289 research outputs found

    Application-Layer Connector Synthesis

    Full text link
    International audienceThe heterogeneity characterizing the systems populating the Ubiquitous Computing environment prevents their seamless interoperability. Heterogeneous protocols may be willing to cooperate in order to reach some common goal even though they meet dynamically and do not have a priori knowledge of each other. Despite numerous e orts have been done in the literature, the automated and run-time interoperability is still an open challenge for such environment. We consider interoperability as the ability for two Networked Systems (NSs) to communicate and correctly coordinate to achieve their goal(s). In this chapter we report the main outcomes of our past and recent research on automatically achieving protocol interoperability via connector synthesis. We consider application-layer connectors by referring to two conceptually distinct notions of connector: coordinator and mediator. The former is used when the NSs to be connected are already able to communicate but they need to be speci cally coordinated in order to reach their goal(s). The latter goes a step forward representing a solution for both achieving correct coordination and enabling communication between highly heterogeneous NSs. In the past, most of the works in the literature described e orts to the automatic synthesis of coordinators while, in recent years the focus moved also to the automatic synthesis of mediators. Within the Connect project, by considering our past experience on automatic coordinator synthesis as a baseline, we propose a formal theory of mediators and a related method for automatically eliciting a way for the protocols to interoperate. The solution we propose is the automated synthesis of emerging mediating connectors (i.e., mediators for short)

    What Is a ‘Good’ Encoding of Guarded Choice?

    Get PDF
    The pi-calculus with synchronous output and mixed-guarded choices is strictly more expressive than the pi-calculus with asynchronous output and no choice. As a corollary, Palamidessi recently proved that there is no fully compositional encodingfrom the former into the latter that preserves divergence-freedom and symmetries. This paper shows that there are nevertheless `good' encodings between these calculi.In detail, we present a series of encodings for languages with (1) input-guarded choice, (2) both input- and output-guarded choice, and (3) mixed-guarded choice, and investigate them with respect to compositionality and divergence-freedom. The firstand second encoding satisfy all of the above criteria, but various `good' candidates for the third encoding - inspired by an existing distributed implementation - invalidate one or the other criterion. While essentially confirming Palamidessi's result, our studysuggests that the combination of strong compositionality and divergence-freedom is too strong for more practical purposes

    Embedded dynamic programming networks for networks-on-chip

    Get PDF
    PhD ThesisRelentless technology downscaling and recent technological advancements in three dimensional integrated circuit (3D-IC) provide a promising prospect to realize heterogeneous system-on-chip (SoC) and homogeneous chip multiprocessor (CMP) based on the networks-onchip (NoCs) paradigm with augmented scalability, modularity and performance. In many cases in such systems, scheduling and managing communication resources are the major design and implementation challenges instead of the computing resources. Past research efforts were mainly focused on complex design-time or simple heuristic run-time approaches to deal with the on-chip network resource management with only local or partial information about the network. This could yield poor communication resource utilizations and amortize the benefits of the emerging technologies and design methods. Thus, the provision for efficient run-time resource management in large-scale on-chip systems becomes critical. This thesis proposes a design methodology for a novel run-time resource management infrastructure that can be realized efficiently using a distributed architecture, which closely couples with the distributed NoC infrastructure. The proposed infrastructure exploits the global information and status of the network to optimize and manage the on-chip communication resources at run-time. There are four major contributions in this thesis. First, it presents a novel deadlock detection method that utilizes run-time transitive closure (TC) computation to discover the existence of deadlock-equivalence sets, which imply loops of requests in NoCs. This detection scheme, TC-network, guarantees the discovery of all true-deadlocks without false alarms in contrast to state-of-the-art approximation and heuristic approaches. Second, it investigates the advantages of implementing future on-chip systems using three dimensional (3D) integration and presents the design, fabrication and testing results of a TC-network implemented in a fully stacked three-layer 3D architecture using a through-silicon via (TSV) complementary metal-oxide semiconductor (CMOS) technology. Testing results demonstrate the effectiveness of such a TC-network for deadlock detection with minimal computational delay in a large-scale network. Third, it introduces an adaptive strategy to effectively diffuse heat throughout the three dimensional network-on-chip (3D-NoC) geometry. This strategy employs a dynamic programming technique to select and optimize the direction of data manoeuvre in NoC. It leads to a tool, which is based on the accurate HotSpot thermal model and SystemC cycle accurate model, to simulate the thermal system and evaluate the proposed approach. Fourth, it presents a new dynamic programming-based run-time thermal management (DPRTM) system, including reactive and proactive schemes, to effectively diffuse heat throughout NoC-based CMPs by routing packets through the coolest paths, when the temperature does not exceed chip’s thermal limit. When the thermal limit is exceeded, throttling is employed to mitigate heat in the chip and DPRTM changes its course to avoid throttled paths and to minimize the impact of throttling on chip performance. This thesis enables a new avenue to explore a novel run-time resource management infrastructure for NoCs, in which new methodologies and concepts are proposed to enhance the on-chip networks for future large-scale 3D integration.Iraqi Ministry of Higher Education and Scientific Research (MOHESR)

    What is a ‘Good’ Encoding of Guarded Choice?

    Get PDF
    The pi-calculus with synchronous output and mixed-guarded choices is strictly more expressive than the pi-calculus with asynchronous output and no choice. This result was recently proved by Palamidessi and, as a corollary, she showed that there is no fully compositional encoding from the former into the latter that preserves divergence-freedom and symmetries. This paper argues that there are nevertheless `good' encodings between these calculi. In detail, we present a series of encodings for languages with (1) input-guarded choice, (2) both input- and output-guarded choice, and (3) mixed-guarded choice, and investigate them with respect to compositionality and divergence-freedom. The first and second encoding satisfy all of the above criteria, but various `good' candidates for the third encoding - inspired by an existing distributed implementation - invalidate one or the other criterion. While essentially confirming Palamidessi's result, our study suggests that the combination of strong compositionality and divergence-freedom is too strong for more practical purposes

    Synchrony versus causality in distributed systems

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Given a synchronous system, we study the question whether – or, under which conditions – the behaviour of that system can be realized by a (non-trivially) distributed and hence asynchronous implementation. In this paper, we partially answer this question by examining the role of causality for the implementation of synchrony in two fundamental different formalisms of concurrency, Petri nets and the π-calculus. For both formalisms it turns out that each ‘good’ encoding of synchronous interactions using just asynchronous interactions introduces causal dependencies in the translation

    A comparative study of transaction management services in multidatabase heterogeneous systems

    Get PDF
    Multidatabases are being actively researched as a relatively new area in which many aspects are not yet fully understood. This area of transaction management in multidatabase systems still has many unresolved problems. The problem areas which this dissertation addresses are classification of multidatabase systems, global concurrency control, correctness criterion in a multidatabase environment, global deadlock detection, atomic commitment and crash recovery. A core group of research addressing these problems was identified and studied. The dissertation contributes to the multidatabase transaction management topic by introducing an alternative classification method for such multiple database systems; assessing existing research into transaction management schemes and based on this assessment, proposes a transaction processing model founded on the optimal properties of transaction management identified during the course of this research.ComputingM. Sc. (Computer Science

    High performance data processing

    Get PDF
    Dissertação de mestrado em Informatics EngeneeringÀ medida que as aplicações atingem uma maior quantidade de utilizadores, precisam de processar uma crescente quantidade de pedidos. Para além disso, precisam de muitas vezes satisfazer pedidos de utilizadores de diferentes partes do globo, onde as latências de rede têm um impacto significativo no desempenho em instalações monolíticas. Portanto, distribuição é uma solução muito procurada para melhorar a performance das camadas aplicacional e de dados. Contudo, distribuir dados não é uma tarefa simples se pretendemos assegurar uma forte consistência. Isto leva a que muitos sistemas de base de dados dependam de protocolos de sincronização pesados, como two-phase commit, consenso distribuído, bloqueamento distribuído, entre outros, enquanto que outros sistemas dependem em consistência fraca, não viável para alguns casos de uso. Esta tese apresenta o design, implementação e avaliação de duas soluções que têm como objetivo reduzir o impacto de assegurar garantias de forte consistência em sistemas de base de dados, especialmente aqueles distribuídos pelo globo. A primeira é o Primary Semi-Primary, uma arquitetura de base de dados distribuída com total replicação que permite que as réplicas evoluam independentemente, para evitar que os clientes precisem de esperar que escritas precedentes que não geram conflitos sejam propagadas. Apesar das réplicas poderem processar tanto leituras como escritas, melhorando a escalabilidade, o sistema continua a oferecer garantias de consistência forte, através do envio da certificação de transações para um nó central. O seu design é independente de modelos de dados, mas a sua implementação pode tirar partido do controlo de concorrência nativo oferecido por algumas base de dados, como é mostrado na implementação usando PostgreSQL e o seu Snapshot Isolation. Os resultados apresentam várias vantagens tanto em ambientes locais como globais. A segunda solução são os Multi-Record Values, uma técnica que particiona dinâmicamente valores numéricos em múltiplos registros, permitindo que escritas concorrentes possam executar com uma baixa probabilidade de colisão, reduzindo a taxa de abortos e/ou contenção na adquirição de locks. Garantias de limites inferiores, exigido por objetos como saldos bancários ou inventários, são assegurados por esta estratégia, ao contrário de muitas outras alternativas. O seu design é também indiferente do modelo de dados, sendo que as suas vantagens podem ser encontradas em sistemas SQL e NoSQL, bem como distribuídos ou centralizados, tal como apresentado na secção de avaliação.As applications reach an wider audience that ever before, they must process larger and larger amounts of requests. In addition, they often must be able to serve users all over the globe, where network latencies have a significant negative impact on monolithic deployments. Therefore, distribution is a well sought-after solution to improve performance of both applicational and database layers. However, distributing data is not an easy task if we want to ensure strong consistency guarantees. This leads many databases systems to rely on expensive synchronization controls protocols such as two-phase commit, distributed consensus, distributed locking, among others, while other systems rely on weak consistency, unfeasible for some use cases. This thesis presents the design, implementation and evaluation of two solutions aimed at reducing the impact of ensuring strong consistency guarantees on database systems, especially geo-distributed ones. The first is the Primary Semi-Primary, a full replication distributed database architecture that allows different replicas to evolve independently, to avoid that clients wait for preceding non-conflicting updates. Al though replicas can process both reads and writes, improving scalability, the system still ensures strong consistency guarantees, by relaying transactions’ certifications to a central node. Its design is independent of the underlying data model, but its implementation can take advantage of the native concurrency control offered by some systems, as is exemplified by an implementation using PostgreSQL and its Snapshot Isolation. The results present several advantages in both throughput and response time, when comparing to other alternative architectures, in both local and geo-distributed environments. The second solution is the Multi-Record Values, a technique that dynami cally partitions numeric values into multiple records, allowing concurrent writes to execute with low conflict probability, reducing abort rate and/or locking contention. Lower limit guarantees, required by objects such as balances or stocks, are ensure by this strategy, unlike many other similar alternatives. Its design is also data model agnostic, given its advantages can be found in both SQL and NoSQL systems, as well as both centralized and distributed database, as presented in the evaluation section

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore