969 research outputs found

    Rich variants of the vehicle routing problem​​​​​​​

    Get PDF

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    Problèmes de tournées de véhicules avec contraintes de chargement

    Full text link
    Cette thèse s’intéresse aux problèmes de tournées de véhicules où l’on retrouve des contraintes de chargement ayant un impact sur les séquences de livraisons permises. Plus particulièrement, les items placés dans l’espace de chargement d’un véhicule doivent être directement accessibles lors de leur livraison sans qu’il soit nécessaire de déplacer d’autres items. Ces problèmes sont rencontrés dans plusieurs entreprises de transport qui livrent de gros objets (meubles, électroménagers). Le premier article de cette thèse porte sur une méthode exacte pour un problème de confection d’une seule tournée où un véhicule, dont l’aire de chargement est divisée en un certain nombre de piles, doit effectuer des cueillettes et des livraisons respectant une contrainte de type dernier entré, premier sorti. Lors d’une collecte, les items recueillis doivent nécessairement être déposés sur le dessus de l’une des piles. Par ailleurs, lors d’une livraison, les items doivent nécessairement se trouver sur le dessus de l’une des piles. Une méthode de séparation et évaluation avec plans sécants est proposée pour résoudre ce problème. Le second article présente une méthode de résolution exacte, également de type séparation et évaluation avec plans sécants, pour un problème de tournées de véhicules avec chargement d’items rectangulaires en deux dimensions. L’aire de chargement des véhicules correspond aussi à un espace rectangulaire avec une orientation, puisque les items doivent être chargés et déchargés par l’un des côtés. Une contrainte impose que les items d’un client soient directement accessibles au moment de leur livraison. Le dernier article aborde une problème de tournées de véhicules avec chargement d’items rectangulaires, mais où les dimensions de certains items ne sont pas connus avec certitude lors de la planification des tournées. Il est toutefois possible d’associer une distribution de probabilités discrète sur les dimensions possibles de ces items. Le problème est résolu de manière exacte avec la méthode L-Shape en nombres entiers.In this thesis, we study mixed vehicle routing and loading problems where a constraint is imposed on delivery sequences. More precisely, the items in the loading area of a vehicle must be directly accessible, without moving any other item, at delivery time. These problems are often found in the transportation of large objects (furniture, appliances). The first paper proposes a branch-and-cut algorithm for a variant of the single vehicle pickup and delivery problem, where the loading area of the vehicle is divided into several stacks. When an item is picked up, it must be placed on the top of one of these stacks. Conversely, an item must be on the top of one of these stacks to be delivered. This requirement is called “Last In First Out” or LIFO constraint. The second paper presents another branch-and-cut algorithm for a vehicle routing and loading problem with two-dimensional rectangular items. The loading area of the vehicles is also a rectangular area where the items are taken out from one side. A constraint states that the items of a given customer must be directly accessible at delivery time. The last paper considers a stochastic vehicle routing and loading problem with two- dimensional rectangular items where the dimensions of some items are unknown when the routes are planned. However, it is possible to associate a discrete probability distribution on the dimensions of these items. The problem is solved with the Integer L-Shaped method

    Le problĂšme de tournĂ©es de vĂ©hicules avec cueillettes, livraisons, fenĂȘtres de temps et contraintes de manutention

    Get PDF
    RÉSUMÉ : Les problĂšmes de tournĂ©es de vĂ©hicules avec cueillettes et livraisons consistent Ă  trouver des tournĂ©es rĂ©alisables minimisant le nombre de vĂ©hicules utilisĂ©s et la distante totale parcourue, et permettant de complĂ©ter toutes les requĂȘtes. Une requĂȘte est dĂ©finie par un point de cueillette et un point de livraison, et une quantitĂ© de marchandise Ă  transporter du point de cueillette au point de livraison. Ce faisant, une tournĂ©e est dite rĂ©alisable si la charge du vĂ©hicule ne dĂ©passe pas sa capacitĂ© et si, pour chaque requĂȘte, on visite le point de cueillette avant le point de livraison avec le mĂȘme vĂ©hicule. Dans la derniĂšre dĂ©cennie, la communautĂ© de recherche opĂ©rationnelle s’est attaquĂ©e Ă  des problĂšmes de plus en plus complexes qui tiennent compte de contraintes opĂ©rationnelles difficiles Ă  traiter. Cette thĂšse s’insĂšre dans cette tendance. Cette thĂšse propose des modĂšles et des algorithmes pour rĂ©soudre deux variantes du problĂšme de tournĂ©es de vĂ©hicules avec cueillettes et livraisons : le problĂšme de tournĂ©es de vĂ©hicules avec cueillettes, livraisons, fenĂȘtres de temps et contrainte de chargement dernier entrĂ© premier sorti (last-in-first-out – LIFO) (pickup and delivery problem with time Windows and LIFO loading – PDPTWL) et le problĂšme de tournĂ©es de vĂ©hicules avec fenĂȘtres de temps et plusieurs piles (pickup and delivery problem with time windows and multiple stacks – PDPTWMS). Dans le PDPTWL, la contrainte de chargement dernier entrĂ© premier sorti stipule qu’aucune manutention non nĂ©cessaire n’est faite lors de la livraison d’un item : un item peut seulement ĂȘtre livrĂ© s’il est situĂ© sur le dessus de la pile. Dans le PDPTWMS, chaque vĂ©hicule contient plusieurs piles qui sont gĂ©rĂ©es selon une politique de chargement dernier entrĂ© premier sorti. Afin de rĂ©soudre le PDPTWL, trois algorithmes de gĂ©nĂ©ration de colonnes avec plans coupants et un algorithme heuristique sont proposĂ©s. Le premier algorithme de gĂ©nĂ©ration de colonnes incorpore la contrainte de chargement dans le problĂšme maĂźtre, alors que le second l’incorpore dans le sous-problĂšme. Pour ce faire, un algorithme d’étiquetage et un critĂšre de dominance spĂ©cialisĂ©s sont proposĂ©s. Le troisiĂšme algorithme de gĂ©nĂ©ration de colonnes est une combinaison des deux premiers algorithmes. Des inĂ©galitĂ©s valides connues sont adaptĂ©es pour le PDPTWL. Des instances ayant jusqu’à 75 requĂȘtes sont rĂ©solues par ces trois algorithmes exacts en une heure de temps de calcul. L’algorithme heuristique, quant Ă  lui, permet de traiter plus rapidement des instances de plus grande taille. D’abord, un ensemble de solutions initiales est construit avec un algorithme glouton. Puis, pour chaque solution, un algorithme de recherche locale est utilisĂ© afin de diminuer en prioritĂ© le nombre de vĂ©hicules et ensuite la distance totale parcourue. Puis, deux stratĂ©gies sont utilisĂ©es pour crĂ©er des solutions enfants. La premiĂšre choisit alĂ©atoirement des tournĂ©es de l’ensemble de solutions alors que la deuxiĂšme utilise un opĂ©rateur de croisement. Pour les deux stratĂ©gies, un algorithme de recherche locale est ensuite utilisĂ©. Finalement, les enfants sont ajoutĂ©s Ă  l’ensemble de solutions et les meilleurs survivants sont conservĂ©s. L’ensemble de solutions est gĂ©rĂ© afin de garder uniquement les solutions variĂ©es de meilleure qualitĂ© par rapport au coĂ»t total. Des instances ayant jusqu’à 300 requĂȘtes sont rĂ©solues par cette heuristique en deux heures de temps de calcul. Afin de rĂ©soudre le PDPTWMS, deux algorithmes de gĂ©nĂ©ration de colonnes avec plans coupants sont proposĂ©s. Le premier algorithme de gĂ©nĂ©ration de colonnes incorpore la contrainte de chargement avec plusieurs piles dans le sous-problĂšme. Pour ce faire, un algorithme d’étiquetage et un critĂšre de dominance spĂ©cialisĂ©s sont proposĂ©s. Le deuxiĂšme algorithme incorpore partiellement la contrainte de chargement avec plusieurs piles dans le sous-problĂšme et ajoute, au besoin, des contraintes au problĂšme maĂźtre lorsque la solution trouvĂ©e ne respecte pas la contrainte de chargement avec plusieurs piles. Des instances avec une, deux et trois piles et ayant jusqu’à 75 requĂȘtes sont rĂ©solues par ces deux algorithmes exacts en deux heures de temps de calcul.----------ABSTRACT : In the pickup and delivery problem, vehicles based at a depot are used to satisfy a set of requests which consists of transporting goods (or items) from a specific pickup location to a specific delivery location. We consider an unlimited fleet of identical vehicles with multiple homogeneous compartments of limited capacity. A vehicle route is feasible if the load in each compartment of the vehicle does not exceed its capacity and each completed request is first picked up at its pickup location and then delivered at its corresponding delivery location. The pickup and delivery problem consists of determining a set of least-cost feasible routes in which the number of vehicles is first minimized. In the last decade, the operations research community has tackled more complex problems that consider real-life constraints. This thesis follows this trend. This thesis proposes models and algorithms for two variants of the pickup and delivery problem: the pickup and delivery problem with time windows and last-in-first-out (LIFO) loading constraints (PDPTWL) and the pickup and delivery problem with time windows and multiple stacks (PDPTWMS). In the first problem, the LIFO loading rule ensures that no handling is required prior to unloading an item from a vehicle: an item can only be delivered if it is the last one in the stack. In the second problem, each vehicle contains multiple stacks that are operated in a LIFO fashion. To solve the PDPTWL, three exact branch-price-and-cut algorithms and one metaheuristic algorithm are developed. The first branch-price-and-cut algorithm incorporates the LIFO constraints in the master problem. The second branch-price-and-cut algorithm handles the LIFO constraints directly in the shortest path pricing problem and applies a dynamic programming algorithm relying on an ad hoc dominance criterion. The third branch-price-andcut algorithm is a hybrid between the first two. Known valid inequalities are adapted to the PDPTWL. Instances with up to 75 requests are solved within one hour of computational time. The metaheuristic is capable of handling larger instances much faster. First, a set of initial solutions is generated with a greedy randomized adaptive search procedure. For each of these solutions, local search is applied in order to first decrease the total number of vehicles and then the total traveled distance. Two different strategies are used to create offspring. The first selects vehicle routes from the solution pool. The second selects two parents to create an offspring with a crossover operator. For both strategies, local search is then performed on the child solution. Finally, the offspring is added to the population and the best survivors are kept. The population is managed so as to maintain good quality solutions with respect to total cost and population diversity. Instances with up to 300 requests are solved within two hours of computational time. To solve the PDPTWMS, two exact branch-price-and-cut algorithms are proposed. The first branch-price-and-cut algorithm handles the multiple stacks policy in the shortest path pricing problem and applies a dynamic programming algorithm relying on an ad hoc dominance criterion. The second branch-price-and-cut algorithm incorporates the multiple stacks Policy partly in the shortest path pricing problem and adds additional inequalities to the master problem when infeasible LIFO multiple stacks are encountered. Instances with one, two and three stacks involving up to 75 requests are solved within two hours of computational time

    Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand

    Get PDF
    This dissertation contains three essays related to shipment consolidation scheduling and decision making in the presence of flexible demand. The first essay is presented in Section 1. This essay introduces a new mathematical model for shipment consolidation scheduling for a two-echelon supply chain. The problem addresses shipment coordination and consolidation decisions that are made by a manufacturer who provides inventory replenishments to multiple downstream distribution centers. Unlike previous studies, the consolidation activities in this problem are not restricted to specific policies such as aggregation of shipments at regular times or consolidating when a predetermined quantity has accumulated. Rather, we consider the construction of a detailed shipment consolidation schedule over a planning horizon. We develop a mixed-integer quadratic optimization model to identify the shipment consolidation schedule that minimizes total cost. A genetic algorithm is developed to handle large problem instances. The other two essays explore the concept of flexible demand. In Section 2, we introduce a new variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat visits (VRP-FRV). This problem considers a set of customers at certain locations with certain maximum inter-visit time requirements. However, they are flexible in their visit times. The VRP-FRV has several real-world applications. One scenario is that of caretakers who provide service to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or more times per day. Elderly people differ in their requirements and the minimum frequency at which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol routing problem where the customers are various locations in the city that require frequent observations. Such locations could include known high-crime areas, high-profile residences, and/or safe houses. We develop a math model to minimize the total number of vehicles needed to cover the customer demands and determine the optimal customer visit schedules and vehicle routes. A heuristic method is developed to handle large problem instances. In the third study, presented in Section 3, we consider a single-item cyclic coordinated order fulfillment problem with batch supplies and flexible demands. The system in this study consists of multiple suppliers who each deliver a single item to a central node from which multiple demanders are then replenished. Importantly, demand is flexible and is a control action that the decision maker applies to optimize the system. The objective is to minimize total system cost subject to several operational constraints. The decisions include the timing and sizes of batches delivered by the suppliers to the central node and the timing and amounts by which demanders are replenished. We develop an integer programing model, provide several theoretical insights related to the model, and solve the math model for different problem sizes
    • 

    corecore