin of the symmetries of the

effective action formalism.

Despite this possibility to derive Class ND familiar from the literature, we will in the

remainder of the thesis work with Class L fields, which are easier to deal with and more

natural from the adiabatic classification point of view. Furthermore, it is clear that Class L

is more general and covariant than Class ND, for it does not rely on a gauge fixing such as

(10.23). Class L works with full diffeomorphism covariance instead of the gauge fixed version

involving the restricted set of volume preserving transformations.

10.6 Field redefinitions in Class L

In this subsection, we will examine the field redefinitions of the hydrodynamic fields {uσ, T, µ}
which leaves the on-shell physics invariant. While we are allowed to do a general redefinition

of the hydrodynamic fields, this does not translate into a general redefinition of the Lagrange

multiplier fields {βµ,Λβ}. We remind the reader that we have already used up a subset of

field redefinitions so as to have a simple relationship between the Lagrange multiplier fields

42 We draw the attention of the reader to the fact that T and µ are treated symmetrically in this description,

with eϕ
0

playing an analogous role to c. This is similar to a model considered in [91].
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{βµ,Λβ} and the original hydrodynamic fields {uσ, T, µ}, see §5.1. In this subsection, we

will examine the residual redefinitions which are allowed for the Lagrange multiplier fields

{βµ,Λβ}.
One of the advantages of shifting to {βµ,Λβ} was that the hydrostatic configurations can

simply be described by aligning {βµ,Λβ} to the Killing fields {Kµ,ΛK}. An admissible field

redefinition should preserve this feature. This then suggests that we consider redefinitions

of the form

βµ 7→ βµ − δ
B
V µ = βµ + £V β

µ ,

Λβ 7→ Λβ − δBΛV = Λβ + £V Λβ + [Λβ,ΛV ]− βσ∂σΛV
(10.30)

for some general diffeomorphism and flavour parameter {V µ,ΛV }. The presence of δ
B

ensures

that the nice features of hydrostatics survive these redefinitions. This is the most general

class of redefinitions that are admissible for {βµ,Λβ}.
In Class L, there is a more concrete way of seeing why two fluids related by (10.30)

should be considered on-shell equivalent. Using (10.4) we can write down the change in

Lagrangian induced by field redefinitions in (10.30):

L [Ψ] 7→ L [Ψ] +

(
1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ

)
V σ

+
1√
−g

δ
B

[√
−g T n

]
· (ΛV +Aσ V

σ) +∇µ (. . .) ,

(10.31)

viz., the Lagrangian is shifted by terms proportional to the equations of motion and a bound-

ary term. In a field theory, this is the most general redefinition admissible in the Lagrangian

density. What this means in practice is that we can effectively focus on the basis of on-shell

independent scalars parameterizing L [Ψ], which greatly simplifies the computation (see for

example Appendix E).

An alternate way to get at the same result is to shift to the description based on reference

manifolds and pullback fields. So consider then replacing L [Ψ] by the functional on the

reference manifold L [	]. Variation of this functional under arbitrary variation of fields

{ϕa, c} leads to terms proportional to the equations of motion ∇νTµν = Jν ·Fµν and DµJ
µ =

0, which effectively means, using the notation introduced in (10.2),

�Lk [Ψ] =
(
∇αTαµ(k) − J

α
(k) · F

αµ
)
eµa δϕ

a +DαJ
α
(k) ·

{
−δc c−1 + eσa δϕ

a( ∂σc c
−1 +Aσ)

}
.

(10.32)

Here we are working order by order in the gradient expansion, which as explained earlier

is completely kosher in the absence of anomalies. Lk denotes the scalar contribution at kth

order in gradients. Using (10.7), we can relate these field redefinitions of the pull-back fields

to the redefinitions of {βµ,Λβ} in (10.30):

V µ = eµa δϕ
a , ΛV = −δc c−1 + eσa δϕ

a∂σc c
−1 . (10.33)

In practice we can use this redefinition freedom as follows: say we are interested in

contributions to the currents at kth order in gradients. We can implement a shift of 	 in

all the terms up to the (k − 1)st order, so that we pick up a contribution to the Lagrangian

proportional to the conservation equation to one lower order than we are interested in. In
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other words

k∑
l=1

�Ll [Ψ] =
k−1∑
l=1

(
∇αTαµ(l) − J

α
(l)F

αµ
)
eµa δϕ

a

+
k−1∑
l=1

∇αJα(l) ·
{
−δc c−1 + eσa δϕ

a( ∂σc c
−1 +Aσ)

}
+ · · ·

(10.34)

where we have only retained terms up to kth order in the gradients. By a suitable choice of

δϕa and δc we can eliminate some of the terms in Lk [Ψ].

The upshot of this discussion is that we can always choose to parameterize L [Ψ] solely in

terms of the on-shell independent scalars at a given order in the gradient expansion. This has

a significant effect in simplifying the computations. An explicit verification of this statement

at the level of neutral fluids at second order in gradients can be found in Appendix E.43

11 Applications of adiabatic fluids

Having in the previous sections given a rather abstract discussion of the Class L adiabatic

fluids, we now turn to some specific examples. We first describe how neutral fluids can be

understood in this language and derive the constraints arising from demanding adiabaticity

on such fluids up to the second order in hydrodynamic gradient expansion. We also comment

briefly on the case of charged parity-odd fluids in 3 dimensions working to first order in the

gradient expansion. We choose these specific examples for their simplicity and also because

they have been previously analyzed in the framework of non-dissipative fluids (Class ND)

in [73] and [9] respectively. Later on in §17 we will also have occasion to describe charged

fluids, when we illustrate the general classification scheme we develop.

11.1 Neutral fluids up to second order in gradients

Consider a neutral non-anomalous fluid for which we wish to find the constraints imposed by

adiabaticity. Since there are no charges we ignore the field Λβ and the corresponding gauge

field source Aµ; thus our Lagrangian is going to be a function only of the hydrodynamic

field βµ and the background metric source gµν . Our strategy will be to follow intuition from

hydrodynamics and write down a Lagrangian density order by order in the gradients of these

fields. So we have

L [βµ, gµν ] = L0 [βµ, gµν ] + L1 [βµ, gµν ] + L2 [βµ, gµν ] + · · · (11.1)

where Lk involves terms with exactly k derivatives acting on the fields. We will now proceed

to construct the first three terms in the above gradient expansion and derive the correspond-

ing hydrodynamic constitutive relations.

11.1.1 Zeroth order in gradients

At leading order in the gradient expansion, we want a scalar function built out of gµν and

βµ. Clearly, there is only one such scalar which is the norm of βµ, which we can trade for

the temperature T from (5.2). So we can write our leading Lagrangian as

L0 [βµ, gµν ] = p(T ) , T =
1√

−gµν βµ βν
. (11.2)

43 Field redefinitions affecting the entropy current have been described previously in §8.3.
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Now we can apply the variational calculus of §9 to this Lagrangian and extract the

currents. We already know the Bianchi identities and the dynamical equations they are

supposed to satisfy on general grounds. Thus all we need is the analog of (9.3) for our

specific choice of L0. A simple calculation using (D.1) leads to44

1√
−g

δ
(√
−gL0

)
=

1

2

[(
T p′ − p

)
uµ uν + pPµν

]
δgµν + T 3 p′ βσ δβ

σ (11.3)

There are no boundary terms, and the currents are just what we expect for an ideal fluid

Tµν(0) =
(
T p′ − p

)
uµ uν + pPµν , JµS,(0) = p′ uµ

hσ(0) = p′(T )T 2 βσ
(11.4)

where we identify ε(T ) = T p′(T ) − p(T ) with p(T ) being the pressure (or negative of the

free energy). We have already verified that the ideal fluid satisfies the adiabaticity equation

directly in §5.3, but it of course now also follows from the variational calculus.

11.1.2 First order in gradients

Moving to the next order in gradients, we find that there are two one derivative scalars that we

can write down βσ∇σT and ∇µβµ, both of which can be multiplied by an arbitrary function

of the scalar T . However, these two scalars are not independent as Lagrangian entries.

They are equivalent up to a total derivative term owing to the identity: f(T )∇µβµ =

∇µ (f(T )βµ) − f ′(T )βµ∇µT . We will therefore only pick one of them to include in L1.

Since it is simpler to vary the gradient of the temperature, we parameterize the first order

Lagrangian as

L1 [βµ, gµν ] = βσ∇σf1(T ) (11.5)

whose variation again leads to

1√
−g

δ
(√
−gL1

)
=
f ′1
2

(βσ∇σT gµν − T ∇σβσ uµ uν) δgµν +∇σ
(
f ′1 β

σ δT
)

+ f ′1
(
∇µT − T 3 (∇σβσ) βµ

)
δβµ (11.6)

The stress tensor arising from adding L1 is again of the perfect fluid form, except that the

definitions of the energy density and pressure are shifted by terms involving βσ∇σT and

∇σβσ. The final expressions for the transport data are then:

Tµν(1) = −f ′1 (T ∇σβσ + βσ∇σT )uµ uν + f ′1 β
σ∇σT Pµν

JµS,(1) = − 1

T
f ′1 (uσ∇σ log T + T ∇σβσ)

(11.7)

In addition we have the adiabatic heat and pre-symplectic currents given by

hµ(1) = f ′1
(
∇µ log T − T 2 (∇σβσ) βµ

)
(/δΘPS)µ = f ′1

(
T 2 uα δβ

α +
1

2
T uα uβ δgαβ

)
βµ

(11.8)

44 Derivatives with respect to temperature are denoted by a prime, viz., f ′(T ) = df
dT

.
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The stress tensor appears to be in the ideal fluid form, but given that there are various

gradient terms lurking around, we would like to ascertain whether there are genuine viscous

contributions. The hydrodynamic stress tensor at first order is expected to contain terms

involving the shear and expansion of the fluid whose coefficients are the shear and bulk

viscosities, cf., the Landau frame expression given in (E.12) (see also our discussion in §8).

To compare with conventional expressions in hydrodynamics it is useful to write the answer

for the stress tensor (11.7) in a more familiar form.

Usually hydrodynamic stress tensors are given in terms of basis of independent tensors

which are identified by invoking on-shell relations at one lower order, cf., [16] for a nice review

of the procedure. For neutral fluids derivatives of the temperature are typically eliminated

in favour of velocity gradients; using the conservation of the ideal fluid we obtain

∇µT '
ε+ p

ε′(T )
Θuµ −

ε+ p

p′(T )
aµ = T v2

s Θuµ − T aµ . (11.9)

We have introduced the speed of sound v2
s(T ) to simplify future expressions:

v2
s ≡

dp

dε
. (11.10)

If we eliminate the temperature gradients using the above, we find for the gradients of βµ

the following expressions:

∇µβν '
1

T

(
σµν + ωµν +

Θ

d− 1
Pµν

)
− v2

s

T
Θuµ uν ,

∇σβσ '
Θ

T
(1 + v2

s) .

(11.11)

Armed with this information we can then rewrite the hydrodynamic currents in (11.7)

as

Tµν(1)

ideal' −f ′1 Θ
[
uµ uν + v2

s P
µν
]
,

JµS,(1)

ideal' − 1

T
f ′1Θuµ ,

(11.12)

where we have made clear with the notation
ideal' that we are only taking the ideal part of

the fluid on-shell. We also can check that the free energy current vanishes Gσ(1) ' 0 using

(5.18). Further, using that we have the pre-symplectic potential in (11.8), one can obtain

the Komar charge using (9.23). Noting as described in §9.2 that we only need the variation

of the background metric under Lie transport by βµ i.e., δ
B
gµν = 2∇(µβν) we have

Kµν [B]
ideal' 0 . (11.13)

We are now in a position to discuss some physical aspects of the first order Class L

term (11.5). The first peculiar feature to note is that while the adiabaticity equation (5.13)

is clearly satisfied, the form of entropy current is counterintuitive. It is well known that a

neutral fluid has no correction to the ideal fluid entropy current at first order. In fact, by

using the standard current algebra logic in hydrodynamics, one can show that an entropy

current with non-negative divergence demands vanishing of the coefficient of Θuµ at first

order (similarly for the other a-priori allowed vector aµ) [28].
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Clearly, in the present case what is happening is that the entropy production is being

compensated for by the energy-momentum tensor off-shell (note that we have not imposed

the first order conservation equations as yet). However, we can make a somewhat more

clean statement by examining the stress tensor itself. Since we are free to make a certain

amount of field redefinitions as discussed in §10.6, which amount in hydrodynamics language

to choice of fluid frame, in comparing the stress tensor we should account for this. At leading

order in the gradient expansion the simplest way to proceed is to project the stress tensor

(11.12) onto frame invariant (i.e., field redefinition independent) tensor structures. This is

implemented by employing the tensor and scalar projectors CµνT and CS respectively [29]:

CµνT = Pµα P νβ T
(1)
αβ −

1

d− 1
Pµν Pαβ T

(1)
αβ ,

CS =
1

d− 1
Pµν T (1)

µν − v2
s u

µ uν T (1)
µν .

(11.14)

Acting with these operators on (11.7), we find the results to vanish identically. In other words,

there is no frame independent on-shell information in the stress tensor. More importantly,

the term in (11.5) which resembles the bulk viscosity term ΘPµν should not be interpreted

as such; it is not a genuine contribution to the dissipative transport.

For the first order Lagrangian (11.5) we saw that the process of taking the ideal fluid

part on-shell led to a stress tensor with no physical information. We claim that the field

redefinitions described in §10.6 can be used to remove (11.5) by setting f1 = constant, leading

to the same conclusion as above.

Let us see how this can be used at first order for the Lagrangian term (11.5). We start

with the ideal fluid contribution and write

�L0 [β] + L1 [β] = p′(T )

(
∇µ log T − v2

s Θuµ + aµ

)
eµa δϕ

a + f ′1(T )uσ∇σ log T + · · ·

(11.15)

Writing v2
s p
′Θ =

(
v2
s p
′ − T

(
v2
s p
′)′) uµ∇µ log T up to a total derivative we see that picking

eµa δϕ
a = − f ′1

p′(1 + v2
s)− T (v2

s p
′)′
uµ (11.16)

we can eliminate the L1 completely as required.

11.1.3 Second order in gradients

At the second order in gradient expansion we have many new scalar functions built from

the background metric and hydrodynamic fields. One can use the standard fluid dynamical

parameterization and write the terms as:45

σ2 ≡ σµν σµν , ω2 ≡ ωµν ωνµ , a2 ≡ aµ a
µ , Θ2 , R

∇µT ∇µT , Θuµ∇µT , aµ∇µT , uµ∇µT uν∇νT ,
R00 ≡ Rµν uµ uν , uµ∇µΘ , ∇2T , uµ uν∇µ∇νT ,

(11.17)

45 The advantage of this parameterization is that it is easier to read off the energy-momentum tensor upon

variation. It is straightforward to use (5.1) to rewrite these in terms of βµ and its derivatives if necessary.
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where we have introduced the shear tensor σµν and the vorticity tensor ωµν ; cf., (5.24) and

Table 11 for their definition. A-priori we have thirteen independent functions of temperature

multiplying these scalars and making for a rather formidable computation.46 However, there

are some simplifications which we can exploit:

(i) the four terms in the third line can be related to others up to total derivatives

(ii) the four terms in the second line can be related to those in the first by a first order

field redefinition (one chooses eµa δϕa to be aligned along either aµ or Θuµ).

All in all we have five independent terms to consider which still makes for a somewhat

complex computation. The end result is that the adiabatic part of 15 independent transport

coefficients for a neutral fluid at second order [28] is determined in terms of five functions of

temperature, pretty much along the lines of the non-dissipative effective action computation

of [73]. We postpone a full discussion of how this works in full detail (including explicit

verification of our field redefinitions) to Appendix E.

For now we will restrict ourselves to Weyl invariant neutral fluids which are much easier

to describe. For one there are only 5 independent transport coefficients [16, 92]. Furthermore,

since a pre-requisite for Weyl invariance is that the Lagrangian must be invariant under Weyl

rescalings of the background metric gµν , we also have a reduction in the number of terms

which enter the Lagrangian. The Weyl transformation properties of various fields are well

known. We further develop a Weyl covariant formulation of adiabatic hydrodynamics to deal

with fluids arising from conformal field theories, extending [81], in Appendix C, where the

reader can find some of the necessary details for the computations below.

The Weyl covariant second order scalars at our disposal are (each with Weyl weight47

w = +2)

σ2 , ω2 , (WR) , gµν (DWµ log T ) (DWν log T ) . (11.18)

Using the identification (C.27), the Weyl covariant derivative is defined in (C.6) and the

associated Ricci scalar in (C.15). Since the temperature T has Weyl weight w = +1 it

follows that the Lagrangian which is invariant under Weyl transformations has to take the

form

LW2 = kσ T
d−2 σ2 + kω T

d−2 ω2

+ kR T
d−2

[
R− (d− 2) (d− 1) a2 +

d− 2

d− 1
Θ2 − 2 (d− 2)(d− 1) aα∇α log T

+ 2 (d− 2) Θuα∇α log T

]
+ kT T

d−2

(
(∇µ log T )2 + 2 aµ∇µ log T − 2 Θ

d− 1
uµ∇µ log T + a2 − Θ2

(d− 1)2

)
(11.19)

46 A classification of independent second order scalars was done in [28]. Specifically, off-shell genuine second

order scalars were shown to be five in total, which are the last four scalars in (11.17) along with the Ricci

scalar R. The others are products of one-derivative objects. While [28] took these to be the first four scalars

of (11.17) after using (11.9), we have a-priori included the terms in the second line since we choose to remain

off-shell.
47 A tensor is said to have Weyl weight w if under Weyl rescalings of the background metric gµν → e2φ g̃µν

it transforms homogeneously with a rescaling e−wφ. The metric itself has Weyl weight w = −2 with these

conventions. For more details please see Appendix C.
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where kσ, kω, kR and kT are constants. All the dependence on the thermal vector is implicit

in (11.19); if necessary we can convert all the terms to appropriate combinations of βµ and

its derivatives. The field redefinition freedom discussed in §10.6 allows us to set kT = 0

which we shall do forthwith (cf., Appendix E for further details).

The variation of the various terms in the Lagrangian can be computed using the rules

given in (D.1) in a straightforward (albeit tedious) manner. One of the advantages of using

the standard parameterization in terms of the velocity and temperature instead of βµ is that

simplifications at intermediate steps using hydrodynamic identities are transparent. We

present the variation of the full neutral fluid in Appendix E; see (E.5a)-(E.5e) from which

the relevant details for the Weyl invariant fluid can be extracted. Let us therefore pass

directly to a discussion of the stress tensor.

The Weyl covariant stress tensor for conformal fluid is expressed in a succinct manner

in the following basis of five independent tensors [81] (see also [82]) as:48

Tµν(2),W = τ uαDWα σ
µν + κCµανβ uα uβ

+ λ1 σ
〈µα σα

ν〉 + λ2 σ
〈µα ωα

ν〉 + λ3 ω
〈µα ωα

ν〉 ,
(11.20)

where the longitudinal Weyl covariant derivative evaluates to

uαDWα σ
µν = Pµρ P

ν
σ u

α∇ασρσ +
Θ

d− 1
σµν . (11.21)

This expression is written in the so called Landau frame where the corrections to the ideal

fluid stress tensor are demanded to be perpendicular to the velocity field, i.e., Tµν = Tµν(0) +∑
k≥1 T

µν
(k) with uµ T

µν
(k) = 0. We can equivalently write (11.20) in a basis adapted to our

classification scheme:

Tµν(2),W = (λ1 − κ)σ<µασν>α + (λ2 + 2 τ − 2κ) σ<µαω ν>
α

+ τ
(
uαDWα σ

µν − 2σ<µαω ν>
α

)
+ λ3 ω

<µαω ν>
α

+ κ
(
Cµανβ uα uβ + σ<µασν>α + 2σ<µαω ν>

α

)
.

(11.22)

As we will see shortly, this adiabaticity adapted basis is more natural for it does not mix

the different classes in the eightfold way; each term will turn out to be at home in a unique

class. The first two terms will turn out to be forced to vanish in Class L, while the remaining

three will be unconstrained.

The raw expressions obtained from the variation in Appendix E are somewhat unillu-

minating written as they are in a non-standard basis of tensors. As before we have to use

the on-shell equations of motion for the ideal fluid (11.9) to eliminate the thermal gradient

terms. A somewhat more tricky proposition is the fact that the stress tensor which solves

the adiabaticity equation is not necessarily in the Landau frame. Since the solution to the

adiabaticity equation (5.13) in Class L for non-anomalous fluids has JµS = s uµ one may

in fact view the result as naturally being cast in the entropy frame (see also [9, 73]). To

compare the results with the Landau frame presentation, we first switch off the first order

terms (since they carry no physical information). We then project the stress tensor com-

puted by the variational principle onto the frame invariant tensor and scalar parts. This

48 When comparing with the expressions in these papers we warn the reader that there are some convention

differences (mostly involving factors of two and the sign in the definition of ωµν and some index contractions).

See footnote 92 for a mapping between conventions of various papers.
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is a relatively trivial exercise and one can then read off the coefficients of the independent

tensors used in (E.12). The projectors in question are given explicitly in (11.14). Carrying

out the aforementioned computation we find the following set of transport coefficients for a

Weyl invariant neutral fluid [90]49

η = ζ = 0 ,

τ = − (2 (d− 2) kR + 2 kσ) T d−2 ,

κ = −2 (d− 2) kR T
d−2 ,

λ1 = −2 (d− 2) kR T
d−2 ,

λ2 = 4 kσT
d−2 ,

λ3 = −2 ((d− 2) kR − 2 kω)T d−2 .

(11.23)

The scaling with temperature can of course be determined on dimensional grounds. Equiv-

alently, the Weyl covariant stress tensor in Class L is forced to take the form

Tµν(2),W = τ
(
uαDWα σ

µν − 2σ<µαω ν>
α

)
+ λ3 ω

<µαω ν>
α

+ κ
(
Cµανβ uα uβ + σ<µασν>α + 2σ<µαω ν>

α

) (11.24)

which is written in the basis of (11.22) and can be derived from a two-derivative Lagrangian

density

LW2 =
1

4

[
− 2κ

(d− 2)
(WR) + 2 (κ− τ)σ2 + (λ3 − κ)ω2

]
. (11.25)

What is interesting about the result (11.23) is the following: given that there are a-priori

three parameters allowed in our Lagrangian, {kσ, kω, kR}, after exploiting field redefinition

freedom, we expect two relations between the five transport coefficients. These can be

ascertained by inspection of (11.24) to be the simple linear relations:

λ1 = κ , λ2 = 2 (κ− τ) . (11.26)

These relations are actually quite fascinating; we have an infinite class of hydrodynamic

constitutive relations for which they hold thanks to the holographic fluid/gravity correspon-

dence, cf., [78]. We will return to a complete discussion of holographic fluids and its relation

to the adiabatic eightfold way in §17.

11.2 Parity-odd fluids in 3 dimensions

Our second example concerns the class of parity-odd charged fluids in 3 spacetime dimensions.

This system has been described in the non-dissipative effective action framework originally

[74] and was revisited more recently in [9]. The investigations of the latter reference revealed

that there is some tension in incorporating aspects of Hall transport in this framework (see

also [73]). This has been addressed in an intriguing recent development [75], wherein the

Hall viscosity coefficient was captured in terms of a non-local term in the effective action.

For the present we will focus on local Lagrangians, but will comment on the non-local terms

at the end. Given our discussion of the neutral fluid in §11.1 we will be a bit brief in the

following, indicating just the salient results.

49 The first derivation of the second order transport coefficients was carried out explicitly in d = 4 by

[16, 92].
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11.2.1 Zeroth order in gradients

Since we are dealing with charged fluids, we now have the full set of hydrodynamic fields Ψ

to consider. At leading order in the gradient expansion, we need a scalar function of these

fields. A moment’s thought suffices to note that the only function of relevance is a scalar

function of temperature and chemical potential (which will be the Gibbs free energy for the

system). To wit, we have

L0 [Ψ] = p(T, µ) . (11.27)

Applying the variational calculus of §9 using (D.1) leads to50

1√
−g

δ
(√
−gL0

)
=

1

2

((
T p′ + µ ṗ− p

)
uµ uν + pPµν

)
δgµν + ṗ uσδAσ

+
(
T p′ + µ ṗ

)
T 2 βσ δβ

σ + T ṗ (δΛβ +Aσ δβ
σ)

(11.28)

There are no boundary terms, and we have the currents for an ideal charged fluid

Tµν(0) =
(
T p′ + µ ṗ− p

)
uµ uν + pPµν , Jµ(0) = ṗ uµ , JµS,(0) = p′ uµ

hσ(0) =
(
T p′ + µ ṗ

)
T βσ , n(0) = ṗ

(11.29)

In the present instance, p is the pressure of the system and the charge density is given by

the thermodynamics to be q = ṗ and ε = p′ + µ ṗ− p.

11.2.2 First order in gradients

Moving to the next order in gradients, we find that there are no interesting parity-even one

derivative scalars build from Ψ. The argument for this follows along similar lines as that

presented in §11.1, so we will refrain from repeating it again here. Physically, of course,

this is easily understood by noting that there are no non-trivial solutions to the adiabaticity

equation at first order in gradients.

However, if we have a system that is parity-odd, then in 3 spacetime dimensions we can

write down two scalars which, following [9], we parameterize as

L1 [Ψ] = w̃(T, µ) ερσλ uρ∇σuλ + b̃(T, µ) ερσλ uρ∇σAλ . (11.30)

In fact these are the two terms which are allowed in the hydrostatic partition function [93].

We have set to zero the parity-even first order terms such as the charged analog of the term

discussed in (11.5). They do not contribute to physical transport data. As a result, one can

essentially view L1 [Ψ] as the off-shell extension of the equilibrium partition function.

Varying the Lagrangian density we find for the hydrodynamic currents

Tαβ(1) = 2 ε(αρσ uβ)
(
2 w̃∇ρuσ + b̃∇ρAσ − uρ

[
w̃′∇σT + ˙̃w∇σµ

] )
+ uα uβ

([
T w̃′ + µ ˙̃w + 2 w̃

]
Ω +

[
T b̃′ + µ ˙̃b + b̃

]
B
)

Jα(1) = εαρσ b̃∇ρuσ − εαρσ uρ
(
b̃′∇σT + ˙̃b∇σµ

)
+
[

˙̃wΩ + ˙̃bB
]
uα (11.31)

with the pre-symplectic potential

(/δΘPS)σ(1) = w̃(T, µ) ερσλ uρ δuλ + b̃(T, µ) ερσλ uρ δAλ (11.32)

50 We will continue to denote temperature derivatives with a prime, while derivatives with respect to

chemical potential are denoted with an over-dot.
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and the adiabatic heat current and adiabatic charge density entering the Bianchi identities

hα(1) =
([
T w̃′ + µ ˙̃w + 2 w̃

]
Ω +

[
T b̃′ + µ ˙̃b + b̃

]
B
)
uα

+ εαρσ
(

2 w̃∇ρuσ − ˙̃wuρ∇σµ− w̃′ uρ∇σT + b̃∇ρAσ
)

(11.33)

n(1) = ˙̃wΩ + ˙̃bB (11.34)

where we defined the parity-odd scalars

Ω ≡ ερσλ uρ∇σuλ , B ≡ 1

2
ερσλ uρBσλ = ερσλ uρ∇σAλ . (11.35)

The entropy current derived from (11.33) and (11.34) reads

JµS,(1) =
(
w̃′Ω + b̃′B

)
uµ . (11.36)

These expressions are reasonably similar to the ones derived in the non-dissipative effective

action formalism by [9]. One can pursue their algorithm to extract the transport coefficients

as we summarize below.

Firstly, the most general parity-odd first order stress tensor and charge current are given

by the following Landau frame expressions [93]51

Tαβ(1) = (−ζ Θ + χ̃BB + χ̃Ω Ω) Pαβ − 2 η σαβ − η̃H εµν(α uµ σ
β)
ν , (11.37)

Jα(1) = σ
Ohm

vα + χ̃T ε
αµν uµ∇νT + χ̃E ε

αµν uµEν + σ̃H ε
αµν uµ vν . (11.38)

where we use the parity-even vector introduced in (5.25). The coefficient η̃H is called the

Hall viscosity and σ̃H is the (hydrodynamic) Hall conductivity. We will refer to χ̃T as the

odd Ohm conductivity and χ̃T as the odd thermal conductivity.

To compare this expression with (11.31) we have to project once again onto frame

invariant combinations. Doing so we find the following relations (setting µ̃ ≡ ε+p
q = µ+ sT

q

and v2
s ≡

[
∂p
∂ε

]
q

with q = ṗ for brevity):

χ̃Ω = v2
s

(
2w̃− T ∂w̃

∂T
− µ∂w̃

∂µ

)
+

[
∂p

∂q

]
ε

(
b̃− ∂w̃

∂µ

)
,

χ̃B = v2
s

(
b̃− T ∂b̃

∂T
− µ∂b̃

∂µ

)
−
[
∂p

∂q

]
ε

∂b̃

∂µ
,

T χ̃T =

(
b̃− T ∂b̃

∂T
− µ∂b̃

∂µ

)
− 1

µ̃

(
2w̃− T ∂w̃

∂T
− µ∂w̃

∂µ

)
,

χ̃E = −∂b̃
∂µ

+
1

µ̃

(
∂w̃

∂µ
− b̃

)
,

σ̃H + χ̃E = − 2

µ̃

(
b̃− 1

µ̃
w̃

)
,

σ
Ohm

= η = ζ = η̃H = 0 .

(11.39)

51 The analysis of [93] also a-priori allows the two further parity-even vectors contributions in the charge

current, viz., Jα(1) = −χT T aα + χE Eα. We have used the fact that the only parity-even contribution

compatible with the second law is the conductivity term exhibited in (11.38) and thus set χT = χE = 0.
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We see from (11.39) that the stress tensor does not have any frame-invariant tensor

data and thus the Hall viscosity η̃H predicted by (11.30) vanishes, consistent with [9, 73].

Examining the charge current, one finds that the Hall conductivity σ̃H and χ̃E can be taken

to be the independent transport coefficients:

w̃ =
µ̃2

2

 µ̃ ∂
∂µ (χ̃E + σ̃H) + 2χ̃E

∂
∂µ

(
sT
q

)
+

µ̃2

2
(χ̃E + σ̃H) ,

b̃ =
µ̃

2

 µ̃ ∂
∂µ (χ̃E + σ̃H) + 2χ̃E

∂
∂µ

(
sT
q

)
 .

(11.40)

It is a-priori tempting, based on the linear relation involving the odd Ohm and Hall conduc-

tivities, to speculate that one can fix σ̃H in terms of the other transport coefficients.

We expect in general three relations amongst the set {χ̃Ω, χ̃B, χ̃T , χ̃E , σ̃H}. One of these

is the expression in the penultimate line of (11.39). Another which can be ascertained by

eliminating the Lagrangian scalars from the first four lines of (11.39) is

χ̃B −
1

µ̃
χ̃Ω − v2

s T χ̃T =

[
∂p

∂q

]
ε

χ̃E (11.41)

These results of course agree with those derived earlier in [93] (see also [29]). The final relation

can be written using (11.40) eliminating the Lagrangian scalars w̃, b̃. We have not been able

to derive a simple closed form answer, since we seem to need to employ thermodynamic

identities in an involved fashion.

Passing to a simpler context of Weyl invariant fluids, reveals an unnecessary nuance.

Now, ζ = χ̃B = χ̃Ω = 0 by the tracelessness of the stress tensor and χ̃T = 0 by virtue of ∇νT
not being homogeneous under Weyl rescaling (see Appendix C). Then the only non-vanishing

vector transport are the conductivities and the parity-odd ones have to be determined in

terms of the Lagrangian functions.52 One linear combination of χ̃E and σ̃H gives a linear

combination of the Lagrangian scalars, but this allows both of them to be independent.53

Despite these complications we suspect that Class L does not allow for the most general

form of the Hall conductivity σ̃H . At the same time, a curious fact of the Class L effective

action is the vanishing of the Hall viscosity as has been noted earlier in [9]. In summary we

see that in Class L

η̃H = 0 , σ̃H = fixed . (11.42)

As we shall see later in §12 these relations are akin to the relation between {τ, λ1, λ2}
for the neutral fluid (11.26). Since σ̃H and η̃H are completely unconstrained by the second

law [93] one should find that any value for the Hall viscosity is acceptable in hydrodynamics.

We defer comments on non-local Lagrangians and the recent construction of [75] to §12,

since understanding deviations from relations such as (11.26) and (11.42) is part of a more

general endeavour of constructing actions for Berry-like transport. Once we understand that

they are Berry-like terms (Class B), we will be able to find an effective action which allows

arbitrary non-vanishing value of η̃H and σ̃H in our extended formalism (see §20).

52 One can confirm that (11.33) trivializes in a Weyl invariant fluid.
53 The one exception to this argument is the special case of an equation of state where we have a temperature

independence, e.g., p(T, µ) = C µ3 for some constant C as one encounters for an extremal black hole (in the

holographic context), since this implies that ∂
∂µ

(
sT
q

)
= 0.
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12 Class B: Berry-like transport

We have explored for the most part of our discussion, solutions to the adiabaticity equation

classified by a Lagrangian L [Ψ], which we termed as Class L adiabatic fluids. This raises

an interesting question: “Are all solutions to (5.12) obtained from a suitable Lagrangian?”

The answer surprisingly turns out to be no! There are several classes of adiabatic transport

that do not appear to fit into a simple Lagrangian description. We have already hinted

that anomalous transport (Class A) requires more structure. In particular, in [8] we argued

that an anomalous hydrodynamic effective action necessarily involves a Schwinger-Keldysh

doubling of fields in order to satisfy the correct Ward identities. One might argue that

such transport comprising typically of finite set of terms (those governed by the anomaly) is

special.

However, strangely enough, this doubling trick by itself does not appear to suffice in

general. We find three additional classes of transport, of which two (Class B and Class HV )

are non-finite classes (the third Class C is finite). To complete our classification scheme

and to understand the nature of adiabatic transport, we have to indeed analyze what such

constitutive relations mean. Therefore, before trying to enlarge the set of Lagrangian Class L

transport by incorporating Schwinger-Keldysh doubling and influence functionals (c.f., §16),

let us now explicitly construct the parts of adiabatic transport which do not seem to fit into

Class L.

We start with adiabatic transport that we call Class B (for Berry curvature inspired

constitutive relations). These Berry terms actually arise in familiar contexts of hydrody-

namic transport, and have indeed been encountered hitherto, without the general structure

however being appreciated. The simplest examples of these arise in parity-odd fluids in 2+1

dimensions, where the Hall transport falls in this class, cf., §11.2. We first introduce the

basic tensor structures and constitutive relations in §12.1 and then exhibit some examples

to illustrate the construction.54

12.1 The Berry constitutive relations

We now describe a large set of solutions to the non-anomalous adiabaticity equation based

purely on exploiting some tensor structures which conspire effectively. The logic is going

to be similar to our discussion in §8. We will start with the grand canonical adiabaticity

equation (5.21) reproduced here for convenience:

−∇σ
(
Gσ

T

)
=

1

2
Tµνδ

B
gµν + Jµ · δ

B
Aµ (12.1)

We are going to use the fact that the r.h.s. involves an explicit contribution from the variation

of the background fields along B via the {δ
B
gµν , δBAµ} insertions. Imagine picking an

ansatz for the conserved currents which also contains an explicit insertion of these operators,

i.e., schematically consider Tµν ∝ δ
B
gαβ and Jα ∝ δ

B
Aβ. If the intertwining tensors that

complete the map above have the appropriate symmetries, then it is plausible that upon

further contraction with δ
B
gµν or δ

B
Aµ we ensure that the divergence of the free energy

54 Using the differential operators introduced in §8.2 one can in a single analysis construct all Class B

constitutive relations. This discussion being somewhat abstract, this is better appreciated once the basic

story is laid out.
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current vanishes. This means that we can solve the adiabaticity equation with the no free

energy current; the conserved currents themselves conspire to ensure lack of dissipation.

Inspired by the above argument, consider the following constitutive relations:55

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gαβ + X (µν)α · δ

B
Aα

(Jα)B ≡ −
1

2
X (µν)αδ

B
gµν − S [αβ] · δ

B
Aβ

(12.2)

where {N µναβ ,X µνα,Sαβ} are arbitrary tensors (modulo field redefinitions). Here (αβ) and

[αβ] indicates the usual projection to the symmetric and anti-symmetric parts respectively.

Substituting the above constitutive relations into the adiabaticity equation in the grand

canonical ensemble, we get

1

2
(Tµν)B δBgµν + (Jα)B · δBAα

= −1

8

(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gµνδBgαβ

+
1

2
X (µν)α · (δ

B
gµν δBAα − δBAα δBgµν)− δ

B
Aα · S [αβ] · δ

B
Aβ

= 0

(12.3)

we see that we solve the adiabaticity equation (12.1) if we simply take (Gσ)B = 0.

In the micro-canonical ensemble, this is equivalent to taking the entropy current to have

a purely canonical contribution, viz.,

(JαS )B ≡ −ββ(Tαβ)B −
(

Λβ + ββAβ

)
· (Jα)B

=
1

T

{
1

4

(
N (αβ)(µν) −N (µν)(αβ)

)
uβ +

1

2
µ · X (µν)α

}
δ
B
gµν

− 1

T

{
X (αβ)ν uβ − µ · S [αν]

}
· δ

B
Aν

(12.4)

Thus, equations (12.2) and (12.4) give a large set of adiabatic constitutive relations. The

set of constitutive relations parameterized by these expressions is what we term to be Class

B.56

Before we proceed further with our analysis, let us pause to motivate our terminology.

The tensors which multiply δ
B
gµν and δ

B
Aµ are anti-symmetric for the most part (the only

symmetric tensor is the compensator X which mixes the two sources). Such anti-symmetric

tensors may be viewed as curvatures in the phase space of hydrodynamic fields Ψ; indeed,

they have the correct symmetries to be interpreted as such. Phase space connections and

associated curvatures typically contribute to the Berry phase picked up by the system when

it is made to traverse a closed loop in configuration space. While we have not quite justified

why {N [(µν)|(αβ)],S [µν]} should be thought of as configuration space curvatures, supporting

evidence for this interpretation can be advanced by examining the physics of Hall viscosity

55 The conflation of the notation with the tensor structures used for describing Class D constitutive relations

in §8.3 is intentional. It will allow us later to talk about a single tensor structure whose symmetric part

contributes to Class D and anti-symmetric part to Class B.
56 See, however, the slight generalization below.
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[83]. As we will see below the Hall viscosity term is the simplest example of Class B transport,

and the fact that it is associated with the dynamics of quantum states in the phase space

makes it plausible to forward a rationale for our terminology.

All the Class B constitutive relations trivially satisfy hydrostatic principle because they

vanish in hydrostatic equilibrium. They thus drop out of the hydrodynamic equations in

the hydrostatic limit. These are thus examples of non-hydrostatic but non-dissipative con-

stitutive relations. In fact, some aspects of these as we shall see have been encountered in

previous analyses but were not identified to belong to this general class. For instance in the

analysis of [93] it was noticed that the Hall transport coefficients are unconstrained by any

form of the second law, while [73] noticed a similar feature for a particular combination of

second order transport coefficients for a neutral fluid. We will now show how these arise

within the general construction above.

While a general Class B term can be characterized by the tensors {N ,X ,S} with the

indicated symmetry properties, which can be classified by working in the gradient expansion,

a slight generalization allows us to write a complete solution to Berry transport. Recall our

discussion of tensor valued derivative operators and the set of intertwining tensors used to

describe dissipative Class D transport in §8.2. This construction can be exploited to give

non-trivial Class B relations as well. This is not quite useful for the purposes of classification,

but does provide an alternative perspective on the Berry-like transport whilst simultaneously

indicating some degenerate situations where näıve Class D terms are actually adiabatic.

Furthermore, it substantiates our earlier statement in §8 regarding the adiabatic nature of

non-symmetric intertwiners.

Firstly let us ask when ∆ obtained in (8.15) vanishes. As the interwiners {η,σ} connect

two identical representations, this will happen whenever they transform in an anti-symmetric

representation, i.e.,

∆ = 0 =⇒ η ∈ Asym (Tensη ⊗ Tensη) , σ ∈ Asym (Tensσ ⊗ Tensσ) . (12.5)

So we clearly have an adiabatic constitutive relation. Thus, equations (8.8) and (8.14) along

with the conditions (12.5) give a large set of Class B solutions. One can get even more

by generalizing the intertwiner matrix in (8.12) to contain off-diagonal mixed intertwiners

κ ∈ (Tensη ⊗ Tensσ) as follows:(
Tµν

Jα

)
B

= −

(
Υ†ηg Υ†σg
Υ†ηA Υ†σA

)(
η κ

−κ σ

)(
Υηg ΥηA
Υσg ΥσA

)(
1
2δBg

δ
B
A

)
. (12.6)

The additional κ-intertwiners with opposite sign drop out of the entropy production (8.13),

so they contribute to Class B.

While the description in terms of the tensor valued differential operators Υ and inter-

twiners {η,κ,σ} provides a complete description, there is one difference between this picture

and the simpler parameterization introduced in (12.2), which should be borne in mind. This

concerns the free energy flux. When the tensor operators Υ in (8.8) are just tensors (i.e.,

they do not involve derivative operators), they reproduce the simple parametrization (12.2).

For in this case no integration by parts is necessary to obtain (8.14), so the Noether current

is just zero (which is consistent with (12.4)). However, in the more general case that the

constitutive relations (8.8) contain genuine derivative operators, one has to do an integra-

tion by parts in (8.13), leaving behind some total derivative terms that give a non-canonical

contribution to (JµS )B.
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Further, this construction makes it also clear that there are certain constitutive relations

which we would want to think of as dissipative, which end up nevertheless in Class B. These

are situations wherein the intertwiners {η,κ,σ} themselves are built from higher order mixed

symmetry representations. Consider for example, the following tensor representations

≡ Sym2 ,

N [(αβ)(µν)]
B =

(αβ)(µν)(ρλ)

δ
B
gρλ , N ((αβ)(ρλ))

D =
(αβ)(µν)(ρλ)

δ
B
gµν (12.7)

i.e., we obtain the intertwiners from the same underlying representation by contracting

different sets of indices. However, when we compute ∆ we find

∆ = δ
B
gαβ N

((αβ)(ρλ))
D δ

B
gρλ

= δ
B
gαβ

(αβ)(µν)(ρλ)

δ
B
gρλ δBgµν

= δ
B
gαβ N

[(αβ)(µν)]
B δ

B
gµν

= 0 .

(12.8)

A similar analysis can be carried out for the flavour charges, by working with the represen-

tation Vect instead.

Before proceeding with explicit examples of Class B terms, we should point out that the

constitutive relations above (12.2) are subject to field redefinition ambiguities. For instance

we can redefine the thermal vector and twist as in (10.30) which would then affect the

intertwiners. We leave it as an exercise for the reader to work out what the changes induced

are, noting that they involve rather messy algebra. We will however have a bit more to say

about this as we develop the eightfold effective action in §20.

12.2 Examples of Class B transport

Let us now consider some examples of Berry transport. By construction, Class B constitutive

relations have at least one derivative (since δ
B
gµν and δ

B
Aµ is linear in the gradients of

{βµ,Λβ}). Thus, there are no examples in zero derivative order.

Hall Transport in 3 dimensions: At one derivative order, in 3-dimensional parity vi-

olating fluids, there is an adiabatic constitutive relation that can be obtained by setting

N µναβ = −η̃H T uρ ερµα P νβ along with X µνα = 0 and Sαβ = −σ̃H T uρ εραβ. We obtain

then for the currents

(Tµν)B = −η̃H ε
αβ(µuασβ

ν) ,

(Jα)B = σ̃H · ε
αρσuρvσ ,

(JαS )B =
µ

T
· σ̃H · ε

αρσuρvσ .

(12.9)

We recognize the transport coefficients σ̃H and η̃H as the Hall conductivity and Hall viscos-

ity respectively, from our discussion in §11.2. As mentioned earlier the fact that the Hall

transport terms on-shell lead to an exactly conserved entropy current (from the adiabaticity

equation) was the reason that [93] found in the current algebra approach no constraint on

them from the second law. Since the tensor structures vanish in hydrostatics, so we have no

information regarding these terms from the equilibrium partition function.
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Berry terms in neutral fluids: Our second example for Class B constitutive relations

is perhaps in the simplest hydrodynamic system imaginable, a neutral fluid! While there

is no adiabatic transport at first order, we have seen that there are adiabatic parts to each

of the 15 transport coefficients of a neutral fluid, cf., Appendix E. Amongst these lurks a

term of the form (12.2). Since δ
B
gµν = 2∇(µβν) can be written using (11.11) in terms of the

shear etc., and is clearly a first order term, we pick for the tensor N µναβ another first order

contribution. The symmetries we require fix this tensor uniquely to be

N µναβ = 2T
(
λσ σ

µν Pαβ + λω ω
µα P νβ

)
(12.10)

Using the decomposition of the gradient of βµ we can express the stress tensor in a simple

form:

(Tµν)B = −λσ
(
Θσµν − σ2 Pµν

)
− λω (ωµασνα + ωνασµα) (12.11)

Let us compare this with the parametrization of the second order Landau frame stress tensor

given in (E.12). Using two simple identities

λ0 Θσµν + ξ2 Pµν σ
2 =

λ0 + ξ2

2

(
Θσµν + Pµν σ

2
)

+
λ0 − ξ2

2

(
Θσµν − Pµν σ2

)
σ〈µ

αωαν〉 = −1

2
(ωµασνα + ωνασµα)

(12.12)

we identify the two coefficients λσ and λω as determining linear combinations of the transport

coefficients, viz.,

λσ =
ξ2 − λ0

2
, λ2 = 2λω . (12.13)

The fact that the two tensor structures appearing in (12.11) are non-dissipative was in fact

was noticed in the analysis of [73], but again it was not appreciated then that these were

part of a larger set of adiabatic transport data in hydrodynamics.

12.3 Embedding Class B in Class L?

Given a couple of examples at our disposal let us take stock of whether we can identify a

way to embed Class B into Class L. Each of our two examples has been explored in the

non-dissipative effective action framework. So we can make some informed statements about

whether or not this is possible. Since the details seem to be a-priori distinct in the two cases

we will address them in turn.

Hall transport: The analysis of [9], building on earlier work of [74] and [73], argued that

there is no local effective action that captures Hall viscosity. Furthermore, it was found in

that construction that the Hall conductivity was not an independent transport coefficient,

but rather a linear combination of it and the coefficient χ̃E introduced in [93] was fixed by

the effective action. More specifically, the tensor structures involved are the ones displayed

in (12.9).

We find a very similar relation in the Class L construction outlined in §11.2. In particular,

in (11.39) we have derived the parity-odd transport coefficients in terms of the Lagrangian

scalars {b̃, w̃}. As there are six parity-odd transport coefficients and only two scalar densities,

we expect four relations amongst the transport. Two of these are hydrostatic relations which

eliminate two combinations of of {χ̃Ω, χ̃B, χ̃T }. One such relation is easy to find algebraically

and is given in (11.41); the other appears to be complicated to obtain in closed form. The
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third relation, which is not hydrodynamic, appears to fix Hall conductivity σ̃H , which is

invisible in hydrostatics, in terms of a hydrostatic response parameter χ̃E , [9, 93]. The final

relation is the one that sets the Hall viscosity η̃H = 0.

A-priori, given that the Hall conductivity and viscosity are adiabatic, any value for these

hydrodynamic transport coefficient is acceptable. So it is in fact somewhat curious that the

Class L theory fixes their value so specifically. The results obtained herein are consistent

with the effective action analysis of [9] (which involves a Legendre transformation). It should

be noted that recently [75] have argued that a suitable non-local term allows one to at least

obtain non-vanishing Hall viscosity. The construction involved constructing a Wess-Zumino

term in the configuration space of fluids (using the Lagrangian scalar variables of the non-

dissipative effective action formalism of [33]).57 While this construction does indeed give a

non-vanishing Hall viscosity, it however constrains it to be of the specific functional form

η̃H = s f(q/s), as opposed to a general function of s and q (or T and µ after Legendre

transformation). We believe this is significant and points to a different resolution of the

puzzle of Class B Hall transport terms. Indeed, we will later exhibit a Lagrangian system in

§18 which will give us the most general form of Hall transport.

Neutral fluids: The situation in the neutral fluid case is similar. λ2 is fixed in Class

L, and is constrained to obeying the relations (11.26) and (E.18), in situations with and

without Weyl invariance respectively. Furthermore, these relations appear to be upheld in

two extreme corners: for Weyl invariant strongly coupled holographic plasmas as well as in

kinetic theory.58 Once again we do not know of a simple modification to incorporate these

terms in Class L, but we will make a case for an extended Lagrangian which allows arbitrary

values for Class B transport coefficients in due course.

13 Class C: Conserved entropy

In hydrodynamics, the conserved currents {Tµν , Jµ} are canonically defined, but the entropy

current JµS is a more abstruse object. It has no microscopic counterpart, arising as it does due

to coarse-graining inherent in the statistical description of the quantum system of interest.

Per se one only requires an entropy current satisfying ∇µJµS ≥ 0 or (5.11) to exist, with no

implication of uniqueness. The ambiguities in entropy current have been well appreciated

in various discussions, cf., [28, 68, 89] for a sampling of recent literature where this issue is

clearly spelt out.

We will now argue that there is one more type of adiabatic constitutive relation solving

(5.12) which relies potential ambiguities in the entropy current. Recall that in Class L one

can always add arbitrary Komar terms as in (9.21) to any entropy current determined by

the Noether construction (in the absence of interesting cohomology). Such ambiguities in

the entropy current are physically uninteresting and we won’t discuss them further. How-

ever, there may actually be other entropy current contributions which are cohomologically

non-trivial but still identically conserved without producing energy-momentum or charge

transport. These terms are not accounted for in our previous analysis because all adia-

57 A general construction of Wess-Zumino terms for a wide class of physical systems with various choices

of internal symmetries was described in [94].
58 In the holographic context the relations are only valid in two derivative Einstein-Hilbert theory. Higher

derivative corrections appear to spoil the Class L relation fixing λ2, see [95–97] and our discussion in §17.5.
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batic classes so far led to non-trivial energy-momentum or charge currents, even taking into

account field redefinitions.

Let us therefore examine as our next class of non-anomalous adiabatic constitutive rela-

tion a very simple set of currents. At any order in the gradient expansion one can consider

a family of exactly conserved vectors Jµ, ∇µJµ = 0. Since we are only interested in solutions

to (5.12) we can simply set

(JµS )C = Jµ , (Tµν)C = 0 , (Jµ)C = 0 (13.1)

and achieve this desired outcome! As long as we have conserved vector fields Jµ [Ψ] we have

achieved a trivial adiabatic constitutive relation.

For reasons described earlier, not all conserved vector fields Jµ, or equivalently their

dual current (d− 1)-forms j, are physically interesting. A trivial class of conserved currents

can be obtained by taking Jµ = ∇ν X[µν] for some anti-symmetric tensor Xµν ; in other

words the entropy current (d − 1) form is exact ?j = d(?x) =⇒ d(? j) = 0. As in any

physical application, we are interested in cohomologically non-trivial conserved currents.

These are similar to the Komar terms encountered in Class L which are uninteresting as

long as there are no boundaries. We shall later see that in the extended Lagrangian theory

these will correspond to total derivative boundary terms. We will henceforth quotient the

space of conserved currents by such exactly conserved currents and Class C will comprise of

cohomologically non-trivial currents.

Since here we have no energy-momentum or charge transport, but solely entropy flux

along the chosen vector field, one has a macroscopic manifestation of entropy without any

physical effect. While one might a-priori think that even non-trivial elements of the coho-

mology, i.e., non-exact (d − 1)-current forms are uninteresting, there are certain choices of

Jµ which are worth exploring closely.

To do so, let us consider some examples, starting as usual with parity-even charged

fluids. For vectors built out of Ψ and their gradients, it is clear that there is no conserved

vector at first order in gradients; the three parity-even vectors aµ, Θuµ and vµ are generically

non-conserved. At higher orders it is possible to find conserved vectors, but most of these

are exact differentials of the form ∇ν X[µν]. For instance, we have five such vectors at second

order in gradients, since we have a plethora of first order anti-symmetric tensors [68],

Xµν ∈ {u[µ aν], ωµν , u[µ vν], u[µ∇ν]
(µ
T

)
, PµαP νβ Fαβ} , (13.2)

which give an exactly conserved entropy current at second order. These we discard for being

trivial cohomological elements.

One however has a non-trivial conserved current in odd spacetime dimensions owing to

topological considerations. The simplest example is in three-dimensional parity-even neutral

fluids where, inspired by Wen-Zee shift current [84] which appears in Hall transport, we have

the following second order conserved vector:

Jσ
Euler

=
1

2
c

Euler
εσαβ εµνλ uµ

(
∇αuν∇βuλ −

1

2
Rνλαβ

)
, (13.3)

where Rαβγδ is the Riemann tensor and c
Euler

is an arbitrary constant. The nomenclature is

motivated by the fact that the conserved topological charge associated with this current is

the Euler characteristic of the codimension-one spatial slice normal to uµ [86]. It is easy to
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check conservation directly, though the analysis is greatly facilitated by writing the associated

current 2-form. We give a simple derivation of this fact and the generalization to arbitrary

odd d = 2n+ 1 dimensions in Appendix B.59 From there we find that in general

Jσ
Euler

= − 1

2n
c

Euler
εσα1α2...α2n−1α2n uµ ε

µν1ν2...ν2n−1ν2n

×
(

1

2
Rν1ν2α1α2 −∇α1uν1∇α2uν2

)
. . .

(
1

2
Rν2n−1ν2nα2n−1α2n −∇α2n−1uν2n−1∇α2nuν2n

)
(13.4)

is a conserved current present at the (2n)th derivative order and gives a Class C solution to

(5.12).

Let us understand the physical consequence of the Euler current contribution to entropy

current in d = 3. The Euler current reduces to the Euler character of the spatial two manifold

on which we place our fluid. Let us for simplicity take M3 = R×Σ2 where Σ2 is a compact

two manifold. Then Jµ
Euler

uµ is a measure of the topology of Σ2, and in particular its integral

gives the Euler character (and hence the genus) of this two-manifold. Since there is no a-

priori reason to restrict attention to spherical or planar topology, we can consider fluids on

negatively curved Riemann surfaces and extract a contribution from Jµ
Euler

. The topological

contribution will compute a degeneracy in terms of the Euler character s = c
Euler

χ.

This situation can be realized holographically. A three-dimensional CFT such as the

M2-brane worldvolume (ABJM) theory can be placed onM3 = R×Σ2.60 While the vacuum

dynamics of this theory is ill-behaved owning to the conformal coupling of the massless

scalars (transforming in the 8v of SO(8)R), it is plausible that the thermal corrections

stabilize the theory. In the strong coupling limit the gravity dual is given by supergravity

on AdS4 × S7. The four-dimensional Gauss-Bonnet term is the leading correction to the

two derivative Einstein-Hilbert dynamics. This term is however topological and integrates

to a pure boundary term and thus does not affect dynamics. It does however change the

degeneracy of the thermal density matrix. In particular, in the presence of this Gauss-

Bonnet term, a black hole in AdS4 picks up a contribution from the Wald functional [98]

proportional to the Euler character of the spatial two-manifold which is the bifurcation

surface. For the CFT on R×Σ2 the black hole horizon is such that its spatial cross-sections

and especially the bifurcation surface have the same topology as Σ2. Then the Wald entropy

does get a contribution proportional to χ(Σ2) which is indeed what we see purely from a field

theory analysis. One can furthermore check that the pull-back of the Wald functional on the

horizon onto the boundary, to define a boundary entropy current as in [89] will indeed give a

contribution of the form (13.3). Similar remarks apply to higher (odd) dimensional CFTs on

topologically non-trivial backgrounds. Indeed, the entropy current (13.4) is obtained from a

particular Lovelock term in AdSd+1.

The above discussion can be extended to charged fluids. For example we can consider

the Chern current in odd spacetime dimensions

Jσ
Chern

=
1

2n
c

Chern
εσα1α2···α2n−1α2nFα1α2 · · ·Fα2n−1α2n , (13.5)

59 These currents were recently revisited in the context of parity-odd Hall fluids in [85] and [86]. The latter

work independently generalized the construction to arbitrary odd dimensions. Our discussion in Appendix B

provides a complementary perspective.
60 These considerations extend to other three-dimensional QFTs; we simply choose the ABJM theory for

illustrative purposes.
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which despite being exact does contribute to the degeneracy of states and thus the entropy.

One easy way to intuit this is to look at the a three-dimensional field theory again (n = 1).

Now we have a background magnetic field in the spatial manifold which is well known

to contribute to ground state degeneracy (e.g., classic Landau level physics). In higher

dimensions we would be picking up contributions when the topology of the gauge bundle is

non-trivial (e.g., instanton bundle in d = 5). It would be interesting to investigate other such

contributions from combinations of the background sources and realizations of such effects

in physical fluids.

14 The Vector Classes: Transverse free energy currents

We now turn to another family of solutions to (5.12) which are not captured by Class L

Lagrangians. The transport terms constructed in this section rely on the presence of a set of

vector fields. These fields could be hydrostatic whence the transport will be characterized by

the Class HV terms encountered in §7. It also transpires that we can have non-hydrostatic

vector fields which give solutions to the adiabaticity equation; we will name the set of consti-

tutive relations thus determined as belonging to Class HV (in analogy with our distinction

in the scalar case).

14.1 The hydrostatic Class HV

In §7.1 we have already mentioned the fact that hydrostatic partition functions are either

classified by scalar densities or by conserved transverse vectors P σV which satisfy

Kσ

(
P σ
V

)
Hydrostatic

= ∇σ
(
P σ
V

)
Hydrostatic

= 0 . (14.1)

Their contribution to the equilibrium partition function is as indicated in (7.11). We note

that such terms have been studied in the context of Cardy-like formulae in higher dimensions

[43, 45, 50, 99]. These terms first showed up as ‘integration constants’ of the anomaly induced

transport [40, 54]; that they contribute as vectors to the partition function was first realized

in [29]. These terms are sometimes termed transcendental anomaly induced transport terms

in order to distinguish them from the ‘rational’ anomaly induced terms in Class A. These

names emphasize the fact that Cardy-like formulae for Class HV transport always involve

extra transcendental factors of 2π unlike the Class A transport.61 The supersymmetric

cousins of HV play a crucial role in the recent proposals for Cardy-like formulae applicable

to supersymmetric partition functions [101]. We will now review the structure of these terms

as discussed in these references mainly to give a complete representation of all the classes of

adiabatic transport.

Let us begin with a simple example in two-dimensional fluids (d = 2). Consider the

following adiabatic constitutive relations

(Tαβ)HV = −2 c̃g T
2 ε(αγuγu

β) , (Jα)HV = 0 , (JαS )HV = −2 c̃g T ε
αγuγ . (14.2)

This corresponds to a transverse free energy current

(Gα)HV = c̃g T
2 εσγuγ . (14.3)

61 Such contributions are also well understood in the holographic context and we refer the reader to [100]

and references therein for a detailed discussion.
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These constitutive relations can be derived from a hydrostatic partition function

WHydrostatic = −
ˆ

ΣE

(
1

T
(Gσ)HV [ΨK]

)
Hydrostatic

dd−1Sσ . (14.4)

It is easily checked that these constitutive relations solve adiabaticity equation (5.21) for

an arbitrary number c̃g. It was argued in [43] that for a general field theory, we have

c̃g = 2(2π)2cg where cg is the Lorentz anomaly of the underlying two-dimensional theory.

For 2d CFTs, this is just the (parity-odd part of) Cardy formula. Thus, the parity-odd Cardy

formula relates the coefficients that appear in the Class HV with the anomaly coefficients

that appear in Class A constitutive relations (which we will encounter in §15).

The above construction (and the corresponding parity-odd Cardy-like formulae) can be

generalized to arbitrary even dimensions following [45]. We will give a description of the

construction below for completeness, but the reader may find the discussion below more

comprehensible after reading through our Class A section, §15.

Given the close relation between the Class HV and Class A constitutive relations that

Cardy formula implies, it is useful to set them in a common formalism. To this end, it is

convenient to introduce a new gauge field A(T)
µ and an associated chemical potential µ(T).

It turns out to be natural to treat the temperature as the chemical potential (by thinking

of it as the twist in the thermal circle), so µ(T) = T . This is equivalent to introducing Λ(T)

β

such that Λ(T)

β +βσA(T)
σ = 1. We will take the field-strength F(T)

µν corresponding to this new

gauge field to zero.62

With this gauge field, Class HV constitutive relations take the same form as Class A

constitutive relations (but now involving µ(T) in addition) and the coefficients in Class HV

correspond to pure and mixed anomalies involving the new gauge field A(T)
µ. The higher

dimensional analogues of Cardy formula can then be phrased as fixing the new anomaly

coefficients in terms of the usual anomaly coefficients. In d = 2n dimensions, Class HV

constitutive relations are characterized by the exact forms encoding these new anomalies.

Thus, consider an anomaly polynomial relevant to Class HV of the form

PHV ≡
bn+1

2
c∑

j=1

(F(T))2j ∧P(HV ,j)[F ,R] , (14.5)

where P(HV ,j)[F ,R] denotes an exact 2(n+ 1− 2j)-form made by wedging the flavour field

strength 2-form F and the Riemann curvature 2-form Rµ
ν . For a given set of bn+1

2 c exact

forms {P(HV ,j)[F ,R]}j=1,2,...,bn+1
2
c, we can then construct a Class HV constitutive relation.63

We note that CPT invariance only allows PHV which are even in F(T) [42, 45]. This also

ensures that once F(T) is set to zero, all the new anomalies introduced via PHV vanishes as

they should.

As mentioned above, the detailed form of Class A constitutive relations and how they

are derived starting from an anomaly polynomial are described in §15 and Appendix A. It

62 In fact, a lot of this formalism will play an important role in the construction of an extended Lagrangian

theory for adiabatic hydrodynamics in Part IV. We defer physical statements till §18; for now the reader

may simply take the introduction of A(T) and associated quantities a convenient way to encode Class HV

constitutive relations as was done in [45].
63 The anomaly polynomial PHV was called Ptrans in [45]. We pretty much follow their notation for

differential forms etc., and further notational conventions are as explained in §15 (see also Appendix I).
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is a straightforward exercise to repeat the derivation with a new gauge field A(T)
µ and the

anomaly polynomial PHV followed by setting F(T)
µν = 0 at the end. We will present here the

result of this exercise and refer the reader to our sections on Class A for more details. We

will need the definition of the spin chemical potential from equation (15.21)

Ωµ
ν =

1

2
T (Dνβ

µ −Dµβν) (14.6)

along with the definition of “hydrodynamical shadow” gauge field and spin connection from

(15.2) and (15.19) respectively. We have

Â = A+ µu ,

Γ̂µν = Γµν + Ωµ
ν u .

(14.7)

In analogy with (15.23), let us also define the bulk Hall currents for the sequence of anomaly

polynomials {P(HV ,j)[F ,R]}j=1,2,...,bn+1
2
c as

?2n+1(JH)(HV ,j) =
∂P(HV ,j)

∂F
, ?2n+1(ΣH)(HV ,j)

b
a = 2

∂P(HV ,j)

∂Ra
b

. (14.8)

We will denote by hats the corresponding objects evaluated for the shadow connections.

We are now ready to present the general form of Class HV constitutive relations. Using

(15.25) for the new anomaly polynomial and setting F(T)
µν = 0, we get for the heat current

q
HV

, the spin current ΣHV
, the charge current JHV

, and a contribution to the entropy current

(J ′
S,HV

) the following expressions in differential form notation:

?JHV
= −

bn+1
2
c∑

j=1

T 2j u ∧ (2ω)2j−1 ∧ (ĴH)(HV ,j) ,

?ΣHV

β
α = −

bn+1
2
c∑

j=1

T 2j u ∧ (2ω)2j−1 ∧ (Σ̂H)(HV ,j)
β
α ,

?q
HV

= −
bn+1

2
c∑

j=1

(2j − 1)T 2j u ∧ (2ω)2j−2 ∧ P̂(HV ,j) ,

?J ′
S,HV

= −
bn+1

2
c∑

j=1

2 j T 2j−1 u ∧ (2ω)2j−1 ∧ (ĴH)(HV ,j) .

(14.9)

This in turn gives (see Eqs. (15.28) and (15.30)) an energy momentum tensor and an entropy

current of the form

(Tαβ)HV = qα
HV

uβ + qβ
HV

uα +
1

2
Dρ

(
Σα[βρ]

HV
+ Σβ[αρ]

HV
− Σρ(αβ)

HV

)
,

(JαS )HV = (J ′S)αHV −
1

2
βσ (Σ̂H)

⊥[ασ]
HV

.

(14.10)

along with a charge current given by (Jα)HV . Here, (Σ̂H)
⊥[ασ]
HV

is defined via

?(Σ̂H)HV
β
α =

bn+1
2
c∑

j=1

[d(T u)]2j−1 ∧ (Σ̂H)(HV ,j)
β
α . (14.11)
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These constitutive relations then solve the adiabaticity equation (5.12) without the anomalies

(since the limit F(T)
µν = 0 sets all the new anomalies to zero).

The corresponding free energy current is given by (Gσ)HV = (G′σ)HV + 1
2uα (Σ̂H)

⊥[σα]
HV

with

?G′
HV

=

bn+1
2
c∑

j=1

T 2j u ∧ (2ω)2j−2 ∧ P̂(HV ,j) . (14.12)

In the hydrostatic limit uα (Σ̂H)
⊥[σα]
HV

= 0 and only the (G′σ)HV part of the free-energy

current contributes to the hydrostatic partition function. Thus,

WHydrostatic = −
ˆ

ΣE

(
1

T
(Gσ)HV [ΨK]

)
Hydrostatic

dd−1Sσ .

= −
ˆ

ΣE

bn+1
2
c∑

j=1

T 2j−1 u ∧ (2ω)2j−2 ∧ P̂(HV ,j) .

(14.13)

We note that this free-energy current is transverse, thus justifying our nomenclature in calling

these class of terms as Class HV .

In any even space-time dimensions, given a set of exact forms {P(HV ,j)[F ,R]}j=1,2,...,bn+1
2
c

of appropriate degree, we can construct adiabatic constitutive relations using the formulae

above. Additional physical considerations over and above second law such as Euclidean con-

sistency, cf., [43, 45], can be used to fix these exact forms in terms of the original anomaly

polynomial of the theory. These ‘parity-odd Cardy formula’ or ‘replacement rule’ thus fix

PHV that appears in the Class HV in terms of the anomaly polynomial P [F ,R] that controls

Class A constitutive relations. Following [43, 45], this relation takes the form

PHV [F ,R,F(T)] = P [F , trR2k 7→ trR2k + 2(2π F(T))2k]−P [F , trR2k] . (14.14)

For example, if the anomaly polynomial that controls Class A is taken to be P = cg(trR
2)2,

then the PHV controlling Class HV is fixed by the Cardy formula to be PHV = 4 cg (2π F(T))2∧
trR2 + 4 cg (2π F(T))4.

This completes the discussion of hydrostatic transverse free energy currents which give

rise to adiabatic constitutive relations.

14.2 The non-hydrostatic Class HV

Let us now turn to another set of solutions to the adiabaticity equations involving vectorial

degrees of freedom. We should be focusing now on vectorial contributions that vanish in

hydrostatic equilibrium (should they not do so, we would be able to include them in our

discussion of Class HV ).

14.2.1 General construction of Class HV

For the simplest way to motivate the construction, it is convenient to start with the non-

anomalous adiabaticity equation in the grand canonical ensemble which we derived in (5.21)

and requoted in (12.1) during the Class B discussion of §12. The free energy current decom-

poses into longitudinal and transverse vectors as in (9.1). Longitudinal vectors can all be
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obtained directly from Class L; so we only need to focus now on transverse vectors to find

the remaining solutions to (12.1).

The r.h.s. of (12.1) involves at least one factor of δ
B
gµν or δ

B
Aµ, which vanish in

hydrostatics since δ
K
gµν = δ

K
Aµ = 0. In other words, if we take the hydrostatic configu-

rations off-shell by unlinking B 6= K then the Gibbs free energy flux is produced at O(δ
B

).

The statement of hydrostatic principle is simply at the this order we have compensating

energy-momentum and charge flow to ensure adiabaticity.

However, now consider the situation where the Gibbs free energy flux is itself quadratic in

departures from equilibrium, i.e., Gλ ∼ O
(
δ2
B

)
. This would be invisible from an hydrostatic

analysis. Taking divergence of such a term we should expect then that the r.h.s. of (12.1)

would have contributions at O
(
δ2
B

)
(when the derivative hits the tensor structure multiplying

the δ
B

terms), as well as terms which behave as δ
B
DµδB . Since the r.h.s. itself involves

one δ
B

insertion, it follows that the terms of interest should have the currents containing

combinations of δ
B

and Dδ
B

terms.

This simple reasoning then leads to the following ansatz for the energy-momentum and

charge currents:

(Tµν)HV
≡ 1

2

[
DρC

ρ(µν)(αβ)
N δ

B
gαβ + 2 C

ρ(µν)(αβ)
N DρδBgαβ

]
+DρC

ρ(µν)α
X · δ

B
Aα + 2 C

ρ(µν)α
X · DρδBAα

(Jα)HV
≡ 1

2

[
DρC

ρ(µν)α
X δ

B
gµν + 2 C

ρ(µν)α
X DρδBgµν

]
+DρC

ρ(αβ)
S · δ

B
Aβ + 2 C

ρ(αβ)
S · DρδBAβ

(14.15)

where C
ρ(µν)(αβ)
N = C

ρ(αβ)(µν)
N . These tensor fields are local functions of Ψ and their gradients.

This solves adiabaticty equation with the free energy current

(Nρ)HV
≡ −

(
Gρ

T

)
HV

=
1

4
δ
B
gµνC

ρ(µν)(αβ)
N δ

B
gαβ + δ

B
gµνC

ρ(µν)α
X · δ

B
Aα + δ

B
Aα · Cρ(αβ)

S · δ
B
Aβ

(14.16)

As should be clear from the construction, the tensors {CN ,CX ,CS} are a-priori completely

arbitrary with the indicated symmetry structure (modulo field redefinitions – see below).

Moreover, it is clear, that we will only obtain genuinely Class HV constitutive relations if

we make sure that the free energy current will be transverse, i.e., we demand that the first

index of the tensors be transverse:

C
ρ(µν)(αβ)
N uρ = C

ρ(µν)α
X uρ = C

ρ(αβ)
S uρ = 0 . (14.17)

The solution to (12.1) characterized by the constitutive relations (14.15) and the free energy

current (14.16) is the Class HV of Gibbsian vectors. The astute reader might wonder why we

choose to call this Class HV as opposed to GV to indicate the Gibbsian structure employed in

the construction. Our choice will be rationalized when we argue that these non-hydrostatic

vectors can be obtained from a generalized Lagrangian density (with enhanced symmetry)

in §18.

From the construction it is clear that HV terms contribute to the constitutive relations

only from the second order in gradients; the presence of an explicit derivative and a single
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δ
B

in (14.15) ensures that we cannot get a first order contribution (even in the parity-odd

case). In the context of proving the completeness of our classification (cf., Theorem 1 in

§17), we will demonstrate that the parameterization (14.15), (14.16) is complete, i.e., every

non-hydrostatic adiabatic constitutive relation with transverse free energy current is of this

form.

14.2.2 Example: second order charged fluid

Let us look at an example to illustrate the construction. Unfortunately the simplest setting

where we encounter this class happens to be for a charged fluid at second order in gradients,

owing to the observation above. We want a second order contribution to the free energy

which implies that the tensors {CN ,CX ,CS} should be zero-derivative objects from (14.15).

A-priori we have the following inequivalent tensor structures at our disposal:

C
ρ(µν)(αβ)
N ∈ {P ρ(µβν)Pαβ, P ρ(µβν)βαββ, P ρ(µP ν)(αββ)} ,

C
ρ(µν)α
X ∈ {P ρ(µ P ν)α, Pµν P ρα} ,

C
ρ(αβ)
S ∈ {P ρ(αββ)} ,

(14.18)

and permutations thereof. These tensor structures have to be contracted with δ
B
gµν and

δ
B
Aα in the free energy current (14.16). These linear variations can be expressed in terms

of hydrodynamical objects using (5.23) which we reproduce here for convenience:

δ
B
gµν = 2∇(µβν) =

2

T

[
σµν + Pµν

Θ

d− 1
−
(
a(µ +∇(µ log T

)
uν)

]
δ
B
Aµ = Dµ(Λβ + βνAν) + βνFνµ = uαDα

(µ
T

)
uµ −

1

T
vµ

(14.19)

with the vector vµ defined in (5.25). However, upon evaluating these variations on-shell as

in (D.2), we find that the tensors in (14.18) give only two different non-zero contributions

to constitutive relations (others are linear combinations of these two). Without loss of

generality, we choose to parameterize the two non-trivial choices leading to inequivalent

transverse vector contributions to the free energy current at this order as

C
ρ(µν)(αβ)
N = C

ρ(αβ)
S = 0 , C

ρ(µν)α
X = T C1(T, µ)P ρ<µ P ν>α + T C2(T, µ)Pµν P ρα . (14.20)

This gives the following transverse vector contributions to the free energy:

(Gρ)HV
= 2C1 σ

ρα vα + 2C2 Θ vρ . (14.21)

The contributions to the energy-momentum tensor and charge current are rather cumber-

some, so we give separately the terms that correspond to the C1(T, µ) term and to the
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C2(T, µ) term, respectively. From C1 we get

(Tµν)HV
= −C1

dp

dq
Θσµν − 2C1D

<µvν> + (DC1 − 2C1) v<µaν> − Ċ1 v
<µEν>

−
[

q

ε+ p
(DC1 − C1)− Ċ1

]
v<µvν> +

(3− d)C1

(d− 1)

[
σ(µρvρ u

ν) +
1

d− 1
Θ v(µuν)

]
− (d+ 1)C1

(d− 1)
ω(µρvρ u

ν) − C1 Θ v(µ uν) ,

(Jα)HV
=
[
−C1 σ

2
]
uα +

[
q

ε+ p
(DC1 − C1)− Ċ1

]
σαρvρ − (DC1)σαρaρ

+ Ċ1 σ
αρEρ + 2C1Dρσ

ρα +
(3− d)C1

2(d− 1)

q

ε+ p

[
σραvρ +

1

d− 1
Θ vα

]
− (d+ 1)C1

2(d− 1)

q

ε+ p
ωραvρ −

C1

2

q

ε+ p
Θ vα ,

(14.22)

which is built from the following fluid frame invariant scalar, vector and tensor contribu-

tions:64

CS =
dp

dq
C1 σ

2 ,

CαV =

[
q

ε+ p
(DC1 − C1)− Ċ1

]
σαρvρ +

(d+ 1)C1

(d− 1)

q

ε+ p
ωαρvρ − (DC1)σαρaρ

+ Ċ1 σ
αρEρ + 2C1Dρσ

ρα ,

CµνT = −C1
dp

dq
Θσµν − 2C1D

<µvν> + (DC1 − 2C1) v<µaν> − Ċ1 v
<µEν>

−
[

q

ε+ p
(DC1 − C1)− Ċ1

]
v<µvν> .

(14.23)

In the above expressions we use the abbreviation DC1 ≡ T C ′1 + µ Ċ1, where primes denote

T -derivatives and over-dots denote µ-derivatives. The C2 tensor structure on the other hand

gives the following transport:

(Tµν)HV
=

{
(DC2) aαvα −

[
q

ε+ p
(DC2 − C2)− Ċ2

]
v2 − Ċ2 (vα · Eα)− 2C2Dαv

α

− C2
dp

dq
Θ2

}
Pµν − 2C2

[
σ(µρ vρ u

ν) − ω(µρvρ u
ν) +

1

d− 1
Θ v(µuν)

]
,

(Jα)HV
=
[
C2 Θ2

]
uα +

[
q

ε+ p
(DC2 − C2)− Ċ2

]
Θ vα − (DC2 − 2C2) Θ aα

+ Ċ2 ΘEα + 2C2 P
αρ∇ρΘ−

q

ε+ p
C2

[
σραvρ − ωραvρ +

1

d− 1
Θ vα

]
,

(14.24)

with frame-invariant data as follows:

CS = (DC2) aαvα −
[

q

ε+ p
(DC2 − C2)− Ċ2

]
v2 − Ċ2 (vα · Eα)− 2C2Dαv

α ,

CαV =

[
q

ε+ p
(DC2 − C2)− Ċ2

]
Θ vα − (DC2 − 2C2) Θ aα + Ċ2 ΘEα + 2C2 P

αρ∇ρΘ ,

CµνT = 0 . (14.25)

64 For the form of frame-invariant data we use the conventions of [9, 29] as described in (11.14).
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All the above expressions are written in the basis of independent scalars, vectors and tensors

as listed in Table 2. From that table and the list in Table 7, it is evident that most of

the above terms are fixed in terms of Class B and Class D parameters. The only terms

that are not obvious to classify are the combinations (CαV , C
µν
T ) = (Dρσ

ρα, D<µvν>) and

(CS , C
α
V ) = (Dαv

α,−Pαρ∇ρΘ). It would be interesting to study the second order charged

fluid in more detail and see if these combinations get fixed in Class L.

From these calculations, we can now also see why there are no Class HV terms in neutral

fluids at second order. In neutral fluids, only the tensor structure CN would be relevant.

Hence we would take the tensors in the first line of (14.18) and would compute the associated

constitutive relations. To this end we would perform contractions with the on-shell expression

of δ
B
gµν . However, as can be seen from (D.2), for uncharged fluids δ

B
gµν only has pieces that

are either completely transverse or completely longitudinal. A quick glance at the structure

of the possible CN terms shows that in this way we could not get a transverse free energy

current.

We find it rather curious that Class HV constitutive relations are sparse (at least at

low orders in the gradient expansion). There is no reason for the number of transverse

vectors to be limited at a given order in gradient expansion, but it appears that many such

contributions are subsumed in other Classes. It would be useful to have a clear intuition

for why this is the case. One hopes that by studying such constitutive relations in various

hydrodynamic systems would help reveal some rationale for the paucity of Class HV .

15 Class A: Lagrangian solution to anomalous adiabaticity equation

The framework of adiabatic fluids whilst sufficiently general to allow us to discuss anoma-

lous hydrodynamics and being formulated as such to incorporate these effects, we have so

far refrained from analyzing such systems explicitly. The main novelty with the anomalous

constitutive relations is that one has to account for contributions which account for a modifi-

cation of the equations of motion due to the presence of flavour and gravitational anomalies.

Indeed it was in attempting to understand these constitutive relations that the adiabaticity

equation was first proposed in [40].

Thus far the only exposure to anomalies we have had has been in the context of hydro-

statics. It has been well known for a while that Class H contains Class A, see for example the

analyses of [29, 42–45]. However, we have established that Class HS ⊂ Class L, which begs

the question whether we can understand the anomalous transport in terms of an effective

action. Indeed, one could take the philosophy that for the adiabatic fluid framework achieve

its stated goal of enabling us understand how hydrodynamics can be derived from an action

principle, we would need to demonstrate that the anomalous transport can be captured by

a Lagrangian, thus establishing that Class A ⊂ Class L.

There is reason for optimism on this front, since [8] have demonstrated that purely

flavour anomalies can be captured by non-dissipative effective actions (Class ND). So it

would seem that by suitably reverse engineering the construction of [8] and implementing

the Legendre transformation we should be able to solve for anomalous contributions to the

adiabatic hydrodynamics. Indeed this is all that needs to be done in the case of flavour

anomalies. The mixed flavour and gravitational anomalies, however, turn out to be a bit

more intricate. In fact as mentioned earlier, it provides us with a strong rationale to switch

from the formalism of non-dissipative fluid effective actions to the framework proposed herein.
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In this section we will show that a specific class of anomalous terms is a subset of Class L,

i.e., they can be formulated in terms of a Lagrangian. For the case of flavour anomalies, this

is a simple modification of [8] which we will use as a guiding template. We will extend that

analysis to the case of general mixed anomalies in what follows. We will focus on constructing

particular solutions to the anomalous adiabaticity equation (5.12). This will be sufficient to

capture all the flavour and mixed contributions which are neither gauge nor diffeomorphism

invariant, but will be insufficient to capture the gauge and diffeomorphism terms that are

necessary for the consistency of the Euclidean partition function. The terms we are unable

to include are the HV terms discussed in §14, which comprise of the transcendental anomaly

contributions [45]. In the present section our main aim will be on finding solutions to the

off-shell adiabaticity equation; only in §16.4 will we worry about the on-shell conditions and

the anomalous Ward identities for these require Schwinger-Keldysh doubling of the degrees

of freedom. Subsequently in §18 we will give a prescription that does appear to capture all

anomaly induced transport in an extended theory of adiabatic hydrodynamics.

15.1 Flavour anomalies

Let us begin our discussion by recalling some salient facts from the analysis of [8] in the

context of effective actions for flavour anomalies. In the framework of Class ND effective

actions [8] showed that an effective action given as a transgression form provides a solution

to (5.12) with Tµ⊥
H = 0. More specifically, it was shown that for a hydrodynamic system

in d = 2n dimensions living on a spacetime manifold M one has a local effective action in

one higher dimension.65 We have an effective action that can be succinctly written on an

extended spacetime Md+1 with ∂Md+1 = M being the physical spacetime where the fluid

propagates. The effective action takes the beguilingly simple form

Sanom =

ˆ
Md+1

√
−gd+1 Lanom =

ˆ
Md+1

VP [A, Â] =

ˆ
Md+1

u

2ω
∧
(
P [F ]− P̂ [F̂ ]

)
. (15.1)

In the equation above, we have also provided an explicit expression for the transgression

form VP [A, Â] in terms of in terms of the hydrodynamic velocity 1-form u, the vorticity

2-form ω and the anomaly polynomial P [F ] which is a d+ 2 = 2n+ 2 form built from the

gauge invariant field strengths.66 Note that du = 2ω − u ∧ a where a is the acceleration

1-form.

The transgression form denoted herein as VP [A, Â] is a functional of two gauge connec-

tions A and Â. The former is simply the background gauge field source in differential form

notation, while the latter is what was called in [8] as the “hydrodynamical shadow gauge

field”. It is a linear combination of the background source and the hydrodynamic velocity

field defined as

Â = A+ µu , (15.2)

65 This follows from the fact that we can use the anomaly inflow mechanism [102] to construct a local

effective action by coupling our anomalous quantum system to a topological theory in the higher dimension.
66 We will follow the notational conventions of [8, 40, 43–45] using bold-face letters to indicate differential

forms etc. Furthermore, to retain compact expressions we perform some formal manipulations with differential

forms as in the aforementioned references. Divisions by a differential form implicitly indicates that the

numerator when expanded out always has a factor which cancels the form we divide by; the expression in

(15.1) is a 2n+ 1 form written as if it were a ratio of a 2n+ 3 form and a 2 form. We refer the reader to the

above references where these concepts are explained in greater detail.
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or more directly in terms of the hydrodynamic fields B we have for its components

Âµ = Aµ + T 2 βµ (Λβ + βσ Aσ) . (15.3)

The symbol P̂ denotes the anomaly polynomial evaluated over the shadow gauge field. This

shadow field appears pretty much universally in all attempts to understand anomalous trans-

port in hydrodynamics; it was first encountered during an attempt to solve the anomalous

adiabaticity equation in [40] and plays a significant role in the anomalous hydrostatic parti-

tion function (for reasons that will be transparent soon) [42–45].

As written the anomalous effective action is simply a functional of the background

sources {gµν , Aµ} and the hydrodynamic fields B = {βµ,Λβ}. The gauge field dependence

is manifest, while the velocity field uµ can be expressed in terms of B using (5.1). What is

perhaps less clear is the dependence on the background metric, but owing to the presence of

the shadow field in the transgression form, one has a non-trivial metric dependence. To be

sure we are extending our sources and hydrodynamic fields to live on Md+1. We will use the

same symbols to denote the bulk hydrodynamic fields only differentiating the components

by the indices when necessary. Lowercase Latin indices from the later half of the alphabet

will denote bulk indices, with ⊥ being used to denote the direction normal to the physical

spacetime M. To wit,

Ψd+1 = {gmn, Am,βm,Λβ} , β⊥ = 0 . (15.4)

Thus, despite its origins within the framework of non-dissipative effective actions in

[8], (15.1) should be viewed as a particular element of Class L for our purposes with L =

VP [A, Â]. Strictly speaking we are now extending our definition of Class L to include local

Lagrangians in one higher dimension, as we must, if we insist on dealing with anomalous

symmetries.

Generically transgressions are defined on a space of interpolating connections. For in-

stance, given two connections say A1 and A2 respectively, the transgression form denoted

more generally as T [A1,A2] can be viewed as a functional of a continuous set of connections

At with t ∈ [0, 1] interpolating between At=0 = A1 and At=1 = A2. One can write this

quite succinctly for gauge connections as

T [A1,A2] =

ˆ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
, (15.5)

with

At = tAt=1 + (1− t)At=0 . (15.6)

Having this explicit expression is useful for carrying out the variational calculus we need

to do to check that the functional Sanom does indeed provide a solution to the anomalous

adiabaticity equation (5.12) with Tµ⊥
H = 0.

For the particular choice of connections At=0 = Â and At=1 = A we define an in-

terpolation from the hydrodynamic shadow field to the physical gauge field source via

At = A+ (1− t)µu. The corresponding field-strengths are given by

F = dA+A2 = B + u ∧E ,

F̂ = dÂ+ Â2 = B̂ + u ∧ Ê = B + 2ωµ+ u ∧ (E −Dµ− aµ) .
(15.7)
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a and ω are the acceleration and vorticity defined after (15.1), while B and E are the rest

frame magnetic 2-form and electric 1-form respectively. The interpolating field-strength is

Ft = tF + (1− t)F̂ since (∆A)2 = 0 . One can, of course, check explicitly that

VP [A, Â] ≡
ˆ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
=
u

2ω
∧
ˆ 1

0
dt

[
dFt
dt
·
(
∂P
∂F

)
t

]
=
u

2ω
∧
(
P − P̂

)
,

(15.8)

as indicated above.

To compute the variation of these transgression forms, we need to evaluate δVP [A, Â].

The explicit computation is described in Appendix D of [8] and we quote the final result:

δVP [A, Â] = δA · ?2n+1JH − δÂ · ?2n+1ĴH + d
{
δA · ?JP + δu ∧ ?qP

}
. (15.9)

Here JH is the Hall current defined directly in terms of the variation of the anomaly poly-

nomial:

?2n+1 JH =
∂P
∂F

, (15.10)

with a similar expression for the shadow Hall current ĴH . The two other currents appearing

in (15.9) are defined in terms of the boundary terms arising from the variation

ˆ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]
= δA · ?JP + δu ∧ ?qP , (15.11)

where we have used u ∧ dAt
dt = 0 and parameterized the terms involved in the variation in

terms of gauge potential variation and the velocity field variation. These quantities JP and

qP are determined directly from the variational calculus to be

?JP ≡
ˆ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dAt

dt

]
=
u

2ω
∧
{∂P
∂F
− ∂P̂
∂F̂

}
,

(15.12)

and

?qP =

ˆ 1

0
ds

ˆ s

0
dt

[
µ ·
(

∂2P
∂F ∂F

)
t

· dAt

dt

]
= − u

(2ω)2
∧
{
P − P̂ −

(
F − F̂

)
· ∂P̂
∂F̂

}
.

(15.13)

So far the variational calculus did not call for any details of how we are parameterizing

the hydrodynamic fields. While we have indeed written the final expression in terms of

δu, the variation of the velocity field, it is easy to convert this to the hydrodynamic field

variations using (D.1). Explicitly one can evaluate variation of the action in terms of the
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sources and the hydrodynamic fields67 to obtain an explicit answer for the variation as

δ

ˆ
Md+1

VP [A, Â] =

 
M

{(
JmH − Pmn ĴnH

)
· δAm − µ · ĴqH

[
P (m
q un) δgmn + (Pqm + uq um)T δβm

]
−T uq ĴqH · (δΛβ +Amδβ

m)

}

+

ˆ
M

√
−g
[
JαP · δAα + q(α

P u
β)δgαβ

]
. (15.14)

In deriving the above we have used (D.10) to write the variation of Â in terms of the physical

fields and their variations. For notational simplicity we have also abbreviated

 
M

≡
ˆ
Md+1

√
−gd+1 (15.15)

so as to avoid cluttering up the equations.

As we see there are two types of contributions to the variation of our Lagrangian

VP [A, Â]. On the one hand, we have some bulk variations (the first two lines in the r.h.s of

(15.14)) which define the bulk currents living on Md+1. To wit,

Tmn
(d+1)

= −µ · ĴqH
(
Pmq u

n + Pnq u
m
)
, Jm

(d+1)
= JmH − Pmn ĴnH ,

h(d+1)
m = −µ · ĴqH (Pqm + uq um)T , n

(d+1)
= T uq ĴqH .

(15.16)

These have to to satisfy the analog of the bulk adiabaticity equation. This can be shown di-

rectly by running our argument for the Bianchi identity in the bulk theory; cf., the discussion

around (G.12) for an explicit proof of this statement.

More interesting for us are the boundary terms in the last line of (15.14) – these are

the contributions that arise from the inflow mechanism. In particular, they capture the

constitutive relations for anomalous hydrodynamics. Since we have the terms explicitly in

terms of the source variations we can directly read off from here using (9.3) the anomalous

currents to be

(Tαβ)A = qαPu
β + qβPu

α , (Jα)A = JαP , (JαS )A = 0 . (15.17)

These currents satisfy the anomalous adiabaticity equation (5.12) on the boundary man-

ifold M. This was first established in [40] and follows immediately from the previous anal-

ysis of [8].68 As described there, by isolating the anomalous contributions and solving the

adiabaticity equation to give the above particular solution (15.17), one has accounted for

all flavour anomalies. One can then couple the anomalous Lagrangian Lanom to any non-

anomalous adiabatic fluid Lagrangian system and continue to satisfy adiabaticity.

Finally, let us make a remark on the construction above which will be useful for gen-

eralizations. The anomalous Lagrangian density
√
gd+1 Lanom is a scalar density on the

67 One can also convert this variation to one involving the reference fields introduced in §10.2. These should

also be viewed as living on the reference bulk spacetime since the hydrodynamic fields which they are a proxy

for are defined in terms of maps from there to the physical spacetime. We will shortly come back to this

viewpoint to facilitate some parts of the analysis.
68 We will give a more detailed derivation for the mixed anomalies in §15.2. Setting the gravitational terms

in that analysis to zero will demonstrate the claim herein explicitly.
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bulk spacetime manifold. Per se, in keeping with our general philosophy this is an off-shell

quantity, since we have nowhere insisted in our construction above that the fields be on-

shell. However, restricting to hydrostatics by enforcing B = K one ends up with an on-shell

construction which as we now appreciate is related to the hydrostatic partition function

WHydrostatic (9.25).

In general the relation between the hydrostatic partition function and the non-dissipative

fluid formalism is complicated by a non-linear Legendre transform. However, for the flavour

anomalies the fact that Lanom (15.1) is independent of the entropy density makes the Legen-

dre transformation trivial.69 This also to some extent underscores the rationale for introduc-

tion of the shadow gauge field Â; the shadow field plays a crucial role in ensuring the correct

properties of the hydrostatic partition function as has been described in earlier works.

15.2 Mixed anomalies

We would now like to generalize anomalous adiabatic fluids to the case where we have gravi-

tational or mixed anomalies. One of the motivations for reviewing in some detail the flavour

case in the previous subsection, was that it provides a hint of how one should generalize

the construction to incorporate gravitational effects. To a large extent a specific solution

to the anomalous adiabaticity equation in the presence of mixed anomalies can be obtained

by treating the gravitational field as a non-abelian flavour field. This is roughly the correct

intuition, though as we will see in the course of a more thorough analysis below there are

some subtleties we need to deal with. In particular, we will see that the entropy current is

modified in the presence of gravitational effects, no longer vanishing as in (15.17).

We are going to start our discussion for the mixed anomaly by mimicking the discussion

for the flavour case. Specifically, since there is a close connection between the off-shell

Lagrangian and the on-shell hydrostatic partition function we are going to take inspiration

from the latter which is by now well understood for mixed anomalies [44]. Once again we

imagine that the set of anomalies of our underlying quantum system is encoded in an anomaly

polynomial P [A,Γ] with A being the gauge connection and Γ the spin connection for the

background geometry.70 We are also unabashedly going to work in the bulk geometry Md+1

with the physical spacetimeM = ∂Md+1 as before. The general set of conditions we impose

on the geometry is similar to that encountered in §15.1, though we will have to add some

new ingredients as we proceed.

In analogy with the flavour analysis, let us consider modifying Class L by adding to the

Lagrangian a higher dimensional term of the form
ˆ
Md+1

√
−gd+1 Lanom =

ˆ
Md+1

VP [A,Γ, Â, Γ̂] =

ˆ
Md+1

u

2ω
∧
(
P [F ,R]− P̂ [F̂ , R̂]

)
(15.18)

The specific choice of the Lagrangian is motivated by the fact that VP [A,Γ, Â, Γ̂] is the

canonical form for the scalar part of the hydrostatic anomalous partition function (Class

HS). The key difference from (15.1) is the dependence on the background geometry; the

69 This was the reason why the direct comparison of the non-dissipative effective action with the hydrostatic

partition function worked quite seamlessly in the consistency checks carried out in [8].
70 We will mostly work with the one-form spin connection since it is most conducive for the purposes of

carrying out the formal manipulations. Translating this to the Christoffel connection is reasonably straight-

forward. We will in fact do so when we write out some explicit components.
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anomaly polynomial now is a functional both of the background field strength and the

background curvature R.

Let us examine the dependence of the potential anomalous Lagrangian introduced above:

apart from the backgound sources {gmn, Am} we have also the shadow fields appearing in

Lanom. The shadow flavour gauge connection Â is the same as before being given by (15.2).

The shadow spin connection however is new and requires to be defined. A natural course

of action is to follow the partition function analysis of [44] and demand that this be given

in terms of the background spin connection, the velocity field, and a spin chemical potential

Ωµ
ν as

Γ̂µν = Γµν + Ωµ
ν u . (15.19)

Modulo defining the spin chemical potential we are now equipped with a putative anomalous

Lagrangian.

The spin chemical potential should couple to the background metric structure since its

origins are in the Lorentzian structure of the local tangent space geometry onM (and hence

by inflow on Md+1). In hydrostatic equilibrium the analysis of [44] shows that it is related

to the gradient of the Killing vector Kµ which extends trivially to a Killing field on Md+1.

The relation in the hydrodynamic variables living on the physical spacetime M is just

(Ωµ
ν)Hydrostatic = T DνK

µ (15.20)

with T being the equilibrium temperature. We could take this expression off-equilibrium and

off-shell by simply replacing Kµ 7→ βµ. However, we need to be careful with the symmetries:

for a Killing vector field D(µKν) = 0 by virtue of Killing’s equation. Hence only the antis-

symmetric part of the tensor DµK
ν is non-zero. Away from equilibrium when we consider

Dµβ
ν we are likely to encounter both the symmetric and anti-symmetric contributions. The

näıve generalization Kµ 7→ βµ would retain both, but we claim that the correct off-shell

extension of (15.20) should only keep the anti-symmetric part.71 With this motivation we

define:

Ωµ
ν =

1

2
T (Dνβ

µ −Dµβν) ≡ T Q µα
νβ Dαβ

β , (15.21)

where we have introduced the antisymmetrizer Qµα
νβ = 1

2(δµβ δ
α
ν − gµα gνβ) for future con-

venience. By construction we ensure that in hydrostatic equilibrium we recover the spin

chemical potential of [44].

The main claim we wish to make is that the Lagrangian density VP [A,Γ, Â, Γ̂] provides

a solution to the adiabaticity equation (5.12). Furthermore, the currents derived from this

Lagrangian are consistent with those derived earlier in [44] in hydrostatic equilibrium. We

will establish this by a straightforward computation.

15.3 Variational calculus for mixed anomalies

The anomalous Lagrangian density VP [A,Γ, Â, Γ̂] (15.18) is once again a transgression form.

Let us therefore focus on the transgression formula between the pairs of gauge and spin

71 We do not have an a-priori reason to motivate this particular choice; what we can see is a post-facto

argument. Choosing the spin chemical potential to contain the symmetric part of the gradient results in a

tension with the off-equilibrium adiabaticity equation; see the discussion around (15.30) for what goes wrong.

We note that choosing the anti-symmetric part makes the shadow connection metric compatible (but not

torsion free). This property however does not uniquely characterize our choice.
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connections {At=1,Γt=1} = {A,Γ} and {At=0,Γt=0} = {Â, Γ̂} respectively. Since the grav-

itational connection Γ behaves exactly like a non-abelian gauge connection, the calculation

is a straightforward generalization of what we had to in the case of the flavour anomaly.

We begin by considering the first variation of the transgression form, which is given

directly by the analog of (15.14), except that now we have terms coming from the spin

connection. This can be written in a reasonably compact form by introducing bulk Hall

currents and boundary anomalous currents as:

δVP

[
A,Γ, Â, Γ̂

]
= δA ∧ ·?2n+1JH − δÂ ∧ ·?2n+1 ĴH

+
1

2
δΓab ∧ ?2n+1ΣH

b
a −

1

2
δΓ̂ab ∧ ?2n+1Σ̂H

b
a

+ d
{
δA ∧ · ? JP +

1

2
δΓαβ ∧ ?ΣP

β
α + δu ∧ ?qP

}
,

(15.22)

The bulk Hall currents are themselves given in terms of the derivatives of the anomaly

polynomial with respect to the field strengths and are given by

?2n+1JH =
∂P
∂F

, ?2n+1ΣH
b
a = 2

∂P
∂Ra

b
, (15.23)

These currents will play a role as before in determining the amount of anomaly inflow into the

boundary theory. The anomaly induced boundary currents can also be determined explicitly

and the only change due to the spin connection is a slight generalization of (15.13) for the

current qP to include appropriate gravitational contributions. The flavour anomaly induced

current JP being blind to the spin connection remains unchanged as in (15.13). In addition

we have a spin anomaly current ΣP . To write down the expressions for the currents, it is

useful to introduce an electromagnetic splitting of the field strength and curvature:

B = F − u ∧E , E = −iuF ,

(BR)αβ = Rα
β − u ∧ERαβ , ER

α
β = −iuRα

β ,
(15.24)

where iu denotes contractions with uµ. With this information we can now write down all

three currents, as we do below for completeness:72

?JP =

ˆ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dAt

dt
+

(
∂2P

∂F ∂Rα
β

)
d(Γαβ)t
dt

]
=
u

2ω
∧
{∂P
∂F
− ∂P̂
∂F̂

}
=
∂VP
∂B

,

?ΣP
β
α = 2

ˆ 1

0
dt

[(
∂2P

∂Rα
β∂Rγ

δ

)
t

d(Γγδ)t
dt

+

(
∂2P

∂Rα
β∂F

)
· dAt

dt

]
= 2

u

2ω
∧
{ ∂P
∂Rα

β
− ∂P̂
∂R̂α

β

}
= 2

∂VP
∂(BR)αβ

,

?qP =

ˆ 1

0
dt (1− t)

[
µ ·
(

∂2P
∂F ∂F

· dAt

dt
+

∂2P
∂F ∂Rα

β

d(Γαβ)t
dt

)
+ Ωα

β

(
∂2P

∂Rα
β∂Rγ

δ

d(Γγδ)t
dt

+
∂2P

∂Rα
β∂F

· dAt

dt

)]
= − u

(2ω)2
∧

[
P − P̂ − (F − F̂ ) · ∂P̂

∂F̂
− (Rα

β − R̂α
β)

∂P̂
∂R̂α

β

]
=

∂VP
∂(2ω)

,

(15.25)

72 For further details we refer the reader to [44].
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In order to obtain bulk and boundary Bianchi identities from the basic variation (15.22),

we need to follow the same logic as in the case of flavour anomalies. We perform the detailed

computation in Appendix G and only quote the result for the Bianchi identities of the

(physical) boundary theory:

Dβ(Tαβ)A = (Jβ)A · Fαβ +
gασ√
−g

δ
B

[√
−g T (qP )σ

]
+

1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα ,

(15.26)

and

Dα(Jα)A = J⊥H − Ĵ⊥H , (15.27)

which are satisfied by the anomalous currents

(Tαβ)A =
2√
−g

δSanom
δgαβ

∣∣∣∣
boundary

= qαPu
β + qβPu

α +
1

2
Dρ

(
Σ
α[βρ]
P + Σ

β[αρ]
P − Σ

ρ(αβ)
P

)
,

(Jα)A =
1√
−g

δSanom
δAα

∣∣∣∣
boundary

= JαP .

(15.28)

We now want convert these Bianchi identities into an adiabaticity equation and check

that (5.12) is satisfied with an appropriate choice of currents. Since the energy-momentum

and charge currents are defined by varying the Lagrangian with respect to the sources, these

currents are already manifest in the above expressions. Plugging these in and demanding

that the following adiabaticity equation be upheld

Dα(JαS )A + βα

[
Dσ(Tασ)A − (Jσ)A · Fασ −

1

2
DγΣ

⊥[αγ]
H

]
+ (Λβ + βαAα) ·

(
Dσ(Jσ)A − J⊥H

)
= 0

(15.29)

results in a non-trivial solution for (JαS )A! More precisely, we find that in addition to (15.28),

we need to define the following entropy current in order to get a solution to (15.29):

(JαS )A = −1

2
βσ Σ̂

⊥[ασ]
H . (15.30)

The expressions (15.28) and (15.30) define a required particular solution to (5.12) that

can be used to remove the anomaly terms (both flavour and Lorentz anomalies). What is

curious in our construction is the fact that we have necessarily had to modify the entropy

current in order to achieve this. Specifically, the entropy current (JαS )A does not quite satisfy

(9.4) anymore. We conclude that the solution to the anomalous adiabaticity equation requires

modifying the entropy current apart from noting that given the variational principles, it is

the only current that we are free to manipulate.

While the reader might consider the above set of statements somewhat ad-hoc, we should

add that the structure of the terms is rather tightly constrained. We have not been able to

find any other Lagrangian solution to the anomalous adiabaticity equation. Moreover, small

modifications such as allowing the spin chemical potential to be defined directly in terms of

the gradient of the velocity field (i.e., without the anti-symmetrization introduced in (15.21))

ends up destroying the structure. One intuition we can offer is the following: in contrast
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to the flavour anomaly discussion of §15.1 the new element we have to account for is the

background metric variation. Since the diffeomorphism symmetry enters more universally

any slight modification of the structures results in inconsistencies. We believe that this

is indicative of some underlying structure that can be used to formulate our arguments

more robustly – we will pursue this line of thought in the future (see however §18 for some

preliminary ideas on this front).

It is worth recording that in hydrostatic equilibrium Σ̂
⊥[αβ]
H = 0 and we reproduce the

result of [44]. Furthermore, we also see that the anomalous stress-tensor and charge current

in (15.28) take precisely the form that is expected by näıvely generalizing hydrostatic results.

We take these to be important consistency checks of our construction. Attempting to solve

the adiabaticity equation directly to obtain off-shell currents, leads to somewhat different

constitutive relations. While this will be discussed elsewhere [103], it is worth noting that

this result uses a different spin chemical potential (in particular they take the gradient of

the thermal vector eschewing the projection to the anti-symmetric part as in (15.21)).

More generally, it is worth keeping in mind that the Class A constitutive relations are

particular solutions to the inhomogeneous adiabaticity equation. As always these are am-

biguous to shifts by homogeneous solutions. In terms of the current discussion, we have the

freedom to add into Class A any other adiabatic constitutive relation, whilst maintaining adi-

abaticity. So two a-priori different looking solutions to the anomalous adiabaticity equation

should be demonstrably related by adding in a linear combination of terms from the other

six classes. More formally, Class A constitutive relations take values in the coset (Adiabatic

constitutive relations)/(Class {L,B,C,V}) with V = HV ∪HV denoting the vector classes.

15.4 On-shell dynamics of anomalous adiabatic fluids

Given that we have off-shell adiabatic constitutive relations (15.28), (15.30) we can ask

whether our anomalous effective action (15.18) satisfies the correct on-shell constraints. A-

priori we expect based on our knowledge of the flavour anomaly discussion of [8], that the

on-shell Ward identities are not going to be obeyed by our Lagrangian system. We will show

in §16.4 that a thermofield doubled construction can fix this problem. For now we are simply

going to use the construction of the previous subsections to show that the on-shell equations

we obtain from Class L anomalous hydrodynamics are incorrect.

To get started, let us assume that
´
Md+1

VP [A,Γ, Â, Γ̂] provides for us a particular

solution to the anomalous adiabaticity equation. The complete hydrodynamical system as

we have discussed hitherto is then a combination of a non-anomalous part and the anomalous

terms we have just taken care of. So we can write an effective action for our system as a

sum of two contributions

Seff [Ψ] =

ˆ
M

√
−g Ln-a [Ψ] +

ˆ
Md+1

VP [A,Γ, Â, Γ̂] (15.31)

and treat the entire bulk + boundary dynamics as part of an extended Class L system.

In what follows we will denote the contribution from the non-anomalous terms in Class L

arising from Ln-a by the subscript ‘n-a’ so as to keep track of them explicitly. These terms
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then are required to satisfy the non-anomalous Bianchi identities from (9.12):

DνT
µν
n-a = (Jν)n-a · Fµν +

gµν√
−g

δ
B

(√
−g T (hν)n-a

)
+ gµνT nn-a · δBAν ,

DσJ
σ
n-a =

1√
−g

δ
B

(√
−g T nn-a

)
.

(15.32)

We note that we are not adding any bulk non-anomalous terms since the presumption is

that the physical fluid lives onM with the bulk fields on Md+1 simply providing us with an

efficient way to keep track of the inflow and Hall currents.

Since we are interested in the on-shell dynamics, let us introduce the reference fields

{�a,Λ�} and their related pullback fields {ϕa, c}.73 The dynamical information of the theory

is obtained by extremizing the effective action Seff with respect to the pullback fields.

Performing the required manipulations, we firstly find sensible equations of motion for

bulk quantities which we quote in §G.2. Similarly, for the boundary degrees of freedom we

find that the extremization in the Lie orbit of the reference sources {gab,Aa} leads to

gµν√
−g

δ
B

(√
−g T [(hν)n-a + (qP )ν ]

)
+ gµν T nn-a · δBAν ' 0 ,

1√
−g

δ
B

(√
−g T nn-a

)
' 0 .

(15.33)

Note that the anomalous part of the action only contributes a single term proportional

(qP )µ. This can be seen from (G.6) where all the boundary terms except the very last one

give vanishing contribution when we restricted to the constrained variation in the Lie orbit

of the reference sources.

Using then the Bianchi identities (15.26), (15.27) together with the on-shell dynamical

equations (15.33) we find that the on-shell fluid configurations on the boundary M obey

Dβ

(
Tαβn-a + (Tαβ)A

)
' (Jσn-a + (Jσ)A) · Fασ +

1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα ,

Dσ(Jσn-a + (Jσ)A) ' J⊥H − Ĵ⊥H . (15.34)

We note that these are not quite the correct hydrodynamic equations. The anomalous Ward

identities should rather be

Dβ

(
Tαβn-a + (Tαβ)A

)
' (Jσn-a + (Jσ)A) · Fασ +

1

2
DγΣ

⊥[αγ]
H ,

Dσ(Jσn-a + (Jσ)A) ' J⊥H .
(15.35)

The troublesome terms are the shadow (hatted) currents on the r.h.s. of (15.34).

Thus, we conclude that further modification is required in how one formulates the field

theory of the pullback fields for it to match with the usual hydrodynamics. This will be the

focus of §16.4 where we will follow the analysis of [8] to show that the correct Ward identities

which require removing the shadow terms from the r.h.s. of (15.34), can be obtained by

working with a doubled set of degrees of freedom. Before applying the Schwinger-Keldysh

technology to Class A, let us now set up an appropriate general formalism.

73 For the discussion of anomalous fluids the reference fields and the reference manifold are taken to be

(d + 1)-dimensional. However, apart from using different indices as summarized in Table 13 we will refrain

from introducing a new notation for the bulk reference quantities; hopefully it will be clear from the context

whether we are discussing the bulk or the boundary reference data.
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16 Schwinger-Keldysh formalism for Class L and application to Class A

Thus far we have tried to formulate hydrodynamics in terms of response to a single set

of background fields {gµν , Aµ}. However, since hydrodynamics is ultimately a statistical

system, we should allow for statistical fluctuations. By the fluctuation-dissipation theorem

these statistical fluctuations are closely tied to allowing statistical dissipation. The correct

framework for dealing with this is the Schwinger-Keldysh formalism [34, 35] whereby the

dynamical fields (and the background sources) are doubled.

Now the astute reader would wonder why we bring up the issue of doubling the fields

since the basic premise of the adiabatic fluid formalism is that it is conservative; on-shell

the adiabaticity equation ensures that no entropy is produced thus allowing no dissipation.

Nevertheless since we are interested in classifying hydrodynamic transport in general, it is

worthwhile analyzing the situation in the adiabatic case which provides a useful context for

the general discussion. Furthermore, our discussion of anomalous transport in §15 confronts

us with the issue of getting unwanted shadow contributions to the Ward identities. As we

will show, this is an artifact of working with a single copy theory and doubling the degrees

of freedom recovers for us the correct Ward identities, despite falling within the purview of

adiabatic transport (Class A) as in [8].

There are two issues we wish to highlight in the hydrodynamic Schwinger-Keldysh func-

tionals that we will construct below. The first is the doubling of degrees of freedom and the

associated symmetries. The second is the fact that such functionals a-priori allow interac-

tions between the two sets of degrees of freedom. These terms are are sometimes referred

to as influence functionals following [76]. In fact, our previous discussion of Lagrangian

constructions of anomalous hydrodynamic effective actions in [8] already exemplified the oc-

currence of such interaction terms. We will however take this opportunity to rephrase the

construction in a more canonical fashion. Along the way we will see some advantages of the

Class L reference field formalism for the Schwinger-Keldysh functionals. While this appears

to hold useful clues in understanding how to apply the Schwinger-Keldysh construction in

generic non-equilibrium dynamics, we will also find a certain tension with the adiabaticity

equation. The following discussion should be viewed as a first step in setting up the general

construction and we will in particular highlight some of the missing ingredients. A fuller

exposition of these ideas will however be postponed to a future publication [80].

16.1 Why doubling?

Before we return to the hydrodynamic formalism, let us briefly discuss (microscopic) Schwinger-

Keldysh path integrals to motivate the doubling of degrees of freedom. Our discussion follows

[4]. Consider some generic quantum field theory evolving a near-thermal mixed state and

this way underlying the dynamics of a given fluid. Since the mixed state is described by

a density matrix, it is not sufficient to evolve just one copy of a state. Rather, one has to

account for evolution of a state and its conjugate.

In order to unitarily evolve such mixed states, one introduces a Schwinger-Keldysh time

contour, which evolves an initial configuration forward in time (beyond the latest operator

insertion) and then comes back to the initial time. This is illustrated in Fig. 3 for the

typical case of a thermal initial state. While this in principle defines the path integral, it

is useful to view this particular setup as unitary evolution of two copies of the system, one

forward in time, the other backward in time. The two complementary evolutions correspond
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O

OR

OLρ0

Fig. 3: The complex time plane for Lorentzian evolution in the Schwinger-Keldysh path integral de-

scription. It is also illustrated how every operator O in the original (single-copy) quantum field

theory is represented by two copies {OR,OL} in the Schwinger-Keldysh setup.

to propagating the state and its conjugate, which make up the initial density matrix. We

can summarize this prescription succinctly by defining a Schwinger-Keldysh path integral as

ZSK [JR,JL] = Tr
{
U [JR] ρ0 U [JL]†

}
, (16.1)

where ρ0 is the initial state, and U [J ] is the unitary evolution operator, deformed by a

source J . Such a path integral now allows for the computation of arbitrary time-ordered

correlators by differentiating with respect to JR and JL. From the definition of the path

integral (16.1), one can readily infer the kind of correlators that can be computed in the

Schwinger-Keldysh theory. These are typically of the form

Tr
{
ρ0 T̄

(
U †OLU †OL . . .

)
T (UORUOR . . .)

}
, (16.2)

where {OR,OL} are the Schwinger-Keldysh copies of some operator O in the original theory,

and T̄ and T denote anti-time ordering and time-ordering, respectively. We can see that left

operators are always in the future of right operators, thus explicating the time contour in

Fig. 3.74

Thus far, we have only been concerned with the microscopic theory. In this context, the

Schwinger-Keldysh action is simply given by the independent difference of the single-copy

theory actions:

SSK [ΦR,ΦL] = S[ΦR]− S[ΦL] , (16.3)

where ΦR,L denote the field content and the sign difference is due to the left copy evolving

under the conjugate evolution operator U †. That is, the two copies of the system do not

interact dynamically (although they may well be entangled, depending on the initial state).

Now, if we want to pass to the coarse-grained low-energy description in terms of hy-

drodynamics, it is natural to expect that a version of the doubling pertains. However, the

74 We note in passing that out of 2n possible n-point correlators in the Schwinger-Keldysh time-ordered

theory, only 2n−1 are independent. Indeed, if one focuses on correlation functions of the difference operators

OR − OL, the generating functional (16.1) can be simply be evaluated at JR = JL ≡ J . However, as

a consequence of the unitarity of U , in this limit the path integral degenerates to Tr {ρ0}, thus becoming

independent of J entirely and rendering the sector of difference operator correlators trivial (or topological).

See [4] for a full exploration of the important consequences of this observation.
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crucial difference to the microscopic setup is that the theory, upon integrating out ultraviolet

degrees of freedom, generically generates interactions between the two copies and the simple

structure (16.3) breaks down [76]. While the hydrodynamic description is thus still expected

to exhibit some sort of a doubling, we have to raise the question what kind of couplings shall

be allowed. At this point of our discussion we are clearly lacking a principle for describing the

possible interaction terms in the effective theory. The main point of the discussion below is

to demonstrate that allowing for such a coupling between copies is powerful enough to solve

the very subtle issues we encountered in our discussion of anomalies in Class L. We will take

this as strong evidence for the usefulness of Schwinger-Keldysh doubling in hydrodynamics.

However, we will also see that generic interactions between two copies lead to violations

of the second law. In later sections of this work, we will use this fact as a benchmark for

constraining Schwinger-Keldysh hydrodynamics by postulating a new way of keeping the

doubling under control vis a vis the second law.

16.2 Schwinger-Keldysh fields on the reference manifold

With these facts in mind, let us now consider uplifting our hydrodynamic construction

from a single copy of fields Ψ to the Schwinger-Keldysh doubled system. We start by

doubling the fields to a pair of left and right fields indexed by sub/superscripts L and R

respectively, {ΨL,ΨR}. In particular we not only double the background sources to {gL
µν , A

L
µ}

and {gR
µν , A

R
µ} but we also double the dynamical fields to {ϕL, cL} and {ϕR, cR}. We will want

to couple both sets of these physical fields to the background fields.

This has one important implication: since there are now two sets of pull-back fields

which we can apply on the reference fields {�a,Λ�} living on M, we also have two sets of

hydrodynamic fields {βµ,Λβ}L and {βµ,Λβ}R coupling to the corresponding backgrounds.

Indeed this is to be expected since we literally wanted to double the numbers of degrees

of freedom of our system. Furthermore, it is clearly possible to derive both copies of the

theory on the physical spacetime M from the same reference configuration on M. To wit,

the R-fields are related to the reference fields via

βµR(xR) = (eR)µa �a[ϕR(xR)] ,

ΛR
β(xR) = cR(xR) Λ�[ϕR(xR)] c−1

R (xR) + βσ(xR) ∂σcR(xR) c−1
R (xR) ,

(16.4)

and similarly for the L-fields. On the other hand, if we push-forward the sources from the

physical manifold M onto the reference manifold M, we get two copies of reference sources:

gR
µν(xR) = ∂µϕ

a
R ∂νϕ

b
R gR

ab[ϕR(xR)] ,

AR
µ(xR) = ∂µϕ

a
R

[
cR(xR) AR

a [ϕR(xR)] c−1
R (xR)

]
− ∂µcR(xR) c−1

R (xR) ,
(16.5)

and similarly for the L-sources. See Fig. 4 for an illustration.

We now see a major advantage of introducing the reference configuration. In traditional

treatments of the Schwinger-Keldysh formalism while one is fine with doubling the physical

degrees of freedom, doubling of the background sources, especially the metric, poses an

important puzzle. If we have a physical set of degrees of freedom living on a spacetime

manifold M are we working with a pair of diffeomorphic manifolds MR,ML in the doubled

theory? If so, since points on two distinct manifolds may only be related up to an overall

diffeomorphism, how does one map degrees of freedom on the right to those on the left? The

pay-off of introducing a reference manifold is that it provides a common ground for comparing
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MML MR

{gL
µν , A

L
µ} {gR

µν , A
R
µ}{gL

ab,A
L
a} {gR

ab,A
R
a}

{ϕaL, cL} {ϕaR, cR}

{βµL ,ΛL
β} {�a,Λ�} {βµR,ΛR

β}

Fig. 4: Illustration of the Schwinger-Keldysh setup. The physical spacetime manifold M has been

doubled. However, the two copies are not entirely independent as they are both related to

the same reference configuration on M via pull-backs using the dynamical fields {ϕ, c}L,R. De-

spite the presence of two copies of source fields on M there is only one diffeomorphism and

gauge redundancy involved; invariance under this symmetry implies Schwinger-Keldysh Bianchi

identities.

the two different degrees of freedom. SinceML 7→M 7→ MR, we can bring all the physical

fields onto the reference manifold using the pullback fields, perform all manipulations on the

reference manifold and thence push forward to the physical spacetime. We believe this is

the correct way to understand the symmetries of the Schwinger-Keldysh formalism.

Having identified the relevant degrees of freedom we can write the Schwinger-Keldysh

action generically as

SSK [ΨR,ΨL] =

ˆ
MR

√
−gR L [ΨR]−

ˆ
ML

√
−gL L [ΨL] + SIF [ΨR,ΨL] ,

=

ˆ
M

(√
−gR L [	R]−

√
−gL L [	R] +

√
−gR LIF [	R,	L]

)
.

(16.6)

We have allowed here for the possibility of a non-vanishing influence functional that couples

the two sets of degrees of freedom. In the process we have arbitrarily chosen to write LIF as

a scalar field with the metric on M taken to be gR.75

For the situations we have discussed so far we do not need to include such terms, but

anomalous (and also dissipative) parts of the constitutive relations will turn out to involve

non-trivial influence functionals. At the moment we will not impose any constraints on LIF
(apart from the obvious symmetry requirements).

We now want to describe the variational principle on the reference manifold for Schwinger-

Keldysh actions of the form (16.6). Varying SSK with respect to the various fields and sources

yields a-priori two sets of currents associated with the two sets of degrees of freedom:

δSSK [ΨR,ΨL] =

ˆ
M

√
−gR

{
1

2
Tab

R δg
R
ab −

1

2
sTab

L δg
L
ab + JaR · δAR

a − sJaL · δAL
a (16.7)

+ (TR h
R
a − sTL h

L
a) δ�

a +TR nR · (δΛ� +AR
aδ�

a)−TL snL · (δΛ� +AL
aδ�

a)

}
75 Of course, the choice of the influence functional Lagrangian density being given in terms of the R metric

is simply a matter of convenience. The choice matters in practical terms; when we have to define index

contractions, covariant derivatives etc., which will be done with gR
µν with the above convention.
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where we abbreviated s =
√
−gL/

√
−gR.76 While this defines the general Schwinger-Keldysh

constitutive relations, the equations of motion are obtained by extremizing SSK with respect

to {ϕa, c}R,L inside {gab[ϕ],Aa[ϕ]}R,L, holding fixed {�a,Λ�}. Since there are now two copies

of pullback fields {ϕa, c}R,L, there are a-priori two copies of diffeomorphism and gauge sym-

metries. For example, we can obtain equations of motion for {Tab
R ,J

a
R} by infinitesimally

varying the right pullback fields. To wit, consider a variation {δϕaR,−c−1
R δcR} inside the

R-fields:

�gR
ab = −δϕ gR

ab , �AR
a = −δϕAR

a ,

�gL
ab = 0 , �AL

a = 0 ,

��a = 0 , �Λ� = 0 .

(16.8)

Applying this variation to (16.7), we obtain

�SSK [ΨR,ΨL] =

ˆ
M

√
−gR

{
δϕcR [Da(TR)ac − JaR ·FR

ca] + (−c−1
R δcR +AR

aδϕ
a
R) ·DcJ

c
R

}
.

(16.9)

From this we can read off the usual equations of motion for {Tab
R ,J

a
R}. Equations of motion

for the left copy can be derived in an analogous fashion.

However, note that it is not obvious how the two copies should be coupled. In order to

make this deficiency of a näıve Schwinger-Keldysh formalism more apparent, let us briefly

demonstrate how it fails to give a sensible adiabaticity equation. To this end, let us consider

Bianchi identities on the reference manifold as obtained from a common diffeomorphism and

gauge transformation along {�a,�}:

δ
X
gR/L

ab = £� g
R/L

ab , δ
X
�a = £� �

a ,

δ
X
AR/L
a = £�A

R/L
a + [AR/L

a ,�] + ∂a� ,

δ
X

Λ� +AR/L
a δ

X
�a = �aDa[Λ� + �bAR/L

b ]− �aDa[� + �bAR/L

b ]

− �a�bFR/L

ab + [Λ� + �aAR/L
a ,� + �bAR/L

b ] .

(16.10)

Inserting this in (16.7) we can do exactly the same integration by parts as in §9.1 to obtain:

δ
X
SSK [ΨR,ΨL]

=

ˆ
M

√
−gR �a

[
−Db

(
Tab

R − sTab
L

)
+
(
JR
b ·FabR − sJL

b ·FabL

)
+

gabR√
−gR

δ
B

(√
−gR [TR h

R
b −TL sh

L
b ]
)

+
(
gabR TR nR · δBA

R
b − gabR TL snL · δBA

L
b

)]
+

ˆ
M

√
−gR (� + �cAR

c ) ·
[
−DcJ

c
R +

1√
−gR

δ
B

(√
−gRTR nR

)]
−
ˆ
M

√
−gR (� + �cAL

c ) ·
[
−Dc(sJ

c
L) +

1√
−gR

δ
B

(√
−gRTL snL

)]
. (16.11)

76 Note that temperature and chemical potential come as R and L versions since they depend on the metric

and gauge field, respectively:

TR/L =
1√

−gR/L
ab �a�b

,
�R/L

TR/L

= Λ� + �cAR/L
c
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where δ
B

denotes Lie transport along B = {�a,Λ�}. We can directly read off Bianchi

identities from this variation. We define the reference manifold entropy current in the same

way as on physical spacetime M, i.e. JaS = (TR sR − sTL sL) �a with sR/L defined as the

functional derivative of SSK with respect to TR/L exactly as in (9.4). Using the Bianchi

identities from (16.11) it is then straightforward to derive the following adiabaticity equation

in complete analogy to (9.14):

DaJ
a
S + �a

[
Db

(
Tab

R − sTab
L

)
−
(
JR
b ·FabR − sJL

b ·FabL

)]
+ [(Λ� + �cAR

c ) ·DaJ
a
R − (Λ� + �cAL

c ) ·Da(sJ
a
L)]

=
1√
−gR

δ
B

(√
−gR [(TR sR − sTL sL) + ua(hR

a − shL
a) + (TR �R · nR − sTL �L · nL)]

)
= 0 .

Clearly this form of a Schwinger-Keldysh adiabaticity equation is not satisfactory: in the

hydrodynamic limit where right and left quantities coincide, the equation collapses to some-

thing trivial. This indicates that a proper Schwinger-Keldysh formalism must contain a rule

to connect the right and left contours. Note that in the absence of influence functionals we

can separately derive the Bianchi identities on the left and right and check that they are

upheld. While this in itself is not ideal, at least in the absence of influence functionals adia-

baticity continues to hold in the doubled theory. The issues alluded to above, start arising

only when the two sides start talking to each other.

In §18 we will construct a doubled formalism where an additional symmetry ensures

a sensible adiabaticity equation. For the moment, we leave it with the observation that a

näıve Schwinger-Keldysh formalism as developed in the present section suffers from various

deficiencies.

16.3 Hydrodynamic currents in common/difference basis

Regardless of the problems pointed out in the previous subsection, from working on the

reference manifold we nevertheless gained a distinct advantage: we have a way of defining

currents in a basis of common and difference fields. Let us now briefly outline how this

allows to compute the hydrodynamic currents of interest in a rather simple way. By taking

linear combinations of the sources we can consider the average source and the difference

source which will be useful in our discussion. Generalizing the notion to also include the

hydrodynamic fields, we define the following average and difference fields on the reference

manifold:

	̄ ≡ 	R − 	L , 	̆ =
1

2
(	R + 	L) . (16.12)

For completeness we record the explicit definition of the difference hydrodynamic fields which

will play an important role in what follows:

ḡab(x) = gR
ab(x)− gL

ab(x) ,

Āa(x) = AR
a (x)−AL

a(x) ,
(16.13)

where xa are some coordinates on M; for instance, one could consider the above difference

fields as functionals of the diffeomorphism fields by setting xa = ϕaR(x).

In any system out of equilibrium, we are interested in analyzing the causal response

of sources. This amounts to considering linear combinations of correlation functions with
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operator insertions in both the R and L copies of the theory. The causal correlation functions

involve a single variation with respect to the difference source [104]. It is therefore useful to

remember that the Schwinger-Keldysh construction (16.6) couples the difference source to

the average current and the average source to the difference current:

δSSK [ΨR,ΨL] =

ˆ
M

√
−ğ
{

1

2

(
sRT

ab
R − sLT

ab
L

)
δğab +

1

4

(
sRT

ab
R + sLT

ab
L

)
δḡab

+ (sR J
a
R − sL J

a
L) · δĂa +

1

2
(sR J

a
R + sL J

a
L) · δĀa (16.14)

+ (TR sR h
R
a −TL sL h

L
a) δ�

a

+ (TR sRnR −TL sL nL) · (δΛ� + Ăaδ�
a)

+
1

2
(TR sRnR +TL sLnL) · (Āaδ�

a)

}
where sR,L ≡

√−gR,L/
√
−ğ.

While the above discussion remains valid for generic non-equilibrium dynamics, our in-

terest is in the hydrodynamic limit where we only allow small (long-wavelength) departures

from thermodynamic equilibrium. One useful consequence is that we can obtain the hydrody-

namic currents by working to linear order in deviations from the equilibrium configuration

wherein the left and right degrees of freedom are identified. Said differently, we consider

linear deviations of the diffeomorphism and gauge transformation fields about a common

equilibrium configuration: ϕaR(x) = ϕaL(x) ≡ ϕa(x) and cR(x) = cL(x) ≡ c(x). From the

action (16.6) one obtains the hydrodynamic constitutive relations by varying with respect

to the reference sources {g,A}R,L and taking the hydrodynamic limit:

Tab
hydro =

2√
−gR

(
δSSK
δgR
ab[ϕR]

− δSSK
δgL
ab[ϕL]

) ∣∣∣∣ϕa
R(x) = ϕ

a
L(x) ≡ ϕa

(x)

cR(x) = cL(x) ≡ c(x)

Jahydro =
1√
−gR

(
δSSK
δAR

a [ϕR]
− δSSK
δAL

a[ϕL]

) ∣∣∣∣ϕa
R(x) = ϕ

a
L(x) ≡ ϕa

(x)

cR(x) = cL(x) ≡ c(x)

(16.15)

where ϕa = 1
2(ϕaR + ϕaL) is the common part of ϕR and ϕL which coincides with ϕR, ϕL

in the hydrodynamic limit. From (16.14) it transpires that the hydrodynamic currents

(16.15) are the common currents which can equivalently be obtained by varying SSK with

respect to {ḡab, Āa} and then taking the hydrodynamic coincidence limit. Note however,

that such a variation yields the same expressions as the right hand side of (16.15) only in

the hydrodynamic limit (i.e., to linear order in difference fields). Beyond linear order, the

natural Schwinger-Keldysh currents are defined by (16.7).

Similarly, the desired equations of motion in the hydrodynamic limit can be obtained

making use of this simplified variational principle: in analogy to the discussion of §10.4 we

can do a variation of {ϕa, c} inside the difference sources, holding the reference configuration

of {�a,Λ�} fixed:

δ
X
ḡab = −δϕḡab , δ

X
Āa = −δϕĀa ,

δ
X
�a = 0 , δ

X
Λ� = 0 .

(16.16)

This variational principle applied to (16.14) directly yields equations of motion for the hydro-

dynamic common currents. Its relation to the variational principle of the previous subsection
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should be seen as being consistent to linear order in difference fields (which is good enough

if we take the hydrodynamic limit at the end of the day).

While it is clear that the above Schwinger-Keldysh formalism can achieve some things,

it is certainly not entirely satisfying. By postulating a reference manifold configuration

underlying both copies of the physical theory together with a way the symmetries act there,

we are able to obtain equations of motion for the hydrodynamic currents. However, we have

no obvious way of defining an entropy current on the reference manifold from first principles.

In order to obtain an adiabaticity equation for the currents obtained in this subsection, we

need to construct the reference manifold entropy current by hand such that adiabaticity is

satisfied. This is the strategy that we will follow in the construction of Class A constitutive

relations (see §16.4 below).

16.4 Anomalous Ward identities in the Schwinger-Keldysh formalism

The analysis of §15 underscores the fact that, while the anomalous adiabaticity equation can

be solved within the framework of Class L adiabatic fluids, one fails to recover the desired on-

shell Ward identities. The reason for this failure can be traced to the fact that the amount of

anomaly inflow into a single copy theory, respecting the adiabatic principle, is a bit too much

[8]. As one can see from the transgression form characterization of the anomalous Lagrangian

(15.18), the inflow to the boundary manifoldM from the bulk topological theory comprises

not only of the anomaly in the physical background sources {A,Γ} but also involves an extra

bit of inflow from the shadow fields {Â, Γ̂}. The latter have to be removed from the system

in order to obtain the correct physical Ward identities.77

Fortunately we now know a cure for this problem; as discussed in [8] and reviewed in

the previous subsections the Schwinger-Keldysh formalism provides a natural framework to

understand the Ward identities. In particular, we will find it quite useful in the following

discussion to be able to have non-trivial influence functional contributions. The symmetries

of the Schwinger-Keldysh construction pick out a unique influence functional which in turn

implies the desired anomalous Ward identities (15.35).

Let us hark back to the discussion of §15.4 where we took our anomalous effective action

in the single copy theory to be Seff [Ψ], cf., (15.31). From that discussion, it is clear that

we need to add to the total action Seff another term which fixes the dynamics by ensuring

that we have the correct amount of inflow. In the double-field context, we are thus looking

for a total action of the form

Stot ≡ Stot[ΨL,ΨR]

= Seff [ΨR]− Seff [ΨL] + SIF [ΨR,ΨL] ,
(16.17)

with Seff [Ψ] being given in (15.31) and SIF is a cross-contour term that involves fields from

both copies of the theory.

It proves convenient for reasons mentioned above to write the action Stot on the reference

manifold directly. This can always be achieved using (16.4). As explained in §16.2 one then

has a single background geometry where all the currents live. The resulting action will depend

on 	R = {gR
ab[ϕR],AR

a [ϕR], �a[ϕR],Λ�[ϕR]} and similarly for 	L, i.e., we effectively view it as

77 We recall that the extra terms in (15.34) all involve the shadow fields in the r.h.s. of the physical

conservation equations.
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an effective action for two copies of sources while keeping one copy of hydrodynamic degrees

of freedom {�a,Λ�}. We thus write

Stot ≡ Stot[ϕR, cR, ϕL, cL] =

(
Sn-a[	R] +

ˆ
Md+1

VP [	R]

)

−

(
Sn-a[	L] +

ˆ
Md+1

VP [	L]

)
+ SIF [	R,	L]

(16.18)

As remarked earlier, by working in terms of the reference manifold M (and its bulk exten-

sion which we denote as Md+1), we circumvent potential confusions about the presence of

two copies of the spacetime manifold with two metrics and two gauge and diffeomorphism

symmetries. Despite the fact that there are still two copies of source fields living on M, there

is only one physical gauge and diffeomorphism invariance involved in (16.18). Equations of

motion in the hydrodynamic limit can then be obtained from a simple variational principle

as described in §16.3.

Since the contributions from Seff [	] have already been computed in §15.4, we now turn

to an explicit description of the contributions that come from SIF . Using the same arguments

as [8], we can infer what the form of SIF [	R,	L] ought to be. Its form is pretty much dictated

by ensuring that we have the correct amount of inflow: it needs to be a transgression form

between the two sets of shadow fields. We therefore claim that the precise term to add as our

anomalous influence functional is the transgression from hatted fields on the right towards

hatted fields on the left contour, i.e.,

SIF =

ˆ
Md+1

VP [ÂR, �̂R; ÂL, �̂L] ≡
ˆ
Md+1

VP

(
Â[	R], Γ̂[	R]; Â[	L], Γ̂[	L]

)
, (16.19)

The main thing we need to check is that the above cross-term influence functional provides

the right correction terms necessary to fix the anomalous hydrodynamic Ward identities

(15.34) without influencing the physical currents (15.30). We can use the same kind of ma-

nipulations as in §G to verify this. As we pointed out in the general discussion of Class L

Schwinger-Keldysh formalism, §16.2, a non-linear treatment requires carefully separating R

and L degrees of freedom. However, we are eventually interested in the hydrodynamic limit

of the currents, i.e., the coincidence limit where difference fields are set to zero. Therefore we

can employ the simpler formalism where we vary the Schwinger-Keldysh action directly with

respect to difference sources, disregarding any current contributions that contain hydrody-

namically vanishing quantities, c.f., §16.3. After explicit computation (see §G.3), we obtain

for the variation of the entire anomaly part of the action in the hydrodynamic coincidence
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limit78

δSanom

∣∣∣∣
hydro

≡ δ

(
SIF +

ˆ
Md+1

(VP [	R]− VP [	L])

)∣∣∣∣
hydro

=

 
Md+1

[
1

2
DP

(
�M[NP ]
H + �N[MP ]

H − �P(MN)
H

) 1

2
δḡMN + JMH · δĀM

]
(16.20)

+

ˆ
M

√
−ğ

{[
1

2
Dc

(
�a[bc]
P + �b[ac]P − �c(ab)P

)
+ 2q

(a
Pu

b)

]
1

2
δḡab + JaP · δĀa

}
.

where hydro denotes the limit where all the expressions that are not variations of difference

fields are evaluated at ϕaR(x) = ϕaL(x) ≡ ϕa(x) and cR(x) = cL(x) ≡ c(x). Further, {ḡab, Āa}
denote the difference sources as introduced in §16.3. Equations of motion are now obtained

by varying {ϕa, c} inside the difference sources on M, i.e. (16.16). Following that logic,

we immediately obtain the bulk on-shell equation of motion, which we now write for the

reference fields

1

2
DNDP

(
�M[NP ]
H + �N[MP ]

H − �P(NM)
H

)
' FMP · JPH , DPJ

P
H ' 0 . (16.21)

The boundary equations of motion from Sanom then take the form

Db

[
1

2
Dc

(
�a[bc]
P + �b[ac]P − �c(ab)P

)
+ 2q

(a
Pu

b)

]
' Fac · JcP +

1

2
Dc�

⊥[ac]
H , DaJ

a
P ' J⊥H ,

(16.22)

where all fields are in the hydrodynamic limit, i.e., the R- and L-fields have been identified.

After combining the R- and L-pieces, the additional non-anomalous contributions to the

boundary equations of motion are the same as in (15.32) with (15.33). Putting all of this

together we get the hydrodynamic equations of motion for the action (16.18):

Db

[
Tab

n-a +
1

2
Dc

(
�a[bc]
P + �b[ac]P − �c(ab)P

)
+ 2q

(a
Pu

b)

]
' Fac · (Jcn-a + JcP) +

1

2
Dc�

⊥[ac]
H ,

Da [Jan-a + JaP ] ' J⊥H .

(16.23)

When written in terms of quantities on the physical spacetimeM, these are the usual equa-

tions of motion (15.35) for hydrodynamics with mixed flavour and gravitational anomaly.79

This completes for us the derivation of the equations of motion for the full Schwinger-

Keldysh action. We conclude that a Schwinger-Keldysh formulation with suitable Feynman-

Vernon term is capable of imposing the correct dynamics on our theory. Working in a

formalism with doubled set of degrees of freedom is inevitable if we want to circumvent

having various Ward identities contaminated by unwanted hatted anomaly contributions.

78 We adhere to our index conventions stated earlier:

• Boundary physical manifold M: indices from the Greek alphabet.

• Bulk physical manifold Md+1: indices from the second half of the lowercase Latin alphabet.

• Boundary reference manifold M: indices from the first half of the lowercase Latin alphabet.

• Bulk reference manifold Md+1: indices from the second half of the uppercase Latin alphabet.

79 The translation between the physical and reference manifolds is simple: we replace 	 7→ Ψ and change

indices back to Greek.
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16.5 Effective actions for Class D?

In §8 we have seen that dissipative transport is well under control. The positivity of the

leading order transport coefficients and lack of further constraints is reminiscent of general

structures of effective field theories, wherein unitarity imposes positivity controls on kinetic

terms but leaves typically higher order interactions arbitrary.80

Ideally, it would be great if we can give a complete picture for dissipative transport by

constructing an effective action; once this is understood we would be able to make a clear

analysis from a microscopic perspective. It has long been understood that such an effective

action has to be described using the Schwinger-Keldysh construction. We would like to offer

some critical thoughts at this juncture, why this construction requires further bolstering,

paving the way for a general picture in §18.

To incorporate dissipation in the Schwinger-Keldysh doubled formalism, it is necessary to

incorporate interactions between the left and right fields via the Feynman-Vernon influence

functionals [76]. Then, upon integrating out one set of degrees of freedom that we take

to be the difference fields (ΨL −ΨR), one obtains an effective action for the common fields

ΨL+ΨR with dissipative interactions. What we are after then is a constraint on the influence

functionals ensuring that such interactions are compatible with the second law. We should

emphasize that this is a very physical requirement since the second law of thermodynamics

is a macroscopic manifestation of microscopic unitarity.

If we näıvely construct influence functionals without any constraint, then we have seen

that the adiabaticity equation fails. One should then worry about terms that violate the

second law. In particular, using generic influence functionals one can construct effective

actions which allow non-vanishing Class HF terms, which as we have seen are forbidden

by adiabaticity (in fact hydrostatics). One potential issue is that unconstrained influence

functions violate the fluctuation-dissipation relations which typically are encoded by the

Kubo-Martin-Schwinger (KMS) condition in non-equilibrium dynamics [36, 37]. While there

is some understanding of how these relations are to be imposed in the Schwinger-Keldysh

formalism we are as yet unaware of a complete treatment in the hydrodynamic context (see

for instance [106–108] for some progress in this direction).81

Ideally, we would like some element in the Schwinger-Keldysh construction which forbids

influence functionals that lead to disallowed constitutive relations (such as Class HF ). Given

our previous discussions and in particular §16.4, let us take a step back and see what we can

learn from the adiabatic effective actions. For Class L constitutive relations, the Schwinger-

Keldysh construction is rather straightforward. We simply have (16.6) with LIF = 0 since

there is no need for any interaction terms in either Class HS or Class HS . So this does not

provide us with much guidance on how to proceed.

Anomalous transport of Class A is however more interesting, as we need a non-trivial

influence functional (16.19), required in order to satisfy the Ward identities. While our

construction was guided by the symmetries and the rigidity of anomalies, it should be borne

in mind that the final answer in (16.18) is not derived from first principles. While we have

presumably fixed the non-covariant part of the influence functional correctly by demanding

80 This analogy comes with caveats. In relativistic quantum field theories there are sign-definiteness con-

straints on the leading corrections to the positive definite quadratic kinetic terms arising from causality as

discussed for instance in [105].
81 See, however, the more recent work [4].
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the Ward identities, it is plausible that there are additional pieces which ensure that the

term we propose satisfies the KMS condition.

In any event the story about influence functionals for adiabatic transport is incomplete

– we have not been able thus far to incorporate the vector classes HV , HV and C into an

effective action framework, nor the Berry-like transport terms of Class B. It appears intuitive

that writing an effective action for such transport does require some form of Schwinger-

Keldysh doubling; indeed we will see glimpses of such a structure in §18-§20. We will

argue there for a new symmetry principle which circumvents all these problems. The set

of influence functionals will be constrained in precisely the right way by the presence of a

new symmetry to ensure adiabaticity. Furthermore, we will see a more natural variational

principle deriving the Ward identities of hydrodynamics. We however forewarn the reader

that whilst this structure is tantalizing, we refrain from giving a complete first-principles

discussion of Schwinger-Keldysh formalism. In our very recent work [3, 4] a proposal has

been made for a systematic way of imposing KMS conditions and other symmetries inherent

in Schwinger-Keldysh path integrals in the hydrodynamic context. We provide an outlook

on these developments in §22.
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Part IV

The Eightfold Way to Dissipation and its

Lagrangian Unification

17 The Eightfold Way

We are now in a position to outline the complete classification of hydrodynamic transport

at arbitrary orders in the gradient expansion building on the results derived in §7-§16. We

will give the algorithm for the intrepid hydrodynamicist to implement the construction at

any desired order.

17.1 The route to classification

We will work off-shell in the most general fluid frame. We first compile a list of all tensor

structures that can appear in constitutive relations CH [Ψ]. We will sequentially eliminate

elements of this collection by assigning them to distinct classes suggested by the eightfold

way. The algorithm for understanding the transport classification can be implemented in

the following sequence:

• The first step of our analysis is to remove the particular solutions of Class A by picking

the correct particular solution leading to the anomalous constitutive relations, i.e.,

{(Gσ)A, (T
µν)A, (J

µ)A} given in terms of the anomaly polynomial P [F ,R]. These

anomalous currents take the form

(JαS )A = −1

2
βσ Σ̂

⊥[ασ]
H ,

(Tαβ)A = qαPu
β + qβPu

α +
1

2
Dρ

(
Σ
α[βρ]
P + Σ

β[αρ]
P − Σ

ρ(αβ)
P

)
,

(Jα)A = JαP ,

(17.1)

where the various pieces in these currents are given in terms of the transgression form

VP ≡ u
2ω ∧

(
P [F ,R]− P̂ [F̂ , R̂]

)
as

?qP =
∂VP
∂(2ω)

, ?ΣP
β
α = 2

∂VP
∂(BR)αβ

,

?JP =
∂VP
∂B

, ?2n+1ΣH
b
a = 2

∂P
∂Ra

b
.

(17.2)

• We then remove the terms that are forbidden by the hydrostatic analysis. This involves

discarding Class HF terms {(Gσ)HF , (T
µν)HF , (J

µ)HF } from the constitutive relations.

These terms are tensor structures allowed by symmetry, but forbidden by the second

law.

• There are combinations which can never be removed irrespective of choice of entropy

current. These irreducibly dissipative combinations belong to Class D . All other combi-

nations solve non-anomalous adiabaticity equation which is homogeneous in derivative
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order. We will henceforth proceed derivative order by derivative order with no mix-

ing of adiabatic constitutive relations at different orders. The dissipative constitutive

relations take the form (8.8):

(Tµν)D ≡ −
1

2

[
Υ†ηg η Υηg + Υ†σg σ Υσg

](µν)(αβ)
δ
B
gαβ

−
[
Υ†ηg η ΥηA + Υ†σg σ ΥσA

](µν)α
· δ

B
Aα

(Jα)D ≡ −
1

2

[
Υ†ηA η Υηg + Υ†σA σ Υσg

]α(µν)
δ
B
gµν

−
[
Υ†ηA η ΥηA + Υ†σA σ ΥσA

]αβ
· δ

B
Aβ .

(17.3)

where the dissipative Noether current (Nσ)D is determined by integration by parts as

in (8.13). As shown in §8.3, a large subset of Class D constitutive relations up to the

second order in derivative expansion can be obtained instead by the simpler task of

classifying transverse tensor structures {N µνρσ,X µνα,Sαβ} and plugging them into

(Tµν)D,2∂ ≡ (−2 η σµν − ζ ΘPµν)− 1

4

(
N (µν)(αβ) +N (αβ)(µν)

)
δ
B
gαβ + X (µν)α · δ

B
Aα ,

(Jα)D,2∂ ≡ (σ
Ohm

vα) +
1

2
X (µν)αδ

B
gµν − S(αβ) · δ

B
Aβ ,

(Gσ)D,2∂ = 0 . (17.4)

• We then remove the Class C constitutive relations by eliminating the non-trivial con-

served vectors that can serve to provide contributions to the entropy current:

(Tµν)C = 0 , (Jµ)C = 0 , (Gσ)C = −T Jσ , (17.5)

where Jσ are identically conserved topological currents.

• At the next step, we will remove Class B by looking at all combinations in that deriva-

tive order that solve adiabaticity equation with zero free energy current. In order to

adhere to the derivative counting one should simple classify the intertwining tensors

{N ,X ,S} without the derivative operators Υ as the latter mixes derivative orders:82

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
δ
B
gαβ + X (µν)α · δ

B
Aα ,

(Jα)B ≡ −
1

2
X (µν)αδ

B
gµν − S [αβ] · δ

B
Aβ ,

(Gσ)B = 0 .

(17.6)

At a given derivative order, say kth, let there be Ntot functions which parameterize

constitutive relations solving the non-anomalous adiabaticity equation and have non-trivial

free energy current. We will examine the grand canonical adiabaticity equation (5.21) and

focus on the expression for the most general adiabatic free energy current. This is in fact

82 Note that this argument seems to indicate that Υ construction while useful in constructing solutions for

Class B, serves little purpose in the classification program, where all we care about is the set of solutions at

a given derivative order.
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easier to deal with than the stress-tensor and charge currents owing to the fact that we only

have to classify vectors and not symmetric tensors. As we have already taken the effort to

remove Class B terms in the preceding steps, the most general adiabatic free energy current

will then be written in terms of just these Ntot functions we enumerate.

Let us decompose the adiabatic free energy current into a longitudinal scalar and vector

part by the ansatz:

−G
µ

T
= L βµ − Pµσ

Gσ

T
(17.7)

using the hydrodynamic field and the transverse spatial projector Pµν . Further, let NL be

the number of functional combinations that appear in the scalar part L. Without loss of

generality, let us assume our parametrization is such that we can then divide the Ntot number

of functions in Gσ into NL functions that appear in L and the reminder (that do not appear

in L). Now, set the Ntot − NL number of functions that do not appear in L to zero. We

are then left with a NL functions worth of solution of adiabaticity equation which we will

denote by {GσSc, T
µν
Sc , J

µ
Sc}. After subtracting this solution, we have Ntot − NL solutions

with purely transverse free energy current denoted by {GσV , T
µν
V , JµV }.

Let us now focus on {GσSc, T
µν
Sc , J

µ
Sc}. The decomposition for these solutions (17.7) then

reduces to

−
GµSc
T

= L βµ − Pµσ
GσSc
T

(17.8)

where the data is now parameterized by scalar functions.

In the next step, let us use L as the Lagrangian and then construct NL functions worth

of Class L constitutive relations which are of the form

GσL = −T
(
βσL − (/δBΘPS)σ +∇νKσν [B]

)
,

TµνL =
2√
−g

δ(
√
−gL)

δgµν
, JµL =

1√
−g

δ(
√
−gL)

δAµ
.

(17.9)

Since this accounts for all the NL solutions, the difference {GσSc −GσL, T
µν
Sc − T

µν
L , JµSc − J

µ
L}

can only contain repetitions, trivial solutions or a mix of other classes, such as Class B

or even HV type solutions.83 All that matters for our discussion is that the currents are

derivable from some form of a generating function (as in, e.g., Class L). In that case we can

set the controlling functions to be some functionals of the hydrostatic and hydrodynamic

parameters in L. We can discard them without loss of generality, and choose a basis of

solutions such that

{GσSc, T
µν
Sc , J

µ
Sc} = {GσL, T

µν
L , JµL}

• The above discussion takes care of all Class L (which divides further into HS and

HS) constitutive relations. At this point, we have accounted for five adiabatic classes

{HS ,HS ,A,B,C} in addition to the Class D terms (and we have eliminated HF terms).

• We are now left with the remaining constitutive relations with transverse free energies,

{GσV , T
µν
V , JµV } = {(Gσ)HV + (Gσ)HV

, (Tµν)HV + (Tµν)HV
, (Jµ)HV + (Jµ)HV

}.
83 It is useful to know that even though we are generating solutions from a scalar Lagrangian density we

can indeed get some transverse vector components in the free energy current.
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• The Class HV terms can be eliminated by invoking the replacement rule arising from

Euclidean consistency and thus employing a similar trick as in the Class A discussion

earlier. We define a modified anomaly polynomial P via

PHV [F ,R,F(T)] = P [F , trR2k 7→ trR2k + 2(2π F(T))2k]−P [F , trR2k] . (17.10)

and find the constitutive relations

(JαS )HV = (J ′S)αHV −
1

2
βσ (Σ̂H)

⊥[ασ]
HV

,

(Tαβ)HV = qα
HV

uβ + qβ
HV

uα +
1

2
Dρ

(
Σα[βρ]

HV
+ Σβ[αρ]

HV
− Σρ(αβ)

HV

)
,

(Jα)HV = Jα
HV

(17.11)

where

?q
HV

=
∂VPHV

∂(2ω)
, ?ΣHV

β
α = 2

∂VPHV

∂(BR)αβ
,

?JHV
=
∂VPHV

∂B
, ?2n+1(ΣH)HV

b
a = 2

∂PHV

∂Ra
b
.

(17.12)

One main difference from the Class A constitutive relations (apart from the presence

of A(T) in PHV ) is the fact that the entropy current (and thus the free energy current)

gets a non-trivial contribution in this class. The additional contribution to the entropy

current (J ′S)αHV is defined in terms of the HV transgression form:

? J ′
S,HV

=
∂(VPHV

)

∂B(T)
. (17.13)

where B(T) is the two-form magnetic field for A(T), B(T) = F(T)− u ∧ iu F(T).

• Having dealt with the other classes the rest will go into Class HV and takes the general

form

(Gρ)HV
= −T

[
1

4
δ
B
gµνC

ρ((µν)|(αβ))
N δ

B
gαβ + δ

B
gµνC

ρ(µν)α
X · δ

B
Aα + δ

B
Aα · Cρ(αβ)

S · δ
B
Aβ

]
(Tµν)HV

=
1

2

[
DρC

ρ((µν)|(αβ))
N δ

B
gαβ + 2 C

ρ((µν)|(αβ))
N DρδBgαβ

]
+DρC

ρ(µν)α
X · δ

B
Aα + 2 C

ρ(µν)α
X · DρδBAα

(Jα)HV
=

1

2

[
DρC

ρ(µν)α
X δ

B
gµν + 2 C

ρ(µν)α
X DρδBgµν

]
+DρC

ρ(αβ)
S · δ

B
Aβ + 2 C

ρ(αβ)
S · DρδBAβ . (17.14)

• Once we have accounted for these terms we have exhausted all possible hydrodynamic

constitutive relations; the eightfold path is complete and the most general constitutive

relations allowed by symmetries at a given order in derivatives can be written as

Gσ = (Gσ)A + (Gσ)HF + (Gσ)D + (Gσ)C + (Gσ)B + GσL + GσV ,
Tµν = (Tµν)A + (Tµν)HF + (Tµν)D + (Tµν)C + (Tµν)B + TµνL + TµνV ,

Jµ = (Jµ)A + (Jµ)HF + (Jµ)D + (Jµ)C + (Jµ)B + JµL + JµV .

(17.15)
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Theorem 1. All hydrodynamic transport is exhaustively classified by one of the aforemen-

tioned seven adiabatic classes, viz., {HS ,HS ,A,B,C,HV ,HV } and the forbidden constitutive

relations of Class HF , in addition to the dissipative Class D = Dv ∪Ds.

The constructive algorithm described above outlines the general structure of the proof we

would like to present. However, in order to complete the proof, we need a precise argument

stating that our constructions exhaust the terms in the non-Lagrangian classes {HV ,B,D}
completely. We will give such an argument in the following subsection, §17.2. However,

before we give an independent proof, let us anticipate the result of §18-§20 which makes

it clear that there exists a master effective field theory which will encompass precisely the

adiabatic classes and thus provides a much more direct proof of the completeness of our

classification:

Theorem 2. The sevenfold classes of adiabatic hydrodynamic transport can be obtained from

a scalar Lagrangian density LT

[
βµ,Λβ, gµν , Aµ, g̃µν , Ãµ,A

(T)
µ

]
:

LT =
1

2
Tµν g̃µν + Jµ · Ãµ + (JσS + βνT

νσ + (Λβ + βνAν) · Jσ) A(T)
σ (17.16)

As indicated the Lagrangian density depends not only on the hydrodynamic fields and the

background sources, but also the ‘Schwinger-Keldysh’ partners of the sources {g̃µν , Ãµ} and

a new KMS-gauge gauge field A(T)
µ. This Lagrangian is invariant under diffeomorphisms and

gauge transformations84 and under U(1)T which acts only on the sources as a thermal diffeo-

morphism or gauge transformation along B. The U(1)T gauge invariance implies a Bianchi

identity, which is nothing but the adiabaticity equation (5.12). Furthermore, a constrained

variational principle for the fields {βµ,Λβ} ensures that the dynamics of the theory is simply

given by conservation.

Given the Lagrangian LT we are essentially done, since all we need to do is to show

that by picking appropriate scalar densities in the extended space of fields gives rise to a

solution in one of the aforementioned eight classes. This is relatively straightforward as we

shall see in §20. What is less apparent at first sight is the rationale for the existence of

the extended set of degrees of freedom and the extra U(1)T symmetry. The reader might

take these as part of our construction for the present, though we believe that the Class LT

construction we are about to present hints at some fundamental truisms that ought to be

valid in non-equilibrium dynamics of QFTs (and potentially fixing some of the problems

described in §16).

Before presenting the detailed construction of LT in §18-§20, we shall now give an inde-

pendent proof of the completeness claimed in Theorem 1 and then illustrate our eightfold

classification for various fluid systems.

17.2 Completeness of the adiabatic taxonomy

In the lead up to the statement of Theorem 1 we have already covered a reasonable amount of

ground vis a vis a proof of the statement. We will in the following complete some of the open

issues which that discussion left out and argue that out eightfold classification is complete.

The proof per se will be phrased in a physical language; it can be made mathematically

84 Anomalies if present are dealt with using the inflow mechanism [102]. LT then includes a topological

theory in d+ 1 dimensions coupled to the physical d-dimensional QFT (at the boundary/edge).
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rigorous as necessary but we prefer to illustrate the basic statements in a fashion that makes

them more intuitive.

The key component of the proof is to realize that one needs to control the free energy

current Gσ in order to ascertain the behaviour of transport. In much of our discussion,

including §17.1, we have emphasized the fact that the free energy current is a spacetime

vector simplifies the classification scheme. Accounting for all possible vectors that can appear

in Gσ would suffice for our purposes of demonstrating completeness.

Let us first examine adiabatic constitutive relations. We invoke the decomposition (17.7)

of the free energy current. Using the argument following this equation in §17.1, it is clear

that the entire contribution to the longitudinal part of the free energy current is captured by

the Class L (= HS ∪HS) by picking a set of generating scalars which are either hydrostatic

(HS) of hydrodynamic (HS). Furthermore, anomalies are dealt with using the particular

solutions of the adiabaticity equation, leaving us then with situations of traverse vector free

energy current and some situations where the free energy is vanishing (Class B) or identically

conserved (Class C). In addition we have the dissipative constitutive relations. Of these Class

C terms are easy to handle and like with the anomalies one quickly can exhaust the space

of cohomologically non-trivial conserved currents.

Thus for a full proof of Theorem 1 we need to ascertain that the parameterizations we

gave for Classes {HV ,HV ,B,D} are exhaustive. Let us make a couple of remarks:

• For Class D, the argument is clear since we can always recast the most general positive

definite form using a set of tensor valued differential operators Υ and suitably chosen

intertwiners {η,σ} as discussed in §8.2.

• For Class B (without Υ operators), one can argue that in the vector space of terms,

all the combinations orthogonal to {δ
B
gµν , δBAµ} necessarily take the form given in

Eqs. (12.2) and (12.4).

• The hydrostatic transverse vector free energy currents are likewise easy to tackle by

focusing on a limited set of terms that survive equilibrium.

• The only unresolved problem is how to argue that our construction for HV does not

miss any terms. The issue here is that there are too few of them in our explicit

examples to see how they work in general. We will present an argument in favour of

the completeness of our classification below.

To prove the completeness of our parametrization (17.14) of Class HV , we need to

consider the set of all possible transverse free energy currents (Gσ)HV
. Since we are only

interested in non-hydrostatic currents (otherwise we could describe them in Class HV ), they

need to contain at least one factor of δ
B
gµν .85 Let us parameterize such currents as

(Nσ)HV
≡ − 1

T
(Gσ)HV

= Cσµν δ
B
gµν with uσC

σµν = 0 , (17.17)

where Cσµν is some tensor. Now consider the divergence of this current:

∇σ(Nσ)HV
= (∇σCσµν) δ

B
gµν + Cσµν ∇σ (δ

B
gµν) . (17.18)

85 In this subsection, we will content ourselves with the discussion of neutral fluids. In charged fluids, one

could also use δ
B
Aµ instead of δ

B
gµν to describe deviations from equilibrium, which leads to a completely

analogous discussion.

125



From the structure of the adiabaticity equation (8.7), it is clear that this free energy current

is only adiabatic if the divergence (17.18) is proportional to δ
B
gµν . This is clear by examining

the adiabaticity equation (5.21). In (17.18) first term in the r.h.s. has an explicit δ
B
gµν which

would serve. The second term however contains descendant operators (using the terminology

from §8). These are independent tensors and do not contain a free δ
B
gµν . Alternately, one

simply notes that there are fluid configurations which are hydrostatic locally (i.e., δ
B
gµν = 0

at some point on M) but such that ∇σ (δ
B
gµν) 6= 0, the above divergence can only be

consistent with adiabaticity if every term contains at least one undifferentiated factor of

δ
B
gµν . Either way we require Cσµν to contain a factor of δ

B
gµν in general. However, this

requirement implies that (Gσ)HV
contains two factors of δ

B
gµν and hence is precisely captured

by our Class HV parametrization (17.14).

Let us now consider the slightly more general situation where the object C in (17.17)

is not a tensor, but a tensor-valued derivative operator. W.l.o.g. we can parameterize this

situation as

(Nσ)HV
= Cσλ(µν)∇λ(δ

B
gµν) with uσC

σλµν = 0 , (17.19)

where Cσλµν is some tensor. Let us consider separately the cases where Cσλ(µν) is symmetric

and anti-symmetric in its first two indices, respectively:

• Anti-symmetric case (Cσλ(µν) = C[σλ](µν)): One can easily see that the anti-symmetric

component does not provide anything new as it can always be canceled by a combina-

tion of terms of other classes and an uninteresting Komar piece; to see this, observe

that (Nσ)HV
can be decomposed as follows:

(Nσ)HV
= C[σλ](µν)∇λ(δ

B
gµν)

= ∇λ
(
C[σλ](µν)δ

B
gµν

)
−
(
∇λC[σλ](µν)

)
δ
B
gµν (17.20)

= ∇λ
(
C[σλ](µν)δ

B
gµν

)
− P σρ

(
∇λC[ρλ](µν)

)
δ
B
gµν + uσ

(
uρ∇λC[ρλ](µν)

)
δ
B
gµν ,

In the last line the first term is Komar (hence uninteresting), the second is captured

by HV (it’s of the form (17.17)) and the last one is longitudinal (and thus in Class L).

We conclude that this does not lead to any transport not captured by either HV or in

one of the other Classes we have already accounted for.

• Symmetric case (Cσλ(µν) = C(σλ)(µν)): In the symmetric case, consider the divergence

of the free energy current (17.19):

∇σ(Nσ)HV
=
(
∇σC(σλ)(µν)

)
∇λ(δ

B
gµν) + C(σλ)(µν)∇σ∇λ(δ

B
gµν) . (17.21)

W.l.o.g. we can assume that Cσλµν does not contain any undifferentiated δ
B
gµν (if it

did, we would be back in the case parameterized by (17.17)). A-priori the second term

in (17.21) does then not contain any undifferentiated δ
B
gµν . Hence the only way that

this situation can be compatible with adiabaticity, is that a cancellation between the

two terms happens such that their sum is proportional to δ
B
gµν .

Let us see under what conditions it could happen that the second term is canceled by

the first. Note that ∇(σ∇λ)(δBgµν) is a genuine 3rd order descendant object which is

not a product of lower order tensors. Since the first term in (17.21) contains a 2nd
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order descendant factor, a cancellation between terms can only happen if Cσλµν itself

contains a factor of ∇κ(δ
B
gαβ). If the two terms were to cancel, we would hence require

that

C(σλ)(µν) = C̄(σλκ)[(µν)|(αβ)]∇κ(δ
B
gαβ) (17.22)

such that

∇σ(Nσ)HV
=
(
∇σC̄(σλκ)[(µν)|(αβ)]

)
∇λ(δ

B
gµν)∇κ(δ

B
gαβ) . (17.23)

This divergence could now in principle be proportional to δ
B
gστ . But again this does

not provide anything new, for we recognize the free energy current in this case as a

special Class B term (with non-trivial Υ-operators acting as derivative operators such

that the free energy current is non-zero). The easiest way to see this is by recognizing

that the divergence (17.23) is of the form of a Class B divergence (8.13) with(
Υηg

)
λ

= 2∇λ , η(λκ)[(µν)|(αβ)] = −∇σC̄(σλκ)[(µν)|(αβ)] . (17.24)

From the symmetry structure of η it is clear that we are dealing with a Class B term

as constructed in §12.1.

These considerations show that an ansatz of the form (17.19) does not lead to any constitutive

relations that are not captured by the ones we already have.

Similarly, one can proceed and consider ansätze where (Gσ)HV
contains higher derivatives

of δ
B
gµν , but analogous arguments as the one presented above would show that this is only

consistent with adiabaticity if (Gσ)HV
is secretly a combination of Class HV , B and Komar

terms as we parameterized them in §17.1. Together with our earlier comments, this completes

our proof that the parametrization (14.15), (14.16) exhausts all possible non-hydrostatic,

adiabatic transverse free energy currents.

17.3 Example I: Charged parity-even fluids

To exemplify our general construction we turn to an example that has been discussed in some

detail in [68], viz., a charged parity-even fluid. Neutral fluids are clearly a subset obtained

by setting the chemical potential and charge density to zero. We will describe first outline

the classification in general and then indicate in §17.4 how to specialize to Weyl invariant

case (which has the advantage of being able to be tested holographically).

We begin by counting the total number of transport coefficients: there is one frame

invariant scalar (for definiteness, let us take it to be in Pµν part of the energy momentum

tensor), one frame invariant transverse vector (for definiteness, let us take it to be in the

charge current) and one frame invariant transverse traceless tensor occurring as a part of the

energy momentum tensor. The final result of this counting is summarized in Tables 1 and 2.

The first order constitutive relations are a-priori parameterized by one scalar Θ, three

transverse vectors {aµ, Eµ, vµ}, and one transverse traceless tensor σµν . The constitutive

relations

Tµν = ε uµ uν + pPµν − 2 η σµν − ζ ΘPµν

Jµ = q uµ + σ
Ohm

vµ + χE E
µ − χT T aµ

JµS = s uµ + α1 a
µ + α2 Θuµ + α3 v

µ + α4E
µ

(17.25)

satisfy the second law of thermodynamics provided the following relations hold:
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2nd order charged hydrostatic response

Scalars Vectors Tensors

ω2 ωµνaν ωα<µων>α
ωαβB

αβ ωµνEν ωα<µBν>
α

B2 BµνEν Bα<µBν>
α

aαE
α Bµνaν a<µEν>

E2 E<µEν>

a2 a<µaν>

R R<µν>

Rαβu
αuβ Pµν Dλω

νλ F<µν>R ≡ uαuβR<µαν>β
DµE

µ Pµν DλB
νλ D<µEν>

9S + 6V + 9T = 24 = 17 HF + 7 HS + 0 HV + 0 A

Table 1: The 24 hydrostatic response terms for parity-even charged fluids at 2nd order in derivative

expansion. Among them, HF = 17 combinations are forbidden by hydrostatic principle whereas

the remaining HS = 7 combinations are generated by using the first 7 scalars in the Lagrangian.

• The coefficient of sign-indefinite terms in ∆ vanish. These are the HF constraints and

at this order they can be shown to imply:

ε+ p = T s+ q µ , dε = T ds+ µdq . (17.26)

If these conditions which are familiar from thermodynamics (as the Euler relation and

first law) are not satisfied then there is an obstruction to the existence of a hydrostatic

partition function.

• In addition one finds that (see [68] or earlier works such as [93] for a derivation)

α1 = α2 = α3 = α4 = 0 , χE = χT = 0 (17.27)

• The coefficient of sign-definite terms contributing to ∆ must be correct. Evaluating the

relevant terms we obtain (8.2) as expected and learn that viscosities and conductivities

are positive definite. In §8.2 we have already given the result that these terms can be

obtained from the Class D parametrization (17.3) by choosing Υηg = ΥσA = Id and

Υσg = ΥηA = 0 along with the Class Dv tensor structures

ηµναβ = T ζ PµνPαβ + 2T η Pα<µP ν>β , σαβ = T σ
Ohm

Pαβ . (17.28)

Having dispensed with the leading order, let us move to the second order constitu-

tive relations. There are in total 51 parity-even 2-derivative terms that can appear in the

charged fluid constitutive relations [29, 68] among which 9 scalars, 6 transverse vectors and

9 transverse traceless tensors (i.e., a total of 24 terms as in Table 1) enter the hydrostatic

description. The existence of hydrostatics imposes a series of constraints on these 24 terms.

The most straightforward way to derive these constraints is to write down the most general

hydrostatic partition function using the first 7 hydrostatic scalars multiplied by arbitrary

functions of T, µ. Note that we have discarded the last 2 hydrostatic scalars which can be

removed by an integration by parts in the partition function. Hence, we conclude HS = 7.
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2nd order charged non-hydrostatic transport

Scalars Vectors Tensors

Θ2 σα<µσν>α
σ2 Θσµν

vαa
α Θaµ

vαE
α ΘEµ

v2 Θvµ

σµνvν v<µvν>

σµνaν v<µaν>

σµνEν v<µEν>

ωµνvν σα<µων>α
Bµνvν σα<µBν>

α

(uαDα)Θ Pµν (uαDα)Eν (uαDα)σµν

Dµv
µ PµνDνΘ D<µvν>

Pµν Dλσ
νλ

7S + 11V + 9T = 27 = 5 HS + 2 HV + 11 B + 9 D

Table 2: The 27 non-hydrostatic transport terms for parity-even charged fluid at 2nd order in derivative

expansion. Among these, HS = 5 combinations are generated by inserting the first 5 non-

hydrostatic scalars into the Lagrangian. Two combinations are generated by inserting terms

proportional to the non-hydrostatic vectors {σµνvν ,Θvµ} in the free energy current, thus

HV = 2. Among the rest, there are 11 combinations in Class B and 9 combinations in Class

D. Explicit expressions for these 20 combinations are given in Table 7.

For this system, there are no hydrostatically conserved vectors (HV = 0) and no possible

anomalies (A = 0).

By varying this partition function, we then get the most general hydrostatic energy

momentum tensor consistent with hydrostatic principle. This procedure then fixes the 24

response coefficients in terms of 7 functions that appear in the partition function. Eliminating

these 7 functions, we get 24 − 7 = 17 relations thus giving the number of hydrostatically

forbidden combinations as HF = 17.

We now turn to the non-hydrostatic transport parameters listed in Table 2. There are

7 scalars, 11 transverse vectors and 9 transverse traceless tensors which add up to 27 non-

hydrostatic transport coefficients. Of these, 5 combinations can be obtained from including

the first 5 non-hydrostatic scalars into a Lagrangian (the last 2 scalars can be discarded via

integration by parts). These 5 combinations give HS = 5.

The remainder of the analysis involves figuring out which of the residual 27 − 5 = 22

terms can be obtained in the three non-Lagrangian classes {HV ,B,D}. These are classified

by the set of admissible tensor structures which were described in the preceding. We have

already shown in §14.2 that HV = 2 by explicit construction; this involved considering all

zeroth order tensor structures {Cρ((µν)|(αβ))
N ,C

ρ(µν)α
X ,C

ρ(αβ)
S } and plugging them into (17.14).

Independent data was obtained from the two combinations

C
ρ(µν)α
X = T C1(T, µ)P ρ<µP ν>α + T C2(T, µ)PµνP ρα

⇒ Gρ = 2C1 σ
ραvα + 2C2 Θ vρ .

(17.29)

Let us now turn to Classes B and D. All independent Class B and D constitutive relations
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are shown in Table 7. The 11 + 9 combinations presented there can be constructed by

classifying all possible first order transverse tensor structures {N µναβ ,X µνα,Sαβ} in the

constitutive relations (17.6) and (17.4), respectively. All inequivalent Class B terms can

be obtained (up to numerical factors) by plugging the following 11 tensor structures into

(17.6):86

N µναβ ∈ T{σµνPαβ , ωµαP νβ , BµαP νβ} ,
X µνα ∈ T{Pµνvα , PµνEα , Pµνaα , v<µP ν>α , E<µP ν>α , a<µP ν>α} ,
Sαβ ∈ T{ωαβ , Bαβ} .

(17.30)

The 9 Class D terms listed in Table 7 can be obtained by plugging the following tensor

structures into (17.4):

N µναβ ∈ T{σµνPαβ , σµαP νβ , ΘPµνPαβ} ,
X µνα ∈ T{Pµνvα , PµνEα , Pµνaα , v<µP ν>α , E<µP ν>α , a<µP ν>α} ,
Sαβ = 0 .

(17.31)

These lists for Classes B and D are exhaustive in the sense that any other tensor structure

leads to Class B and D constitutive relations with frame invariant data being the same as of

those already obtained (or linear combinations thereof).87 Note that we are not guaranteed

that the parametrization (17.4) is exhaustive – we only verify this a-posteriori by observing

that we have found a total of 51 inequivalent terms in all the classes of transport which

matches the total number of inequivalent tensor structures that are possible for the second

order charged fluids.

We can generalize the above discussion to parity-odd transport using the results of [109].

There are 2 additional parity-odd pseudo-vectors at first order in d = 4 (the magnetic field

vector Bµ and the vorticity vector `µ = εµαρσ uα∇ρ uσ). 27 parity-odd terms at second order

(27 = 6S+9V +12T ). Out of these second order terms 12 = 4S+2V +6T are hydrostatic

and can be obtained from an equilibrium partition function parameterized by two scalars:

hence HS = 2 and HF = 10 (which includes A). Additionally one can see from their table

2 that HS = 2. This leaves us with 13 further terms (7V + 6T ) which should belong to the

other classes. We leave it as an exercise for the reader to complete the classification for this

case.

17.4 Example II: Weyl invariant fluid dynamics

While the second order charged fluid allows us to illustrate the complete set of constitutive

relations within the eightfold way, it is useful to record some examples which can be tested

at least theoretically using the fluid/gravity correspondence [16, 78]. We therefore give

a summary of how various terms for Weyl invariant fluids (both neutral and charged) fit

into our classification scheme. In §17.5 we will provide explicit evidence of the eightfold

classification in holography.

86 Note that each of the tensor structures appears with an arbitrary function of T, µ multiplying it. The

transport coefficients themselves are determined by suitable (differential) linear combinations of these func-

tions.
87 For instance, an obvious structure one might want to add to Class D parameterization is Sαβ = σαβ .

However, this gives constitutive relations which are a linear combination of the Class B terms and the Class

D terms originating from Xµνα = Pµνvα.
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2nd order Weyl invariant neutral fluids: hydrostatic response

Scalars Vectors Tensors

ω2 ωα<µων>α
WR C<µαν>βuαuβ

Pµν DWλ ω
νλ

2T = 2 = 0 HF + 2 HS + 0 HV + 0 A

Table 3: The 2 hydrostatic response terms for Weyl invariant parity-even neutral fluid at 2nd order in

derivative expansion. We have listed the scalars and vectors though they do not contribute to

frame-invariant transport data. Both the relevant symmetric tensors can be obtained by using

the 2 scalars in the Lagrangian, see §11.1 for details.

2nd order Weyl invariant neutral fluids: non-hydrostatic transport

Scalars Vectors Tensors

σ2 σα<µσν>α
σα<µων>α

Pµν DWλ σ
νλ (uαDWα )σµν

3T = 3 = 1 HS + 0 HV + 1 B + 1 D

Table 4: The 3 non-hydrostatic transport terms for Weyl invariant parity-even neutral fluid at 2nd order

in derivative expansion. We have listed the scalars and vectors though they do not contribute

to frame-invariant transport data. Among the symmetric tensors, HS = 1 combination is

generated by inserting σ2 into the Lagrangian. We have HV = 0 since σα<µων>α is in Class

B and σα<µσν>α is in Class D.

Let us now consider the case of second order fluid dynamics with Weyl invariance. The

case of uncharged fluids is summarized in Tables 3 and 4.

There is a total of 5 Weyl invariant second order symmetric tensors that can enter the

most general symmetry allowed constitutive relations, c.f. (11.20). Our Lagrangian analysis

in §11.1.3 showed explicitly that the 2 combinations ωα<µων>α and C<µαν>βuαuβ are in

the hydrostatic Class HS and a third term (uαDWα )σµν is Class HS . These 3 terms can

be obtained from a Lagrangian constructed out of the 3 Weyl invariant scalars. 2 more

tensor structures in Table 4, σα<µων>α and σα<µσν>α, are non-Lagrangian terms in Class B

and Class D, respectively. Both these combinations are surprisingly absent in fluids dual to

Einstein gravity – we only generate the particular linear combination of the 3 non-hydrostatic

terms that is in HS , cf., §11.1 for a discussion.

We now turn to the case of second order charged fluids with Weyl invariance. All

symmetry allowed tensor structures are summarized in Tables 5 and 6.

The hydrostatic case is easy to intuit. We have 10 hydrostatic vectors and symmetric

tensors which generate constitutive relations. HS = 5 of these terms can be obtained from a

Lagrangian that contains the 5 hydrostatic Weyl invariant scalars. The remaining HF = 5

are forbidden by the second law constraint. Beyond hydrostatics, there are another 13

vectors and tensors, HS = 3 of which can be generated by Lagrangians. The remaining

10 non-Lagrangian terms split into {HV ,B,D} = {1, 6, 3}. Explicit expressions for the 10

combinations are given in Table 7. Their corresponding constitutive relations as listed in

Table 7 are precisely those that are obtained in the general constructions (17.29), (17.30)
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2nd order Weyl invariant charged fluids: hydrostatic response

Scalars Vectors Tensors

ω2 ωα<µων>α
ωαβB

αβ ωµνEν ωα<µBν>
α

B2 BµνEν Bα<µBν>
α

E2 E<µEν>

WR Cµανβuαuβ
DWµ E

µ Pµν DWλ B
νλ DW<µEν>

Pµν DWλ ω
νλ

4V + 6T = 10 = 5 HF + 5 HS + 0 HV + 0 A

Table 5: The 10 hydrostatic response terms for Weyl invariant, parity-even, charged fluid at 2nd order

in derivative expansion. We have also enumerated the scalars despite the fact that they do

not appear in the constitutive relations of a Weyl invariant fluid. Among the constitutive

relations generated by the vectors and symmetric tensors, HF = 5 combinations are forbidden

by hydrostatic principle whereas the remaining HS = 5 combinations are generated by using

the first 5 scalars in the Lagrangian.

2nd order Weyl invariant charged fluids: non-hydrostatic transport

Scalars Vectors Tensors

σ2 σα<µσν>α
vαE

α

v2

σµνvν v<µvν>

σµνEν v<µEν>

ωµνvν σα<µων>α
Bµνvν σα<µBν>

α

Pµν (uαDWα )Eν (uαDWα )σµν

DWµ vµ Pµν DWλ σ
νλ DW<µvν>

6V + 7T = 13 = 3 HS + 1 HV + 6 B + 3 D

Table 6: The 13 non-hydrostatic transport terms for Weyl invariant, parity-even charged fluid at 2nd

order in derivative expansion. Among these, HS = 3 combinations are generated by inserting

the first 3 non-hydrostatic scalars into the Lagrangian. One combination is generated by

inserting a term proportional to the non-hydrostatic vector σµνvν in the free energy current,

thus HV = 1. Explicit expressions for the 6 combinations in Class B and 3 combinations in

Class D can be found in Table 7.

and (17.31), but restricting to Weyl invariant tensor structures. Practically, this means

deleting all those constitutive relations that were obtained in the non-Lagrangian classes

before, which contain non-Weyl invariant objects such as Θ and aµ.

17.5 Adiabatic fluids in holography and kinetic theory

Given the relations obtained for adiabatic Weyl invariant fluids in Class L up to second

order in gradients, we have now some structural understanding of the class of hydrodynamic

systems we are dealing with. We can for instance ask if there are physical theories which

are aware of the adiabatic eightfold classification. The answer turns out to be a resounding
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confirmation of using adiabaticity to classify hydrodynamic transport. We will explain this

statement, by examining to distinct hydrodynamic systems that are physically motivated and

for which we have data to compare transport coefficients. First, we look at holographic fluids

arising in the fluid/gravity correspondence [16, 78] which arise from strongly coupled gauge

theory plasmas. Subsequently we examine the fluids arising from weakly coupled quantum

field theories which have been understood using kinetic theory. We will focus exclusively on

second order transport since first order transport is entirely in Class Dv.

17.5.1 Holographic fluids and adiabaticity

We begin by examining the transport properties of holographic fluids using the AdS/CFT

correspondence. As is well known the class of fluids dual to two derivative Einstein-Hilbert

gravity saturate the KSS bound [19] for shear viscosity η/s = 1
4π at first order. Since

η σµν is a Class Dv term, we have no information to gain from an adiabatic analysis. It

is nevertheless interesting to note that entropy production encoded in ∆ = 2 η σµν σ
µν is

minimized (assuming the KSS bound η/s ≥ 1
4π ).

At second order in the gradient expansion we have more to say, since there are definitely

adiabatic parts to transport as we have discovered above. Let us start by understanding the

relations (11.26) in the eightfold way. The transport coefficient (λ1−κ) is dissipative (Class

Ds); indeed, this term contributes to entropy production as ∇µJµS ∼ (λ1 − κ)σανσ
νβσαβ

which is sub-dominant to the leading order η σµνσµν entropy production. A-priori this ought

not to be visible in an effective action (either Class L or LT). On the other hand, (λ2+2τ−2κ)

is a Class B term, for which we ought to be writing a Class LT effective action. The three

remaining terms in (11.22) encode the adiabatic part of the second order transport and are in

one-to-one correspondence with the three free functions in the Lagrangian (11.25) parameter-

izing the Class L Landau-Ginzburg free energy. Correspondingly they are unconstrained by

any hydrodynamic analysis. This is the general expectation from our classification scheme.

Let us now turn to seeing what has been computed in the literature so far.

Firstly, we find a relation between the transport coefficients λ1 and κ:

λ1 − κ = 0 . (17.32)

This constraint follows directly in all dimensions for any large central charge quantum field

theory whose holographic dual is given by Einstein-Hilbert gravity. This can be ascertained

from the analysis of [90], see their Eq. (4.6). It also holds in the case of charged fluids in

d = 4 (we believe it probably holds in all dimensions) as can be verified from Eqs. (4.14)

and (5.2) of [110]. Its validity in more general theories has not been checked as far as we are

aware; it would be interesting to examine this relation in more general theories of gravity. As

demonstrated in [73] it is a necessary consequence of non-dissipation; one can show that the

on-shell entropy current is conserved iff κ = λ1 as we expect from the adiabaticity perspective.

The relation we note is not visible in hydrostatics since σµν vanishes in equilibrium and one

therefore is unable to fix the value of λ1; κ on the other hand is part of thermodynamic

response, cf., [29]. On the other hand we have seen that our Class L Landau-Ginzburg free

energy lands us precisely on this subspace of allowed constitutive relations, cf., (11.26).

Curiously, we also find a second relation which fixes λ2 despite it being a Class B term.

In Class L we find this captured by the second relation (11.26). In fact, using (17.32) we

can express this after eliminating κ as a relation between τ, λ1, λ2 when it is even more
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fascinating and easily recognized in holography:

τ = λ1 −
1

2
λ2 . (17.33)

This is precisely the universal relation between second order transport shown to hold in a

very broad class of theories by [111]. They derived the relation in two derivative theories

of gravity coupled to arbitrary matter fields (scalars and gauge fields).88 This relation also

holds naturally in the non-dissipative effective action approach, but is not demanded per se

from entropy conservation [73]; the latter analysis leaves λ2 unconstrained. From our modern

perspective of adiabaticity, this makes sense as the term is part of Class B transport. It is

rather surprising that not only the Class L theories fix the value of λ2 but they also do so

in a manner consistent with holography!89

Going beyond the two derivative gravity theories, we can ask if the relations (11.26)

or (17.33) hold once we include higher order corrections to the gravitational Lagrangian.

This would correspond to the finite coupling corrections to the strong coupling limit of the

holographic plasma. So far it has been checked that (17.33) holds perturbatively in Gauss-

Bonnet theories to leading order in the higher-derivative coupling [95], though not to next

to leading order [96, 97]. Curiously enough, higher derivative corrections that arise in string

theory (from Type IIB flux compactification on S5) uphold this relation to one additional

order [97] (to O(λ−3/2) in the strong coupling perturbation expansion for the N = 4 SYM

plasma). However, the original relations as stated in (11.26) are satisfied only to leading

order in the higher derivative correction to gravity. From the adiabatic fluid perspective,

(11.26) is a bit more fundamental since κ− λ1 provides a measure for entropy production.

Viewing these relations as fixing a Class D and Class B term respectively is itself an

interesting statement, independent of the precise values. While any physical fluid would of

course have specific values of transport coefficients, one generically expects that the second

order Weyl transport is a point in the five-dimensional space of parameters. Having extra

constraints fixing two parameters in terms of the others is an interesting statement which

deserves to be understood better. Moreover, the value chosen for λ1 is such that no entropy

is produced. This is rather remarkable hinting that holographic fluids are even more perfect

than hitherto believed to be.

Finally, for completeness let us record the values of {kσ, kω, kR} that are suggested by

88 The relation given in Eq. (9) of [111] uses different conventions and also has a small typo. The authors

define the shear tensor with an extra factor of 2 relative to our definition. Furthermore, the sign in the

definition of ωµν should be flipped; this affects the sign of λ2. We thank Michael Haack and Amos Yarom

for double checking these results carefully and for discussions on implications and generalizations of this

statement.
89 The relation holds without imposing Weyl invariance in Class L as can be seen explicitly in Appendix

E.
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holography. Translating the results of [90] we have90

kR = − ceff

d− 2

(
4π

d

)d−2

,

kω =
d− 2

2
kR ,

kσ =
ceff

2 d

(
4π

d

)d−2

Harmonic

(
2

d
− 1

)
,

(17.34)

where Harmonic(x) = γe + Γ′(x)
Γ(x) is the Harmonic number function (γe is Euler’s constant).

Thus, the fluid-gravity result for second order neutral fluid transport can be determined

explicitly from a Lagrangian density

LW = ceff

(
4πT

d

)d
− ceff

(
4πT

d

)d−2 [ WR

(d− 2)
+

1

2
ω2 +

1

d
Harmonic

(
2

d
− 1

)
σ2

]
(17.35)

where we have included also the zero derivative pressure term.

It is very remarkable that the simple effective action (17.35) captures all the non-trivial

results about the thermodynamics of a strongly coupled plasma along with the non-linear part

of transport. Only the value of the first order Class D term, shear viscosity, is undetermined

and indeed modulo this contribution (which is of course important), holographic plasmas

are effectively adiabatic. Coupled with the low value of shear viscosity [19], it follows that

flows of these plasmas tend to minimize the amount of dissipation. The nearly perfect fluid

picture, persists even more strongly perhaps at second order in gradients. We argue in §21

that this suggests a minimum entropy production conjecture, which would be fascinating to

understand in greater detail than explored herein.

It is an interesting challenge in fluid-gravity correspondence to give a gravity prescription

to directly derive this expression. We advocate this as a sharp test for the proposals on how

to think about AdS/CFT effective actions in the presence of horizons (see, for example [23]).

17.5.2 Kinetic theory and adiabatic fluids

We will now turn to examine the existing results in weakly coupled field theories in the light

of our eightfold classification. Computations in weak coupling are surprisingly more difficult

than the AdS/CFT computations in the previous subsection.

The transport coefficients in the hydrostatic Classes HS and HV are computable via

straightforward Euclidean methods without any subtle issues regarding analytic continua-

tion. At weak coupling, the leading contributions to these coefficients are generically given

by free theory results which can be then systematically corrected via perturbative expansion.

These coefficients are also more amenable to numerical lattice methods. The most common

example is the computation of pressure as a function of temperature and chemical potential

in various weakly coupled field theories.

The above state is to be contrasted with the non-hydrostatic classes which require real-

time (Schwinger-Keldysh) techniques for their computation. Further, the leading contribu-

tions to these non-hydrostatic coefficients behave generically as inverse powers of coupling

(and inverse powers of the logarithm of couplings) and often require careful resummations to

90 We use ceff to denote the effective central charge of the field theory; ceff =
`d−1
AdS

16πGN
. For N = 4 SYM in

d = 4 with gauge group SU(N) this is 1
8π2 N

2.
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deal with infrared issues. A common simplification in this context is to pass to an effective

kinetic description. A paradigmatic example in this regard is the computation of viscosities

and conductivities for weakly coupled theories [112, 113].

Computations of higher order transport coefficients are less common. Let us specialize to

the case of (3+1)-dimensional parity-even, Weyl invariant neutral fluid transport coefficients

at second order in derivative expansion. The hydrostatic transport coefficients in this case

were computed by Moore and Sohrabi [114] whose result can be stated in our notations as

−λ3 = 3κ =
T 2

48
(−4NS + 2NWF + 16NV ) +O(g) , (17.36)

where NS is the number of real scalars, NWF is the number of Weyl fermions and NV is the

number of massless vectors in the theory. Here, O(g) represents sub-leading corrections due

to interactions.91

The non-hydrostatic transport coefficients are more difficult to compute. For the (3+1)-

dimensional parity-even, Weyl invariant neutral fluid, the leading order answers have been

computed using kinetic theory in [79] (see also [92]). These leading answers are proportional

to inverse powers of coupling (and inverse powers of the logarithm of couplings) as expected.

Thus, in contrast to the hydrostatic coefficients in (17.36) which are known up to zeroth

order in coupling, the non-hydrostatic coefficients are known less precisely. The results of

[79] translated into our notation takes the form92

τ1 =
2η2

ε+ p
× 5.9 to 5.0 (varies with coupling) : 6.10517 in φ4 theory ,

λ1 =
4η2

ε+ p
× 5.2 to 4.1 (varies with coupling) : 6.13264 in φ4 theory ,

κ = 0 , λ2 = 2 τ .

(17.39)

These results are valid for Debye screening lengths of the order of temperature (see [79] for

more detailed plots of these transport coefficients as functions of coupling and the approxi-

mations involved).

91 We will refer the reader to [115–117] for a generalization of these results to parity odd transport coeffi-

cients. There is an unresolved discrepancy in the value of λ3 between the results of [114] and [117].
92 Unfortunately the literature is littered with a multitude of conventions for various hydrodynamic tensors

which affects the numerical values of transport coefficients. As far as we have been able to ascertain the

following is a useful dictionary to aid the translation between the references cited:

ω = −ω[16] = ω[90] = −ω[111] = −ω[82] = ω[92] = ω[79] ,

σ = σ[16] = σ[90] =
1

2
σ[111] = σ[82] =

1

2
σ[92] =

1

2
σ[79] ,

C = C[90] = C[82] = − 1

d− 2
C[92] = − 1

d− 2
C[79] ,

(17.37)

with the un-subscripted symbols corresponding to the ones used in this text and C is the tensor structure

governing the curvature coupling of the fluid (given by Weyl tensor term Cµρνσ uρ uσ in our conventions).

We have also taken the liberty to correct the sign in the definition of [111] based on a private correspondence

with the authors (their Eq. (7) should have an extra sign in front). In addition to further complicate signs,

we have λ2 multiplying different contracting of σµν and ωµν giving an additional sign to keep track of:

coefficient λ2 : (σ <µ
α ωαν>)

(σ <µ
α ων>α)[16] , (σ <µ

α ων>α)[90] , (σ <µ
α ωαν>)[111]

(σ <µ
α ων>α)[92] , (σ <µ

α ων>α)[79] , (σ <µ
α ων>α)[82]

(17.38)
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We will draw the readers attention to a relation obtained by combining the last two

transport results in (17.39)

λ2− 2(τ − κ) = 0 . (17.40)

The relation λ2−2 τ = 0 is a universal prediction of kinetic theory which follows naturally

from the Boltzmann equation [79] and is consistent with earlier derivations [92]. The fact

that [92] could ascertain λ2 without knowing the collision kernel in the Boltzmann equation

tells us that this is indeed a non-dissipative part of transport. Along with the fact that κ = 0

at this order in coupling leads to the relation we have quoted above. We have however chosen

to highlight the color of the sign, since it differs from the holographic result in (11.26). Indeed

had the sign been consistent with the holographic result, we would have concluded that even

in kinetic theory λ2 would have had a value determined by a Class L Landau-Ginzburg free

energy. It might be useful to cross-check this result independently (despite two independent

confirmations above) to demonstrate that λ2 is not obtainable from an effective action in

kinetic theory.93

We see that this combination chosen by kinetic theory is exactly the combination that

we have identified as the Class B transport coefficient (and it is also one of the combinations

which are zero in the two derivative gravity). We can thus state this universal result from

kinetic theory as the statement that the Class B term is absent in the constitutive relation

derived from kinetic theory. We will take this as an evidence that our eightfold classification

gives a natural framework from which the kinetic theory results could be understood. It

would be an interesting exercise to try to see whether one could simplify these kinetic theory

computations using various techniques introduced in this thesis.

17.6 Eightfold classification for various fluid systems

In the preceding subsections we have seen evidence for the eightfold classification of transport

in various physical systems and we have also outlined how to transcribe the eightfold path

in certain examples. We now give a comprehensive summary of the results in a tabular form

for future reference. Tables 7 and 8 provide a classification of the total number of vector

and tensor structures that give constitutive relations allowed by symmetry in various fluid

systems up to second order in the derivative expansion.

The terms listed for Classes HS and HS are scalars that can be used in a Lagrangian to

generate independent constitutive relations. Similarly, Classes HV and HV provide partition

function vectors, i.e., free energy currents. Classes B and D are non-Lagrangian, so we give

directly the expressions for stress tensors (and charge currents) that can be generated using

the rules given in §12 and §8, respectively. Similarly, Class A terms are given directly as

constitutive relations of stress tensor and charge current. Further taking into account a

number HF of terms that are disallowed by the existence of an equilibrium configuration

(or equivalently by the second law of thermodynamics), the terms listed in each row of the

tables exhaust the number of independent transport data.94

93 We thank Andrei Starinets for useful discussions on this point.
94 We refrain from listing Class C constitutive relations in the Tables as they are dimension specific and

depend on the topology of the background M on which the fluid lives.
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18 Class LT: Eightfold Lagrangian

Our discussion thus far has focused on generating adiabatic constitutive relations and demon-

strating how these help us classify hydrodynamic transport at arbitrary orders in the gradient

expansion. This discussion is encapsulated in the statement of Theorem 1. We have argued

in that context for the completeness of our classification based on the structure of the adia-

baticity equation.

We would now like to justify the statement more directly and in the process explain

the basic rationale for considering adiabatic transport which has played a starring role. As

a result we now introduce a novel ingredient in our analysis, which involves constructing a

master Lagrangian. The adiabaticity equation is not derived from this master equation as a

Bianchi identity of the underlying diffeomorphism and gauge symmetries as in the Class L

discussion of §9, but rather follows as the statement of invariance under a new abelian gauge

symmetry. The corresponding gauge field A(T)
µ and the associated gauge group U(1)T will

be motivated below and argued to ensure that the associated Gauss Law translates directly

into the statement of adiabaticity. The main upshot of this construction is then to provide

a constructive proof of Theorem 2.

The framework which we christen Class LT (since it extends Class L to include the non-

Lagrangian solutions to adiabaticity equation) involves not only a new symmetry, but also

introduces some additional background fields. These are analogous to the Schwinger-Keldysh

counterparts of the metric and gauge field sources. The strategy we follow is to guess at

a set of fields and invariances that are suggestive from our adiabatic analysis of Part III.

This allows us to postulate a master Lagrangian which generates precisely the constitutive

relations consistent with adiabaticity equation, deriving for us the eightfold classification

in the process. Furthermore, we will argue for the existence of an appropriate variational

principle which yields exactly the hydrodynamic equations of motion. While satisfactory in

terms of helping us complete our taxonomy, we don’t provide here a full-fledged argument for

why certain sources are doubled, nor do we give the actual relation between this construction

and that of the Schwinger-Keldysh analysis of §16.95 We will just note here that the Class

LT framework appears to capture some of the basic features necessary in the analysis of

non-equilibrium transport. This then shows that a consistent Schwinger-Keldysh doubling

of the hydrodynamic effective theory is indeed possible, provided one ascertains the new

ingredient, i.e., U(1)T gauge invariance. The lessons that we can glean from fleshing out this

statement and the connections with the Schwinger-Keldysh construction will be discussed in

more detail in §22 and are worked out [3, 4] and future work.

18.1 Introducing U(1)T invariance

We initially motivated the adiabaticity equation to capture the part of transport where

off-shell entropy production was compensated by a flow of energy-momentum and charge.

The latter currents are of course conserved as a consequence of diffeomorphism and gauge

invariance of the underlying microscopic theory. In Class L we noticed further that working

with a thermal density matrix parameterized by {βµ,Λβ} allowed us to extract a set of

Bianchi identities which together imply the adiabaticity equation as a natural corollary, cf.,

95 We will however note in the course of the discussion that the construction in Class LT appears to be

consistent with the Schwinger-Keldysh doubling required for the anomalous hydrodynamic transport discussed

in §16.
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§9. We have however seen that Class L Lagrangians are not exhaustive in describing the

space of adiabatic transport coefficients.

On the one hand this is to be expected because a genuine treatment of non-equilibrium

field theory should require a Schwinger-Keldysh doubling of the degrees of freedom. From this

viewpoint it is rather surprising that Class L Lagrangians already capture many aspects of

adiabatic transport. On the other hand as we argued in §16.5 there is something missing in a

simple-minded construction of Schwinger-Keldysh doubled Lagrangian effective field theories.

The problem is not so much in simply doubling the degrees of freedom and writing down

independent Lagrangians for the left and right degrees of freedom, but rather in constraining

the interactions between the two sets. The challenge is to keep the doubled degrees of freedom

under control after coupling the two copies via Feynman-Vernon influence functionals. A-

priori there would be two independent copies of diffeomorphism and flavour gauge symmetries

that act on the system independently on the left and right. One might imagine breaking

these down to the corresponding diagonal symmetries upon introduction of the influence

functionals. This however does not suffice to forbid terms that allow for violation of the

second law of thermodynamics.

The principle of adiabaticity introduced in §5 allows us to focus on the marginal case of

zero entropy production. Based on this we would like to argue that we should understand

first a basic principle that guarantees (5.12) as a statement of invariance. Since it asserts

effectively that the entropy current is conserved on-shell (up to anomalous contributions), it

is tempting to posit a gauge invariance whose associated current conservation leads directly

to the adiabaticity equation. This we claim that will suffice to impose sufficient conditions on

the Feynman-Vernon terms to ensure consistency with the second law of thermodynamics.

More precisely, it ensures that such terms are consistent with the microscopic KMS condition.

Let us then record the ingredients we deem necessary to construct an effective Lagrangian

for all the adiabatic constitutive relations. Firstly we have the low energy fluid degrees of

freedom {βµ,Λβ} and the background sources {gµν , Aµ}. These can be viewed as functionals

of the maps from some reference configuration, whence we can directly deal with the Gold-

stone bosons as described in §16. We will in addition postulate the existence of a second set

of sources, which we call {g̃µν , Ãµ}.
The abelian symmetry which we will henceforth refer to as U(1)T can be viewed as a

KMS gauge symmetry. We conjecture that it provides the effective field theory version of the

microscopic KMS condition that is required for the consistency of (near-)thermal Schwinger-

Keldysh path integrals. This symmetry acts as a thermal diffeomorphism or flavour gauge

transformation on the sources. As indicated above it corresponds to difference diffeomor-

phisms/gauge transformations which are aligned with the hydrodynamic fields {βµ,Λβ}. We

will postpone a detailed argument for the existence of such a symmetry. For now, we will

content ourselves by demonstrating that there is a way of consistently defining a KMS gauge

symmetry of thermal translations such that the aforementioned goals are achieved. In §22 we

will return to the issue of physically motivating U(1)T. The KMS gauge field corresponding

to the U(1)T symmetry will be denoted as A(T)
µ. We have in addition an associated holonomy

field Λ(T)

β and a U(1)T chemical potential Λ(T)

β + βµA(T)
µ.

The diffeomorphism and flavour transformations on the fields in an obvious manner. On

the contrary U(1)T acts nonlinearly and mixes with flavour and diffeomorphism transforma-

tions:
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• On all fields, U(1)T acts as a longitudinal diffeomorphism and flavour gauge transfor-

mation along {βµ,Λβ}.

• In addition, on {g̃µν , Ãµ}, there is a further shift by {δ
B
gµν , δBAµ}.

• The field A(T)
µ transforms as a connection for U(1)T and Λ(T)

β acts like a gauge trans-

formation parameter, viz., Λ(T)

β + βσA(T)
σ is invariant.

It is worth noting that from a Schwinger-Keldysh point of view, these transformation

rules are not the most natural ones. It would have been more natural to retain the abelian

part of the non-diagonal diffeomorphism and flavour gauge symmetries along B. We antici-

pate that the difference is due to the fact that the natural basis of sources chosen here is not

the canonical Schwinger-Keldysh choice. In fact it seems plausible to conjecture that

gR
µν = gµν ,

AR
µ = Aµ

gL
µν = gµν − g̃µν − βµ A(T)

ν − βν A(T)
µ ,

AL
µ = Aµ − Ãµ − (Λβ + βαAα) A(T)

µ

(18.1)

as the appropriate identifications for the right (R) and left (L) sources, respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [80] anyway.

For the present the reader may therefore take our prescription merely as a technical tool to

prove the completeness of our eightfold classification without worrying about the profound

physical consequences.

18.2 The fields and their transformation properties

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµν , Aµ},

2. the fluid fields {βµ,Λβ},

3. partners for the sources {g̃µν , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,

4. an additional U(1)T gauge field A(T)
µ and its holonomy field Λ(T)

β .

When necessary we will collectively refer to these fields as ΨT. The symmetries that any

effective Lagrangian needs to preserve are diagonal diffeomorphisms/flavour gauge transfor-

mations (acting equally on sources and their partners) and in addition the abelian U(1)T
thermal shift symmetry (which we claim enforces consistency of Feynman-Vernon terms).

Let us now record the transformation rules for the fields ΨT. We denote the trans-

formation parameters of diffeomorphism, flavour, and U(1)T transformations by {ξ,Λ,Λ(T)}
respectively. In terms of these independent parameters, U(1)T has a twisted action on the

various fields. This is because fields transform non-linearly under it and part of the U(1)T
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transformation involves diffeomorphisms and flavour gauge transformations. We will deal

with the non-trivial mixing between diffeomorphism and flavour transformations on the one

hand and U(1)T on the other hand using the following trick: instead of using the origi-

nal transformation parameters, we will move to a new basis of transformation parameters

{ξ̄µ, Λ̄, Λ̄(T)} which generate combinations of the original transformations which do not mix

with each other. The original transformation parameters are related to these via

ξµ ≡ ξ̄µ − (Λ̄(T) + ξ̄σ A(T)
σ)βµ , ξ̄µ ≡ ξµ + (Λ(T) + ξσ A(T)

σ)βµ , (18.2a)

Λ ≡ Λ̄− (Λ̄(T) + ξ̄σ A(T)
σ) Λβ , Λ̄ ≡ Λ + (Λ(T) + ξσ A(T)

σ) Λβ , (18.2b)

Λ(T) ≡ Λ̄(T) + (Λ̄(T) + ξ̄σ A(T)
σ)βν A(T)

ν , Λ̄(T) ≡ Λ(T) − (Λ(T) + ξσ A(T)
σ)βν A(T)

ν . (18.2c)

We have given the translation between the two sets of gauge transformation parameters

{ξµ,Λ,Λ(T)} and {ξ̄µ, Λ̄, Λ̄(T)} in both forward and reverse directions to facilitate translation

between them in the future. A useful relation in converting between these parameters is

Λ(T) + ξσ A(T)
σ = Λ̄(T) + ξ̄σ A(T)

σ .

The transformation rules: Armed with this we are now in a position to write down the

explicit transformations of various fields which takes a simple form in terms of the untwisted

transformation parameters {ξ̄µ, Λ̄, Λ̄(T)}:96

δ
X
gµν ≡ £ξ̄gµν = Dµξ̄ν +Dν ξ̄µ ,

δ
X
Aµ ≡ £ξ̄Aµ + [Aµ, Λ̄] + ∂µΛ̄ = Dµ

(
Λ̄ + ξ̄νAν

)
+ ξ̄νFνµ ,

δ
X
βµ ≡ £ξ̄β

µ = ξ̄νDνβ
µ − βνDν ξ̄

µ ,

δ
X

Λβ +Aν δXβ
ν ≡ ξ̄µ δ

B
Aµ − βµDµ

(
Λ̄ + ξ̄ν Aν

)
+ [Λβ + βλAλ, Λ̄ + ξ̄νAν ] .

(18.3)

In terms of the original transformation parameters {ξµ,Λ,Λ(T)}, these transformations

would mix diffeomorphism and flavour transformations with U(1)T. The advantage gained

from working with {ξ̄, Λ̄, Λ̄(T)} is an untwisting of U(1)T such that {gµν , Aµ,βµ,Λβ} are

blind to it. The partner sources {g̃µν , Ãµ} transform similarly, but in addition pick up an

inhomogeneous piece which contains a source Lie-dragged along B under the U(1)T action:

δ
X
g̃µν ≡ £ξ̄ g̃µν + Λ̄(T) δ

B
gµν

= 2 g̃σ(µDν)ξ̄
σ + ξ̄σ

(
Dσ g̃µν − A(T)

σ δBgµν
)

+
(
Λ̄(T) + ξ̄σ A(T)

σ

)
δ
B
gµν

δ
X
Ãµ ≡ £ξ̄ Ãµ + [Ãµ, Λ̄] + Λ̄(T) δ

B
Aµ

(18.4)

Finally, the transformation of the U(1)T connection and its holonomy are given by

δ
X

A(T)
µ ≡ £ξ̄ A(T)

µ + ∂µΛ̄(T) = Dµ

(
Λ̄(T) + ξ̄ν A(T)

ν

)
+ ξ̄ν F(T)

νµ ,

δ
X

Λ(T)

β + A(T)
ν δXβ

ν ≡ ξ̄µ δ
B

A(T)
µ − βµDµ

(
Λ̄(T) + ξ̄ν A(T)

ν

)
.

(18.5)

The first line is just the usual transformation rule for the gauge field of an abelian symmetry;

the second line is such that Λ(T)

β + βν A(T)
ν is invariant. In fact, as we will see the present

formalism is a natural extension of the Class HV formalism of §14.1. To obtain consistency

96 We denote the derivative operator which covariantly transforms under diffeomorphisms, flavour gauge,

and U(1)T transformations by Dµ in what follows. It is defined by appropriately extending (5.8) to incorporate

U(1)T transformations as well.
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between the two formalisms (see §20.3), we are led to a natural choice for fixing the above

invariant combination. We will choose

Λ(T)

β + βσ A(T)
σ = 1 . (18.6)

Given that the transformations rules have thus far been “pulled out of a hat”, we demon-

strate that they are consistent in Appendix H. In particular, we will will check that they

form an algebra such that the usual Wess-Zumino consistency conditions are satisfied. This

allows us to proceed with confidence about these transformations.

Difference source combinations: While this completes the basic transformation rules

from which all the subsequent expressions can be derived, it is convenient to consider a

linear combination of the sources {gµν , Aµ} and their partners {g̃µν , Ãµ} which is simplifies

the expressions somewhat.

To appreciate this let us define the shifted partner sources

g′µν ≡ gµν − g̃µν
A′µ ≡ Aµ − Ãµ

(18.7)

as well as the associated covariant derivative D′ and field strength F ′ respectively.97 We

define them as

D′αX
µ···ν

ρ···σ = ∇′αXµ···ν
ρ···σ + [A′α, X

µ···ν
ρ···σ] ,

F ′µν = ∇′µA′ν −∇′µA′ν + [A′µ, A
′
ν ]

(18.9)

The primed covariant derivative acts on tensors as in (5.9).

Then it a simple exercise to see that we can rewrite (18.4) as

δ
X
g̃µν = δ

X
gµν + (Λ̄(T) + ξ̄σ A(T)

σ) δ
B
gµν −

{
2D′(µ

(
g′ν)ρ ξ̄

ρ
)

+ ξ̄σA(T)
σδBgµν

}
,

δ
X
Ãµ = δ

X
Aµ + (Λ̄(T) + ξ̄σ A(T)

σ) δ
B
Aµ −

{
D′µ
(
Λ̄ + ξ̄σ A′σ

)
+ ξ̄σ F ′σµ + ξ̄σ A(T)

σ δBAµ

}
.

(18.10)

In fact, we can more conveniently merge (18.3) and (18.10) into a transformation rule for

the partner fields themselves. To wit,

δ
X
g′µν = D′µ

(
g′νρ ξ̄

ρ
)

+D′ν
(
g′µρ ξ̄

ρ
)

+ ξ̄σA(T)
σδBgµν − (Λ̄(T) + ξ̄σA(T)

σ) δ
B
gµν ,

δ
X
A′µ = D′µ

(
Λ̄ + ξ̄σ A′σ

)
+ ξ̄σ F ′σµ + ξ̄σ A(T)

σ δBAµ − (Λ̄(T) + ξ̄σ A(T)
σ) δ

B
Aµ .

(18.11)

97 Some useful identities for converting between covariant derivatives of two different metrics are the

following:

D′µ(g′νσV
σ) = Dµ(g′νσV

σ) +
1

2
V σ
(
Dσg

′
µν −Dµg′νσ −Dνg′µσ

)
D′ν(g′σµT

µν) =

√
−g√
−g′

Dν(

√
−g′√
−g

g′σµT
µν)− 1

2
TµνDσg

′
µν

(18.8)

where V σ and Tµν are some general vector and a symmetric tensor respectively.
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Schwinger-Keldysh inspired combinations: Above we have chosen to take the partner

sources {g′µν , A′µ} without any potential contamination from A(T)
µ. However, attempts to

reconcile the construction here with the Schwinger-Keldysh picture developed for Class A

suggests that the combination that may be relevant is instead given as in (18.1). Taking this

seriously let us consider the twisted partner sources (18.1) with suggestive names inspired

by Schwinger-Keldysh construction. We can then rewrite (18.4) as

δ
X
g̃µν = δ

X
gµν + (Λ̄(T) + ξ̄σ A(T)

σ) δ
B
gµν −

{
2DL

(µ

(
gL

ν)ρ ξ̄
ρ
)

+ ξ̄σA(T)
σ δBgµν

}
,

δ
X
Ãµ = δ

X
Aµ + (Λ̄(T) + ξ̄σ A(T)

σ) δ
B
Aµ −

{
DL
µ

(
Λ̄ + ξ̄σ AL

σ

)
+ ξ̄σ F L

σµ + ξ̄σ A(T)
σ δBAµ

}
.

(18.12)

and merge (18.3) and (18.12) into

δ
X
gL
µν = 2DL

(µ

(
gL

ν)ρ ξ̄
ρ
)

+ ξ̄σA(T)
σ δBg

R
µν − 2 £ξ̄

(
β(µ A(T)

ν)

)
− (Λ̄(T) + ξ̄σA(T)

σ) δ
B
gR
µν ,

δ
X
AL
µ = DL

µ

(
Λ̄ + ξ̄σ AL

σ

)
+ ξ̄σ F L

σµ + ξ̄σ A(T)
σ δBA

R
µ −£ξ̄

(
(Λβ + βσ AR

σ) A(T)
µ

)
− [Λβ + βσAR

σ , Λ̄] A(T)
µ − (Λ̄(T) + ξ̄σ A(T)

σ) δ
B
AR
µ . (18.13)

In much of our discussion we will only use the difference sources {g′µν , A′µ} and only

briefly in the discussion involving anomalous hydrodynamics revert to the Schwinger-Keldysh

inspired {gL
µν , A

L
µ}. The translation between the two sets of languages being straightforward

(the basic formulae are all given above), it should be simple to translate statements between

the two if necessary.

18.3 Bianchi identities in Class LT

We can now use the various fields introduced in the previous subsection to construct La-

grangians LT [ΨT] invariant under diffeomorphism, flavour, and U(1)T transformations. This

invariance yields Bianchi identities which we will now show imply the adiabaticity equation

in the hydrodynamic limit (i.e., to linear order in the Schwinger-Keldysh difference fields).

Let us parameterize the variation of LT by

1√
−g

δ
(√
−g LT

)
−∇µ(/δΘT

PS
)µ

=
1

2
TµνL δgµν + JµL · δAµ + T hσ δβ

σ + T n · (δΛβ +Aσ δβ
σ)

+
1

2
TµνLc δg̃µν + JµLc · δÃµ + JσT δA(T)

σ + T nT

(
δΛ(T)

β + A(T)
σ δβ

σ
)
.

(18.14)

The subscript L is supposed to indicate that these constitutive relations can be obtained

from Class L as discussed in §9. Similarly, the subscript Lc suggests that these will be all

remaining adiabatic constitutive relations not obtainable from Class L.

The variation (18.14) defines the constitutive relations obtained from LT. We can now

explicitly perform the diffeomorphism, flavour gauge, and U(1)T transformations using the

explicit variations given in §18.2. We simply replace δ in (18.14) by δ
X

as defined by (18.3)-

(18.5) and perform some necessary integration by parts to isolate the coefficients of the

transformation parameters {ξ̄µ, Λ̄, Λ̄(T)}. As this exercise is a straightforward generalization

of the analysis in Class L we simply quote the final answers for the Bianchi identities (some

useful intermediate steps are given in Appendix H).

145



• The diffeomorphism Bianchi identity is

Dµ(TL+Lc)
µ
σ − JνL+Lc · Fσν − JνT · F(T)

σν

=
1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ + T nT · δBA(T)

σ

+ Dν

(
g′σµ T

µν
Lc

)
− 1

2
TµνLc Dσg

′
µν − JνLc · F ′σν

− A(T)
σ

(
1

2
TµνLc δBgµν + JµLc · δBAµ

)
− Ãσ ·

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)
.

(18.15)

• The flavour Bianchi identity is given by

DµJ
µ
L+Lc =

1√
−g

δ
B

(√
−g T n

)
+

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)
. (18.16)

• Finally, the U(1)T Bianchi identity reads (after setting Λ(T)

β + βσ A(T)
σ = 1):

DµNµ
T =

1

2
TµνL+Lc δBgµν + JµL+Lc · δBAµ +

1

2
TµνLc δ

B
g̃µν + JµLc · δBÃµ + JµT δ

B
A(T)

µ

+

(
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

))
. (18.17)

We have skipped several steps in the derivation of (18.17), which unlike the diffeo-

morphism and flavour Bianchi identities does require isolating the U(1)T transformation

explicitly. The intermediate steps can be found in Appendix H. The essential steps involve

reverting back to the original (twisted) transformation parameters {ξµ,Λ,Λ(T)}. It should

hopefully be clear that this can be achieved without modifying the diffeomorphism and

flavour Bianchi identities. After performing the required shift and defining

Nµ
T ≡ −

GµT
T
≡ JµT + βνT

µν
L+Lc + (Λβ + βνAν) · JµL+Lc −

{
hσ β

σ + n · (Λβ + βνAν) + nT

}
uµ

− βν g′αβ gµα T
βν
Lc − (Λβ + βν A′ν) · JµLc . (18.18)

we arrive at (18.17).

In fact, we can further simplify the above expressions, by noting a particularly interesting

combination of the Bianchi identities that follows straightforwardly in the derivation (see

Appendix H). One finds that the grand canonical adiabaticity equation for {TµνLc , J
µ
Lc} holds

identically, i.e.,

DµJ
µ
T =

1

2
TµνLc δ

B
gµν + JµLc · δBAµ +

1√
−g

δ
B

(√
−g T nT

)
, (18.19)

=⇒ Dµ(JµT − nTu
µ) =

1

2
TµνLc δ

B
gµν + JµLc · δBAµ . (18.20)

Using this equation we then eliminate the last line of (18.17) to obtain

DµNµ
T =

1

2
TµνL+Lc δBgµν + JµL+Lc · δBAµ +

1

2
TµνLc δ

B
g̃µν + JµLc · δBÃµ + JµT δ

B
A(T)

µ . (18.21)

This is a useful expression in ascertaining U(1)T invariant Lagrangians. We have written

both this and the more cumbersome expression (18.17) since the latter is more useful when

we have anomalous terms, as it helps at various stages of the derivation to keep track of the

origins of various contributions.
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18.4 The adiabatic Lagrangian LT

Given the Bianchi identities for the various symmetries in Class LT we can now examine

the implications for the adiabaticity equation. In particular, we shall prove that a given

constitutive relation furnishes a solution to the adiabaticity equation (5.12) if and only if

it can be derived from a master Lagrangian LT that preserves diffeomorphism, flavour, and

U(1)T invariance.

Firstly, we should make contact with the adiabaticity equation. Unlike in Class L where

we gave a prescription for the entropy density, we have not yet done so for LT [ΨT]. In-

tuitively, we want to identify the U(1)T invariance as being responsible for adiabaticity.

However, it is clear that JµT should play some role in its definition since U(1)T symmetry was

introduced to ensure adiabaticity. In fact, the redefined counterpart Nµ
T is closely related to

the grand canonical free energy current.

In fact we can make this a bit more precise by viewing the Bianchi identities inspired

by our discussion about the Schwinger-Keldysh construction in §16. Consider using the

reference configuration in the Schwinger-Keldysh construction to pull-back the L fields onto

the R-manifold. Then we have all the background sources living on the right manifold.

Furthermore, working with the common hydrodynamic fields, we can attempt to derive a set

of Bianchi-identities under the right diffeomorphism and flavour symmetries. This leads to

an analog of (16.11), with the sole difference being that all the fields are on the R-manifold

and we are working with the physical degrees of freedom. This set of identities in fact can

be shown to be closely related to Eqs. (18.15)-(18.16). To see this, note that the defining

variation (18.14) can be rewritten as

1√
−g

δ
(√
−g LT

)
−∇µ(/δΘT

PS
)µ

=
1

2
TµνL+Lc δgµν −

1

2
TµνLc δg′µν + JµL+Lc · δAµ − J

µ
Lc · δA′µ

+ T hσ δβ
σ + T n · (δΛβ +Aσ δβ

σ) + JσT δA(T)
σ + T nT

(
δΛ(T)

β + A(T)
σ δβ

σ
)
.

(18.22)

Apart from the last two terms (which are tied to the presence of the U(1)T symmetry princi-

ple), this expression has the same structure as the Schwinger-Keldysh variation (16.7) (after

pulling it to the R-manifold). Aided by this observation, we tentatively forward the follow-

ing hypothesis: in the absence of anomalies the Schwinger-Keldysh sources can be identified

with {gR
µν , A

R
µ} 7→ {gµν , Aµ} and {gL

µν , A
L
µ} 7→ {g′µν , A′µ} respectively.98 Accordingly, (18.22)

suggests that the currents map as {TµνR , JµR} 7→ {TµνL+Lc , J
µ
L+Lc} and {TµνL , JµL } 7→ {TµνLc , J

µ
Lc}.

The constrained (Schwinger-Keldysh) variational principle (16.8), would then inspire us to

put forward a constrained variational principle in Class LT which takes the following form:

under diffeomorphisms and flavour gauge transformations only {βµ,Λβ, g′µν , A′µ} transform

while the R-sources {gµν , Aµ} are held fixed. Modulo a sensible extension to the new fields

{A(T)
µ,Λ

(T)

β } and to U(1)T transformations, this is indeed what we will find in §19.2.

This close analogy to the Schwinger-Keldysh doubled formalism then suggests that in

the hydrodynamic limit, where we want to consider only the fully retarded correlators, we

should be working to leading order in the difference fields which are now {g̃µν , Ãµ} for reasons

explained in §16 (see also [8]). For the present analysis it implies that once we are done with

98 In the present context we view this identification as heuristic. Studying anomalies as in §20.3 shows that

the identification of Schwinger-Keldysh fields should actually be twisted to involve the field A(T)
µ as in (18.1).
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the various variations we should set g̃µν → 0 and Ãµ → 0. In addition, as far as the new

U(1)T symmetry is concerned, the hydrodynamic limit corresponds to setting A(T)
µ = 0 and

Λ(T)

β = 1.

Once we set all the auxiliary fields {g̃µν , Ãµ,A(T)
µ} to zero and Λ(T)

β = 1, the U(1)T Bianchi

identity (18.17) takes the form:

DµNµ
T

∣∣∣
Ψ∅

T

=
1

2
TµνL+Lc

∣∣∣
Ψ∅

T

δ
B
gµν + JµL+Lc

∣∣∣
Ψ∅

T

· δ
B
Aµ

where Ψ∅
T = {g̃µν = Ãµ = A(T)

µ = 0 , Λ(T)

β = 1, & Ψ = arbitrary} .
(18.23)

Thus {Nµ
T , T

µν
L+Lc , J

µ
L+Lc}

∣∣
Ψ∅

T
is a constitutive relation that solves adiabaticity equation.

This shows that the constitutive relations derived from any diffeomorphism, flavour,

and U(1)T invariant Lagrangian LT are always guaranteed to be solutions of the adiabaticity

equation. We will now argue that the converse is also true: every adiabatic constitutive

relation can be obtained by this method.

Consider an arbitrary set of covariant constitutive relations {Nµ = −Gµ/T, Tµν , Jµ}
such that they solve the grand canonical adiabaticity equation (5.21), i.e., they identically

satisfy

DµNµ =
1

2
Tµν δ

B
gµν + Jµ · δ

B
Aµ . (18.24)

This implies that the combination NµA(T)
µ + 1

2T
µν g̃µν + Jµ · Ãµ is invariant under flavour,

diffeomorphism and U(1)T transformations up to boundary terms. Hence, the following

master Lagrangian provides an allowed effective description:

LT = NµA(T)
µ +

1

2
Tµν g̃µν + Jµ · Ãµ . (18.25)

It is now easy to see that our procedure for generating adiabatic constitutive relation

from LT [ΨT] exactly reproduces the original constitutive relations we started with, i.e.,

{Nµ
T , T

µν
L+Lc , J

µ
L+Lc}

∣∣
Ψ∅

T
= {Nµ, Tµν , Jµ} (18.26)

Thus, we have shown any adiabatic constitutive relation can be obtained from some LT [ΨT].

This establishes LT to be the generating function for all adiabatic constitutive relations and

completes the proof of Theorem 2. In §20 we will give a more detailed discussion of this

fact and indeed show explicitly how the eightfold way is implemented in Class LT. Before

doing so let us however show how hydrodynamic equations of motion and entropy current

conservation are obtained in Class LT.

19 Hydrodynamic Ward identities and the Second Law in Class LT

Having constructed the basic formalism for the construction of U(1)T invariant Lagrangians

in Class LT, we now turn to demonstrating that the implied equations of motion are the usual

conservation equations of hydrodynamics. We do this by giving a constrained variational

principle that is completely analogous to the procedure in Class L, c.f., §10. The new

features are, of course, that Class LT captures all of adiabatic transport and the presence of

the additional U(1)T symmetry whose associated Ward identity will turn out to be entropy

current conservation.

148



19.1 The Class LT variational principle

Having derived a master Lagrangian LT that determines precisely those constitutive relations

that satisfy adiabaticity equation, it remains to show that currents involved satisfy the correct

hydrodynamical equations of motion. Our next goal is thus to define a constrained variational

principle for LT [ΨT] which leads to the desired on-shell Ward identities.

Before we get into the technicalities, it should be clear that any variational principle

must reduce to the Class L variational principle (10.2) when the auxiliary fields are absent.

This means that the constrained variational principle described there must be extended in

an U(1)T invariant manner to the auxiliary fields {g̃µν , Ãµ,A(T)
µ,Λ

(T)

β }.
Consider a constrained variation � of the following form: it acts on the single copy fields

exactly as in Class L, i.e.,

� : �βµ = δ
X
βµ , �Λβ = δ

X
Λβ , �gµν = �Aµ = 0 , (19.1)

and it acts on the copy sources and U(1)T fields in a similar way:

� : �g̃µν = −δ
X
g′µν =⇒ �g′µν = δ

X
g′µν

�Ãµ = −δ
X
A′µ =⇒ �A′µ = δ

X
A′µ ,

�A(T)
µ = δ

X
A(T)

µ , �Λ(T)

β = δ
X

Λ(T)

β .

(19.2)

The choices for the variations of the auxiliary fields made in (19.2) involves treating them

like the physical hydrodynamic fields. In other words the constrained variation � consists

of varying the fields {βµ,Λβ, g′µν , A′µ,A(T)
µ,Λ

(T)

β } along a Lie-orbit while keeping the sources

{gµν , Aµ} fixed. As alluded to in §18.4, these transformation rules are very canonical if we

consider our Class LT Lagrangian as a natural extension of the Schwinger-Keldysh formalism

developed §16.2.

Given this constrained variational principle, we can plug the explicit variations into

(18.14), integrate by parts where necessary and end up with the basic statement:99

1√
−g

�
(√
−g LT

)
− Boundary terms

= (Λ + ξνAν) ·

{
1√
−g

δ
B

(√
−g T n

)
+

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)}

+ ξσ

{
1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ + T nT · δBA(T)

σ + JνT · F(T)
σν

+ Dν

(
g′σµ T

µν
Lc

)
− 1

2
TµνLc Dσg

′
µν − JνLc · F ′σν

− A(T )
σ

(
1

2
TµνLc δBgµν + JµLc · δBAµ

)
− Ãσ ·

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)}

+ (Λ(T) + ξσA(T)
σ)

{
−Dµ(JS)µT +

1

2
TµνLc δB g̃µν + JµLc · δBÃµ + JµT δBA(T)

µ

+

(
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

))}

(19.3)

99 The quickest derivation of this expression involves starting from (H.23) which gives the unconstrained

variation and setting the currents which arise from the variation of the physical sources, viz., TµνL+Lc and JµL+Lc

to zero. The latter currents arise from the variations of the physical sources which are forbidden in (19.2).
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In deriving this expression we have to bear in mind the fact that the physical sources do not

vary. As a result the contribution to the current Nµ
T from TµνL+Lc and JµL+Lc is missing. We

have chosen to indicate this by defining the entropy current in Class LT directly via

(JS)µT = Nµ
T − βν TµνL+Lc − (Λβ + βν Aν) · JµL+Lc . (19.4)

Thus extremizing LT for an arbitrary constrained variation (19.2) parameterized by

{ξσ,Λ}) yields the equations:

0 ' 1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ + T nT · δBA(T)

σ + JνT · F(T)
σν

+ Dν

(
g′σµ T

µν
Lc

)
− 1

2
TµνLc Dσg

′
µν − JνLc · F ′σν

− A(T)
σ

(
1

2
TµνLc δBgµν + JµLc · δBAµ

)
− Ãσ ·

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)
0 ' 1√

−g
δ
B

(√
−g T n

)
+

(
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

)
.

(19.5)

Comparing this against the Bianchi identities (18.15) and (18.16), we get the hydrodynamic

equations we expect, viz., the usual hydrodynamic equations of motion

Dµ(TL+Lc)
µ
σ ' JνL+Lc · Fσν ,

DµJ
µ
L+Lc ' 0 .

(19.6)

Since we have an additional symmetry U(1)T we should also examine the coefficient of

(Λ(T) + ξσ A(T)
σ) to see what further constraints are imposed on dynamics. We find now

Dµ(JS)µT '
1

2
TµνLc δB g̃µν + JµLc · δBÃµ + JµT δBA(T)

µ

+

(
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

))
.

(19.7)

Comparing with the U(1)T Bianchi identity (18.17) we can simplify the expression above to

read:

Dµ

[
Nµ

T − (JS)µT
]
' 1

2
TµνL+Lc δBgµν + JL+Lc · δBAµ . (19.8)

This is an additional dynamical equation of motion that should be satisfied by systems

described by LT. A-priori we seem to have too much, for in (19.6) we have all the equations

of motion we actually want. When we however examine the hydrodynamic limit by setting

the auxiliary fields to zero, ΨT = Ψ∅
T , as described around (18.23), we can further eliminate

terms from (19.8) to arrive at

Dµ (JS)µT ' 0 , (19.9)

which is simply the statement of on-shell entropy conservation in Class LT. As promised the

U(1)T transformations ensure adiabaticity off-shell, which in turn implies that the entropy

current is conserved on-shell.

19.2 Reference fields for Class LT

Let us now try to introduce new fields to convert this into an unconstrained variational prob-

lem. To do this, we will pass to a description whereby we factorise the dynamical fields into
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a rigid reference configuration and a pullback diffeomorphism and flavour transformation.

The hydrodynamic equations will then be generated by the variations of the pull back fields

keeping the reference fields fixed. Note that here we will refrain from giving a prescription

for the precise form of U(1)T action on the reference manifold. While it is clear that such

a formalism must exist (in fact it is not very hard to write the analogue of (10.20) includ-

ing the U(1)T action), its detailed workings may depend on other issues which we defer to

future work [80]. For the moment we just illustrate that the reference manifold variational

principle of §10.2 can be extended to the new field content, thus obtaining the hydrodynamic

equations of motion.

We begin by imagining a copy of hydrodynamic fields {�a,Λ�} living in a reference

manifold M. In addition, we will posit a metric, a gauge field and a copy of {A(T)
σ,Λ

(T)

β }, viz.,

{g′ab,A′a,A(T),Λ(T)

� } on M. The actual fields are obtained by introducing a diffeomorphism

field ϕa(x) and a gauge transformation field c(x) from physical spacetimeM to M and then

using them to pull-back 	T ≡ {�a,Λ�, gab,Aa, g′ab,A
′
a,A

(T)
a ,Λ

(T)

� }. Now consider constrained

variations as defined by (19.1), (19.2). Their diffeomorphism and flavour parts (disregarding

the U(1)T action for now) are implemented on the reference manifold as follows:

�gab = −δϕgab , �Aa = −δϕAa ,

��a = 0 , �g′ab = 0 , �A(T)
a = 0

�Λ� = 0 , �A′a = 0 , �Λ(T)

� = 0 ,

(19.10)

where δϕ denotes Lie drag on M along {eµaδϕa, −(δc)c−1}. Let us see how the variational

principle works on M:

1√
−g

�
(√
−g LT

)
=

1

2
Tab

L+Lc �gab −
1

2
Tab

Lc �g
′
ab + JaL+Lc · �Aa − JaLc · �A′a

+Tha ��
a +Tn · (�Λ� +Ac ��

c) + JaT �A(T)
a +TnT

(
�Λ(T)

� +A(T)
c ��c

)
= −1

2
Tab

L+Lc (Daδϕb +Dbδϕa)− JaL+Lc ·
[
Da

(
−c−1δc+Ab δϕ

b
)

+ δϕbFba

]
.

(19.11)

As usual, we perform an integration by parts and obtain

1√
−g

�
(√
−g LT

)
+∇a( · · · )

= δϕa

[
DbT

ab
L+Lc − JbL+Lc ·Fab

]
+
(
−c−1δc+Ab δϕ

b
)
·Da J

a
L+Lc .

(19.12)

Demanding invariance under any such variation, we can read off the reference manifold

version of the conservation equations (19.6) from (19.12).

20 Eightfold adiabatic transport in Class LT

We have now all the ingredients in Class LT to demonstrate how all classes of adiabatic

transport can be realized by a Lagrangian description. For this purpose, we will distinguish

constitutive relations that are Lagrangian (L = HS∪HS), non-Lagrangian (Lc = B∪C∪HV ),
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and anomaly induced (A∪HV ). The most general adiabatic constitutive relations thus split

into100

Gσ = GσL + (Gσ)Lc + (Gσ)A,HV ,

Tµν = TµνL + (Tµν)Lc + (Tµν)A,HV ,

Jµ = JµL + (Jµ)Lc + (Jµ)A,HV ,

(20.1)

where Gσ ≡ −T Nσ. Comparing with (17.15), we see that Classes D and HF have been

discarded from the most general currents that would be allowed just by classifying off-shell

inequivalent tensor structures. Since such terms are either dissipative or forbidden by the

second law, we don’t expect to see them in Class LT (which we claim captures precisely the

second law-allowed adiabatic transport).

The fact that Class D and Class HF cannot be realized in Class LT is easy to see: these

constitutive relations explicitly break the U(1)T invariance by virtue of not satisfying the

adiabaticity equation. This is only to be expected, of course, for the Class LT formalism to

achieve the desired goal of providing a description precisely of adiabatic transport.

In turn, we will now show how all the adiabatic constitutive relations which are allowed

by second law can be obtained from a Class LT effective action.

20.1 LT for Class L constitutive relations

We start our discussion of the eightfold way in Class LT by reproducing Class L constitutive

relations. As we will demonstrate momentarily, Class LT provides a natural extension of

Class L, for it contains Class L as a rather trivial special case.

By definition Class L currents {GσL, T
µν
L , JµL} are precisely those which can be obtained

from a scalar Lagrangian L[Ψ] ≡ L[gµν , Aµ,β
µ,Λβ]. In this case there is thus no need to

build a master Lagrangian that involves the enhanced field content of Class LT as in (18.25);

instead we can simply take

LT[ΨT] = L[Ψ] . (20.2)

This simplified prescription for Class L terms has the advantage that it is obvious how´ √
−gLT reduces in hydrostatics to the equilibrium partition function. Indeed, precisely the

same argument as for Class L (see §9.3) proves that this consistency condition is met. Equiv-

alently one can consider starting with LT and gauge fix the auxiliary fields {g̃µν , Ãµ,A(T)
µ}

differently from Ψ∅
T in (18.23). For instance given that the Noether current is roughly de-

termined by the Class L Lagrangian, Nµ = βµ L− (/δBΘPS)σ +∇νKσν [B], suggests that one

might choose the following set of {A(T)
µ = −T 2 βµ,Λβ = 0, g̃µν = 0, Ãµ = 0} to recover the

Lagrangian density L.101

The constitutive relations obtained from the Class LT variational principle can be read

off from (18.14) and (18.18):

TµνL = TµνL , JµL = JµL , GσT = GσL ,
TµνLc = 0 , JµLc = 0 , JµT = 0 .

(20.3)

100 For the purposes of giving simple expression, we have chosen here to group the adiabatic classes somewhat

differently; in particular, we choose to group Class HV with Class A as this is quite natural in the U(1)T
invariant formalism.

101 This statement should account for the contribution from the pre-symplectic current which is not always

transverse. One might however be able to field redefine this contribution away, though we have not checked

this statement in detail.
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From this it is clear that also the dynamics implied by the variational principle in §19 re-

produces everything we developed in Class L. Hence the choice (20.2) identically reproduces

Class L with the nice additional feature that the adiabaticity equation (and entropy conser-

vation as an equation of motion) is manifestly satisfied a-priori because the Lagrangian is

trivially U(1)T invariant.

20.2 LT for non-Lagrangian constitutive relations (Classes B, C and HV )

Having reproduced Class L in Class LT in a rather trivial way, let us now turn to constitutive

relations which were not captured by näıve Lagrangians of Class L. To wit, consider adiabatic

constitutive relations {(Gσ)Lc , (Tµν)Lc , (Jµ)Lc} which subsume terms of Classes B, C and

HV as constructed in (12.2), (13.1) and (14.15). While a Class L Lagrangian giving such

terms does not exist, we can use our new machinery to construct the associated effective

master Lagrangian as in (18.25):

LT[ΨT] = −(Gµ)Lc

T
A(T)

µ +
1

2
(Tµν)Lc g̃µν + (Jµ)Lc · Ãµ . (20.4)

Via (18.14) this defines some constitutive relations {GσT , T
µν
L+Lc , J

µ
L+Lc} which mix the full field

content {βµ,Λβ, gµν , Aµ, g̃µν , Ãµ,A(T)
µ}. The dynamical equations implied by the variational

principle of section §19.1 are precisely the hydrodynamic conservation equations and the

conservation of the entropy current

(JS)µT = −G
µ
T

T
− βν TµνL+Lc − (Λβ + βν Aν) · JµL+Lc . (20.5)

As demonstrated in §18.4, after setting the auxiliary fields to zero, these currents reduce

to the desired ones:

{GσT , T
µν
L+Lc , J

µ
L+Lc}

∣∣
Ψ∅

T
= {(Gσ)Lc , (Tµν)Lc , (Jµ)Lc} (20.6)

and their Ward identities are still the standard hydrodynamic equations of motion together

with conservation of the entropy current

(JS)µT
∣∣
Ψ∅

T
= −(Gµ)Lc

T
− βν(Tµν)Lc − (Λβ + βν Aν) · (Jµ)Lc = (JµS )Lc . (20.7)

20.3 LT for anomalies (Classes A and HV )

The construction of the master Lagrangian LT heavily relies on a doubling of the field content

and demanding invariance under U(1)T. We already gave indications that this can be linked

back to the Schwinger-Keldysh doubling that we employed previously in §16.4 to describe

anomalies. We would thus like to show that the master Lagrangian LT is capable of describing

anomalies in an analogous (but not quite identical) fashion. In this section we will discuss

Class A terms, but it is clear from §14.1 that this immediately incorporates Class HV , as

well. The reason for this is that, once terms associated to some anomaly polynomial P [F ,R]

are dealt with, the presence of A(T)
µ and Λ(T)

β allows us to perform the Class HV generalization

of P [F ,R] directly by using the replacement rule (14.14). The fact that we are free to set

Λ(T)

β +βµA(T)
µ = 1 in the Class LT formalism ensures consistency with the Class HV discussion

of §14.1.
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Consider a particular constitutive relation {(Gµ)A ≡ −T (Nµ)A, (T
µν)A, (J

µ)A} that sat-

isfies the adiabaticity equation with covariant anomalies

Dµ(Nµ)A =
1

2
(Tµν)AδBgµν + (Jµ)A · δBAµ + N⊥H (20.8)

with N⊥H = βσT⊥σH + (Λβ + βνAν) · J⊥H . Then, the combination

LT[ΨT] = (Nµ)A A(T)
µ +

1

2
(Tµν)A g̃µν + (Jµ)A · Ãµ (20.9)

is no more U(1)T invariant. In fact, we get

δ
X

ˆ √
−g LT = −

ˆ √
−g Λ̄(T)N⊥H = −

ˆ √
−g

[
Λ̄(T)βσT⊥σH + Λ̄(T)(Λβ + βνAν) · J⊥H

]
.

(20.10)

In order to account for this anomaly, we extend our natural construction of master

Lagrangians LT to the bulk theory, using Hall currents as the bulk constitutive relations. We

claim that the following Class LT action gives the correct anomalous boundary constitutive

relations and adiabaticity equation as a result of bulk inflow:

ST =

ˆ
M

√
−g LT +

 
M

(
Nm
H A(T)

m +
1

2
Tmn
H g̃mn + JmH · Ãm

)
, (20.11)

where Nm
H = sum + (βsT

ms
H + (Λβ + βnAn)JmH) is the non-canonical part of bulk entropy

current. It is easy to see that the combination (20.11) is U(1)T invariant:

δ
X
ST = −

ˆ
M

√
−g Λ̄(T)N⊥H +

 
M

[
Nm
H DmΛ̄(T) + Λ̄(T) (Tmn

H δ
B
gmn + JmHδBAm)

]
= −

ˆ
M

√
−g Λ̄(T)N⊥H +

 
M

Dm

[
Λ̄(T) (sum + βnTmn

H + (Λβ + βpAp) · JmH)
]

−
 
M

Λ̄(T) [Dm(sum) + βm (Dn(TH)nm − JnH · Fmn) + (Λβ + βpAp) ·DmJmH ]

= 0 , (20.12)

where in the last step we evaluated the integral over the total derivative to cancel the

boundary anomaly (using u⊥ = 0). Furthermore, we used a bulk adiabaticity equation to

kill the second bulk integral (equivalently we could have computed the bulk Bianchi identities

explicitly to see that such a bulk adiabaticity equation is satisfied).

While the Lagrangian (20.11) is very natural and simple from the Class LT point of view,

it is less clear how this can be made consistent with the Class A Lagrangian that we gave

before in (16.18). In order to get a step closer towards the Class A Schwinger-Keldysh La-

grangian, let us rotate to another basis of sources: it turns out that, while {gµν , Aµ, g̃µν , Ãµ}
are convenient to construct the master Lagrangian, anomalies are easier to describe in a

Schwinger-Keldysh inspired basis {gR
µν , A

R
µ, g

L
µν , A

L
µ} as we defined it in (18.1). The twisted

difference sources {(gR − gL)µν , (A
R −AL)µ} then have a nice U(1)T transformation:

δ
X

(gR − gL)µν = δΛ̄(T)B gµν , δ
X

(AR −AL)µ = δΛ̄(T)BAµ , (20.13)

where δΛ̄(T)B denotes Lie drag along {Λ̄(T)βµ, Λ̄(T)Λβ}.
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We can account for the anomaly by viewing it as originating from inflow due to a bulk

Chern-Simons theory. To this end, we need to switch from a description of covariant currents

to one in terms of consistent currents, c.f., Appendix A. The Bardeen-Zumino currents by

which the two descriptions differ will be seen as part of the bulk inflow. To wit, the consistent

Lagrangian is related to LT as follows:

Lcons
T ≡ (LT)A − (LT)BZ

=
(
(Nµ)A −Nµ

BZ

)
A(T)

µ +
1

2

(
(Tµν)A − TµνBZ)

)
g̃µν +

(
(Jµ)A − JµBZ

)
· Ãµ

=
(
(JµS )A − JµS,BZ

)
A(T)

µ +
1

2

(
(Tµν)A − TµνBZ

)
(gR − gL)µν +

(
(Jµ)A − JµBZ

)
· (AR −AL)µ ,

(20.14)

where JµS,BZ = −βνTνµ as in Appendix A. In order to show that the philosophy of §16.4 is

being upheld by the present construction, we want to demonstrate that the Bardeen-Zumino

currents can be interpreted as an anomaly inflow due to the difference of two Chern-Simons

terms. The bulk contribution of these Chern-Simons terms should give rise to the Hall

currents. Indeed, we observe that the Bardeen-Zumino and Hall part of the action (20.11)

can be written as
ˆ
M

√
−g (LT)BZ +

 
M

(
Nm
H A(T)

m +
1

2
Tmn
H g̃mn + JmH · Ãm

)
=

ˆ
M

√
−g

(
JµS,BZ A(T)

µ +
1

2
TµνBZ (gR − gL)µν + JµBZ · (A

R −AL)µ

)
+

 
M

(
JmS,H A(T)

m +
1

2
Tmn
H (gR − gL)mn + JmH · (AR −AL)m

)
=

 
M

(
ICS [AR,ΓR]− ICS [AL,ΓL]

)
+

ˆ
M

√
−g

(
JµS,BZ A(T)

µ

)
+

 
M

(
JmS,H A(T)

m

)
+O

(
(	̄T)2

)
,

(20.15)

where we used in the last step that the non-entropic currents in the second and third line are

the linear terms in when we expand a difference of Chern-Simons terms. Since our answers

are insensitive to terms that are quadratic in difference sources, we can perform the last

step. Terms that are discarded since they are quadratic in difference fields are denoted as

O
(
(	̄T)2

)
.

As it stands (20.15) demonstrates consistency with the methods used in §16.4 (Schwinger-

Keldysh for Class A). What we see in the final expression of (20.15) is precisely the differ-

ence of Chern-Simons terms that could be converted into an appropriate transgression form.

Since we are already in the doubled construction, the hatted Chern-Simons terms which

would have been present appear to have cancelled out against the influence functional. How-

ever, we are forced in our U(1)T-invariant formalism to introduce some new pieces of data

– the terms in the last line of (20.15) involving the Bardeen-Zumino current are not present

in the Schwinger-Keldysh formalism. These terms determine the entropy current both in

bulk and physical manifold uniquely in terms of the anomaly polynomial. Of course, these

terms depend on the presence of A(T)
m and could therefore not be seen in our previous näıve

Schwinger-Keldysh treatment of Class A. Note also that in the Schwinger-Keldysh construc-

tion with the influence functionals one is unable to determine the precise form of the entropy
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current owing to our failure to derive the adiabaticity equation. As a result what we can

compare naturally in the two formalisms is the constitutive relations and these agree as they

must for consistency. We leave it as an open and interesting problem to finish delineating

the connections between the two formalisms, at the very least to check how U(1)T invariance

helps restore adiabaticity explicitly. For now we simply take comfort in the fact that we have

a Class LT effective action that gives us a consistent adiabatic solution for the anomalous

constitutive relations.

20.4 Field redefinitions

An important consistency requirement on our eightfold classification is, of course, that it is

(on-shell) invariant under field redefinitions. While we commented at various occasions on

the most general allowed field redefinitions, the unified framework of Class LT simplifies the

discussion considerably.102 Consider the most general field redefinitions that preserve the

property of {βµ,Λβ} being in equilibrium aligned with the symmetry generators {Kµ,ΛK}:

βµ 7→ βµ − δ
B
V̄ µ = βµ + £V̄ β

µ ,

Λβ 7→ Λβ − δBΛV̄ = Λβ + £V̄ Λβ + [Λβ, Λ̄V ]− βσ∂σΛ̄V ,

g′µν 7→ g′µν + £V̄ g
′
µν − Λ̄(T)

V δ
B
g̃µν ,

A′µ 7→ A′µ + £V̄A
′
µ + [A′µ, Λ̄V ]− Λ̄(T)

V δ
B
Ãµ ,

A(T)
µ 7→ A(T)

µ + £V̄ A(T)
µ + ∂µΛ̄(T)

V ,

Λ(T)

β 7→ Λ(T)

β + £V̄ Λ(T)

β − β
σ∂σΛ̄(T)

V ,

gµν 7→ gµν , Aµ 7→ Aµ .

(20.16)

for some general diffeomorphism, flavour and U(1)T parameters {V µ,ΛV ,Λ
(T)

V } and their

twisted counterparts {V̄ µ, Λ̄V , Λ̄
(T)

V }. An argument completely analogous to the one presented

for Class L (see §10.6) shows that under these transformations the Lagrangian LT only

changes by terms proportional to the equations of motion (19.5), (19.7). This can easily be

seen from the fact that the above field redefinitions take the form of a constrained variation

(19.1), (19.2).

Since the eightfold Lagrangian LT encompasses all seven classes of adiabatic transport

and disallows Class HF , we see that the field redefinitions (20.16) preserve this structure.

This provides a very general argument for our eightfold classification being on-shell field

redefinition-invariant.

102 For example, an isolated proof for the field redefinition-invariance of Class B would be notoriously

complicated.
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Part V

Conclusion and Open Problems

21 Discussion

Summary. We have described a framework for non-linear hydrodynamics that gives a

complete classification of hydrodynamic transport, arguing in the process for an eightfold

way of hydrodynamic dissipation. The key idea was to exploit the natural decomposition

of transport in two primary categories: adiabatic and dissipative. While the notion of

adiabaticity we introduced reduces on-shell to a more intuitive notion of non-dissipative

(i.e., entropy conserving) dynamics, it more generally involves playing off entropy production

against energy momentum and charge transport (off-shell). One of the remarkable outcomes

of our analysis was demonstrating that much of transport beyond leading order is in fact

adiabatic.

We have established that adiabatic transport is cleanly organized into seven distinct

classes of constitutive relations. Some of these are easily understood such as the hydrostatic

scalar Class HS and anomaly induced Class A, which have been explored extensively in recent

literature, whilst certain others are perhaps a bit more exotic and unfamiliar. Curiously, all

but one of these classes (Class HV ) have been encountered in earlier investigations, though

neither the structural aspects nor their import has been completely appreciated hitherto.

Our aim in the sections above has been to clearly bring out these aspects for every one of

these adiabatic classes.

Having figured out how to tackle adiabatic transport, we further argued that dissipative

hydrodynamics is under much better control than one might have a-priori anticipated. The

primary result in this context has already been derived in [67, 68]. The adiabatic analysis

allows for an alternative perspective which complements and bolsters the central point: dissi-

pative transport is constrained by the second law of thermodynamics to obey sign-definiteness

constraints only at the leading order in the gradient expansion.

From the point of view of the hydrodynamic effective field theory, the combination of

adiabaticity and the fact that dissipative parts of higher order transport are unconstrained,

restores a sense of democracy to hydrodynamics. Specifically, the standard current algebra

description of hydrodynamic constitutive relations could have been a simple exercise in rep-

resentation theory, were it not for the constraint imposed by the second law. As has been

argued in the text and in the aforementioned references, the constraints at arbitrary orders

in the gradient expansion are completely captured by demanding the existence of hydrostatic

equilibrium. This class of forbidden constitutive relations, Class HF , is easily ascertained

by writing down all symmetry allowed tensor structures for the basic currents (which sur-

vive the hydrostatic limit) and eliminating ones that do not arise from an effective action

(the hydrostatic partition function). Thus, modulo the Class HF constitutive relations, one

finds the task of a hydrodynamicist is rather simple for every other constitutive relation is

physically admissible and satisfies the second law (beyond leading order).

While the major part of our construction of adiabatic constitutive relations was carried

out straightforwardly using conventional techniques familiar in hydrodynamic analyses, we
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have also uncovered some new structures in our quest for constructing an effective action for

hydrodynamics. We have argued for a new symmetry principle, an Abelian gauge symme-

try U(1)T arising as a consequence of the eightfold way and keeping the Schwinger-Keldysh

doubling under control. We have primarily used this symmetry to write down a generating

functional for the adiabatic classes such that adiabaticity equation is implemented as a Ward

identity. Below, we will take stock of the physical implications of this construction.

Effective fluid actions. One naively might imagine that a hydrodynamic effective action

in the absence of dissipation should be rather simple, following the usual rules of effective

field theory. This is indeed the case for the Class L constitutive relations where we have

a straightforward construction of a Landau-Ginzburg functional (Lagrangian) in terms of

the effective infrared degrees of freedom (the thermal vector and twist). However, as we

have explicitly seen this is inadequate to capture all of adiabatic transport. Not only are

the transverse vector based Classes HV and HV outside the remit of such a Lagrangian

density, but we have furthermore evidence that Berry-like (Class B) terms are unaccounted

for. Moreover, an analysis of anomalous constitutive relations in Class A both herein and in

our earlier work [8] has revealed the impossibility of satisfying both the Ward identities and

the second law simultaneously, unless one is willing to enlarge the set of degrees of freedom.

This perspective is natural when one considers the passage to a complete theory of

hydrodynamics including dissipation, or more generally views hydrodynamics as governing

infrared fluctuations of a density matrix. One naturally then anticipates invoking a real-

time non-equilibrium formalism such as the Schwinger-Keldysh construction [34, 35], thereby

motivating the exploration of implications of doubling the degrees of freedom inherent in this

formalism. This doubling in the fluid dynamical context is often called Martin-Siggia-Rose

or Janssen-deDominicis-Politi formalism (see [118]).

In the context of anomalies we have shown that this intuition can indeed be made to

work, in part since the structure of allowed terms is tightly constrained by the underlying

symmetry (flavour gauge and diffeomorphism). However, once we double the degrees of

freedom and consider a pure, entangled state in the doubled theory as the starting point

of our discussion, we are led naturally to inquire after the most general set of interactions

allowed in the effective field theory. The key issue concerns the constraints on the Feynman-

Vernon influence functionals [76] describing the interactions between the two sets of degrees of

freedom. Obtaining the correct anomalous Ward identities without modifying the single copy

constitutive relation forces upon us a particular set of anomaly induced influence functionals.

If we were to allow arbitrary influence functionals however, then it is easy to generate

Class HF constitutive relations at will, thus explicitly violating the second law. This is equiv-

alent to stating that, given the usual symmetries, the emergence of entropy, dissipation and

second law at long distances is not ‘natural’ in the ’t Hooft-Wilson sense. Thus one needs

an additional principle to forbid arbitrary influence functionals and solve this naturalness

problem of second law. Our claim is that in the hydrodynamic effective field theory the

U(1)T symmetry by ensuring adiabaticity guarantees that the second law is upheld. In the

main text, we argued that postulating the existence of such a symmetry allows for writing

down an all-encompassing adiabatic master Lagrangian, thus providing a unified view on the

eightfold classification. In the §22 we will sketch a more detailed picture of how such a sym-
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metry could physically emerge at low energies and what other consequences one might expect.

Physical implications of the classification. Having described some of the conceptual

implications of our construction of the eightfold Lagrangian, we now turn to other aspects

of our analysis. We noted in §2 that often in addition to the second law of thermodynamics,

one requires hydrodynamic transport to satisfy the Onsager relations [69, 70]. This require-

ment is based for the most part on the empirical observation that most physical fluids satisfy

these relations. One can phrase the Onsager relations in our language as follows: “In systems

with time-reversal symmetry there are no anti-symmetric contributions to transport.” Para-

phrasing this statement into our adiabatic classification, we learn that the Onsager relations

forbid the presence of Class B terms in hydrodynamic transport. However, one must pay

attention to the underlying assumptions about the dynamics; for example, the derivations

in [69, 70] rely on either assuming that physical systems produce currents out of equilibrium

only to extremize dissipation or (equivalently by the fluctuation-dissipation theorem) assume

a Gaussian spectrum of fluctuations.

We are for the most part agnostic about these relations, though our framework is broad

enough to allow exploration of such transport. For example, the relations we have found

constraining Class B terms when deriving adiabatic constitutive relations from a Class L

scalar Lagrangian density, such as the vanishing of Hall viscosity or the relation (17.33)

in neutral fluids, can be viewed as higher-order versions of the Onsager relations. Indeed

one might argue that demanding that all non-dissipative transport outside equilibrium be

derivable from a Landau-Ginzburg free energy functional as in Class L (without Schwinger-

Keldysh doubling) provides an alternate route to ensuring the Onsager relations are satisfied,

even in time-reversal violating systems.

Perhaps more curiously, there appears to be an interesting constraint on Class B terms in

holographic fluids. Firstly all known examples of such transport obey a membrane paradigm

like formula. By this we mean that the precise value of the Class B transport coefficient is

given in terms of some geometric quantity evaluated on the horizon of an asymptotically AdS

black hole. For instance, Eq. (32) of [119] expresses Hall viscosity as such, while Eq. (6.24)

of [93] provides an analogous expression for Hall conductivity. For parity-even fluids, the

derivation of the universal Haack-Yarom relation between second order transport coefficients

(17.33) also expresses the appropriate combination this way, cf., Eq. (47) of [111]. In all

these cases the relevant membrane-paradigm quantity then vanishes at the horizon in the

two-derivative theory because of some general feature of horizon geometry, forcing thence the

vanishing of a Class B term. This seems rather generic in two derivative theories of gravity;

inclusion of higher derivative interactions appears to allow non-vanishing Class B terms. For

example, vis a vis the Haack-Yarom relation, one finds that it is upheld to linear order in

Gauss-Bonnet corrections to gravity [95], but not beyond [96, 97]. Recent analysis by [97]

in the physically more interesting situation of string theory induced derivative corrections

to Type IIB supergravity appear to uphold this to one higher order. It would be interesting

to analyze what feature of black hole horizons and gravitational dynamics plays a role in

determining these aspects of transport.

Holographic fluids via the fluid/gravity correspondence [16, 78] provide an ideal envi-

ronment to test various statements about fluid dynamics in general by allowing one to be

able to compute explicit constitutive relations. We find it reassuring to see evidence for the

159



eightfold way in the examples studied hitherto. We outline below a set of questions that

should give us even better insight into how holography implements the classification. What

is perhaps curious however, is certain specificity in these fluids. While there is no a-priori

reason that every aspect of transport allowed by the second law should find a holographic

manifestation, it is nevertheless tantalizing to find further evidence for the near-idealness of

these systems. It has been known for a very long time, starting from the seminal work of [18],

that holographic fluids tend to want to minimize the shear viscosity and saturate the famous

bound η
s ≥

1
4π [19].103 The low value of shear viscosity implies that these fluids minimize

their entropy production for arbitrary flows. Fascinatingly, this statement also appears to

be upheld at the next order in gradients.

For Weyl invariant holographic fluids we find that the subleading contribution (third

order) to entropy production is forced to vanish if the Class D transport coefficient λ1 − κ
vanishes. This relation appears to hold in all two-derivative theories of gravity explored

so far (but is violated upon inclusion of higher derivative interactions [97]). This then

suggests that holographic fluids obtained in the long-wavelength limit of strongly interacting

quantum dynamics, obey a principle of minimum dissipation. One might suspect that all

such transport be derivable from a (Class L) Landau-Ginzburg free energy functional, which

in turn should be obtainable from the bulk gravitational dynamics. The simplest test would

be to derive (17.35) directly from the Einstein-Hilbert dynamics for gravity in asymptotically

AdS spacetimes. It would be fascinating to develop this line of thought, for it should provide

us with a geometric underpinning for deriving effective actions for generic non-equilibrium

quantum dynamics. More generally the interplay of gravity with the extended framework

of U(1)T KMS-gauge invariant effective field theories could potentially provide important

insights into formulating Wilsonian low energy dynamics for QFTs in mixed states.

One useful perspective provided by the hydrodynamic effective actions in Classes L and

LT relates to the entropy current. It is usually said that the notion of the entropy current

is mysterious from a microscopic perspective. However, from our effective action viewpoint,

the entropy current (or equivalently the free-energy current) is quite canonically derived as

a Noether charge. This is a simple consequence of diffeomorphism invariance. It is well ap-

preciated that in a dynamical theory of gravity where diffeomorphisms are gauged, there is

a notion of entropy for spacetimes with horizons. This horizon entropy itself is constructed

as a Noether charge [98]. More generally one may ascribe a gravitational entropy to any

diffeomorphism invariant dynamics. This point was appreciated by the authors of [98] and

was amplified in the context of ideal fluids by [122]. This then begs a related question:

“Can we use the hydrodynamic entropy current to provide a Noether current for black holes

out of equilibrium?” The answer to this question is clearly in the affirmative based on the

direct isomorphism between the hydrodynamic entropy current and black hole entropy in

the fluid/gravity context [89]. This then provides a possible avenue for ascertaining the

non-equilibrium gravitational entropy current in time-dependent situations.104

103 We refer the reader to [120, 121] for critical discussions of this bound and survey of attempts to violate

it in various systems.
104 We would like to thank Sayantani Bhattacharyya and Shiraz Minwalla for extensive discussions on this

issue.
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Open problems related to fluid/gravity duality. We have at various stages of our

discussion exemplified adiabatic fluids and the efficacy of the eightfold way using simple

examples of hydrodynamic systems. While the structural aspects of our discussion are com-

pletely clear in the abstract, it is remarkable and reassuring that physical fluid systems are

aware of the eightfold classification. We gave some arguments in favour of this using the

analysis of holographic fluids (particularly the neutral Weyl invariant fluid) as well as in

kinetic theory in §17.5.

Ideally, of course, we would have liked to give many more examples and furthermore

argue that the classification scheme can be used as an efficient organizational principle vis

a vis actual computations. While we do believe this to be true, making further progress

requires data in other hydrodynamic systems, which we do have at hand at present. This

provides us with an opportunity to outline a set of problems, which we think are solvable,

some of which perhaps more straightforwardly than others.

One natural venue for exploration is simply to obtain explicit results for constitutive

relations using the fluid/gravity correspondence for holographic fluids. Weyl invariant neutral

fluids are already covered in our analysis. An obvious next step would be to examine Weyl

invariant charged fluid dynamics by explicitly studying the Einstein-Maxwell (for parity-

even) or Einstein-Maxwell-Chern-Simons (for anomalous parity-odd) examples. We note

that [38, 39, 60, 110] have studied specific aspects of transport in this particular set-up up

to second order in gradients, but the full set of constitutive relations require turning on all

possible background sources has yet to be done. Another direction to consider is neutral

fluids without Weyl invariance, but since the simplest set-ups realizable holographically

secretly enjoy higher dimensional conformal invariance [123] (see also [124, 125]) it is easy to

intuit that these analyses won’t provide more detailed insight (see however [126] for explicit

conformal symmetry breaking by sources). One could perhaps also make use of higher

derivative gravitational theories, though in that case care must be exercised to ensure that

one is dealing with a unitary QFT dual. We end the discussion with a few more immediate

questions for each of our classes and some specific issues that can be understood:

• Class HF : The hydrostatic analysis for charged fluids implies 17 hydrostatic forbidden

constitutive relations at second order in gradients [29]. Find explicit expressions for

these constraints and further specialize to the case with Weyl invariance. Use the

set-up described above to demonstrate that fluid/gravity automatically incorporates

the hydrostatic constraints. Furthermore, demonstrate that holographic fluids always

respect the HF constraints at any order in the gradient expansion.

• Class L: Write down the HS ∪ HS terms describing a fluid dual to Einstein-Maxwell

system using the aforementioned holographic analysis, i.e., the analog of (11.25). More

generally give a bulk prescription to compute the effective action for this system from

the gravitational dynamics (perhaps building on the ideas in [23]).

• Class HV : In the holographic context demonstrate how HV terms arise from the

extension of the Noether procedure of [98] by [127] to account for the presence of

Chern-Simons interactions, i.e., extend the leading order argument in [100, 128] to

arbitrary derivative order.
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• Class HV : This is the most interesting class of adiabatic constitutive relations. Thus

far we have no data on such terms in any realistic hydrodynamic context. Do these

terms arise in fluid-gravity correspondence at all? Or are they constrained to vanish

as with certain Class B terms we have described in the text? Does there exist a simple

membrane paradigmesque formula for them in terms of data on the horizon [129]?

• Class B: Formulate a general membrane paradigm formula to compute all these terms

in terms of horizon data, extending the results of [119]. Is there a role for an attractor

like mechanism (for non-extremal black holes) which requires that these coefficients

are in certain sense robust?

• Class C: Explore the presence of exactly conserved topological currents in fluid/gravity.

For example show how the Lovelock terms in the gravitational description of even-

dimensional AdS spacetimes map to Euler currents in the boundary fluid entropy

current using [89].

• Class D: Derive a membrane paradigm formula for general Class D transport coeffi-

cients. Is there a role for the tensor valued differential operators Υ to show up in the

bulk? Do holographic fluids always attempt to minimize the entropy production for a

given fluid flow. Give evidence or disprove the minimum entropy production conjecture

for two derivative theories of gravity. What is the corresponding statement in higher

derivative theories of gravitational dynamics?

• Class A: Derive the Feynman-Vernon terms for Class A described in [8] and §15 from

the fluid/gravity correspondence.

• Eightfold way: Derive the eightfold way of transport from a general Schwinger-

Keldysh analysis [80]. Extend this eightfold classification to systems with sponta-

neously broken symmetries and other Goldstone modes such as superfluids (cf., [130]

for a comprehensive treatment of superfluid dynamics and [131–133] for discussions

about holographic superfluids). Is there a relation between the eightfold way and

Hohenberg-Halperin classification [134] of dynamic critical phenomena?

This concludes our discussion of the classification of hydrodynamic transport. The

following section gives an overview over more recent ideas concerning the emergent U(1)T
gauge invariance and Schwinger-Keldysh path integrals.

22 Outlook on Schwinger-Keldysh and phenomenology of U(1)T

Let us now delve a bit deeper into the phenomenology of the proposed U(1)T symmetry. We

follow the preliminary discussion of [3, 4] and defer a full exploration to future work [80].

For some fluid dynamical system consider its underlying quantum field theory formulated in

the Schwinger-Keldysh language. In thermally equilibrated states, the correlation functions

satisfy a Kubo-Martin-Schwinger (KMS) condition, which is just the Lorentzian version of

Euclidean periodicity after analytic continuation [36, 37]. Imposing this condition is essential

for the consistency of the theory, since it implements the correct non-linear fluctuation-

dissipation relations. In the microscopic theory, the KMS condition is non-local as it relates

any operator to the itself shifted by a finite amount in the imaginary time direction, i.e.,
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O(t) = O(t − iβ).105 The scale of non-locality of this symmetry is hence set by the inverse

temperature. Therefore the hydrodynamic counterpart of microscopic KMS condition should

take an (approximately) local form, as the hydrodynamic regime typically concerns length

scales well above the thermal scale. However, an important question concerns the precise

form of this local avatar of the KMS condition in the macroscopic fluid description. While

it is hard to give a definite answer based on actual renormalization group calculations, we

did conjecture a possible solution to this problem in §18 and more recently in [3, 4].

We took the standpoint that the hydrodynamic version of KMS condition takes the

form of a U(1)T gauge invariance. This being a local symmetry is sensible for the reasons

explained above. Furthermore, we defined the precise action of the U(1)T algebra in §18.

A crucial result in this thesis is to explicitly demonstrate that, ignoring effects of U(1)T
ghost fields, it is indeed possible to posit nonlinear transformations for difference fields (see

Eq. (18.4)) that ensure the removal of Class HF and reproduce the seven adiabatic classes.

Roughly speaking, U(1)T acts by translations along βµ, which is exactly what one would

intuit from the way microscopic KMS symmetry acts on operators. Note that this action

depends on the temperature and hence comes with a sense of state-dependence. This makes

it possible for entropy to be the U(1)T charge.

During our discussion of the classification problem, we gave resolutions to most of the six

issues with the traditional current algebra approach, which we enumerated in the introduc-

tion, §2. However, all insights that we gained, only applied to a restricted number of classes

of transport. The nicest and most complete way to formulate our classification of adiabatic

transport, is by postulating a U(1)T gauge invariance: in the Class LT framework, one can

hope to address all issues in a systematic and unified way, and then find a completely field

theoretic explanation of the emergence of hydrodynamics. We can summarize the usefulness

of this proposal in the context of the classification problem by noting the following four

features of U(1)T gauge invariance and the associated Class LT master Lagrangian:

1. It unifies and explains the eightfold classification, and it provides a direct and elegant

proof of its closure under field redefinitions. In retrosepct, it therefore motivates the

study of adiabatic fluids in the first place.

2. It constrains Feynman-Vernon terms and thus provides a solution to the important

problem of keeping the Schwinger-Keldysh doubling under control. As we have seen,

a Schwinger-Keldysh theory of hydrodynamics is plagued by violating the second law,

unless U(1)T is imposed. Having a classification of transport at all orders gave us the

distinct advantage to show that U(1)T gives precisely the right constraints; it allows

for all second law consistent adiabatic transport and it does not allow for anything

else (Class HF ). This can be taken as a strong evidence that our proposal is on the

right track: in a sense, any other constraint on the Schwinger-Keldysh theory has to

be isomorphic to U(1)T, since it has to impose precisely identical constraints on the

effective action.

3. U(1)T symmetry is proposed to be the macroscopic manifestation of the KMS condition

which encodes the near-thermal correlations between two copies of Schwinger-Keldysh

construction. It therefore explains the fate of KMS symmetry in the macroscopic

105 For fermionic operators there would be an extra relative sign, which implements anti-periodic boundary

conditions.
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hydrodynamic theory. While we have not yet given a precise mechanism for how

U(1)T emerges from KMS conditions, it is a natural and (as we have demonstrated

carefully) consistent idea to conjecture. Of course, it would be fascinating to develop

these heuristic ideas and derive the consequences of the U(1)T symmetry not only in

the hydrodynamic context but also in the fluid/gravity description.

4. It explains the field theoretic origin of the entropy current. In Class LT, the entropy

current is no longer an ad hoc constraint, which one imposes on phenomenological

grounds. Rather, it is an emergent symmetry current, associated with an emergent

gauge invariance. In this sense the full adiabatic entropy current is a Noether current

and very reminiscent of the Wald construction of black hole entropy [98]. This is

consistent with adiabatic entropy currents being conserved. Below, we sketch a scenario

for fitting non-conserved dissipative entropy currents into this picture.

Let us now outline how the U(1)T symmetry works in ensuring the second law in the

hydrodynamic limit. We first recall that the hydrodynamic gradient expansion requires

that the fluctuations about the underlying Gibbs density matrix are of sufficiently long

wavelength. Operationally this almost always implies that we are in the high temperature

regime. In this limit Schwinger-Keldysh construction for the equilibrium density matrix is

such that the common or average fields are macroscopic, but the difference fields are retained

only to linear order (this is required to ensure that we extract the correct retarded correlators)

[104]. Pictorially we can then imagine that while the two sets of degrees of freedom ΨL and

ΨR live on different background spacetimes (or parts of the Schwinger-Keldysh contour),

the effective spacing between them is vanishingly small in the Euclidean time direction.

Alternately, the difference fields encode the fluctuations or noise in the system and they are

Avogadro-suppressed in a fluid.

In the more recent work [3], we have shown that the success with adiabatic transport in

Class LT extends to the dissipative class when appropriate ghost fields are added and their

effects are taken into account. In such a formalism, one can explicitly see how the difference

fields control the fluctuations. In order to intuit the form of ghost couplings responsible

for dissipation, note that in our Class D description the intertwiners N and S are required

to be positive definite (symmetric) quadratic forms in some tensor representation. These

intertwiners typically take on the role of the kinetic terms of ghosts which naturally occur in

the Martin-Siggia-Rose dissipative effective action [106]. Such a structure makes it natural

to demand positivity for these quadratic forms (to ensure convergence of the path integral),

which along with removal of Class HF would then ensure the second law. It is worth noting

that in the formalism of [3] we derive not only the second law, but the stronger statement of

Jarzynski work relation [135, 136], thus ensuring a strong version of fluctuation-dissipation

theorem. Jarzynski’s relation comprises of an equality, relating the free energy difference

(Gf −Gi) of two equilibrium configurations to the statistical average of the work W done in

generic off-equilibrium processes connecting these two equilibrium configurations:

〈e−
W
T 〉 = e−

1
T

(Gf−Gi) . (22.1)

The usual formulation of the second law can be inferred from this statement straightforwardly

in the form 〈W 〉 ≥ Gf −Gi.
How does one think of Jarzynski’s relation (22.1) and the second law in the light of

U(1)T? We would like to view the fluid phase as the Higgs phase for U(1)T with the difference
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fields acting as the Higgs fields which transform non-linearly under U(1)T. This ensures that

both the U(1)T gauge field and the difference fields are invisible at long distances. More

precisely, we conjecture that a CPT symmetry, which can be understood as a particular

U(1)T gauge transformation, is spontaneously broken in the fluid phase, thus leading to

dissipation. As an associated Ward identity in the spontaneously CPT broken phase one then

finds Jarzynski’s relation. The order parameter of this symmetry breaking is conjectured

to be a particular ghost condensate, which is determined by the field strength of the U(1)T
connection. Such a phenomenology would then make the connection between U(1)T, ghosts,

and dissipation very explicit.

Without laying out the details of the U(1)T covariant construction of Class D effective

actions, let us ask the question: How can a non-conserved entropy current be associated with

an exact symmetry? The first thing to note is the fact that U(1)T acts in a state-dependent

manner. Such an action allows for a certain kind of non-conservation as the state evolves.

However, this non-conservation is heavily constrained by the dynamics of the system and

therefore happens in a very specific way (in our case leading to non-negative divergence of

the associated current). Such a mechanism seems more appropriate than a generic breaking

of the U(1)T symmetry, which would be quite hard to control in such a way that a sign-

definite constraint follows. Next, we note that an effective action description of dissipative

transport requires ghosts. A careful statement about non-conservation of entropy should

also address the dynamics of these degrees of freedom, which are usually neglected. It will

be an interesting future problem to discuss the detailed dynamics of the – presumably anti-

dissipating – ghost sector. Finally, the ultimate formulation of the fluctuation-dissipation

consistency, is not a priori in terms of the second law inequality, but rather in the form of

Jarzynski’s equation (22.1). This statement suggests that, upon taking into account also the

rare entropy-destroying processes, one can formulate the fluctuation-dissipation theorem as

a statistical equality rather than an inequality.

Making these statements precise, however, requires a more detailed investigation of

Schwinger-Keldysh path integrals to uncover further symmetry principles beyond U(1)T.

This has been preliminarily achieved in [3, 4] (see also [137]) and a more complete investiga-

tion will be an important problem to pursue in the future. The classification of hydrodynamic

transport derived in this work will then serve as a benchmark for the success or failure of

such an endeavour. Once a complete effective action description of all of hydrodynamic

transport will be given, the most pressing questions will then concern the dual gravita-

tional description. It will be enormously interesting to see the structures associated with the

eightfold way and Schwinger-Keldysh formalism appear in the black hole context. Most op-

timistically, we may hope that a thorough understanding of the doubling, U(1)T, dissipation

and fluctuations combined with the power of AdS/CFT can lead to a novel perspective on

time-dependent gravitational physics, horizons, black hole entropy, black hole interiors, and

apparent non-unitarity of these systems.
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Part VI

Appendices

A Adiabaticity equation for consistent currents

We have elected to work with covariant currents and covariant anomalies in the bulk of the

thesis. But, for some applications, it is useful to work with consistent currents and consistent

anomalies instead. In this appendix we describe various statements about how adiabaticity

equation changes if one works with consistent currents. Some salient results (such as those

necessary for hydrostatics) have already been quoted in the main text; the derivation of these

results will be found herein.

A.1 Bardeen-Zumino currents

To begin with, we need to pass to one of the consistent anomalies from the covariant anoma-

lies we have been working with earlier. To do this, we choose a Chern-Simons form ICS such

that dICS = P where P is the anomaly polynomial of the system under consideration. The

consistent anomalies are then given by

J ?1 ≡ ∂ICS
∂A

, Tµν ?1 ≡ ∂ICS
∂Γµν

. (A.1)

It is also useful to work with Bardeen-Zumino current and energy momentum tensor {JµBZ , T
µν
BZ}

which are local functions of sources {Aµ, gµν} given by

JµBZ
?dxµ ≡

∂ICS
∂F

, (ΣBZ)σνµ
?dxσ ≡ 2

∂ICS
∂Rµ

ν
,

TµνBZ ≡
1

2
∇σ
[
(ΣBZ)µ[νσ] + (ΣBZ)ν[µσ] − (ΣBZ)σ(νµ)

]
.

(A.2)

We will not need the detailed forms above for our analysis, though given any quantum

system we can determine the anomaly polynomial and thence the currents if necessary. All

we need for the moment is the following fact: the Bardeen-Zumino current and energy

momentum tensor obey conservation type equations with a right hand side that has the

difference between the covariant anomaly and the consistent anomaly, viz.,

DµJ
µ
BZ = J⊥H − J ,

∇νTµνBZ − (JBZ)ν F
µν = Tµ⊥

H +AµJ +
gµα√
−g

∂ν
(√
−g Tαν

)
.

(A.3)

We now want to derive an adiabaticity type equation for Bardeen-Zumino currents using

these identities. To this end, consider the combination

βµ

(
∇νTµνBZ − (JBZ)ν F

µν − Tµ⊥
H

)
+ (Λβ + βσAσ) ·

(
DµJ

µ
BZ − J⊥H

)
=

βµ√
−g

∂ν
(√
−g Tµν

)
− Λβ · J

= ∇σ (βνTνσ)− (∂νβ
µ) Tµν − Λβ · J

(A.4)
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If we define the Bardeen-Zumino entropy current as

JσS,BZ ≡ −βν Tνσ (A.5)

we can then write the adiabaticity equation satisfied by Bardeen-Zumino currents as

∇σJσS,BZ + βµ

(
∇νTµνBZ − (JBZ)νF

µν − Tµ⊥
H

)
+ (Λβ + βσAσ) ·

(
DµJ

µ
BZ − J⊥H

)
= −(∂νβ

µ) Tµν − Λβ · J
(A.6)

The consistent currents are defined as the difference of the covariant currents and the

Bardeen-Zumino currents, viz.,

JµS,cons ≡ J
µ
S − J

µ
S,BZ , Tµνcons ≡ Tµν − T

µν
BZ , Jµcons ≡ Jµ − J

µ
BZ . (A.7)

By subtracting (A.6) from (5.12), we obtain the adiabaticity equation written in terms of

consistent currents and consistent anomalies:

∇µJµS,cons + βµ (∇νTµνcons − (Jcons)ν · Fµν)

+ (Λβ + βλAλ) ·DνJ
ν = (∂νβ

µ)Tµν + Λβ · J
(A.8)

This then is the analog of (5.12) in terms of the consistent currents. This expression is

useful when we directly want to work with effective actions (without introducing Chern-

Simons terms).

A.2 The Consistent Gibbs current

If we wish to work directly with the Gibbs current as in §5.4, then one can introduce the

Bardeen-Zumino free energy current given (A.5) via:

GµBZ ≡ −T
[
JµS,BZ + βν T

µν
BZ + (Λβ + βσAσ) · JµBZ

]
= uνT µν −

[
uν T

µν
BZ + µ · JµBZ

]
.

(A.9)

This Bardeen-Zumino free energy current satisfies the grand canonical counterpart of (A.6)

−

[
∇σ
(
GσBZ
T

)
−
G⊥
H

T

]
=

1

2
TµνBZδBgµν + JµBZ · δBAµ − (∂νβ

µ)Tµν − Λβ · J . (A.10)

Subtracting this equation from (5.21), we get

−∇σ
(
Gσcons
T

)
=

1

2
Tµνcons δBgµν + Jµcons · δBAµ + (∂νβ

µ)Tµν + Λβ · J , (A.11)

where we have defined the consistent free energy current

Gσcons ≡ Gσ − GσBZ . (A.12)

Equation (A.11) plays a useful role in constructing the equilibrium partition function for

anomalous hydrodynamics. The current Gσcons/T is conserved in the hydrostatic limit (unlike

Gσ/T itself) and hence can be integrated over the base space to give a generating function

of hydrostatic correlation functions.
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B Topological currents in odd spacetime dimensions

On general grounds, one would expect every conserved topological charge on codimension-one

spatial slices to be associated with an identically conserved entropy current. In this appendix

we provide a general Euler current (with associated charge being the Euler characteristic)

and a flavour-charged topological Chern current.

B.1 Generalized Euler current

Let D denote the covariant exterior derivative acting on tensor-valued forms and uµ be the

fluid velocity vector. Then, uµuµ = −1 implies that Duµ is a transverse vector valued 1-form.

Further, we will also need the following transverse anti-symmetric tensor-valued 2-form

Pαµ P
β
ν Rαβ = Rµν +Rµαu

αuν + uµu
αRαν = Rµν + (D2uµ)uν − uµD2uν (B.1)

where Rµ
ν is the curvature 2-form.

Say our fluid is living in d = 3 spacetime dimensions. Then, we have the following

identity [85] due to the transversality properties mentioned above:

D
[
εµνλuµ (Duν ∧Duλ −Rνλ)

]
= εµνλDuµ ∧Duν ∧Duλ − εµνλDuµ ∧

(
Rνλ + (D2uν)uλ − uνD2uλ

)
= 0

(B.2)

This implies that we can define an identically conserved current (which we will term the

Euler current106) via

?J
Euler
≡ 1

2
c

Euler
εµνλ uµ (Duν ∧Duλ −Rνλ)

Jσ
Euler
≡ 1

2
c

Euler
εσαβ εµνλ uµ

(
∇αuν∇βuλ −

1

2
Rνλαβ

)
which satisfies ∇µJµ

Euler
= 0. Note that this is a parity-even current appearing in second

order in derivative expansion.

Let us now generalize this construction to arbitrary odd spacetime dimensions.107 Again

we let D denote the covariant exterior derivative acting on tensor-valued forms. It is uniquely

defined by zero-torsion condition D(dxµ) = 0 and metric compatibility condition Dgµν = 0.

Let uµ be the fluid velocity vector. Then, uµuµ = −1 implies that Duµ is a transverse vector

valued 1-form.

For what follows, it is useful to define a new covariant exterior derivative (p)D using the

connection 1-form

(p)Γµν ≡ Γµν + (Duµ)uν − uµDuν (B.3)

106 Sometimes this current is called as the Wen-Zee current, following [84] who realized that 3d Hall currents

are often shifted by such a term. The coefficient of this term is hence sometimes called the ‘shift’.
107 During the course of preparation of this paper [86] also constructed the generalization of the Euler

current to arbitrary odd dimensions. Our presentation in terms of vector valued one-forms is complementary

and equivalent to their explicit construction.
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This connection has a torsion (p)D(dxµ) = (Duµ)u− uµDu but it is still metric compatible
(p)Dgµν = 0. In addition, it is also velocity compatible (p)Duµ = 0, though it is not unique

in being velocity compatible. We can work out the curvature 2-form for this connection as

(p)Rµ
ν = Rµ

ν −Duµ ∧Duν + D2uµuν − uµD2uν (B.4)

This satisfies (p)D
(

(p)Rµ
ν

)
= 0 and further (p)Rµ

ν is completely transverse. It then follows

that the following form is (p)D-closed (and is hence D-closed):

?J
Euler
≡ − 1

n!
c

Euler
uµ ε

µν1ν2ν3ν4...ν2n−1ν2n (p)Rν1ν2
(p)Rν3ν4 . . .

(p)Rν2n−1ν2n
(B.5)

Here cWZ is some arbitrary numerical constant and we are working in spacetime dimensions

d = 2n+ 1. To see how this generalizes the d = 3 Euler current, we rewrite the above as

?J
Euler
≡ − 1

2n
c

Euler
uµ ε

µν1ν2...ν2n−1ν2n

× (Rν1ν2 −Duν1 ∧Duν2) . . .
(
Rν2n−1ν2n −Duν2n−1 ∧Duν2n

)
Jσ

Euler
≡ − 1

2n
c

Euler
εσα1α2...α2n−1α2n uµ ε

µν1ν2...ν2n−1ν2n

×
(

1

2
Rν1ν2α1α2 −∇α1uν1∇α2uν2

)
. . .

(
1

2
Rν2n−1ν2nα2n−1α2n −∇α2n−1uν2n−1∇α2nuν2n

)
(B.6)

This is then a parity-even, identically conserved current with (d− 1) derivatives that gener-

alizes the d = 3 construction of [85] to an arbitrary odd d (see also [86]).

One of the reasons for our interest in the Euler current Jσ
Euler

is that it provides a simple

homogeneous solution to the adiabaticity equation. One can simply take the entropy current

term to be Jσ
Euler

and set all other contributions to zero. Thus, given any solution to the

adiabaticity equation, we have the freedom to shift the entropy current in odd dimensions

by the Euler current (with an arbitrary constant).

B.2 Chern current

Another identically conserved current for flavour-charged fluids in d = 2n+ 1 dimensions is

easily constructed:

Jσ
Chern

=
1

2n
c

Chern
εσα1α2···α2n−1α2nFα1α2 · · ·Fα2n−1α2n . (B.7)

Despite being an exact form (it is the gradient of the Chern-Simon form) as we argue in the

main text, it does contribute to the topological degeneracy of states.

It would be interesting to examine if there are other conserved currents that like the

Euler current constructed above, include contributions from the background gauge field. We

have not been able to find any, but haven’t quite proved a no-go theorem either.

C Adiabatic hydrodynamics with Weyl invariance

The hydrodynamics of a CFT has an additional Weyl symmetry over and above the Poincaré

and the flavour symmetries. This can be dealt with by treating Weyl symmetry like any other

flavour symmetry except for a few additional complications that stem from the fact that Weyl

symmetry is a spacetime symmetry. In this appendix we give a self-contained construction

of the Weyl invariant structures building on earlier work in [81].
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C.1 Weyl transformation

Let us begin by adding in a Weyl transformation parameter ΛW to flavour and diffeomor-

phism X ≡ {ξµ,Λ}. We will denote by δW
X

the combined flavour, Weyl and diffeomorphisms

generated by XW ≡ {ξµ,Λ,ΛW}. Thus, we can write

δW
X
Aµ = δ

X
Aµ

δW
X
gµν = δ

X
gµν + 2ΛW gµν

δW
X

Γνλµ = δ
X

Γνλµ + δνλ∂µΛW + δνµ∂λΛW − gλµgνσ∂σΛW .

(C.1)

A Weyl covariant tensor Qµ...ν... of weight w is a tensor whose Weyl variation is given by

δW
X
Qµ...ν... = δ

X
Qµ...ν... − w ΛW Qµ...ν...

= [Qµ...ν...,Λ]− w ΛW Qµ...ν... + ξα∂αQ
µ...
ν... − (∂αξ

µ)Qα...ν... + . . .

+ (∂νξ
α)Qµ...α... + . . .

(C.2)

The flavour gauge field Aµ has a Weyl weight w = 0 whereas metric gµν has a Weyl weight

w = −2. The hydrodynamic fields {βµ,Λβ} are invariant under Weyl transformation.108 It

follows that the velocity uµ, the temperature T and the flavour chemical potential µ all have

w = 1.

C.2 Weyl connection

To mimic our construction for flavour symmetries, we extend the sources by adding in a

Weyl connection (or a gauge field) Wµ which transforms as

δW
X
Wµ = δ

X
Wµ + ∂µΛW . (C.3)

We can then construct Weyl-invariant Christoffel symbols

(WΓ)µνλ ≡ Γµνλ + gνλWµ − δµνWλ − δµλWν (C.4)

such that

δW
X

(WΓ)µλα = δ
X

(WΓ)µλα . (C.5)

In turn, this can be used to define a Weyl-covariant derivative [81]

DWλ Qµ...ν... ≡ Dλ Q
µ...
ν... + w WλQ

µ...
ν...

+
[
gλαWµ − δµλWα − δµαWλ

]
Qα...ν... + . . .

− [gλνWα − δαλWν − δανWλ]Qµ...α... − . . .
(C.6)

where in analogy with flavour covariant derivative, we have added a wWλ term. Further, the

additional terms in the definition occur due to the fact that Weyl symmetry is a spacetime

symmetry under which Christoffel symbols transform inhomogenously. It is easily checked

108 In hydrodynamics, as elsewhere, a useful thumb rule to determine the Weyl weights is

Weyl weight = mass dimension + No. of upper indices−No. of lower indices .

170



that these terms serve to correct the Christoffel symbols in Dλ into Weyl invariant Christoffel

symbols. An often useful spacial case is the action on covariant and contravariant vectors

DWλ V σ ≡ Dλ V
σ + (w − 1) WλV

σ +WσVλ − δσλ(W.V ) ,

DWλ Vσ ≡ Dλ Vσ + (w + 1) WλVσ +WσVλ − gλσ(W.V ) ,
(C.7)

and

DWσ Jσ ≡ Dσ J
σ + (w − d) WσJ

σ ,

DWν Tµν ≡ Dν T
µν + (w − d− 2) Wν T

µν +Wµ T σσ +Wν (Tµν − T νµ) .
(C.8)

The above Weyl-covariant derivative is metric compatible (DWλ gµν = 0) and is torsionless

when acting on Weyl-invariant scalar fields. The familiar variational formula for Christoffel

symbols

δΓµνλ =
1

2
gµα (∇νδgλα +∇λδgνα −∇αδgνλ) (C.9)

has a Weyl-covariant counterpart

δΓµνλ + δ [gνλg
µα]Wα =

1

2
gµα (DWν δgλα + DWλ δgνα −DWα δgνλ) (C.10)

This in particular implies that the combination δΓµνλ + δ [gνλg
µα]Wα is Weyl-invariant109

which would prove useful later on.

The curvatures associated with the Weyl-covariant derivative can be defined by the usual

procedure of evaluating the commutator between two covariant derivatives on more general

fields. For a covariant vector field Vµ of weight w, we get

[DWµ ,D
W
ν ]Vλ = [Fµν , Vλ] + w (WF )µν Vλ − (WR)αλµνVα with

Fµν ≡ ∇µAν −∇νAµ + [Aµ, Aν ]

(WF )µν ≡ ∂µWν − ∂νWµ

(WR)αλµν ≡ ∂µ(WΓ)αλν − ∂ν(WΓ)αλµ + (WΓ)αβµ(WΓ)βλν − (WΓ)αβν(WΓ)βλµ

(C.11)

As is evident from their definitions, all these field strengths are Weyl-invariant. A more

convenient expression for the Weyl covariant Riemann tensor is given by the formula110

(WR)µνλσ + gµν(WF )λσ = Rµνλσ − 4 δα[µgν][λδ
β
σ]

(
∇αWβ +WαWβ −

W2

2
gαβ

)
. (C.12)

These curvatures obey Bianchi identities of the form

(WR)µνλσ + (WR)µλσν + (WR)µσνλ = 0

DWν (WR)αβλσ + DWλ (WR)αβσν + DWσ (WR)αβνλ = 0

DWν (WF )λσ + DWλ (WF )σν + DWσ (WF )νλ = 0

(C.13)

109 A quick proof for the Weyl invariance of this combination follows from noting that

δ(WΓ)µνλ = δΓµνλ + δ [gνλg
µα]Wα + gνλg

µαδWα − δµν δWλ − δµλδWν

and using the statement that δWα being the difference of two Weyl connections, is Weyl-invariant.
110 Note that our Riemann tensor notion is slightly different from those defined in [81] which is responsible

for different signs appearing in our expression.
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and

(WR)µνλσ + (WR)νµλσ = −2(WF )λσgµν

(WR)µνλσ − (WR)λσµν = (WF )µνgλσ − (WF )λσgµν − 4 (WF )αβδ
α
[µgν][λδ

β
σ]

(C.14)

We can use the Weyl covariant Riemann tensor to define the Weyl covariant Ricci tensor,

Ricci scalar and Schouten tensor111 via

(WR)µν + (WF )µν = Rµν +
(

(d− 2)δαµδ
β
ν + gµνg

αβ
)(
∇αWβ +WαWβ −

W2

2
gαβ

)
WR = R+ 2(d− 1)gαβ

(
∇αWβ +WαWβ −

W2

2
gαβ

)
(WS)µν +

1

d− 2
(WF )µν = Sµν +∇µWν +WµWν −

W2

2
gµν .

(C.15)

C.3 Weyl covariance and conservation equations

In this subsection, we will study the conservation equations in a zero temperature field theory

with Weyl invariance. Consider the path integral of this field theory with the background

metric and Weyl connection turned on.112 We can write the variation of the logarithm of

this path integral (up to boundary terms) as

−i δ lnZ =

ˆ
ddx
√
−g
[

1

2
tαβδgαβ + jµW δWµ +

1

2
(ΣW)σµν δ(

WΓ)νµσ

]
(C.16)

where we treat {gαβ,Wµ, (
WΓ)νµσ} as independent sources for later convenience. We will

call (ΣW)σµν as the Weyl spin current. The tensors {tαβ, jµW} are related to the orbital

energy-momentum tensor and the orbital virial current in a way we will make precise below.

Let us now eliminate (WΓ)νµσ variations in favor of variations of the basic sources

{gαβ,Wµ}. First, we use the identity

1

2
(ΣW)σµν δ(

WΓ)νµσ =
1

2
(ΣW)σµν [δΓνµσ + δ(gµσg

να)Wα]

+
1

2
gαβ

(
Σ
α[βσ]
W + Σ

β[ασ]
W − Σ

σ(αβ)
W

)
δWσ ,

(C.17)

to write (C.16) in an equivalent form

−i δ lnZ =

ˆ
ddx
√
−g
{1

2
tαβδgαβ + JµW δWµ +

1

2
(ΣW)σµν [δΓνµσ + δ(gµσg

να)Wα]
}
,

(C.18)

111 The Schouten tensor in defined as

Sµν ≡
1

d− 2

[
Rµν −

1

2(d− 1)
R gµν

]
It is often used in defining the Weyl curvature part of Riemann curvature via Cµνλσ ≡ Rµνλσ+δα[µgν][λδ

β
σ] Sαβ .

Its significance in Weyl-invariant theories arises from the fact that it acts like a connection for the special

conformal transformations.
112 For simplicity, we will consider the case with no flavour symmetries - the expressions in this subsection

can be trivially generalized to account for flavour symmetries if present.
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where we have defined the total virial current JµW as the sum

JσW ≡ jσW +
1

2
gαβ

(
Σ
α[βσ]
W + Σ

β[ασ]
W − Σ

σ(αβ)
W

)
. (C.19)

Next we integrate by parts using (C.10) and discard the boundary terms to get

−i δ lnZ =

ˆ
ddx
√
−g
{1

2
TαβW δgαβ + JµW δWµ

}
(C.20)

where the Weyl energy-momentum tensor TαβW can be defined by more familiar looking

expressions involving the orbital energy-momentum current and Weyl spin current as:

TαβW ≡ tαβ +
1

2
DWσ

(
Σ
α[βσ]
W + Σ

β[ασ]
W − Σ

σ(αβ)
W

)
. (C.21)

We are now ready to derive the conservation equations in the fields theory that follow

from Weyl and diffeomorphism symmetries. Assuming there are no Weyl or diffeomorphism

anomalies, the path-integral is then invariant under the Weyl and diffeomorphism symmetries

of the theory. This gives

0 =

ˆ
ddx
√
−g
{1

2
TαβW (δW

X
gαβ) + JµW (δW

X
Wµ)

}
= −

ˆ
ddx
√
−g ξα

{
DWβ T

αβ
W − (JW)β(WF )αβ

}
−
ˆ
ddx
√
−g (ΛW + ξσWσ)

{
DWβ J

β
W − gαβTαβW

} (C.22)

where in the second step, we have integrated by parts and discarded the boundary terms.

thus, for a general Weyl-invariant field theory we obtain the conservation equations

DWβ T
αβ
W = (JW)β(WF )αβ

DWβ J
β
W = gαβT

αβ
W

(C.23)

with

TαβW ≡ tαβ +
1

2
DWσ

(
Σ
α[βσ]
W + Σ

β[ασ]
W − Σ

σ(αβ)
W

)
JσW ≡ jσW +

1

2
gαβ

(
Σ
α[βσ]
W + Σ

β[ασ]
W − Σ

σ(αβ)
W

) (C.24)

The energy-momentum conservation equation is reasonably familiar with all the currents

now taking their Weyl invariant form. For the Weyl current conservation we see that the

stress tensor trace contributes a source term.

C.4 Velocity compatible Weyl connection

While the above discussion was quite general we now would like to specialize to hydrody-

namics, where there is a unique Weyl connection which satisfies the velocity compatibility

conditions [81]

uσDWσ uµ = 0 , DWσ u
σ = 0 , (C.25)

which can equivalently be stated in terms of βµ as

βσDWσ β
µ = βµDWσ β

σ . (C.26)
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Imposing these velocity compatibility conditions gives

Wσ ≡ uα∇αuσ −
∇αuα

d− 1
uσ = aσ −

Θ

d− 1
uσ (C.27)

We can then compute the variation of Wµ as follows: varying the velocity compatibility

conditions, we get

0 = δ (uσDWσ uµ) = δuσDWσ uµ + uσ
(
DWσ δuµ − uλδΓλµσ + δWµuσ − uαδ(gµσWα)

)
= δuσ DWσ uµ + uσDWσ δuµ − uλuσ

(
δΓλµσ + δ

[
gµσg

αλ
]
Wα

)
− P νµ δWν

0 = δ (uµD
W
σ u

σ) = uµD
W
σ δu

σ + uµu
σ
(
δΓλλσ + δ

[
gλσg

αλ
]
Wα

)
− (d− 1)uµu

ν δWν

(C.28)

We can use these equations solve for δWµ to get

δWµ = δuσ DWσ uµ + uσDWσ δuµ −
1

d− 1
uµD

W
σ δu

σ

− uσ
(
uλδ

β
µ +

1

d− 1
uµδ

β
λ

)(
δΓλβσ + δ

[
gβσg

αλ
]
Wα

) (C.29)

We can then use δuσ DWσ uµ = Tδβσ DWσ uµ and

uσDWσ δuµ −
1

d− 1
uµD

W
σ δu

σ

=

(
uλPµσ −

1

d− 1
uµP

λ
σ

)
DWλ (Tδβσ) +

1

2

(
Pαµ u

β + P βµ u
α − d

d− 1
uµ u

α uβ
)

(u.DW)δgαβ

(C.30)

to write

δWµ =
1

2

(
Pαµ u

β + P βµ u
α − d

d− 1
uµ u

α uβ
)

(u.DW)δgαβ

− uσ
(
uλδ

β
µ +

1

d− 1
uµδ

β
λ

)(
δΓλβσ + δ

[
gβσg

αλ
]
Wα

)
+ Tδβσ DWσ uµ +

(
uλPµσ −

1

d− 1
uµP

λ
σ

)
DWλ (Tδβσ)

(C.31)

A useful corollary of this result is

JµWδWµ = −1

2
δgαβ

(
Pαµ u

β + P βµ u
α − d

d− 1
uµ u

α uβ
)

(u.DW)JµW

− uσ
(
JµWuλ +

1

d− 1
(u.JW)δµλ

)(
δΓλµσ + δ

[
gµσg

αλ
]
Wα

)
+ Tδβλ

{
JµWD

W
λ uµ −DWσ

[
JµW

(
uσPµλ −

1

d− 1
uµP

σ
λ

)] }
+ DWσ (. . .)

(C.32)

174



C.5 Class L for Weyl covariant fluids

In this subsection, we will study the Class L for Weyl covariant fluids. In analogy with

our previous discussion for a zero temperature field theory, we can write the variation of

Lagrangian density (up to boundary terms) as

ˆ
ddx
√
−g
[

1

2
tαβδgαβ + JµWδWµ +

1

2
(ΣW)σµλ

(
δΓλµσ + δ

[
gµσg

αλ
]
Wα

)
+ ThWλ δβ

λ

]
(C.33)

We can then integrate by parts using (C.32) to get

1

2
tαβδgαβ + JµWδWµ +

1

2
(ΣW)σµλ

(
δΓλµσ + δ

[
gµσg

αλ
]
Wα

)
+ ThWλ δβ

λ

= Tδβλ
{
hWλ + JµWD

W
λ uµ −DWσ

[
JµW

(
uσPµλ −

1

d− 1
uµP

σ
λ

)] }
+

1

2
δgαβ

{
tαβ −

(
Pαµ u

β + P βµ u
α − d

d− 1
uµ u

α uβ
)

(u.DW)JµW

}
+

1

2

[
Σσµ
W λ − 2uσ

(
JµWuλ +

1

d− 1
(u.JW)δµλ

)](
δΓλµσ + δ

[
gµσg

αλ
]
Wα

)
+ DWσ [. . .]

(C.34)

Another integration by parts gives us the fluid energy-momentum tensor TαβW

TαβW = tαβ −
(
Pαµ u

β + P βµ u
α − d

d− 1
uµ u

α uβ
)

(u.DW)JµW

+
1

2
DWσ

(
Σα[βσ] + Σβ[ασ] − Σσ(αβ)

)
.

(C.35)

with

Σσµ
λ ≡ Σσµ

W λ − 2uσ
(
JµWuλ +

1

d− 1
(u.JW)δµλ

)
along with the adiabatic heat current

hλ = hWλ + JµWD
W
λ uµ −DWσ

[
JµW

(
uσPµλ −

1

d− 1
uµP

σ
λ

)]
(C.36)

Thus, with these virial corrections the Class L for Weyl-covariant fluids reduces to the Class

L for the usual fluids with the above energy momentum tensor and adiabatic heat current.

D Useful variational formulae

In this Appendix we collect various useful variational formulae and some derivations filling

in the gaps for various results used in the main text.

D.1 Mapping variations of hydrodynamic fields

If we denote the hydrodynamic projector by Pαβ ≡ gαβ +uαuβ, we can derive from (5.1) the

following translation between variations of {βµ,Λβ} and those of the more traditional fields

175



{uµ, T, µ}:

δuα = T Pαβ δβ
β +

1

2
uα uβ uρ δgβρ

δuα = T Pαλ δβ
λ +

1

2

(
P βα u

ρ + P ρα u
β − uα uβ uρ

)
δgβρ

δT = T 2 uα δβ
α +

1

2
T uα uβ δgαβ

δµ = T (µuσ δβ
σ + δΛβ +Aσ δβ

σ) + uσ δAσ +
1

2
µuα uβ δgαβ .

(D.1)

These equations follow from the basic definition of the hydrodynamic fields. Having the

explicit expressions at hand comes in handy while deriving various results in the text.

For reference, we also note the variation of the sources along a configuration B =

{βµ,Λβ} and evaluate them on-shell:

δ
B
gµν = 2∇(µβν) =

2

T

[
σµν + Pµν

Θ

d− 1
−
(
a(µ +∇(µ log T

)
uν)

]
' 2

T

[
σµν + Pµν

Θ

d− 1
− v2

s Θuµuν −
q

ε+ p
v(µuν)

]
+ 2nd order

δ
B
Aµ = Dµ(Λβ + βνAν) + βνFνµ = uαDα

(µ
T

)
uµ −

1

T
vµ

' − 1

T

dp

dq
Θuµ −

1

T
vµ + 2nd order .

(D.2)

D.2 Relating variations of hydrodynamic fields to reference parameterization

We now turn to the important task of relating the variations of the physical hydrodynamic

fields {βµ,Λβ} to the parameterization in terms of the reference fields (rigid) and physical

fluctuating fields introduced in §10.2. Our goal is to start with the definition (10.6) and

derive (10.7).

Let us begin by varying βµ starting from its definition in the first line of (10.6). An

explicit computation gives:

δβµ = �a[ϕ] δeµa + eµb δϕ
a ∂

∂ϕa
�b[ϕ] + eµa δ�

a[ϕ]

= −eµaβν∂νδϕa + eµb δϕ
a ∂�

b

∂ϕa
+ eµaδ�

a

= −δ
B

(eµaδϕ
a) +

[
δ
B
eµa + eµb

∂�b

∂ϕa

]
δϕa + eµaδ�

a

(D.3)

To further simplify the expression, consider first the middle term in the above expression,

which we argue vanishes.

δ
B
eµa + eµb

∂�b

∂ϕa
= βν∂νe

µ
a − eνa∂νβµ + eµb

∂�b

∂ϕa

= �beνb∂νe
µ
a − �beνa∂νe

µ
b − e

ν
ae
µ
b ∂νϕ

c ∂�
b

∂ϕc
+ eµb

∂�b

∂ϕa

= �b
(
eνb∂νe

µ
a − eνa∂νe

µ
b

)
= 0

(D.4)

where in the last step we have used the fact that the Lie commutator between two coordinate

basis vectors is zero. Thus, we finally obtain

δβµ = eµaδ�
a − δ

B
(eµaδϕ

a) (D.5)
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As advertised, the variation of ϕa enters only as a change along Lie orbit.

We now turn to variation of Λβ:

δΛβ = [δc c−1, c Λ� c
−1] + c δΛ� c

−1 + δϕac
∂Λ�

∂ϕa
c−1 + δβσ(∂σc)c

−1

+ βσ∂σ
(
δc c−1

)
+ [δc c−1,βσ(∂σc)c

−1]

= c δΛ� c
−1 + δϕac

∂Λ�

∂ϕa
c−1 + eσaδ�

a(∂σc)c
−1 − δ

B
(eσaδϕ

a) ∂σc c
−1

+ βσ∂σ
(
δc c−1

)
+ [δc c−1,Λβ]

= δϕa
[
eσaδB

(
∂σc c

−1
)

+ c
∂Λ�

∂ϕa
c−1

]
+ c δΛ� c

−1 + eσaδ�
a(∂σc)c

−1

+ δ
B

[
δc c−1 − eσaδϕa ∂σc c−1

]

(D.6)

We now focus on the first term which will end up vanishing after a suitable amount of

massaging:

δ
B

(
∂σc c

−1
)

= −∂σΛβ + βα∂α(∂σc c
−1) + ∂σβ

α(∂αc c
−1) + [∂σc c

−1,Λβ]

= −∂σ(Λβ − βα∂αc c−1) + [∂σc c
−1,Λβ − βα∂αc c−1]

= −∂σ(cΛ�c
−1) + [∂σc c

−1, cΛ�c
−1]

= −c ∂σΛ� c
−1 = −∂σϕac

∂Λ�

∂ϕa
c−1 .

(D.7)

Using the above result we can write

eσaδB
(
∂σc c

−1
)

+ c
∂Λ�

∂ϕa
c−1 = 0 , (D.8)

so that in the end

δΛβ = c δΛ� c
−1 + eσaδ�

a(∂σc)c
−1 + δ

B

[
δc c−1 − eσaδϕa ∂σc c−1

]
(D.9)

Equations (D.5) and (D.9) form the basic map between the variation of the physical fields

and those of the reference fields and they are quoted in the text as (10.7).

D.3 Variational rules for anomalous hydrodynamics

We collect in this appendix various useful formulae for checking the results in §15.1 and

§15.3. For most of the fields we already know the variations in terms of the hydrodynamic

fields and the sources. The new objects whose variations we need in the anomaly discussion

are the shadow fields Â and Γ̂. These are however conveniently defined for us in terms of

the hydrodynamic fields so it is quite simple to see how to write down their variations in

terms of our preferred set of fields.

Consider first the flavour shadow connection defined in (15.2); from the basic variations

(D.1) it follows immediately that

δÂλ = µP
(α
λ uβ) δgαβ + Pαλ δAα

+ µ (Pλα + uλuα) T δβα + uλ T (δΛβ +Aαδβ
α) .

(D.10)

For the mixed anomaly discussion we also need the variation of the spin connection

shadow fields. In order to get the variation δΓ̂ρσλ, we first start with the spin chemical
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potential defined in (15.21) and observe by explicit variation that

δΩρ
σ =

δT

T
Ωρ

σ + T Qρµ
σκDµδβ

κ + T βν Qρµ
σκ δΓ

κ
µν + T (Dµβ

κ) δQρµ
σκ

= T Ωρ
σ uαδβ

α +
1

2
Ωρ

σu
µuνδgµν + T Qρµ

σν Dµδβ
ν + T βν Qρµ

σκ δΓ
κ
µν

− 1

2
T (δµσD

ρβν − gρµ∇νβσ) δgµν .

(D.11)

From this we immediately infer

δΓ̂ρσλ =

[
Ωρ

σP
(µ
λ uν) − 1

2
T uλ (δµσ∇ρβν − gρµ∇νβσ)

]
δgµν + Pρµν

σκλ δΓ
κ
µν

+ Ωρ
σ (Pλα + uλuα)T δβα + uλT Qρµ

σκDµδβ
κ ,

(D.12)

where we use the abbreviation Pρµν
σκλ = δρκδ

µ
σδνλ + Qρµ

σκ uνuλ.

E Details of the neutral fluid computation at second order

In this appendix we work out the Class L theory describing neutral fluids at second order in

the gradient expansion. In §11.1 we have described the basic set-up for this problem. The

task at hand is to take the 13 scalar terms given in (11.17) and work out their variations.

Once we do that we will be in a position to work out the stress tensor and read off the

physical quantities.

E.1 Variational calculus for the second order scalars

Let us parameterize the general second order Lagrangian using the basis (11.17) as follows:

L2 = Kσ(T )σ2 +Kω(T )ω2 +Ka(T ) a2 +KΘ(T ) Θ2 +KR(T )R

+ Kt(T )∇µT ∇µT +Ku(T ) Θuµ∇µT +Kx(T ) aµ∇µT +Ky(T ) (uµ∇µT )2

+ fa(T )R00 + fb(T )uµ∇µΘ + fc(T )∇2T + fd(T )uµ uν∇µ∇νT (E.1)

We have singled out the last four terms since by a suitable integration by parts they can

be eliminated in favour of the nine terms in the first two lines. More specifically we have

fa(T )R00 = −
[
f ′a(T ) aµ∇µT + fa(T )

(
σ2 + ω2 + uµ∇µΘ +

Θ2

d− 1

)]
+ ∇µ (fa(T ) aµ) , (E.2a)

fb(T )uµ∇µΘ = −
[
fb(T ) Θ2 + f ′b(T ) Θuµ∇µT

]
+∇µ (fb(T ) Θuµ) (E.2b)

fc(T )∇2T = −
[
f ′c(T )∇µT ∇µT

]
+∇µ (fc(T )∇µT ) . (E.2c)

fd(T )uµ uν ∇µ∇νT = −
[
f ′d(T ) (uµ∇µT )2 + fd(T ) Θuµ∇µT + fd(T ) aµ∇µT

]
+ ∇µ (fd(T )uµ uν∇νT ) . (E.2d)

where we dropped the integral signs to keep the expressions compact.

Furthermore, we have at our disposal the field redefinition freedom described in §10.6.

Since we set the first order gradient terms to vanish L1 = 0, the freedom we have is field

redefinition of the ideal fluid Lagrangian (11.2). We claim that by suitable choice of δϕa
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we can eliminate all the four terms in the second line of (E.1). Explicitly, under a field

redefinition we find as before

�L0 [β] + L2 [β] = p′(T )

(
∇µ log T − v2

s Θuµ + aµ

)
eµa δϕ

a + L2 [β] + · · · . (E.3)

Now what we want to do is to eliminate all terms involving the gradients of temperature.

That this is possible is manifest from the equation above, since by choosing appropriate

values of eµa δϕa we can set to zero the coefficient functions {Kt(T ),Ku(T ),Kx(T ),Ky(T )}.
However, in doing so we will shift the coefficient functions involving at least one factor of Θ

or aµ. It is then easy to see that the combinations

K̃a = Ka + T 2Kt − T Kx , K̃Θ = KΘ − T 2 v4
s Kt − T v2

s Ku + T 2 v4
s Ky . (E.4)

are field redefinition invariant. So even if we failed to implement the field redefinitions any

transport coefficient not involving these particular combinations would point to an error in

the computation.

This means that we only have to compute the variation of the 5 terms in the first line of

(E.1). We can do so in a straightforward manner using the basic variational formulae quoted

in (D.1). However, in order to demonstrate the efficacy of our field redefintions together with

the potential cross-check it offers on the result, we actually vary all the 9 terms in the first

two lines of (E.1).

In what follows we will write the answer eschewing the integrals and factors of
√
−g

though for completeness we will indicate the total derivative pieces we encounter in the

process of integrating by parts to facilitate reading off the pre-symplectic potential. In

addition to fit the expressions compactly we introduce a shorthand for terms on the l.h.s.

viz., δ(KXX) ≡ 1√
−g δ (

√
−g KX X). For ease of visualization we have also indicated the

total derivative terms in a different color; these will be useful later in the computation of the
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free energy current.

δ
(
Kσ σ

2
)

=

(
Kσ σ

2 gµν + T K ′σ σ
2 uµ uν − 4Kσ σ

µα σ ν
α − 4Kσ

Θ

d− 1
σµν

− 4Kσ uα

(
uρ∇ρ σα(µ

)
uν) − 4u(ν ∇α

(
Kσ σ

µ)α
)

+ 2Kσ σ
2 uµ uν

)
1

2
δgµν

−
(

2Kσ σ
αν uµ

)
δΓµνα +∇µ (2Kσ σ

µνδuν)

+

(
T K ′σ σ

2 uα − 2Pνα∇µ (Kσ σ
µν) + 2Kσ a

µ σµα

)
T δβα , (E.5a)

δ
(
Kω ω

2
)

=

(
Kω ω

2 gµν +
(
2Kω + T K ′ω

)
ω2 uµ uν − 4Kω ω

µα ω ν
α + 4Kωω

(µα uν) aα

+ 4∇α
(
Kω ω

α(µ
)
uν)

)
1

2
δgµν −∇µ (2Kω ω

µνδuν)

+

(
T K ′ω ω

2 uα + 2T Pνα∇µ (Kω ω
µν) + 2T Kω ω

µ
α aµ

)
T δβα , (E.5b)

δ
(
Ka a

2
)

=

(
Ka a

2 gµν +K ′a T a2 uµ uν + 2Ka a
µ aν + 4Ka a

2 uµ uν
)

1

2
δgµν

+

(
2Ka aµ u

ν uα
)
δΓµνα +∇µ (2Ka aνu

µδuν)

+

(
2Ka aµ P

ν
α ∇ν uµ − 2∇ν (Ka aµ u

ν) Pµα + T K ′a a
2 uα

)
T δβα , (E.5c)
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δ
(
KΘ Θ2

)
=

(
KΘ Θ2 gµν +

(
T K ′Θ Θ2 + 2T v2

s K
′
ΘΘ2 − 2KΘ u

α∇αΘ
)
uµ uν

)
1

2
δgµν

+

(
2KΘ Θ δνµ u

α

)
δΓµνα +∇µ (2KΘ Θ δuµ)

+

(
T K ′Θ Θ2 uα − 2Pµα ∇µ (ΘKΘ)

)
T δβα , (E.5d)

δ (KRR) =

(
KRRg

µν +K ′R T Ru
µ uν − 2KRR

µν + 2∇µ∇νKR − 2 gµν∇2KR

)
1

2
δgµν

+∇µ
{

2 δgαβ

[
gαβ∇µ − gµβ∇α

]
KR −

[
gαβ∇µ − gµβ∇α

]
(KR δgαβ)

}
+ T 2K ′RRuα δβ

α , (E.5e)

δ (Kt∇αT∇αT ) =

(
Kt (∇T )2 gµν − 2Kt∇µT ∇νT

− T
(
K ′t (∇T )2 + 2Kt∇2T

)
uµ uν

)
1

2
δgµν +∇µ (2Kt∇µT δT )

−
(
K ′t(∇T )2 + 2Kt∇2T

)
T 2 uαδβ

α , (E.5f)

δ (Ku Θuµ∇µT ) =

(
Ku Θuα∇αT gµν +

[
Ku Θuα∇αT − T Ku

(
Θ2 + uα∇αΘ

)
− uα∇α

(
Ku u

β∇βT
)]
uµ uν

)
1

2
δgµν

+

(
Pµα
(
KuΘ∇µT −∇µ (Ku u

µ∇µT )
)
− T Ku

(
Θ2 + uµ∇µΘ

)
uα

)
T δβα

+Ku u
β∇βT uν δαµ δΓµαν +∇µ (KuΘuµ δT +Ku u

α∇αTδuµ) , (E.5g)

δ (Kx a
µ∇µT ) =

(
Kx a

α∇αT gµν +

[
Kx a

α∇αT − T Kx∇αaα

− uα∇β
(
Kxu

β∇αT
)]
uµ uν

)
1

2
δgµν

+

(
Pµα
(
Kx∇µuν ∇νT −∇ν (Kx∇µT uν)

)
− T Kx∇µaµ uα

)
T δβα

+Kx∇µT uα uν δΓµαν +∇µ (Kx u
µ∇νT δuν +Kx a

µ δT ) , (E.5h)

δ
(
Ky (uµ∇µT )2

)
=

(
Ky (uα∇αT )2 gµν +

[
(T K ′y + 2Ky) (uα∇αT )2

− 2T ∇α
(
Ky u

α uβ∇βT
)]
uµ uν

)
1

2
δgµν

+

(
2Ky u

β∇βT Pµα ∇µT − 2T ∇µ
(
Ky u

β∇βT uµ
)
uα

+ T K ′y

(
uβ∇βT

)
uα

)
T δβα +∇µ (2Ky u

α∇αT uµ δT ) . (E.5i)

In the course of the derivation, we have used for the variation of the curvature term the

standard identity

gαβδRαβ = ∇µ
[
∇νδgµν − gαβ∇µδgαβ

]
. (E.6)

The stress tensor can be read off from the above expressions as the coefficient of 1
2 δgµν .

However, to do so we need to convert δΓµνα variations in some of the terms into δgµν variations.
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This can be done easily using the identity

Xασ
ρ δΓ

ρ
ασ = ∇ρ

[
Xα[βρ] +Xβ[αρ] −Xρ(αβ)

]
δgαβ

−∇ρ
{[
Xα[βρ] +Xβ[αρ] −Xρ(αβ)

]
δgαβ

} (E.7)

Using this we compute the combined contribution from (E.5a)-(E.5g) separately to be

2

(
KΘ Θ δνµ u

α +Ka aµ u
ν uα −Kσ σ

αν uµ

)
δΓµνα =

2∇ρ
(
−KΘ Θuρ gµν +Ka

(
uµ uν aρ − 2 a(µuν) uρ

)
−Kσ

(
σµν uρ − 2σρ(µ uν)

))1

2
δgµν

+∇µ
[
Ka

(
−uα uβ aµ + 2 a(αuβ) uµ

)
δgαβ

]
+∇µ

[
KΘ Θuµ gαβδgαβ +Kσ

(
σαβ uµ − 2σµ(α uβ)

)
δgαβ

]
(
Kx∇µT uα uν +Ku u

β∇βT δαµ uν
)
δΓµνα =

∇ρ
(
Kx

(
uµ uν∇ρT − 2uρ u(µ∇ν)T

)
−Ku u

β∇βT uρ gµν
)

1

2
δgµν

+∇µ
{[
−Kx

(
uα uβ∇µT − 2uµ u(α∇β)T

)
+Ku u

ρ∇ρT uµ gαβ
] 1

2
δgαβ

}
. (E.8)

All in all we find the currents for the second order neutral fluid to be:

Tµν(2) = Kσ σ
2 gµν + T K ′σ σ

2 uµ uν − 4Kσ σ
µα σ ν

α − 4Kσ
Θ

d− 1
σµν

− 4Kσ uα

(
uρ∇ρ σα(µ

)
uν) − 4u(ν ∇α

(
Kσ σ

µ)α
)

+ 2Kσ σ
2 uµ uν

+ 2∇ρ
(
Kσ

(
σµν uρ − 2σρ(µ uν)

))
+Kω ω

2 gµν +
(
2Kω + T K ′ω

)
ω2 uµ uν

− 4Kω ω
µα ω ν

α + 4Kω ω
(µα uν) aα + 4∇α

(
Kω ω

α(µ
)
uν) + K̃a a

2 gµν

+ K̃ ′a T a2 uµ uν + 2 K̃a a
µ aν + 4 K̃a a

2 uµ uν + 2∇ρ
(
K̃a

(
uµ uν aρ − 2 a(µuν) uρ

))
+ K̃Θ Θ2 gµν +

(
T K̃ ′Θ Θ2 + 2T v2

s K̃
′
ΘΘ2 − 2 K̃Θ u

α∇αΘ
)
uµ uν − 2∇ρ

(
K̃Θ Θuρ gµν

)
+KRRg

µν +K ′R T Ru
µ uν − 2KRR

µν + 2∇µ∇νKR − 2 gµν∇2KR , (E.9)

while

hα(2) = T K ′σ σ
2 uα − 2Pαν ∇µ (Kσ σ

µν) + 2Kσ a
µ σµ

α + T K ′ω ω
2 uα + 2T Pαν ∇µ (Kω ω

µν)

+ 2T Kω ω
αµ aµ + 2 K̃a aµ P

να∇ν uµ − 2∇ν
(
K̃a aµ u

ν
)
Pµα + T K̃ ′a a

2 uα

+ T K̃ ′Θ Θ2 uα − 2Pαµ∇µ
(

Θ K̃Θ

)
+ T K ′RRu

α , (E.10)

where we have written the answer in the field redefinition invariant combination. The pre-
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symplectic potential for this system can be read off from the boundary terms as

(/δΘPS)µ(2) = (2Kσ σ
µν − 2Kω ω

µν) δuν + 2Ka u
µ aνδu

ν + 2KΘΘ δuµ

+ 2 δgαβ

[
gαβ∇µ − gµβ∇α

]
KR −

[
gαβ∇µ − gµβ∇α

]
(KR δgαβ)

+ (2Kt∇µT +Ku Θuµ +Kx a
µ + 2Ky u

µuρ∇ρT ) δT

+ uρ∇ρT (Ku δu
µ) +Kx u

µ∇νT δuν

+Ka

(
−uα uβ aµ + 2 a(αuβ) uµ

)
δgαβ

+KΘ Θuµ gαβδgαβ +Kσ

(
σαβ uµ − 2σµ(α uβ)

)
δgαβ

+
[
−Kx

(
uα uβ∇µT − 2uµ u(α∇β)T

)
+Ku u

ρ∇ρT uµ gαβ
] 1

2
δgαβ

(E.11)

where the first four lines are obtained from the explicit boundary terms in the variations

(E.5a)-(E.5i) and the last three lines are obtained from the integration by parts on the

variation of the Christoffel symbols (E.8).

E.2 Transport coefficients for neutral fluids

The expression for the stress tensor as written in (E.9) is rather unilluminating (not to

mention formidable), so we need to massage it further to extract some physical information

and compare with results in the literature. It is traditional to present the result for the energy

momentum tensor in the Landau frame, where the corrections (dissipative or otherwise) to

the ideal fluid stress-tensor in the gradient expansion are orthogonal to the fluid velocity

field. One can then express the result up to second order [28]113

Tµν = ε uµ uν + p Pµν − 2 η σµν − ζ PµνΘ

+

[
τ uα∇ασ〈µν〉 + κ1R〈µν〉 + κ2 (FR)〈µν〉 + λ0 Θσµν

+ λ1 σ〈µ
α σαν〉 + λ2 σ〈µ

α ωαν〉 + λ3 ω〈µ
α ωαν〉 + λ4 a〈µaν〉

]
+ Pµν

[
ζ1 u

α∇αΘ + ζ2R+ ζ3R00 + ξ1 Θ2 + ξ2 σ
2 + ξ3 ω

2 + ξ4 a
2

]
.

(E.12)

Most of the fluid dynamical tensors which we are using in the above are given in Table 11

and the angle bracket notation indicates projection to the symmetric part transverse to the

velocity.

A〈µν〉 ≡ Pαµ P βν
(
Aαβ +Aβα

2
−
[
AρσP

ρσ

d− 1

]
gαβ

)
. (E.13)

In addition we have a few combinations of the curvatures which are defined as

FµνR = Rµανβ uαuβ, Rµν = Rαµβνgαβ , R00 = Rµν uµ uν (E.14)

with Rαβγδ being the Riemann tensor of the background geometry.

The comparison with the expression for the stress tensor (E.12) is however tricky as

written for two reasons:
113 Note that we have not isolated an explicit factor of T in front of the second order transport coefficients

as in [28]. Also some authors (cf., [92]) prefer to make explicit that some second order transport is inherited

from first order viscous terms, e.g., it is common to find τ = η τπ. We refrain from making such choices to

keep expressions manageable.
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2nd order neutral fluids: hydrostatic response

Scalars Vectors Tensors

ω2 ωµνaν ωα<µων>α
a2 a<µaν>

R R<µν>

Rαβu
αuβ Pµν Dλω

νλ F<µν>R ≡ uαuβR<µαν>β
4S + 4T = 8 = 5 HF + 3 HS + 0 HV + 0 A

Table 9: The 8 hydrostatic response terms for parity-even neutral fluid at 2nd order in derivative

expansion. We have listed the vectors though they do not contribute to frame-invariant

transport data. Among the 8 terms, HF = 5 combinations are forbidden by hydrostatic

principle whereas the remaining HS = 3 combinations are generated by using the first 3

scalars in the Lagrangian.

2nd order neutral fluid: non-hydrostatic transport

Scalars Vectors Tensors

Θ2 Θaµ σα<µσν>α
σ2 Θσµν

σµνaν σα<µων>α

(uαDα)Θ PµνDνΘ (uαDα)σµν

Pµν Dλσ
νλ

3S + 4T = 7 = 2 HS + 0 HV + 2 B + 3 D

Table 10: The 7 non-hydrostatic transport terms for parity-even neutral fluid at 2nd order in derivative

expansion. We have listed the vectors though they do not contribute to frame-invariant

transport data. Among the 7 terms, HS = 2 combinations are generated by inserting the

first 2 non-hydrostatic scalars into the Lagrangian. We have HV = 0 and there are 2

combinations in Class B and 3 combinations in Class D, which are given in Table 7.

(a) The result (E.12) is given in a basis of independent tensors wherein derivatives of the

temperature have been eliminated in favour of those involving the velocity gradients.

(b) It is also presented in the Landau frame, while the stress tensor we compute will

naturally be in a frame where the entropy current is JµS = s uµ. The latter has been

called entropy frame in [73].

Using the conservation of the ideal fluid (11.9) we can eliminate temperature gradients

and obtain the result for the stress tensor in terms of velocity gradients alone on-shell. Then

one can attempt to convert the answer to the Landau frame by an explicit field redefinition.

Fortunately, if we set the first order gradient terms to vanish, we can employ a shortcut as

discussed in [9, 73] which we used in §11.1. We simply project our result for Tµν onto the

invariant tensor and scalar parts using (11.14) and read off the coefficients of the independent

tensors used in (E.12). We implement this for each term and use (11.9) at intermediate stages
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to simplify the computation. When the dust settles we find:

η = ζ = 0 , (E.15a)

τ = −2T K ′R − 2Kσ (E.15b)

κ1 = −2KR κ2 = −2T K ′R , (E.15c)

λ0 =

(
2 v2

s −
4

d− 1

)
T K ′R − 2Kσ + 2 v2

s T K
′
σ (E.15d)

λ1 = −2T K ′R , λ2 = 4Kσ , λ3 = −2T K ′R + 4Kω , (E.15e)

λ4 = −2 K̃a + 2T (T KR)′′ ,

ζ1 = −2 v2
s K̃a + 2

d− 2

d− 1
T K ′R − 2 K̃Θ ,

ζ2 =

(
d− 3

d− 1
+ v2

s

)
KR − v2

s T K
′
R

ζ3 = −2 v2
s K̃a + 2

(
d− 2

d− 1
+ v2

s

)
T K ′R + 2

(
v2
s −

1

d− 1

)
KR , (E.15f)

ξ1 = − 2

d− 1
v2
s K̃a + 2 v2

s T
(
v2
s T K

′
R

)′
+ 2

(
d− 2

d− 1
+ v2

s

) (
1

d− 1
− v2

s

)
T K ′R

−
[
(1 + v2

s) K̃Θ − v2
s T K̃

′
Θ

]
,

ξ2 = −2 v2
s K̃a + 2

(
d− 2

d− 1
+ v2

s

)
T K ′R +

(
1− v2

s

)
Kσ − v2

s T K
′
σ

ξ3 = −2 v2
s K̃a + 2

(
d− 2

d− 1
+ v2

s

)
T K ′R +

(
d− 5

d− 1
+ 3 v2

s

)
Kω − v2

s T K
′
ω

ξ4 =

[(
d− 3

d− 1
+ v2

s

)
K̃a + v2

s T K̃
′
a

]
− 2

(
d− 2

d− 1
+ v2

s

)
T
(
T K ′R

)′
. (E.15g)

These are the physically interesting results for the transport coefficients written in terms

of the field redefinition invariant combinations of the coefficient functions Kσ(T ), Kω(T ),

K̃a(T ), K̃Θ(T ) and KR(T ). There are several interesting relations that these hydrodynamic

data obey: for one because 15 a-priori independent data are expressed in terms of 5 functions,

we expect to see 10 relations between them (which can be obtained by eliminating the Ki).

More explicitly, we obtain the first 5 relations by substituting

KR = −1

2
κ1

Kω =
1

4

[
λ3 − T κ′1

]
K̃a = −1

2

[
λ4 + T (Tκ1)′′

] (E.16)

into the expressions for {κ2, ζ2, ζ3, ξ3, ξ4}. These 5 relations are the ones that appear in the

hydrostatic partition function analysis [29]. In addition, if we substitute

Kσ =
1

2

[
T κ′1 − τ

]
K̃Θ = −1

2

[
ζ1 +

d− 2

d− 1
T κ′1 − v2

s

(
λ4 + T (Tκ1)′′

)] (E.17)

into the expressions for {λ0, λ1, λ2, ξ1, ξ2} we get 5 additional relations which cannot be

obtained from hydrostatic analysis. Among these 5 relations into the 2 relations for {λ0 −
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ξ2, λ2} which remove the two Class B transport coefficients whereas the 3 relations for {λ0 +

ξ2, λ1, ξ1} remove the three Class D transport coefficients. Further, we can clearly see that

the two relations we highlighted for the Weyl invariant fluid in (11.26) continue to hold even

for the general neutral fluid:

τ = λ1 −
1

2
λ2 , λ1 = κ2 . (E.18)

These relations serve to project out one Class B transport coefficient and one Class D trans-

port coefficient respectively.

E.3 Entropy current for the neutral fluid

The entropy current can be easily computed by variation of the Lagrangian with respect to

the temperature. The quickest way is to use the identity (9.6) in terms of the adiabatic heat

and charge currents. Using the result obtained in (E.10) for the adiabatic heat current it

is trivial to compute the second order corrections to the entropy current. We find a simple

expression:

JµS,(2) =
(
K ′σ σ

2 +K ′ω ω
2 + K̃ ′a a

2 + K̃ ′Θ Θ2 +K ′RR
2
)
uµ . (E.19)

which of course fits with the explicit T dependence of L2.

It is instructive to examine the Noether current in Class L for this system, which encodes

the non-canonical part of the entropy current (upto Komar terms). To achieve this we need

the pre-symplectic potential which has been computed in (E.11). One then computes:

Nµ
(2) [B] =

[
βµL − (/δBΘPS)µ

]
(2)

=
Kσ

T

(
σ2 uµ − 2σµν T δ

B
uν − T

(
σαβ uµ − 2σµ(α uβ)

)
δ
B
gαβ

)
+

Kω

T

(
ω2 uµ + 2ωµν T δ

B
uν
)

+
Ka

T

[
uµ
(
a2 − 2aν T δBu

ν
)

+ T
(
uα uβ aµ − 2 a(αuβ) uµ

)
δ
B
gαβ

]
+

KΘ

T

(
Θ2uµ − 2 ΘTδ

B
uµ − T Θuµ gαβδ

B
gαβ

)
+

KR

T
Ruµ − 2 δ

B
gαβ

[
gαβ∇µ − gµβ∇α

]
KR +

[
gαβ∇µ − gµβ∇α

]
(KR δ

B
gαβ)

+
Kt

T
(∇αT ∇αT uµ − 2T ∇µT δ

B
T )

+
Ku

T

(
Θuα∇αT uµ − T Θuµδ

B
T − T uα∇αT δ

B
uµ − 1

2
T uρ∇ρT uµ gαβδBgαβ

)
+

Kx

T

(
aα∇αT uµ − T aµ δ

B
T − T uµ∇νT δBu

ν + T

(
1

2
uαuβ∇µT − uµ u(α∇β)T

)
δ
B
gαβ

)
+

Ky

T

(
(uα∇αT )2 uµ − 2T uµ uρ∇ρT δBT

)
(E.20)

Using the on-shell expressions:

δ
B
uµ ' −Θ v2

s β
µ , δ

B
uµ ' Θ v2

s βµ , δ
B
T ' −Θ v2

s ,

δ
B
gαβ =

2

T

(
σαβ + Pαβ

Θ

d− 1
−Θ v2

s uα uβ

)
(E.21)
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we can simplify the above to

Nµ
(2) [B] = −Kσ

T
σ2 uµ +

Kω

T
ω2 uµ +

Ka

T

(
a2 uµ − 2 v2

s Θ aµ
)
− KΘ

T
Θ2 uµ

+
KR

T
Ruµ − 2 δ

B
gαβ

[
gαβ∇µ − gµβ∇α

]
KR +

[
gαβ∇µ − gµβ∇α

]
(KR δ

B
gαβ)

+ T Kt

(
a2 uµ + Θ2 v4

s u
µ − 2 Θ v2

s a
µ
)

+Ku Θ2 v2
s u

µ

+ Kx

(
−a2 uµ + 2 Θ v2

s a
µ
)
− T Ky Θ2 v4

s u
µ

= −Kσ

T
σ2 uµ +

Kω

T
ω2 uµ +

K̃a

T

(
a2 uµ − 2 v2

s Θ aµ
)
− K̃Θ

T
Θ2 uµ

+
KR

T

(
Ruµ + 2∇µ

(
Θ (1 + v2

s)
)
− 2∇α

(
σαµ + Pαµ

Θ

d− 1
−Θ v2

s u
α uµ

))
− 2

(T KR)′

T

(
Θ2 v2

s u
µ −Θ aµ

(
d− 2

d− 1
+ v2

s

)
+ σµα aα

)
(E.22)

It is useful to note that the free energy current is field redefinition invariant as can be

explicitly seen from the fact that the terms combine into the combinations suggested in

(E.4).

F The hydrostatic entropy current

In §7 and §9 we constructed an entropy current starting from a basic variational principle,

which we used, for example, in deriving (E.22). As we have mentioned in the course of our

discussions, a very impressive analysis of the entropy current arising from hydrostatics was

described in [67, 68]. We revisit that argument in our language providing a simple translation

to the considerations of these papers to the current discussion.

F.1 The entropy analysis of Bhattacharyya

Consider a system in hydrostatic equilibrium as described in §7, for which we can write

down an equilibrium partition function. To understand the structure of the entropy current,

we will need to depart from hydrostatics, which we shall do in the gradient expansion, by

introducing time dependence as described in [67, 68]. A useful proxy for the time depen-

dence is the operator δ
B

, since in equilibrium δ
B
|Hydrostatics= δ

K
annihilates the background

sources. Thus introducing linear time dependence is tantamount to working at linear order

in variations captured by δ
B

.

With this understanding, let us state the various results obtained in [67] in order:

• The second law of thermodynamics implies that every equilibrium configurations is

associated with a partition function.

• The leading O(δ
B

) terms in the entropy current are determined by this partition func-

tion.

• Demanding on-shell conservation of this entropy current to linear order in δ
B

is same

as demanding that energy-momentum and charge currents be derived by varying the

associated partition function with respect to background sources. This gives all the

equality type constraints.
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• The divergence of entropy current at quadratic order in δ
B

expansion leads to inequality

type constraints.

• Terms in the entropy current at higher order in the δ
B

expansion can then be arranged

as to give a non-negative definite quadratic form for the total entropy production ∆.

They do not produce any new constraints.

The crucial step here is, of course, the construction of an entropy current from the hydrostatic

partition function. Paraphrasing our discussion in §7.2, we can describe this construction as

follows:

1. We begin with the thermodynamic formula for entropy

Total entropy =
∂

∂T

ˆ
ΣE

[βσL]Hydrostatic dd−1Sσ . (F.1)

which can then be rewritten up to boundary terms as

Total entropy =

ˆ
ΣE

[
−βλ T σλ − (Λβ + βλAλ) · Jσ + βσL

]
Hydrostatic

dd−1Sσ . (F.2)

2. Next we compute the time derivative of this entropy. Whenever the hydrostatic equality

type constraints are satisfied, the time derivative of the first two terms in (F.2) gives a

boundary term which is just the total free energy current. In particular, we can read

off the spatial component of the free energy current from this boundary term.

3. In turn, this gives an expression for the hydrostatic contribution to the entropy current

(JµS )Hydrostatic.

Instead of working in the microcanonial ensemble, we can directly move to canonical ensemble

in the first step, and focus on free energy current instead of entropy current. With this change

in ensemble, the above set of arguments is then equivalent to the algorithm we described in

§7.2.

F.2 Comparison with the charged fluid analysis of Bhattacharyya

Armed with this understanding we can compare the analysis of [68] for parity-even charged

fluids with the arguments presented in §17.3.

1. One begins by counting the total number of transport coefficients in frame invariant

language. This gives 16 Scalars + 17 Vectors + 18 Tensors = 51 a-priori different

transport coefficients.

2. Class A: Remove Class A using the particular combination from anomaly-induced

transport theory. In this example, there is nothing to remove, which gives A = 0.

3. Classes {HS ,HV ,HF } (or the 3-fold fate of non-anomaly induced hydrostatic transport

coefficients): Focus on the remaining terms that survive hydrostatics; these amount

to 9 Scalars+ 6 vectors + 9 Tensors = 24 a-priori hydrostatic transport coefficients.

Thus, we are leaving out 7 Scalars + 11 vectors + 9 Tensors = 27 transport coefficients

that do not survive hydrostatic limit. By looking at the partition function we see that,
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of these 24, 7 come from HS terms. This gives HS = 7,HV = 0 as obtained in [68].

Thus we have HF = 24− (7 + 0) = 17.

The first half of [68] (and Appendix A therein) is devoted to showing that one can

complete these to 7 solutions of adiabaticity equation. This involves constructing the

entropy current etc.. By this point, we understand how to do this very well covariantly,

so we can just skip ahead and construct a covariant entropy current as outlined in the

main text. Henceforth, we have to only worry about the 27 non-hydrostatic terms.

4. Class B: Next we examine 1
2T

µνδ
B
gµν+Jµ ·δ

B
Aµ for these non-hydrostatic terms. This

is contained in Eqs. (5.6) and (5.7) and Appendix B of [68]. Before we proceed, let

us note that the last two terms of (5.7)
[68]

with T8 and T9 respectively are identically

zero – the tensor term summation should stop with T7. With this small amendment

we have

2 Scalars + 3 Vectors + 2 Tensors = 7 terms in Eq. (5.6)
[68]

5 Scalars + 0 vectors + 4 tensors = 9 terms in Eq. (5.7)
[68]

Comparing this against the total count of 7 Scalars + 11 Vectors + 9 Tensors for non-

hydrostatic terms, we conclude that 0 Scalars + 8 Vectors + 3 Tensors = 11 terms go

away at this step. This gives us 11 terms in Class B in agreement with our counting.

We remove these and thence focus on the 16 terms that are left.

5. Class HS : At this point, [68] argues that 5 out of the 16 terms that survived this far, can

be absorbed as total derivatives into the entropy current. We know independently that

this is the correct counting based on HS = 5, following from the procedure described

below equation (17.7). At this point we are left with 11 terms.

6. Class D: All of the 11 terms are now dissipative. Moreover, their contribution to ∆

can be explicitly assembled schematically into the combinations

T ∆ =2 η (σ + δ2
B
O1)2 + ζ (Θ + δ2

B
O2)2 + σ

Ohm
(v + δ2

B
O3)2 +O(∂4) (F.3)

for some operators Oi, which can be obtained from the explicit construction in [68] if

necessary. We see that this works directly by using the differential operators at our

disposal.

This completes then a cross-check of our results with the analysis of [68].

G Bianchi identities for anomalous hydrodynamics

In this appendix we derive Bianchi identities and on-shell constraints for anomalous hydro-

dynamics. This fills in the details and complements the discussion in §15.

G.1 Bianchi identities from anomalous part of effective action

Our goal here is to evaluate Eq. (15.22) which we reproduce for convenience:

δVP

[
A,Γ, Â, Γ̂

]
= δA ∧ ·?2n+1JH − δÂ ∧ ·?2n+1 ĴH

+
1

2
δΓab ∧ ?2n+1ΣH

b
a −

1

2
δΓ̂ab ∧ ?2n+1Σ̂H

b
a

+ d
{
δA ∧ · ? JP +

1

2
δΓαβ ∧ ?ΣP

β
α + δu ∧ ?qP

}
,

(G.1)
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In order to further evaluate this expression, we need variations of various objects. We begin

by first using the relations derived in Appendix D.3. In particular substituting (D.10) and

(D.12) into (15.22) we find that the variation of the transgression form takes the following

form:

δ

ˆ
Md+1

VP [A,Γ; Â, Γ̂]

=

 
M

[(
JmH − Pmn ĴnH

)
· δAm +

1

2

(
ΣH

ms
r −Pqsm

prn Σ̂H
np
q

)
δΓrsm

]
−
 
M

[(
µ · ĴqH +

1

2
Ωr

sΣ̂H
qs
r

)
P (m
q un) − 1

4
T uq Σ̂H

qs
r (δms D

rβn − grmDnβs)

]
δgmn

−
 
M

(
µ · ĴqH +

1

2
Ωr

sΣ̂H
qs
r

)
(Pqm + uq um)T δβm

−
 
M

T um

[
ĴmH · (δΛβ +Anδβ

n) +
1

2
Qqs
pr Σ̂H

mp
qDsδβ

r

]
+

ˆ
M

√
−g
[
JαP · δAα +

1

2
ΣP

ασ
ρ δΓ

ρ
σα + q(α

P u
β)δgαβ + (qP )σ Tδβ

σ

]
(G.2)

where we have introduced a new projector Pρµν
σκλ = δρκ δ

µ
σ δνλ+Qρµ

σκ uνuλ to keep the expression

compact.

The variational formula needs to be massaged further to bring it into an amenable form

from which we can read off the bulk and boundary currents. For one the variation of the

Christoffel symbols need to be converted to metric variations. For another the bulk term

involving Dsδβ
r should be integrated by parts and will thus contribute some boundary

terms. Both of these features arise from the gravitational contribution. Indeed setting the

spin connection terms to zero we see that (G.2) reduces to (15.14).

Firstly, the variation of the Christoffel symbols can be converted into a variation of the

metric by observing the identity

ˆ
M

√
−g 1

2
ΣP

ασ
ρ δΓ

ρ
σα =

ˆ
M

√
−g 1

2
Dρ

[
Σ
α[βρ]
P + Σ

β[αρ]
P − Σ

ρ(αβ)
P

] 1

2
δgαβ , (G.3)

We use this expression on the boundaryM to simplify the term in the last line of (G.2). In

the intermediate step we have discarded a total derivative term using the fact that ∂M =

0. For the bulk term however we have to do a bit more work since now the boundary

contributions from total derivative terms cannot be ignored. These can however be accounted

for by recalling that our coordinatization of the bulk spacetime Md+1 was such that the

normal direction to M was denoted as ⊥. Putting this together we find from the bulk term
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involving the Christoffel symbol variation

 
M

1

2

(
ΣH

ms
r −Pqsm

prn Σ̂H
np
q

)
δΓrsm

=

 
M

{
1

2
Dk

[
Σ
m[nk]
H + Σ

n[mk]
H − Σ

k(mn)
H

] 1

2
δgmn

− 1

2
Dk

[(
Pq[nm
prs gk]r + Pq[mn

prs gk]r −Pq(mk
prs gn)r

)
gql Σ̂spl

H

] 1

2
δgmn

}
−
ˆ
M

√
−g 1

2

(
P
η(α⊥
ργλ gβ)γgηκΣ̂λρκ

H

) 1

2
δgαβ

=

 
M

1

2
Dp

[(
Σ
m[np]
H + Σ

n[mp]
H − Σ

p(mn)
H

)
−
(
Pmq Σ̂

q[np]
H + Pnq Σ̂

q[mp]
H − Σ̂

p(mn)
H

)] 1

2
δgmn

−
ˆ
d

√
−g 1

2
Σ̂
⊥(µν)
H

1

2
δgµν , (G.4)

where extrinsic boundary terms of the form Σα⊥β
H + Σβ⊥α

H have been set to zero and in the

second step we used the following identities to implement some simplifications:

Pq[nm
prs gk]rgql = δ[n

p δ
k]
l δ

m
s +

1

2

(
δ[n
p δ

k]
l − δ

[n
l δ

k]
p

)
umus = δ[n

p δ
k]
l P

m
s ,

Pq(mk
prs gn)rgql = δ(m

p δ
n)
l δ

l
sk +

1

2

(
δ(m
p δ

n)
l − δ

(m
l δn)

p

)
uk us = δ(m

p δ
n)
l δ

k
s .

(G.5)

Finally, performing an integration by parts also in the third line of Eq. (G.2), we obtain

the final simplified variational formula of interest

δ

ˆ
Md+1

VP [A,Γ; Â, Γ̂]

=

 
M

(
Jm

(d+1)
· δAm +

1

2
δgmn T

mn
(d+1)

+ T h(d+1)
m δβm + T n

(d+1)
· (δΛβ +Aaδβ

a)

)
+

ˆ
M

√
−g

(
(Jα)A · δAα +

1

2
δgαβ (Tαβ)A + (qP )σ Tδβ

σ

) (G.6)

where the bulk currents now take the form

Tmn
(d+1)

=
1

2
T up Σ̂H

ps
r (δms D

rβn − grmDnβs)−
(
µ · ĴpH +

1

2
Ωr

sΣ̂H
ps
r

)(
Pmp u

n + Pnp u
m
)

+
1

2
Dp

[(
Σ
m[np]
H + Σ

n[mp]
H − Σ

p(mn)
H

)
−
(
Pmq Σ̂

q[np]
H + Pnq Σ̂

q[mp]
H − Σ̂

p(mn)
H

])
Jm

(d+1)
= JmH − Pmn ĴnH

h(d+1)
m = −

(
µ · ĴpH +

1

2
Ωr

s Σ̂H
ps
r

)
(Ppm + up um) +

1

2T
Ds

(
TurQ

qs
pm Σ̂H

rp
q

)
n

(d+1)
= −um ĴmH (G.7)

and boundary currents turn out to be

(Tαβ)A = qαPu
β + qβPu

α +
1

2
Dρ

(
Σ
α[βρ]
P + Σ

β[αρ]
P − Σ

ρ(αβ)
P

)
− 1

2
Σ̂
⊥(αβ)
H ,

(Jα)A = JαP .
(G.8)
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We have written this expression, allowing a-priori for a contribution to the stress tensor

involving the shadow Hall current 1
2 Σ̂
⊥(αβ)
H . In the main text, (15.28), the stress tensor is

quoted without this term. This is due to the fact that Σ̂
⊥(αβ)
H = 0 always holds for our

choice of spin chemical potential. To prove this, observe that the connection Γ̂µν is metric

compatible due to our spin chemical potential being anti-symmetric:

∇̂σgµν = −uσ(Ωµν + Ωνµ) = 0 . (G.9)

From metric compatibility it follows immediately that the associated curvature tensor R̂ν
µ

is anti-symmetric. From the definition (15.23) one can see that (Σ̂H)µν inherits this anti-

symmetry. In what follows we will therefore often set

Σ̂
⊥(αβ)
H = 0 . (G.10)

Equation (G.6) is our master equation for the Lagrangian variation. Our main interest

is not in a generic variation, but rather in the variations engendered by diffeomorphisms and

gauge transformations of the fields on Md+1, which is what is needed to derive the Bianchi

identities. Using the general formula (9.8) for the bulk integral, we find for the particular

case where δ = δ
X

is a gauge transformation and diffeomorphism:114

δ
X

ˆ
Md+1

VP [A,ΓÂ, Γ̂]

=

 
M

ξm

{
−Dn

(
Tmn

(d+1)

)
+ Fmn ·

(
JnH − Pnp ĴpH

)
+ gmn T n

(d+1)
· δ

B
An +

gmn
√−gd+1

δ
B

[√
−gd+1 T h(d+1)

m

]}

−
 
M

(Λ + ξnAn) ·

{
Dm

(
Jm

(d+1)

)
− 1
√−gd+1

δ
B

[√
−gd+1 T n

(d+1)

]}

+

ˆ
M

√
−g ξα

(
1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα

)

+

ˆ
M

√
−g (Λ + ξαAα) ·

(
J⊥H − Ĵ⊥H

)
+

ˆ
M

√
−g

(
(Jα)A · δXAα + (Tαβ)A

1

2
δ
X
gαβ + (qP )σ TδXβ

σ

)

(G.11)

In writing the above expression we have done some integration by parts mostly to remove

the derivatives of the diffeomorphism field ξm.

We can now directly read off the Bianchi identities for the bulk theory: these are simply

given by the first two lines of (G.11). They satisfy the expected form of the equations

(9.12) as derived earlier from general considerations. Indeed in so far as the bulk theory is

concerned, we have a gapped topological system which obeys bulk diffeomorphism and gauge

invariance and so we should have a-priori expected to see this work out as stated. Note that

upon setting the spin currents to zero we recover the flavour Bianachi identities as indicated

in §15.1.

114 As in all of our discussion of anomalies, the fields X = {ξm,Λ} are taken to live on Md+1.
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Once the bulk Bianchi identities are satisfied for arbitrary bulk X we see that the vari-

ation of the anomalous Lagrangian is purely a boundary term. This has both the physics of

the hydrodynamic system of interest as well as the anomaly inflow term that enable us to

write down the expressions for the covariant currents. We have one final manipulation to do

to bring this into a canonical form. Expressing the variations δ
X
gαβ and δ

X
Aα in terms of

the gauge transformation fields X and performing yet another integration by parts we finally

convert (G.11) into

δ
X

ˆ
Md+1

VP [A,Γ; Â, Γ̂]

=

ˆ
M

√
−g ξα

(
1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα

−Dβ(Tαβ)A + (Jβ)A · Fαβ +
gασ√
−g

δ
B

[√
−g T (qP )σ

])

+

ˆ
M

√
−g (Λ + ξαAα) ·

(
−Dα(Jα)A + J⊥H − Ĵ⊥H

)
(G.12)

We are now in a position to read off the boundary Bianchi identities which are obeyed

by our anomalous fluid. We find that these take the form (picking out coefficients of the

arbitrary ξα and (λ+ ξαAα) from the above expression)

Dβ(Tαβ)A = (Jβ)A · Fαβ +
gασ√
−g

δ
B

[√
−g T (qP )σ

]
+

1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα ,

(G.13)

and

Dα(Jα)A = J⊥H − Ĵ⊥H . (G.14)

The terms on the r.h.s. of the expressions of (G.13) and (G.14) with the one ⊥ component

of the Hall currents are due to bulk inflow.

G.2 On-shell constraints from the full Lagrangian

For reference, we quote both the bulk and the boundary on-shell constraints that are obtained

in §15.4 by extremizing the full effective Lagrangian Leff [Ψ] = dLn-a [Ψ] + VP [A,Γ, Â, Γ̂]

with respect to the pullback fields. For the bulk theory, this yields the following on-shell

constraints:

gmn T n
(d+1)

· δ
B
An +

gmn
√−gd+1

δ
B

[√
−gd+1 h(d+1)

m

]
' 0 ,

1
√−gd+1

δ
B

[√
−gd+1 T n

(d+1)

]
' 0 . (G.15)

The boundary on-shell constraints, on the other hand, are given by

gµν√
−g

δ
B

(√
−g T [(hν)n-a + (qP )ν ]

)
+ gµν T nn-a · δBAν ' 0 ,

1√
−g

δ
B

(√
−g T nn-a

)
' 0 . (G.16)
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Combining these on-shell constraints with the anomalous Bianchi identities we obtain

the equations of motion. In the bulk, we find from (G.11),

Dn

(
Tmn

(d+1)

)
= Fmn ·

(
JnH − Pnp ĴpH

)
, Dm

(
Jm

(d+1)

)
= 0 . (G.17)

Similarly, in the boundary theory, we obtain

Dβ

(
Tαβn-a + (Tαβ)A

)
' (Jσn-a + (Jσ)A) · Fασ +

1

2
Dγ

(
Σ
⊥[αγ]
H − Σ̂

⊥[αγ]
H

)
−
(
µ · Ĵ⊥H +

1

2
Ων

µΣ̂H
⊥µ

ν

)
uα ,

Dσ(Jσn-a + (Jσ)A) ' J⊥H − Ĵ⊥H . (G.18)

We note that we could have arrived at these results on a slightly easier path. As discussed

in general in §10.4, equations of motion are easier to obtain on the reference manifold where

the relevant part of the constrained variation is already built in. Concretely, we could have

started from (G.6) written on the reference manifold M by replacing all currents by boldface

currents and changing indices from Greek to Latin. Then directly performing the variation

(10.20) would give

− �
ˆ
Md+1

VP [AP ,�
P
MN ; ÂP , �̂

P
MN ]

=

 
Md+1

(
JM

(d+1)
· �AM +

1

2
�gMN T

MN

(d+1)

)
+

ˆ
M

√
−g

(
(Ja)A · �Aa +

1

2
δgab (Tab)A

)
=

 
Md+1

δϕM

[
−DN

(
TMN

(d+1)
+FM

N ·
(
JNH − PN

P Ĵ
P
H

))]
−
 
Md+1

(
−c−1δc+AMδϕ

M
)
·DM

(
JM

(d+1)

)
+

ˆ
M

√
−g δϕa

[
1

2
Dc

(
�⊥[ac]
H − �̂⊥[ac]

H

)
−
(
� · Ĵ⊥H +

1

2

bc �̂H

⊥c
b

)
ua
]

+

ˆ
M

√
−g

(
−c−1δc+Abδϕ

c
)
·
(
J⊥H − Ĵ⊥H

)
+

ˆ
M

√
−g

[
δϕa

(
−Db(T

ab)A + (Jb)A ·Fab
)
−
(
−c−1δc+Ab δϕ

c
)
Da(J

a)A

]
.

(G.19)

From this we can immediately read off the anomalous part of the equations of motion (G.17)

and (G.18). While working on the reference manifold is thus manifestly easier, we still gain

computational insight from doing the full analysis from a point of view of physical M.

G.3 Bianchi identities of anomalous Schwinger-Keldysh action

We will now give some details of the derivation of anomalous Schwinger-Keldysh currents as

outlined in §16.4. Since we double also the sources, we want to avoid complications that arise

from an analysis on two different manifolds and work instead on the unambiguously defined

reference manifold as described in §16. For simplicity we can work in the hydrodynamic

limit from the beginning, i.e., we only keep track of terms linear in difference fields. Let us

start by computing the variation of the influence functional adapting the results form [8].
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We have

δSIF =

ˆ
Md+1

{
δÂ[	R] ∧ ?2n+1 ĴH [	R]− δÂ[	L] ∧ ?2n+1 ĴH [	L]

+ δΓ̂[	R]MN ∧ ?2n+1Σ̂H [	R]NM − δΓ̂[	L]MN ∧ ?2n+1Σ̂H [	L]NM

}

+

ˆ
M

{
Boundary terms [	R,	L] ≈ O

(
(	R − 	L)2

)}
.

(G.20)

Isolating the variations of difference fields makes the linearization in difference fields

manifest and we can for ease of notation immediately take the hydrodynamic limit of all the

remaining quantities involved. Using the variation rules (D.10), (D.12) and integration by

parts, the variation of the influence functional SIF , (G.20), with respect to the difference

fields takes the form115

δSIF

∣∣∣∣
hydro

=

 
Md+1

(
(TMN

(d+1)
)IF

1

2
δḡMN + (JM

(d+1)
)IF · δĀM

)
, (G.21)

where hydro denotes the limit where all the expressions that are not variations of difference

fields are evaluated at ϕaR(x) = ϕaL(x) ≡ ϕa(x) and cR(x) = cL(x) ≡ c(x) and we find the

following bulk currents generated by the influence functional:

(TMN

(d+1)
)IF = 2

(
� · ĴPH +

1

2

T S �̂H

PS
T

)
P

(M
P uN) +

1

2
DP

(
PM
Q �̂Q[NP ]

H + PN
Q �̂Q[MP ]

H − �̂P(MN)
H

)
− 1

2
TuQ �̂H

QS
T (δMS D

T�N − gTMDN�S)(
JM

(d+1)

)
IF

= PM
N Ĵ

N
H (G.22)

We now consider the variation of the left and right anomalous terms in Stot. These

are completely analogous to our earlier discussion in §15.3 except that we have two sets of

contributions to keep track of. Sticking to the hydrodynamic limit, we find that one copy

each of the R and L anomalous variation (G.6) combine in the hydrodynamic limit to give116

δ

(ˆ
Md+1

VP [	R]− VP [	L]

)∣∣∣∣
hydro

=

 
Md+1

(
TMN

(d+1)
δḡMN + JM

(d+1)
δĀM

)
+

ˆ
M

√
−ğ

(
(Tab)A

1

2
δḡab + (Ja)A · δĀa

)
.

(G.23)

The currents showing up in the above equation are the ones we have already recorded in (G.7)

and (15.28) (just on the reference manifold). As expected, to linear order in the variations as

115 We adhere to our conventions stated earlier: boundary reference manifold indices are from the earlier

part of the lowercase Latin alphabet, while the bulk reference manifold is denoted as Md+1 and indexed by

letters from the second half of the uppercase Latin alphabet.
116 The currents written in (G.23) strictly speaking live on the reference manifold. However, we have

refrained from introducing further notation to distinguish them from their physical counterparts; they are

distinguish by their indices which indicate their origins. They are of course pushed-forward along the diffeo-

morphism and gauge transformation fields like any other tensor field defined on M.
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required for the hydrodynamic limit the contributions simply combine to give the common

current times the difference of the R and L sources.

We can now put everything together to find the bulk and boundary Bianchi identities

and the dynamical equations of motion. Firstly, combining Eqs. (G.21) and (G.23), we

obtain for the variation of the entire anomaly part of the action

δSanom

∣∣∣∣
hydro

≡ δ

(
SIF +

ˆ
Md+1

(VP [	R]− VP [	L])

)∣∣∣∣
hydro

=

 
Md+1

[
1

2
DP

(
�M[NP ]
H + �N[MP ]

H − �P(MN)
H

) 1

2
δḡMN + JMH · δĀM

]
+

ˆ
M

√
−ğ

{[
1

2
Dc

(
�a[bc]
P + �b[ac]P − �c(ab)P

)
+ 2q

(a
Pu

b)

]
1

2
δḡab + JaP · δĀa

}
.

(G.24)

From this one can readily compute the equations of motion (see §16.4).

H Class LT details

This appendix collects some intermediate steps of the computations relevant for the Class

LT discussions of §18. In §H.1 we check that our diffeomorphism, flavour gauge, and U(1)T
transformations form an algebra. §H.2 fills in some intermediate steps involved in the deriva-

tion of the U(1)T Bianchi identity.

H.1 Consistency of U(1)T transformations

We would like to check that the diffeomorphism, flavour gauge and U(1)T transformations

given in (18.3), (18.4) and (18.5) form a Lie algebra. In particular, we would like to ensure

that the Wess-Zumino consistency conditions are satisfied. This in particular requires that

the commutator of two transformations parameterized by X1 = {ξ̄µ1 , Λ̄1, Λ̄
(T)

1} and X2 =

{ξ̄µ2 , Λ̄2, Λ̄
(T)

2}, is itself given by a diffeomorphism, flavour and U(1)T transformation with

parameters X3 = {ξ̄µ3 , Λ̄3, Λ̄
(T)

3}. Note that we work directly with in the untwisted formalism;

the conclusions will of course be unchanged should we switch to the twisted transformation

variables parameterizing individual elements of the Class LT symmetries.

We will proceed systematically analyzing the commutator of two successive transforma-

tions. A-priori the transformation of the basic hydrodynamic fields Ψ will fix the dependence

of {ξ̄µ3 , Λ̄3} on X1 and X2. However, since the U(1)T transformation mixes with diffeomor-

phisms, it also follows that the parameter Λ̄(T)
3 is already constrained. Consistency of our

transformations requires that the partner sources and A(T) transform by the now determined

values of X3. Ensuring that this is upheld will form the main check of the analysis below.

Let us start with the transformation for the background metric gµν . From (18.3) we find

[δX1 , δX2 ]gµν = [£ξ̄1
,£ξ̄2

]gµν ≡ £ξ̄3
gµν (H.1)

with

ξ̄σ3 = [ξ̄1, ξ̄2]σ

ξσ3 = [ξ1, ξ2]σ +
(
λ(T)

2 £ξ1 β
σ − λ(T)

1 £ξ2 β
σ
)

+ xβσ

λ(T)

3 = £ξ1λ
(T)

2 −£ξ2λ
(T)

1 + λ(T)

1 £βλ
(T)

2 − λ
(T)

2 £βλ
(T)

1 − x ,
(H.2)
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where we define

λ(T)

k ≡ Λ̄(T)
k + ξ̄σk A(T)

σ = Λ(T)
k + ξσk A(T)

σ (H.3)

to keep the expressions compact. Further, x is an arbitrary scalar parameterizing a family

of relations that are all consistent with ξ̄σ3 = ξσ3 + λ(T)

3 βσ. The value of x will have to be

determined later on to ensure consistency of the formalism.

The parameter ξ̄3 encodes the effective diffeomorphism in the untwisted variables. Once

we have ascertained this it is clear that the β transformation in (18.3) is consistent with

(H.2) since βµ itself is Lie transported along X.

Let us then turn to the flavour gauge transformations, taking the commutator of the

gauge transformations we have using (H.2)

[δX1 , δX2 ]Aµ = £ξ̄1

(
£ξ̄2

Aµ + [Aµ, Λ̄2] + ∂µΛ̄2

)
+ [£ξ̄2

Aµ + [Aµ, Λ̄2] + ∂µΛ̄2 , Λ̄1] (H.4)

−£ξ̄2

(
£ξ̄1

Aµ + [Aµ, Λ̄1] + ∂µΛ̄1

)
− [£ξ̄1

Aµ + [Aµ, Λ̄1] + ∂µΛ̄1 , Λ̄2] (H.5)

= £ξ̄3
Aµ + £ξ̄1

DµΛ̄2 −£ξ̄2
DµΛ̄1 + [Aµ, [Λ̄2, Λ̄1]]

+ [£ξ̄2
Aµ + ∂µΛ̄2, Λ̄1]− [£ξ̄1

Aµ + ∂µΛ̄1, Λ̄2]

= £ξ̄3
Aµ +DµΛ̄3 (H.6)

where we defined Λ̄3 ≡ Λ3 + λ(T)

3 Λβ with

Λ̄3 = £ξ̄1
Λ̄2 −£ξ̄2

Λ̄1 − [Λ̄1, Λ̄2] , (H.7)

Λ3 = λ(T)

2 (£ξ1Λβ + [Λβ,Λ1])− λ(T)

1 (£ξ2Λβ + [Λβ,Λ2]) (H.8)

+ £ξ̄1
Λ2 −£ξ̄2

Λ1 − [Λ1,Λ2]− λ(T)

1 λ
(T)

2 [Λβ,Λβ] + xΛβ , (H.9)

Having ensured that the flavour gauge field transformation works, it is clear that the trans-

formation of Λβ will also follow along similar lines.

We can now fix the free parameter x by demanding consistency of the U(1)T gauge field

transformation. To wit, A(T)
µ transforms like an abelian gauge field, so it works in a way

similar to the flavour field Aµ:

[δX1 , δX2 ]A(T)
µ = £ξ̄3

A(T)
µ + £ξ̄1

∂µΛ̄(T)
2 −£ξ̄2

∂µΛ̄(T)
1

= £ξ̄3
A(T)

µ + ∂µΛ̄(T)
3 (H.10)

with transformation parameters

Λ̄(T)
3 = £ξ̄1

Λ̄(T)
2 −£ξ̄2

Λ̄(T)
1 ,

Λ(T)
3 = λ(T)

2 £ξ1Λ(T)

β − λ
(T)

1 £ξ2Λ(T)

β + £ξ̄1
Λ(T)

2 −£ξ̄2
Λ(T)

1 − x (βνA(T)
ν) ,

(H.11)

such that consistently Λ̄(T)
3 = Λ(T)

3 − λ(T)

3 (βνA(T)
ν). From demanding the relation (H.3) to

hold, we can fix the parameter x. Indeed, using the definitions (H.2) and (H.11), the relation

λ(T)

3 = Λ̄(T)
3 + ξ̄σ3 A(T)

σ only holds if

x = ξ̄µ1 ξ̄
ν
2 F(T)

µν . (H.12)

Let us now consider the sources {g̃µν , Ãµ}. For the partner metric source g̃µν we find:

[δX1 , δX2 ]g̃µν = £ξ̄1

(
£ξ̄2

g̃µν + Λ̄(T)
2 δBgµν

)
+ Λ̄(T)

1 δX2(δ
B
gµν)

−£ξ̄2

(
£ξ̄1

g̃µν + Λ̄(T)
1 δBgµν

)
− Λ̄(T)

2 δX1(δ
B
gµν)

= £ξ̄3
g̃µν + Λ̄(T)

3 δBgµν

(H.13)
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where we used

δX1(δ
B
gµν) = δ(δX1

B) gµν + δ
B

(δX1gµν) = £[ξ̄1,β]gµν + £β(£ξ̄1
gµν) = £ξ̄1

(δ
B
gµν) (H.14)

and similarly for δX2(δ
B
gµν). Note that the successive application of transformations in

(H.13) introduces an inhomogeneous term (the last terms in the first and second line) which

must be evaluated on the new configuration of fields and sources.

The commutator of two transformations of Ãµ works in a similar fashion:

[δX1 , δX2 ]Ãµ = £ξ̄1

(
£ξ̄2

Ãµ + ∂µΛ̄2 + [Aµ, Λ̄2] + Λ̄(T)
2 δBAµ

)
+
[
£ξ̄2

Ãµ + ∂µΛ̄2 + [Aµ, Λ̄2] + Λ̄(T)
2 δBAµ , Λ̄1

]
+ Λ̄(T)

1 δX2(δ
B
Aµ)

−£ξ̄2

(
£ξ̄1

Ãµ + ∂µΛ̄1 + [Aµ, Λ̄1] + Λ̄(T)
1 δBAµ

)
−
[
£ξ̄1

Ãµ + ∂µΛ̄1 + [Aµ, Λ̄1] + Λ̄(T)
1 δBAµ , Λ̄2

]
− Λ̄(T)

2 δX1(δ
B
Aµ)

= £ξ̄3
Ãµ +DµΛ̄3 + Λ̄(T)

3 δBAµ ,

(H.15)

using δX1(δ
B
Aµ) = £ξ̄1

(δ
B
Aµ) + [δ

B
Aµ, Λ̄1] and similarly for δX2(δ

B
Aµ).

To summarize, the above computations show that the Class LT transformation rules

(18.3), (18.4) and (18.5) form a Lie algebra where the commutator of two transformations

X1 = {ξ̄µ1 , Λ̄1, Λ̄
(T)

1} and X2 = {ξ̄µ2 , Λ̄2, Λ̄
(T)

2} is another diffeomorphism/gauge/U(1)T trans-

formation with parameters

ξ̄σ3 = [ξ̄1, ξ̄2]σ , Λ̄3 = £ξ̄1
Λ̄2 −£ξ̄2

Λ̄1 − [Λ̄1, Λ̄2] , Λ̄(T)
3 = £ξ̄1

Λ̄(T)
2 −£ξ̄2

Λ̄(T)
1 .

(H.16)

H.2 Deriving Class LT Bianchi identities

We now outline some of the computations relevant to obtain Bianchi identities Eqs. (18.15)-

(18.19) from the master Lagrangian LT [ΨT]. The steps are straightforward, but rendered

somewhat complex by the sheer number of fields in ΨT. We start with the computation of

a full diffeomorphism, flavour, and U(1)T transformation on LT using the untwisted trans-
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formation parameters introduced in §18.2:

1√
−g

δ
X

(√
−g LT

)
−∇µ(/δXΘ

T

PS
)µ

=
1

2
TµνL δ

X
gµν + JµL · δXAµ + T hσ δXβ

σ + T n · (δ
X

Λβ +Aσ δXβ
σ)

+
1

2
TµνLc δ

X
g̃µν + JµLc · δXÃµ + JσT δ

X
A(T)

σ + T nT

(
δ
X

Λ(T)

β + A(T)
σ δXβ

σ
)

= ξ̄σ

{
−Dµ(TL+Lc)

µ
σ + JνL+Lc · Fσν + JνT F(T)

σν

+
1√
−g

δ
B

(√
−g T hσ

)
+ T n · δ

B
Aσ + T nT · δBA(T)

σ + Dν

(
g′σµ T

µν
Lc

)
− 1

2
TµνLc Dσg

′
µν − JνLc · F ′σν − A(T)

σ

(
1

2
TµνLc δBgµν + JµLc · δBAµ

)}

−
(
Λ̄ + ξ̄ν Aν

)
·

{
DµJ

µ
L+Lc −

1√
−g

δ
B

(√
−g T n

)}

+
(
Λ̄ + ξ̄ν A′ν

)
·
[
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

]
− (Λ̄(T) + ξ̄σA(T)

σ)

{
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

)}

+ Dµ

(
ξ̄ν T

µν
L+Lc +

(
Λ̄ + ξ̄νAν

)
· JµL+Lc + (Λ̄(T) + ξ̄νA(T)

ν)JµT

− βµ
{
T hσ ξ̄

σ + T n ·
(
Λ̄ + ξ̄νAν

)
+ T nT (Λ̄(T) + ξ̄νA(T)

ν)
}

− ξ̄ν g′αρ gρµ TανLc −
(
Λ̄ + ξ̄νA′ν

)
· JµLc

)
. (H.17)

In deriving this we have used the transformation rules given in Eqs. (18.3), (18.4) and (18.5)

and integrated terms by parts where necessary. Furthermore, we used δ
B

A(T)
µ = βνF(T)

νµ.

From this one can read off the diffeomorphism and flavour Bianchi identities:

• The diffeomorphism identity (18.15) can be read off as the coefficient of ξ̄σ. This is

clear since switching off Λ(T) implies that ξ̄σ → ξσ and indeed the coefficient of the

latter is the desired term. The answer then if the set of terms in the curly braces of the

first three lines and in addition, the contribution from the fifth line. This is because

we have an isolated ξ̄σ Ãσ term, which is not the flavour invariant combination and

should be accounted for in the diffeomorphism transformations.117

• The flavour Bianchi identity (18.16) is given by the coefficient of (Λ̄+ ξ̄νAν). This gets

contributions from the fourth and fifth lines respectively.

117 This term and contributions involving g̃µν or g′µν as we have written owe their origin to the tensorial

properties of {g̃µν , Ãµ} which matters when we perform diffeomorphisms.
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We can read off another interesting identity from the coefficient of (Λ̄(T) + ξ̄σA(T)
σ) in

(H.17):

DµJ
µ
T =

1

2
TµνLc δBgµν + JµLc · δBAµ +

1√
−g

δ
B

(√
−g T nT

)
(H.18)

This is just the grand canonical adiabaticity equation for {TµνLc , J
µ
Lc}, where the free energy

current is identified with JµT −T nT β
µ. One might at this point think that we are done with

deriving the three Bianchi identities following from the diffeomorphism, flavour, and U(1)T
transformations. However, owing to the twisted character of the U(1)T symmetry, (H.18) is

not the actual U(1)T Bianchi identity, but rather a combination of it with the other Bianchi

identities. To extract the actual U(1)T Bianchi identity, we need to shift back to the original

transformation parameters {ξµ,Λ,Λ(T)}. We now turn to this exercise.

As mentioned in the discussion above, upon shifting to the original transformation pa-

rameters {ξµ,Λ,Λ(T)} the diffeomorphism and flavour Bianchi identities do not change. How-

ever, to get the actual U(1)T Bianchi identity, we have to do this shift and then read off the

coefficient of (Λ(T) + ξσA(T)
σ). To do this, it is convenient to define the U(1)T Noether current

as in (18.18).

We can then use this expression to simplify (H.17). Let us temporarily group together

the terms in the r.h.s. of this expression into the total derivative and non-derivative terms

1√
−g

δ
X

(√
−g LT

)
−∇µ(/δXΘ

T

PS
)µ ≡ O

[
ξ̄µ, Λ̄,Λ(T)

β

]
+Dµ

(
Tµ
[
ξ̄µ, Λ̄,Λ(T)

β

])
(H.19)

We can now use (18.18) to simplify the two contributions separately. Firstly we have A

straightforward substitution leads to a simplification of Tµ
[
ξ̄µ, Λ̄,Λ(T)

β

]
to

Tµ [ξµ,Λ,Λβ] = ξν T
µν
L+Lc + (Λ + ξνAν) · JµL+Lc + (Λ(T) + ξνA(T)

ν) Nµ
T

− βµ
{
T hσ ξ

σ + T n · (Λ + ξνAν)
}
− ξν g′αρ gρµ TανLc −

(
Λ + ξνA′ν

)
· JµLc

(H.20)

Further, we can simplify the non-total derivative pieces combined into O by using the

easily verified identity

O
[
β,Λ,Λ(T)

β

]
= −Dµ

(
Nµ

T + (Λ(T)

β + βσA(T)
σ − 1)(JµT − T nTβ

µ)
)

+
1

2
TµνL+Lc δBgµν + JµL+Lc · δBAµ +

1

2
TµνLc δB g̃µν + JµLc · δBÃµ + JµT δBA(T)

µ

+ (Λ(T)

β + βσA(T)
σ)

(
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

))
,

(H.21)

upon defining the Noether current

Nµ
T ≡ −

GµT
T
≡ JµT + βνT

µν
L+Lc + (Λβ + βνAν) · JµL+Lc −

{
hσ β

σ + n · (Λβ + βνAν) + nT

}
uµ

− βν g′αβ gµα T
βν
Lc − (Λβ + βν A′ν) · JµLc . (H.22)
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Plugging this into the full variation (18.17) we find

1√
−g

δ
X
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−g LT

)
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T
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µ
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+
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(√
−g T hσ

)
+ T n · δ

B
Aσ + T nT · δBA(T)

σ + Dν
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g′σµ T

µν
Lc

)
− 1

2
TµνLc Dσg

′
µν − JνLc · F ′σν − A(T)

σ

(
1

2
TµνLc δBgµν + JµLc · δBAµ

)}

− (Λ + ξν Aν) ·

{
DµJ

µ
L+Lc −

1√
−g

δ
B

(√
−g T n

)}

+
(
Λ + ξν A′ν

)
·
[
DµJ

µ
Lc − [Ãµ, J

µ
Lc ]

]
+ (Λ(T) + ξσA(T)

σ)

{
−Dµ

(
Nµ

T + (Λ(T)

β + βσA(T)
σ − 1)(JµT − T nTβ

µ)
)

+
1

2
TµνL+LcδBgµν + JµL+Lc · δBAµ +

1

2
TµνLc δB g̃µν + JµLc · δBÃµ + JµT δBA(T)

µ

+ (Λ(T)

β + βσA(T)
σ)

(
DµJ

µ
T −

1

2
TµνLc δBgµν − J

µ
Lc · δBAµ −

1√
−g

δ
B

(√
−g T nT

))}

+ Dµ

(
Tµ
[
ξ,Λ,Λ(T)

]
− βµ T nT (Λ(T) + ξνA(T)

ν)

)
(H.23)

The U(1)T Bianchi identity can now be read off as the coefficient of (Λ(T) + ξσA(T)
σ) in the

three lines preceding the total derivative term. We have chosen to leave the latter in terms

of the intermediate quantities defined earlier, to avoid unnecessary repetition. After setting

(Λ(T) + ξσA(T)
σ) = 1, the U(1)T Bianchi identity takes the form (18.17).
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I Notation and conventions

Symbol Definition Symbol Definition

Basic hydrodynamical variables Ψ on physical spacetime M
gµν Background metric Aµ Background gauge field

βµ Thermal vector = 1
T u

µ Λβ Thermal twist = µ
T − β

νAν

Hydrostatic variables K

Kµ Hydrostatic thermal vector ΛK Hydrostatic thermal twist

Hydrodynamic tensors at first order in gradients

σµν Shear tensor = PµαP νβ
(
∇(αuβ) − Θ

d−1 Pαβ

)
Θ Expansion = ∇µuµ

ωµν Vorticity tensor = PµαP νβ ∇[αuβ] aµ Acceleration = uν∇νuµ

vµ Potential gradient = Eµ − TPµν ∇ν
( µ
T

)
Eµ Electric field = Fµνuν

Bµν Magnetic field = PµαP νβFαβ
Currents CH[Ψ]

Tµν Energy-momentum tensor Jµ Charge current

JµS Fluid entropy current Gµ Gibbs free energy current (5.18)

Further physical currents

hσ Adiabatic heat current (9.3) n Adiabatic charge density (9.3)

(/δΘPS)µ Presymplectic potential (9.3) Kµν Komar charge (9.21)

Nµ Noether current (9.9)

Table 11: Basic fields, sources and hydrodynamic quantities on physical spacetime manifold M.

Symbol Definition Symbol Definition

Basic hydrodynamical variables 	 on reference spacetime M

gab Background metric (10.12) Aa Background gauge field (10.12)

�a Thermal vector = 1
T
ua Λ� Thermal twist = �

T
− �aAa

Derived hydrodynamical variables on reference spacetime M

T Temperature � Chemical potential

ua Velocity

Transition functions from M to M

ϕa Diffeomorphism field (10.6) c Gauge transformation (10.6)

Currents (10.19)

Tab Energy-momentum tensor Ja Charge current

JaS Fluid entropy current ha Adiabatic heat current

n Adiabatic charge density

Table 12: Basic sources, fields and currents on reference manifold M.
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Symbol Definition Symbol Definition

Variational symbols and derivatives

δ Unconstrained variation δ
X

Generic diffeo/gauge transf. (9.7)

δ
B

Diffeo/gauge trf. w.r.t. B = {βµ,Λβ} (5.22) δ
B

Diffeo/gauge trf. on M w.r.t. {�a,Λ�}
δϕ Lie drag on M along {δϕa,−c−1δc} (10.18) � Constrained variation along Lie orbits

Dα Gauge covariant derivative (5.8) £ξ Lie derivative along ξµ

DWλ Weyl covariant derivative (C.6) δW
X

δ
X

+ Weyl transformation (C.1)

Indices

α, β, µ, ν, . . . Physical manifold M a, b, c, . . . Reference manifold M

m,n, p, . . . Physical bulk manifold Md+1 M,N, P , . . . Reference bulk manifold Md+1

Table 13: Variational symbols, derivatives, index conventions.

Symbol Definition Symbol Definition

Shadow connections

Γ̂µνρ Shadow spin connection = Γµνρ + Ωµ
ν uρ Âµ Shadow gauge field = Aµ + µuµ

Ωµ
ν Spin potential = 1

2T (Dνβ
µ −Dµβν)

Anomaly induced currents

ΣH
ab
c Bulk Hall spin current (15.23) JaH Bulk Hall charge current (15.23)

Tµ⊥
H Covariant Lorentz anomaly = 1

2DνΣ
⊥[µν]
H J⊥H Covariant flavour anomaly

JµP Anomalous flavour current (15.25) ΣP Anomalous spin current (15.25)

qµP Mixed anomalous current (15.25) (JαS )A Anomalous entropy current (15.30)

(Tαβ)A Anomalous boundary stress tensor (15.28) (Jα)A Anomalous boundary current (15.28)

Tmn
(d+1)

Anomalous bulk stress tensor (G.6) Jm
(d+1)

Anomalous bulk current (G.6)

h(d+1)
m Anomalous bulk heat current (G.6) n

(d+1)
Anomalous bulk charge density (G.6)

Basic fields as differential forms

u Velocity 1-form = uµ dx
µ ιuX

(2) Velocity contraction = uµX(2)
µνdxν

a Acceleration 1-form = aµ dx
µ 2ω Vorticity 2-form = du+ u ∧ a

A Gauge field 1-form = Aµ dx
µ Γµν Connection 1-form = Γµνρ dx

ρ

Â Shadow gauge field = A+ µu Γ̂µν Shadow connection = Γµν + Ωµ
ν u

F Field strength = dA+A ∧A Rµ
ν Curvature = dΓµν + Γµρ ∧ Γρν

E Electric field = −ιuF (ER)µν Electric curvature = −ιuRµ
ν

B Magnetic field = F − u ∧E (BR)µν Magnetic curvature = Rµ
ν − u ∧ (ER)µν

A(T) U(1)T gauge field 1-form F(T) U(1)T field strength 2-form = dA(T)

Abbreviations

Qµα
νβ Antisymmetrizer = 1

2(δµβ δ
α
ν − gµα gνβ) Pρµν

σκλ Projector = δρκ δ
µ
σ δνλ + Qρµ

σκ uνuλffl
M

Bulk integral =
´
Md+1

√−gd+1 R, L Shortcuts for right and left SK copies

Table 14: Class A and Schwinger-Keldysh (SK) quantities on physical spacetime M.
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Symbol Definition Symbol Definition

Shadow connections

�̂abc Shadow spin connection = �abc + 
ab uc Âa Shadow gauge field = Aa + �ua


ab Spin potential = 1
2T(Db�a −Da�b)

Anomaly induced currents

�HMN
P Bulk Hall spin current JMH Bulk Hall charge current

JaP Anomalous flavour current (16.20) �P Anomalous spin current (16.20)

qaP Mixed anomalous current current (16.20) (JaS)A Anomalous entropy current

(Tab)A Anomalous boundary stress tensor (Ja)A Anomalous boundary current

TMN

(d+1)
Anomalous bulk stress tensor JM

(d+1)
Anomalous bulk current

Tab
hydro Hydrodynamic SK stress tensor (16.15) Jahydro Hydrodynamic SK charge current

(TMN

(d+1)
)IF Cross contour stress tensor (G.21) (JM

(d+1)
)IF Cross contour charge current (G.21)

Abbreviations

s Ratio of measures =
√
−gL/

√
−gR sR,L Ratio of measures =

√−gR,L/
√
−ğ

	̄ Difference fields = 	R − 	L 	̆ Common fields = 1
2(	R + 	L)ffl

Md+1
Bulk integral =

´
Md+1

√−gd+1

Table 15: Class A and Schwinger-Keldysh (SK) quantities on reference manifold M.

Symbol Definition Symbol Definition

Basic fields

g̃µν Partner metric Ãµ Partner gauge field

g′µν Shifted partner metric = gµν − g̃µν A′µ Shifted partner gauge field = Aµ − Ãµ
gL
µν SK difference = g′µν − βµ A(T)

ν − βν A(T)
µ AL

µ SK difference = A′µ − (Λβ + βαAα)A(T)
µ

A(T)
µ U(1)T KMS gauge field Λ(T)

β U(1)T holonomy field

ΨT = {βµ,Λβ, gµν , Aµ, g̃µν , Ãµ,A(T)
µ,Λ

(T)

β }
Currents

TµνL Stress tensor associated to gµν JµL Charge current associated to Aµ
TµνLc Stress tensor associated to g̃µν JµLc Charge current associated to Ãµ
JµT U(1)T KMS current nT Adiabatic U(1)T charge density

Nσ
T Class LT Noether current (18.18) GσT Class LT free energy current = −T Nσ

T

(JS)µT Class LT entropy current (19.4)

Table 16: Class LT quantities.
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