
University of Minho
School of Engeneering
Informatics Department

Nuno Filipe Pinto Faria

High Performance Data Processing

November 2020

University of Minho
School of Engeneering
Informatics Department

Nuno Filipe Pinto Faria

High Performance Data Processing

Master dissertation
Master Degree in Informatics Engeneering

Dissertation supervised by
José Orlando Pereira

November 2020

C O P Y R I G H T A N D T E R M S O F U S A G E B Y T H I R D PA RT I E S

This is an academic work that can be used by third parties as long as the rules and
internationally accepted common practices are respected, in what concerns copyright.

Therefore, the presented work can be used under the terms stated in the licence
below.

In case the user requires permission to use the work under conditions not predicted
in the licence, they must contact the author through RepositóriUM of the University of
Minho.

https://creativecommons.org/licenses/by/4.0/

iii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that
I have not used plagiarism or any form of undue use of information or falsification of
results along the process leading to its elaboration. I further declare that I have fully
acknowledged the Code of Ethical Conduct of the University of Minho.

iv

R E S U M O

À medida que as aplicações atingem uma maior quantidade de utilizadores, precisam
de processar uma crescente quantidade de pedidos. Para além disso, precisam de
muitas vezes satisfazer pedidos de utilizadores de diferentes partes do globo, onde
as latências de rede têm um impacto significativo no desempenho em instalações
monolíticas. Portanto, distribuição é uma solução muito procurada para melhorar a
performance das camadas aplicacional e de dados. Contudo, distribuir dados não é
uma tarefa simples se pretendemos assegurar uma forte consistência. Isto leva a que
muitos sistemas de base de dados dependam de protocolos de sincronização pesados,
como two-phase commit, consenso distribuído, bloqueamento distribuído, entre outros,
enquanto que outros sistemas dependem em consistência fraca, não viável para alguns
casos de uso.

Esta tese apresenta o design, implementação e avaliação de duas soluções que
têm como objetivo reduzir o impacto de assegurar garantias de forte consistência
em sistemas de base de dados, especialmente aqueles distribuídos pelo globo. A
primeira é o Primary Semi-Primary, uma arquitetura de base de dados distribuída
com total replicação que permite que as réplicas evoluam independentemente, para
evitar que os clientes precisem de esperar que escritas precedentes que não geram
conflitos sejam propagadas. Apesar das réplicas poderem processar tanto leituras
como escritas, melhorando a escalabilidade, o sistema continua a oferecer garantias de
consistência forte, através do envio da certificação de transações para um nó central.
O seu design é independente de modelos de dados, mas a sua implementação pode
tirar partido do controlo de concorrência nativo oferecido por algumas base de dados,
como é mostrado na implementação usando PostgreSQL e o seu Snapshot Isolation.
Os resultados apresentam várias vantagens tanto em ambientes locais como globais. A
segunda solução são os Multi-Record Values, uma técnica que particiona dinâmicamente
valores numéricos em múltiplos registros, permitindo que escritas concorrentes possam
executar com uma baixa probabilidade de colisão, reduzindo a taxa de abortos e/ou
contenção na adquirição de locks. Garantias de limites inferiores, exigido por objetos
como saldos bancários ou inventários, são assegurados por esta estratégia, ao contrário
de muitas outras alternativas. O seu design é também indiferente do modelo de dados,
sendo que as suas vantagens podem ser encontradas em sistemas SQL e NoSQL, bem
como distribuídos ou centralizados, tal como apresentado na secção de avaliação.

Palavras Chave – Base de dados, Distribuído, Concorrência, Consistência, Transação.

v

A B S T R A C T

As applications reach an wider audience that ever before, they must process larger
and larger amounts of requests. In addition, they often must be able to serve users
all over the globe, where network latencies have a significant negative impact on
monolithic deployments. Therefore, distribution is a well sought-after solution to
improve performance of both applicational and database layers. However, distributing
data is not an easy task if we want to ensure strong consistency guarantees. This leads
many databases systems to rely on expensive synchronization controls protocols such
as two-phase commit, distributed consensus, distributed locking, among others, while
other systems rely on weak consistency, unfeasible for some use cases.

This thesis presents the design, implementation and evaluation of two solutions
aimed at reducing the impact of ensuring strong consistency guarantees on database
systems, especially geo-distributed ones. The first is the Primary Semi-Primary, a full-
replication distributed database architecture that allows different replicas to evolve
independently, to avoid that clients wait for preceding non-conflicting updates. Al-
though replicas can process both reads and writes, improving scalability, the system
still ensures strong consistency guarantees, by relaying transactions’ certifications
to a central node. Its design is independent of the underlying data model, but its
implementation can take advantage of the native concurrency control offered by some
systems, as is exemplified by an implementation using PostgreSQL and its Snapshot
Isolation. The results present several advantages in both throughput and response time,
when comparing to other alternative architectures, in both local and geo-distributed
environments. The second solution is the Multi-Record Values, a technique that dynami-
cally partitions numeric values into multiple records, allowing concurrent writes to
execute with low conflict probability, reducing abort rate and/or locking contention.
Lower limit guarantees, required by objects such as balances or stocks, are ensure by
this strategy, unlike many other similar alternatives. Its design is also data model
agnostic, given its advantages can be found in both SQL and NoSQL systems, as well
as both centralized and distributed database, as presented in the evaluation section.

Keywords – Database, Distributed, Concurrency, Consistency, Transaction.

vi

C O N T E N T S

1 introduction 1

1.1 Problem statement 2

1.2 Objectives 2

1.3 Contributions 3

1.4 Structure of the document 4

2 state of the art 5

2.1 Isolation and Consistency 5

2.2 Concurrency control 8

2.3 Distributed database synchronization 10

2.4 Conflict avoidance 12

2.5 Distributed Database Systems Architectures 14

2.5.1 Single-writer 14

2.5.2 Multi-writer 15

2.6 Summary 24

3 the primary semi-primary architecture 25

3.1 Motivation 25

3.2 Overview 25

3.3 Architecture 26

3.3.1 Overview 26

3.3.2 Isolation and Consistency 28

3.3.3 Parallelism 31

3.3.4 Replication 34

3.3.5 Recovery 34

3.3.6 Discussion 37

3.4 Implementation 38

3.4.1 Semi-Primary 38

3.4.2 Primary 42

3.4.3 Client 46

3.5 Evaluation 46

3.5.1 Benchmark and architectures 47

3.5.2 Environment 47

3.5.3 Results 48

4 multi-record values 57

4.1 Motivation 57

vii

contents viii

4.2 Overview 58

4.3 Architecture 59

4.3.1 Overview 59

4.3.2 Operations 61

4.3.3 Adjusting to workload 63

4.3.4 Balancing partitions 67

4.3.5 Discussion 68

4.4 Implementation 69

4.5 Evaluation 70

4.5.1 Benchmarks 71

4.5.2 Database architectures 74

4.5.3 Environment 74

4.5.4 Results 75

5 conclusions and future work 84

L I S T O F F I G U R E S

Figure 1 Primary Semi-Primary’s architecture overview. 27

Figure 2 Example of the Primary Semi-Primary isolation. It presents two

concurrent transactions being executed at the same time on different

semi-primaries. a) displays a successful transaction while b) displays

one that aborts. 30

Figure 3 Recovery in the point-of-view of the client, the primary and the
semi-primary 36

Figure 4 Comparison of SELECT x, SUM(y) FROM Z GROUP BY x using var-
ious Engines/DBMS 39

Figure 5 Architecture of the semi-primary implementation 43

Figure 6 Architecture of the primary implementation 45

Figure 7 Example of a possible implementation to ensure high availability
in the Primary. 46

Figure 8 Throughput comparison between the Primary Semi-Primary and
native PostgreSQL (single semi-primary). 48

Figure 9 Percentage of a transaction’s time used in execution and certifi-
cation’s in the Primary Semi-Primary. 49

Figure 10 Primary certification time with 1, 2 and 4 cores. 49

Figure 11 Throughput ratio between the Primary Semi-Primary / Post-
greSQL and other alternative architectures and their respective
native counterparts, for a variable number of nodes and threads,
in a local network. 51

Figure 12 Response time ratio between the Primary Semi-Primary / Post-
greSQL and other alternative architectures and their respective
native counterparts, for a variable number of nodes and threads,
in a local network. 51

Figure 13 Average throughput and response time ratios between the Pri-
mary Semi-Primary / PostgreSQL and alternative architectures
and their respective native counterparts, in a local network. 51

Figure 14 Locations of the clients for the geo replication test. 53

Figure 15 Throughput of the Primary Semi-Primary and the native Post-
greSQL, in a geo-distributed environment. 54

ix

list of figures x

Figure 16 Response time of the Primary Semi-Primary and the native Post-
greSQL, in a geo-distributed environment. 54

Figure 17 Throughput difference between the Primary Semi-Primary / Post-
greSQL and MySQL Group Replication / MySQL, in a geo-
distributed environment. 54

Figure 18 Response time difference between the Primary Semi-Primary /
PostgreSQL and MySQL Group Replication / MySQL, in a geo-
distributed environment. 55

Figure 19 Throughput comparison between the Primary Semi-Primary with
and without high availability guarantees. 56

Figure 20 Diagram of the structure of one MRV and various possible
transactions alternatives. 60

Figure 21 Average number of records in an MRV necessary to reach abort
rates of 1%, 2.5%, 5%, 7.5%, 10% and 20%, given a variable
number of tx/s, for the custom simulation. 64

Figure 22 Comparison of the evolution of the abort rate and number of
records in an MRV, using different adjust records strategies. 66

Figure 23 Comparison of the average read response time between MRV
and the native, using the microbenchmark with PostgreSQL. 75

Figure 24 Comparison of the average read response time between MRV
and the native, using the microbenchmark with MongoDB. 76

Figure 25 Comparison of the average write response time between MRV
and the native, using the microbenchmark with PostgreSQL. 76

Figure 26 Comparison of the average write response time between MRV
and the native, using the microbenchmark with MongoDB. 76

Figure 27 Throughput ratio between MRV and native, using the microbench-
mark with PostgreSQL (Repeatable Read). 77

Figure 28 Abort rate ratio between MRV and native, using the microbench-
mark with PostgreSQL (Repeatable Read). 77

Figure 29 Response time ratio between MRV and native, using the mi-
crobenchmark with PostgreSQL (Repeatable Read). 77

Figure 30 Throughput ratio between MRV and native, using the microbench-
mark with PostgreSQL (Read Committed). 78

Figure 31 Response time ratio between MRV and native, using the mi-
crobenchmark with PostgreSQL (Read Committed). 78

Figure 32 Throughput ratio between MRV and native, using the microbench-
mark with MySQL Group Replication. 79

Figure 33 Abort rate ratio between MRV and native, using the microbench-
mark with MySQL Group Replication. 79

list of figures xi

Figure 34 Throughput ratio between MRV and native, using the microbench-
mark with MongoDB. 80

Figure 35 Throughput ratio between MRV and native, using the TPC-C
with PostgreSQL (Repeatable Read). 80

Figure 36 Throughput ratio between MRV and native, using the TPC-C
with PostgreSQL (Read Committed). 81

Figure 37 Throughput ratio between MRV and native, using STAMP Vaca-
tion with PostgreSQL. 82

Figure 38 Abort rate ratio between MRV and native, using STAMP Vaca-
tion with PostgreSQL. 82

L I S T O F TA B L E S

Table 1 Before (a)) and after (b)) converting the table T in the semi-
primary to use the custom isolation. Bold column names represent

primary keys. 40

Table 2 Comparison between different types of Select in the semi-
primary 41

Table 3 Top 5 most common abort causes in the TPC-C benchmark
(Repeatable Read). The presented queries concern updating a ware-

house’s year-to-date by some order’s amount (1), incrementing a district’s

next order identifier (2), updating a district’s year-to-date by some order’s

amount (3), deleting the information of some new order (4) and updating a

stock’s year-to-date by some amount and incrementing its number of sales

count (5). 58

Table 4 Comparison between MRV and similar alternatives. 68

Table 5 Before (a)) and after (b)) converting the column v1 of table T
into an MRV. 69

Table 6 MRV microbenchmark parameters and respective values. 72

Table 7 Top 5 most common abort causes in the STAMP Vacation bench-
mark. The presented queries concern reducing a reservation’s stock

in one unit (1, 2, 4), increasing a reservation’s stock in one unit (3) and

restocking a reservation and updating its price (5). 73

Table 8 Minimum and maximum throughput, abort rate and response
time ratios between MRV and native. 83

xii

L I S T O F A C R O N Y M S

ACID Availability Consistency Isolation Durability.
AJITTS Adaptive Just-In-Time Transaction Scheduling.
AOCC Adaptive Optimistic Concurrency Control.
API Application Programming Interface.
AWS Amazon Web Services.

CGSI Collaborative Global Snapshot Isolation.
CPU Central Processing Unit.
CRDT Conflict-free Replicated Data Type.
CSI Causally-coordinated Snapshot Isolation.

DHT Distributed Hash Table.

GCE Google Cloud Engine.
GPS Global Positioning System.
GSI Generalized Snapshot Isolation.

IP Internet Protocol.

JSON JavaScript Object Notation.

LTS Long Term Support.

MRV Multi-Record Value.
MV3C Multi-Version Concurrency Control with Closures.
MVCC Multi-Version Concurrency Control.

NMSI Non-Monotonic Snapshot Isolation.
NTP Network Time Protocol.

OCC Optimistic Concurrency Control.
OLPT Online Transaction Processing.

PCSI Prefix-Consistent Snapshot Isolation.
PSI Parallel Snapshot Isolation.

RAM Random Access Memory.

SQL Standard Query Language.

xiii

List of Acronyms xiv

SSD Solid State Drive.
STAMP Stanford Transactional Applications for Multi-Processing.
STM Software Transactional Memory.

TCP Transmission Control Protocol.
TPC-C Transaction Processing Performance Council - Type C.

YAML YAML Ain’t Markup Language.

1

I N T R O D U C T I O N

As more and more people are in contact with technology, applications developed
reach a larger user base than ever before and users’ expectations of how quickly a
system should respond have increased. The margin of allowed service failures is
also slim, and an application should always be available, independently of hardware
failures. Furthermore, larger amounts of data need to be processed in a shorter amount
of time than ever before, since long response times can end up in the loss of both clients
and money [57]. Finally, the increasing globalization also means that applications must
process requests from all over the globe.

To respond to the increasing demands, application developers moved over from
monolithic to distributed systems. This is relatively easy to achieve for the processing
logic of an application, in view of the fact that it does not need store information.
However, when it comes to data, it is not simple to distribute a traditional SQL database,
since it is not possible to achieve high availability/scalability without compromising
some consistency [13, 21], characteristic of SQL systems. This in turn led to a shift of
database system design towards ones that favor availability over consistency, with the
emergence of NoSQL stores.

The problem with most NoSQL stores is that, for the most part, if developers want to
have stronger consistency or transactional guarantees, they need to explicitly program
them directly in the application layer, which leads to complex and error prone code.
In addition, because the data models offered by NoSQL stores are usually designed
with distribution and scalability in mind, it might be difficult to implement complex
use cases with the existing data structures and query syntax (e.g. join data). It is
no coincidence that analytical workloads, despite often using NoSQL databases to
store their large amounts of data, often rely on SQL engines for query processing
[12, 15, 25, 35, 44, 61, 105, 115, 117, 120].

The mentioned limitations are responsible for a new shift in database design. NoSQL
stores are starting to implement transactional guarantees and supporting stronger
consistency models. A similar case happens with the relational model, where both
open source and commercial solutions try to bring a higher scalability to SQL stores.

1

1.1. Problem statement 2

This is an area known as NewSQL[112], that seeks to combine the best aspects of both
SQL and NoSQL systems.

1.1 problem statement

As both CPU, memory and persistent storage become faster and more affordable
[59, 74–76], the main limitation to the performance of strongly consistent distributed
databases becomes network latencies, where it can reach upwards of 400ms [119].
Common certification protocols such as two-phase-commit, distributed consensus or
distributed locking require the exchange of multiple messages and/or the partici-
pation of multiple, possibly distant nodes. This in turn causes the mean wait time
for an operation to complete to increase, especially in geo-distributed systems. In
addition, when serving multiple clients in multiple geographical locations – which
is becoming the norm for many companies – one has to make the decision on how a
distributed database system is deployed: we can either have the data nodes close to
each other, which make synchronization faster at the cost of a higher average latency
between clients and servers; or have the data nodes close to the clients but distance
from themselves, which reduces client-server latencies but increases synchronization
overhead.

Another limitation to consistent databases are concurrent accesses to the same object.
Although we can parallelize transactional reads to the same object, using multi-version
concurrency control protocols, we cannot do that easily with writes. Concurrent
updates will have to either abort, leading to wasted work, or acquire a lock, which
leads to contention. Either way, they limit transactional performance. There are already
some mechanisms that can help alleviate this problem, as presented in Chapter 2.
However, their usage mainly targets avoiding conflicts in eventual consistent systems
and not objects that require strong synchronization such as an account’s balance or an
item’s stock.

1.2 objectives

This thesis aims at advancing the state of the art in the NewSQL paradigm, by
creating new architectures and algorithms to allow database managing systems to
support strong consistent models with high horizontal scalability and to improve
transactional performance. Namely:

• Reduce the impact of network latency in geo-distributed database systems –
design of a distributed database architecture that can scale to many clients in
different geographical locations, all while ensuring strong consistency guaran-

1.3. Contributions 3

tees; furthermore, implementation of the designed architecture using, when
possible, already implemented database engines, as a means to reduce overhead
and ensure the system’s foundations are built on already proven concepts and
software; finally, evaluation of the implemented solution and comparison to other
alternative architectures, in order to prove its viability to solve the problem in
question;

• Reduce the impact of hotspots on objects that require strong consistency guar-
antees – design of a data structure that allows concurrent writes to the same
object to execute, when possible, without aborts or lock contention; in addition,
implementation and evaluation of said structure, to demonstrate its trade-offs in
different situations.

1.3 contributions

The main contributions of this thesis are:

• Reducing the impact of network latency in geo-distributed database systems:

– The Primary Semi-Primary architecture for geo-distributed fully replicated
databases that reduces the impact of update propagation latency on transac-
tion response time as observed by clients;

– An implementation strategy that reuses the query engine and transactional
isolation from an existing database engine, demonstrated with PostgreSQL;

– An experimental evaluation that compares the novel architecture to a single
PostgreSQL instance and to other multi-database architectures such as
Primary-Standby, Multi-Primary Replica and Multi-Primary Shards.

• Reducing the impact of hotspots that require strong consistency guarantees:

– The proposal of the Multi-Record Values (MRVs) mechanism that improves
parallelism on numeric values, including access and maintenance algorithms;

– A generic implementation for PostgreSQL that can be used to convert a
numeric value into an MRV;

– An experimental evaluation of the MRV architecture with three different
benchmarks and with three different database architectures (single-instance,
cluster with single-writer instance and cluster with multi-writer instances).

1.4. Structure of the document 4

1.4 structure of the document

This thesis is structured in four chapters: Chapter 2 presents the state of the art
related to consistency, scalability and availability in modern database systems; Chap-
ter 3 presents the design, implementation and evaluation of the Primary Semi-Primary
architecture, developed to reduce the impact of network latency in geo-distributed
database systems; Chapter 4 presents the design, implementation and evaluation of
the Multi-Record Values technique, created to allow concurrent accesses to the same
numerical object to execute with low conflict probability; finally, Chapter 5 concludes
this thesis, in addition to providing suggestions for future work that builds on the
concepts presented in this document.

2

S TAT E O F T H E A RT

Database systems developers had the option to either choose a consistent system
or a scalable/available one. Research has long aimed to reduce that gap to provide
applications with databases without compromises. This section presents an overview of
that research, studying isolation/consistency, concurrency control protocols, different
methods of distributed database synchronization, reducing conflict probability and
various classical and modern database system architectures.

2.1 isolation and consistency

Isolation and consistency are database systems concepts related to how concurrent
executing operations are handled and how the data is presented to the clients that
access it, respectively. Since they are both related to the correctness of data and
operations over it and are often times mixed together by researchers [2], this section
does not make an explicit division between the two. Rather, it addresses solutions that
combine both concepts in order to provide some degree of correctness guarantees.

The strictest concurrency levels – e.g. strict serializability – ensure that a transaction
is not affected by concurrent ones, simulating serial execution. However, these levels
have significant impact of both response time and throughput, as they reduce the
degree of allowed parallelism. Given that some workloads do not require the strictest
guarantees to work correctly, many databases offer varying levels that sacrifice some
degree of correctness in favor of higher performance. This includes, but not limited to,
Read Uncommitted, Read Committed, Repeatable Read and Snapshot Isolation.

Perhaps one of the most well-known and studied isolation level is the Snapshot
Isolation [16], where a transaction reads from a snapshot of all previously committed
transactions from when it started and only completes if there are no other concurrent
writes. It is implemented using a multi-version concurrency control method (MVCC)
[99], where different versions of the same record are provided, together with times-
tamps that display its validity, allowing non-blocking reads. Snapshot Isolation usage
is so widespread that it has been adapted to run under Serializable guarantees [41, 55]
and even implemented using physical clocks [36].

5

2.1. Isolation and Consistency 6

A problem of Snapshot Isolation with strict consistency guarantees is that since it
requires for a snapshot to contain the results of all previously committed transactions,
it forces synchronous replication with transactions executed on different replicas. This,
in turn, forces a client to wait before beginning a new transaction. To prevent this,
Generalized Snapshot Isolation (GSI) [39] extends Snapshot Isolation to allow clients to
be able to read an older snapshot. In a distributed environment, there is an instance
of GSI that states that the possibly older snapshot will always contain all previous
transactions already applied in that respective site, designated Prefix-Consistent Snapshot
Isolation (PCSI), presented in the same paper. This means that different sites can display
snapshots with different delays, but total order is still guaranteed.

Although GSI and PCSI prevent clients from waiting before starting a transaction,
the total order guarantees still impact the freshness of a snapshot, since a transaction
can only be applied after all the previous ones are applied, leading to higher response
time and increased abort probability. Instead of providing total order guarantees,
numerous research and systems rely on causal order [64], a more relaxed ordering
model. In the context of database systems, a transaction T1 causally precedes T2 if T2

executes over the changes made by T1. T1 and T2 are concurrent if neither T1 causally
precedes T2 or vice-versa, and no assumption can be made about who committed first.
Since causal order should be enough to guarantee the correctness of a large number
of use cases, while at the same time proving better performance by removing strict
synchronization, Snapshot Isolation has been adapted to run under causal guarantees.
Such example is the Parallel Snapshot Isolation (PSI). PSI extends Snapshot Isolation by
allowing different nodes to apply transactions in different orders, as long as they are
conflict-free. This causes for the different replicas’ snapshots to evolve independently,
which should only be a concern for use cases that require the strictest consistency
guarantees.

An alternative to PSI is the Causally-coordinated Snapshot Isolation [95] (CSI), with the
main difference being in how the causality is ensured. In PSI, this is done based on
the timestamp specific to the node the transactions were executed on, and transactions
from the same node are applied in the same order they were committed, waiting if
necessary. In CSI however, causality is ensured based on a transaction’s read and
write-sets. This means that in CSI a transaction T2 causally precedes T1 if and only
if T2 read or modified the data modified by T1, while in PSI T2 can be considered to
causally precede T1 just by starting in a snapshot with the effects of T1. CSI thus allows
for faster transaction replication, since the mean wait time is theoretically reduced, at
the cost of increased implementation complexity.

Another alternative to PSI is the Non-Monotonic Snapshot Isolation [11] (NMSI), whose
main difference is the fact that a transaction may read versions of data committed after
it started, in order to reduce aborts due to stale data.

2.1. Isolation and Consistency 7

Ensuring global Snapshot Isolation for partitioned systems has also been a topic of
research, as is the case with Collaborative Global Snapshot Isolation [24] (CGSI). CGSI
guarantees that if a transaction T2 reads the effects of T1 in some partition, it can
read the changes of T1 on all the other partitions. In other words, the snapshots must
be consistent across partitions. To ensure this, it predicts the usage of commit time
certification for both read and write-sets of a transaction. CGSI loosens this property
by only forcing it to transactions that depend on each other, i.e. intersection between
reads and write-sets, or between write-sets, is not empty, since it is irrelevant if some
transaction has the changes of another in one partition but not the other if it does
not rely on its work. CGSI takes it one step further than PSI and also guarantees
that transactions are committed by total order guarantees in all sites, providing a
higher degree of consistency. This is to avoid two different snapshots from seeing
partial commits that are incompatible due to the changes of two or more non-causal
transactions. Although this guarantee could be necessary for some edge cases, it
requires transactions to be applied by their total order in all sites, which can lead to
higher response time and/or higher abort rate. To achieve total ordering, CGSI predicts
the usage of logical clocks belonging to each site and a server id (e.g. IP address) to
resolve ties.

All the previous alternatives must rely on some form of pre-commit synchronization
between the replicas in order to ensure the desired consistency. If we want the
guarantee that a distributed database system not only performs as fast as possible, but
also makes it possible to guarantee availability in case of network partitions [21], we
need a solution that offers a lower consistency level, e.g. eventual consistency [118].
In this level, database replicas receive and process both reads and writes, committing
without any coordination. Eventually, states are merged and causal conflicts are
often dealt with using vector clocks and rules such as last-writer-wins [113], while
concurrent conflicts can use rules defined by the application developers. This provides
full availability, since no node depends on any other to write data, at the cost that it
might not be enough to ensure the correctness of some applications, without at least
increasing applicational code complexity.

For distributed database systems, a similar consistency level to eventual consistency
is the Causal Consistency with Convergent Conflict Handling (causal+ consistency), ensured
by systems such as COPS [71], Eiger [72] and Cure [6]. In addition to resolving conflicts
using rules, causal+ also guarantees that if some transaction T2 depends on T1, then T2

is applied after T1 in every site.
A middle ground between strong and weak consistency is the RedBlue consistency

[69]. It proposes tagging operations as blue, if they commute, or red, if not. Blue
operations execute locally and are asynchronously replicated to other sites, under
eventual consistency. Since they commute, the order they are applied does not affect

2.2. Concurrency control 8

the outcome. Red operations are serialized across sites, as they do not commute
and have to be applied in the same order in all nodes, to ensure strong consistency.
Furthermore, some operations that don’t commute and would have been tagged red
can be modeled in order to commute – e.g. updating a value by some delta instead of
to some constant value. The RedBlue consistency thus allows serializing operations
only when explicitly necessary, which can lead to lower response times in distributed
systems, especially geo-distributed ones.

2.2 concurrency control

Concurrency controls refers to methods that allow the correct execution of concur-
rent transactions, implemented to ensure some desired isolation level. The simplest
concurrency control is to serialize transaction execution, i.e. execute one transaction at
a time. This alternative yields the minimum possible throughput, as it does not make
use of multiple cores nor use a single core to its full potential (e.g. idle during I/O
calls). Some alternatives thus exploit the fact that some transactions update disjoint
data and use it to maximize parallelism.

Instead of limiting one transaction to execute in the system at the same time, we
can limit one transaction per resource (e.g. row, table, document, ...). This allows
transactions that read/write different records to execute at the same time. This widely
used concurrency control is known as locking, with two-phase locking [18] being a
common technique. To further improve parallelism, locking can be divided into shared
and exclusive. This way, multiple transactions can read the same value concurrently
by acquiring a shared lock. Transactions that need to modify a value must acquire an
exclusive lock.

Although locking is a step up over the sequential execution, it still limits parallelism.
For example, a transaction cannot read a value that has been exclusive locked by
another. In addition, acquiring an exclusive lock could take a significantly long time
(i.e. starvation), depending on the number of transactions that acquired/will acquire
the shared one. Furthermore, this solution has the potential to lead to deadlocks. These
problems motivated the emergence of multi-version concurrency control (MVCC)
protocols [17, 99]. In these protocols, multiple versions of the same record are used,
labelled with timestamps that display its validity. They thus allow non-blocking reads,
even if the record was updated after it started (e.g. Snapshot Isolation). Depending on
the implementation, the main problem with MVCC protocols is the storage overhead
of keeping track of multiple versions. To alleviate this, tasks that periodically delete
obsoleted versions are employed (e.g. VACUUM in PostgreSQL [54]). However,
they are computational heavy and can resort to locking entire data structures to
operate. In distributed database systems, timestamps are often implemented using

2.2. Concurrency control 9

logical [64] or vector clocks [70]. Research has also proposed the usage of physical
clocks to accomplish this task [4, 27, 36, 37, 40]. However, they must deal with
the inevitable problems inherent of skews between clocks of different sites. Apart
from frequent synchronization, solutions to alleviate this include making transactions
wait [27, 40], providing older snapshots to guarantee consistent reads in partitioned
databases [36, 37], providing commit time certification for read-only transactions [3] or
guaranteeing a weaker consistency level [4].

MVCC and locking are not mutually exclusive and are often used together to ensure
a target isolation level. For example, allowing concurrent reads and a single write to
execute but locking concurrent writes (e.g. PostgreSQL [49]). However, a database can
also use MVCC without locking. A transaction can execute without synchronizing
with others, as if it were only one active. Synchronization can later happen at commit
time, where write sets are certified in order to abort transactions that generate conflicts.
This method is known as optimistic concurrency control (OCC) [62], since a transaction
executes as if is guaranteed to commit. By removing synchronization throughout
its execution, a database can ensure lower response times. However, since conflicts
are only detected at commit time, a transaction can conflict with another right at its
inception and keep executing without knowing, leading to wasted work. In addition, a
long running transaction under OCC is subjected to starvation, as abort probability
increases as the number of other transactions writes’ it as to compare against increases.

OCC has also been an area of research. For example, in order to reduce aborts, there
is the Adaptive Just-In-Time Transaction Scheduling (AJITTS) [97], that looks to improve it
at scheduling level, by controlling the amount of transactions executing at the same time
based on the system load. There is also the Multi-Version Concurrency Control with
Closures (MV3C) [29], which instead of completely aborting a transaction on conflict,
partially re-executes it, rerunning the blocks of code affected by the conflict(s). This is
ideal especially for long running transactions. There is also research to improve long
lived OCC transactions (in the context of mobile transactions), by trying to abort them
before the certification phase, if conflicts were found, with the intent to reduce wasted
resources [122]. The concept of physical clocks has also been applied to OCC, as is the
case with Adaptive Optimistic Concurrency Control (AOCC) [3]. It uses client caching and
loosely synchronized clocks that define transaction order to achieve high performance.
In addition, AOCC doesn’t rely on MVCC, instead it just keeps a single copy each
object. This, together with the fact that clocks can skew from each other, makes it so
it needs to rely on commit-time certification to detect data inconsistencies, even for
read-only transactions. The TicToc [123] optimistic concurrency control algorithm has
been proposed in order to enable higher degrees of concurrency. Instead of assigning a
timestamp to a transaction at its beginning, TicToc lets the transaction execute without
timestamp and, at commit time, provides it one based on the timestamps of its read and

2.3. Distributed database synchronization 10

write-sets. Then, it checks whether the transaction’s reads are still correct based on the
chosen timestamp. This allows to commit a larger number of concurrent transactions
that could have otherwise been aborted by other concurrent control algorithms. In
addition, it also reduces contention of monotonically sequential timestamps in systems
that solve conflicts based on timestamp ordering, a technique where serialization order is
decided before the transaction executes [18]. Finally, since transaction certification can
itself be resource heavy, depending on the size of the dataset that has to be compared,
Meld takes advantage of a tree structured database in order to model the transaction
changes as a tree, and quickly identify if it can commit without needing to process the
entire structure [100].

More research has also been invested into improving MVCC in general, with a subset
of examples presented in [5, 18, 23, 66].

2.3 distributed database synchronization

Any multi-writer database that employs a high consistency must rely on some form
of synchronization protocol between the replicas. As they must be applied to some, if
not all, executing transactions, they must be designed to complete as fast as possible.
This led to the research of various number of methods of synchronization in distributed
systems.

The most simple solution is a centralized certifier, where one component decides
which transactions to commit and which ones to abort. The main disadvantages are the
fact that it creates a single point of failure and could become the bottleneck of the entire
system. Therefore, some research such as Meld [100] aim to improve certification’s
performance. The main advantage is the fact that centralized coordination requires the
minimum number of messages exchanged (just a request and reply), which makes it
less susceptible to network latencies, especially when geo-distributed environments.

Another method is the two-phase commit [17], used mainly to ensure atomic com-
mitment when different nodes hold different subsets of data. In this method, some
previously designated node, or one chosen at certification time or even the client
itself [124], acts as the coordinator, telling the participant nodes to prepare for commit
(prepare phase). Each participant then replies to the coordinator with their votes, which
can be either commit or abort. Having received all the votes, the coordinator then
instructs all participant nodes to either commit – if all votes are commit – or abort –
if at least one of the votes is abort (commit phase). One disadvantage of this protocol
is the fact that it relies on the exchange of multiple messages between coordinator
and participants, together with the fact that the coordinator becomes a single point of
failure of the certification. In addition, it must also lock objects currently waiting to be
committed in order to avoid conflicts of concurrent transactions, which can significantly

2.3. Distributed database synchronization 11

impact performance both in regular execution and especially if the coordinator or one
of the participants crashes. The two-phase commit protocol might not recover if both
coordinator and a participant fail in the commit phase, as the coordinator could have
told the participant that crashed to commit or to abort, but not the others, leaving
no way for them to know the actual decision. They can neither commit or abort
because the participant that crashed could have aborted or committed. To prevent
this, the three-phase commit [108] protocol has been proposed, that adds a additional
phase between prepare and commit, named prepare to commit. If the coordinator and
participant(s) fail before the prepare to commit phase is completed (i.e. not all nodes
received the prepare to commit message), the participants know that an irreversible
decision has not been made by the node(s) that failed (since no node actually commits
at that phase), and the process restarts or the transaction is safely aborted. If the
coordinator and participant(s) fail after the prepare to commit, all nodes agree that the
decision to commit has been made (since they all received the message), and can all
safely commit. Despite solving a recovery aspect of the two-phase commit, the fact that
it requires an extra phase means that a transaction’s response time is even further
increased.

Distributed consensus, in which nodes vote to agree or disagree on some proposal,
is also used to ensure that a transaction has the same effects in multiple nodes in a
distributed database system. For example, it can be used to determine the order in
which transactions are executed or applied by different nodes, as is the case with active-
active replication [56], Granola [28], Spanner [27] and others. In addition, different
replicas can execute different transactions and rely on consensus at commit time, to
ensure that concurrent conflicts are dealt equally in all replicas, as is the case with
MySQL Group Replication [92]. Some well-known examples of consensus protocols
used in the context of distributed database systems include Paxos [67] (or Multi-Paxos,
in which the leader election phase is done one time instead of once every time the
algorithm is executed) and Raft [88]. Having a decentralized protocol ensures that the
system provides high availability guarantees. However, just like two-phase commit, they
require the exchange of multiple messages and the participation of several, possibly
distant nodes, which has a significant impact in a transaction’s response time. There
are several proposals to improve Paxos, namely Fast Paxos [65], where the client
request bypasses the leader and goes straight to the entire group, only requiring one
round trip if they immediately reach a super-majority. If not, it resorts to the slow
execution of Paxos.

To control updates on concurrent records, the locking of resources is also used,
i.e. distributed locking. The acquirement of locks can be made in both centralized –
e.g. using a central coordinator – and distributed fashions – e.g. using distributed
consensus to agree on the order the locks are acquired. The inherent problem with

2.4. Conflict avoidance 12

locking resources makes this alternative potentially heavy on geo-distributed systems,
given the time a transaction may need to wait.

The passing of a token to, for example, guarantee the total order of concurrent
transactions [69, 94, 96], can be seen as a form of locking.

All previous methods are used to ensure pre-commit synchronization, which always
end up having some negative impact in a transaction’s response time. Alternatively,
there is also the post-commit synchronization, relying on replica merges to resolve
conflicts. This sacrifices strong consistency (e.g. resorting to eventual consistency [118]
or causal+ [71]), since a client can have its committed changes annulled, to allow for a
faster execution and optimal availability.

2.4 conflict avoidance

Write conflicts, especially in distributed database systems, greatly limit performance
of strongly consistent systems, by making transactions abort or wait to acquire some
exclusive lock. To reduce conflict probability, there has been a large body of research
that exploits the properties of some data structures and/or operations in order to allow
concurrent update to execute simultaneously.

Such example is a classical solution in centralized systems titled escrow locking
[87], that targets numeric values. For subtractions, instead of locking the entire record,
a transaction first checks if the current value has the desired quantity and, if true,
proceeds to only lock the necessary sub-amount of the total value, thus allowing
multiple transactions that update the same field to execute concurrently, improving
throughput. There are several disadvantages of using this approach. Namely, it
requires synchronizations at two points, one when testing if the value has the required
amount and another at commit time. In addition, the synchronizations make this
solution only viable in centralized systems, since in a distributed one the cost to acquire
the lock now incurs network latency, given that a request to a central monitor that
handles that synchronization is necessary once every time a numeric value is updated.

To reduce hotspots on the same record, one can split write-heavy fields with 1-to-1
relations, preventing unnecessary collisions. In addition, there is also the timestamp
splitting technique [58], that divides a record’s columns into multiple subsets and
assigns to each a different timestamp, reducing collision probability.

A way to improve transactions executed on different nodes is by making them
operate on structures that allow for replica merges in any order without triggering
conflicts. Examples of these structures are Conflict-free replicated data types (CRDTs)
[68, 106], being mainly used in NoSQL systems as result of their non-relational data
models (e.g. sets). There are two types of CRDTs: operation based CRDTs, that are
based on the replication of commutative operations – for example, instead of simply

2.4. Conflict avoidance 13

replicating the final result of a counter, the operations could be replicated instead
(increment and decrement). Independently of the order they are merged, the final
result will always be the same, since addition and subtraction are commutative; and
state based CRDTs, based on the commutative merging of states – for example, instead
of replicating all add and subtract operations, the counter could be modeled as a map
of replica id to pair with the total added and total decremented values. This way,
two counters can be merged by executing the pointwise maximum for each node,
that will always be the same independently of the merging order, since both adds
and subtracts can only increase. CRDTs cannot avoid, for example, that two clients
concurrently purchase the last product in stock. They are instead designed with the
objective that all data replicas converge to the same state independently of the order
they were merged. Walter also uses a similar type of data structure, called Conflict-free
counting set objects [109]. This structure models a row as a counting set, where it
supports inserting some element – increment the respective counter – and deleting
some element - decrementing the respective counter. Records from different nodes
are later merged and, since addition and subtraction are commutative, the insert and
delete operations never conflict with each other.

Another approach to avoid conflicts of concurrent operations is to transform the
operations themselves [38]. An update from a replica that generates a conflict in
another can be transformed, based on the state of the latter, in way that ensures both
replicas end up towards the same state after the operation is executed. For example,
concurrent insertions of characters in the same line in a real-time collaborating text
editor. The position of an inserted character can change if another character is inserted
to its left. Therefore, a local operation that inserts a character at position x can be
applied in other replicas at position y. There is also the proposal of delta transactions
[110], that aim to convert two transactions that would otherwise conflict into multiple
that commute. They are intended to reduce conflicts of updates on numeric values.
For example, the author suggests updating an average not to some value but by some
value, for those updates to commute.

The RedBlue [69] consistency also helps reduce conflicts in the context of distributed
database systems, since it tags commutative operations that can later be applied in
different orders by different nodes.

Finally, for replicated systems, the best optimization one can implement is to build
the transactions in such a way that there is no need for distributed certification. One
way to achieve this is to partition data access (but not data itself) in a manner that each
transaction only need to write on one node, so that each one can commit independently,
later replicating the changes. This is the case of Walter with its preferred sites technique
[109] and SLOG with its concept of object’s home [101].

2.5. Distributed Database Systems Architectures 14

2.5 distributed database systems architectures

This section presents how different architectures use the concepts presented in the
previous sections in order to implement consistent and scalable distributed database
systems.

2.5.1 Single-writer

Single-writer database systems contain only a single node that handles writes and
commits. Distributing a single-writer database consists in adding more standby nodes,
that hold a copy of the data, in what is known as passive replication [56]. In addition
to providing higher availability through failover, standby nodes also handle reads,
allowing them to horizontally scale. However, since writes are constricted to the
primary node, it may become the bottleneck of the system. Furthermore, this means
that writes in a geo-distributed system must all contact the same, possibly distance
server, leading to high average network latencies. This common architecture is natively
supported by the most popular SQL database managing systems, including PostgreSQL
[51], MySQL [90], SQL Server [77] and Oracle [93]. It also has support among NoSQL
systems, as is the case with MongoDB’s replica set [82].

A caveat of this architecture is how the replication is handled. We can either have
a synchronous replication, guaranteeing that the most recent data is stored in all
replicas at the cost of higher transaction response time, or have an asynchronous one,
improving response time but increasing the probability that clients can read older data.
Depending on the use case, both options can be used, which is why database systems
provide the choice to opt for one or the other [47, 52, 91].

The active replication [56] to ensure high availability can also be seen as a single-
writer architecture. Even though technically multiple nodes can write, they all process
the same transactions in the same way, which means writes cannot scale out. The
main disadvantage when comparing to the above alternative is the fact that transaction
execution must be deterministic, i.e. the outcome must only depend on the initial
state of the replica (e.g. random functions should be avoided). The main advantage
is that if one node fails, the others can still complete the transaction. In the passive
replication, if the primary fails, not only the transaction is automatically aborted, but
also the crash is visible to the client, which must reissue the request. Depending on the
implementation, different nodes can process different read-only transactions, allowing
reads to scale.

2.5. Distributed Database Systems Architectures 15

2.5.2 Multi-writer

The reduced scalability of the single-writer architecture lead to the design and
implementation of systems that employ multi-writer nodes, to allow both reads and
writes to scale and to reduce latencies in a geo-distributed setting. However, multi-
writer architectures must deal with trade-offs between consistency and performance.

Some systems allow concurrent transactions to execute under optimistic concurrency
control on different full-replicated nodes and employ commit time certification to
ensure strong consistency. Examples include MySQL Group Replication [92], Galera
Cluster [94] and Percona XtraDB Cluster [96]. They ensure strong degrees of con-
sistency while sacrificing some performance due to synchronization overhead and
the fact that all replicas must certify all transactions, limiting the aggregate available
resources, given that work is repeated. MySQL Group Replication uses Mencius [14], a
variation of Paxos, to order transaction certification, while Galera Cluster and Percona
XtraDB use the Totem Single-ring Ordering protocol [9], a form of token passing
synchronization.

Amazon’s Aurora [116] also uses consensus to resolve write-write conflicts, however
it detects them at run time [7]. An interesting property of Aurora is that it decouples
the engine from the storage, allowing both components to scale independently. Aurora
pushes the redo log to multiple storage nodes, while using an 4/6 quorum to ensure
consistency. To improve performance, the database processing systems used (either
PostgreSQL or MySQL) never flush the page blocks to the storage, and only write to the
log, in order to avoid writing large amounts of data through the network. Periodically,
a process in the storage nodes materializes the pages from the redo log, with the
intent to avoid generating them by reading the entire log from the begin each time a
page is needed. Because of this, the authors state that as far as the processing engine
is concerned, the log is the database and the pages generated are merely a cache.
Considering that the data is shared in a storage system, this allows to mount new
processing nodes without having to worry about installing new persistent storage,
which can be ideal for large databases. However, large databases probably won’t
fit entirely in memory, so every time there is a cache miss, the system must request
the page from the storage, which depending on the network distance between the
two components, can be an order of magnitude slower than reading directly from a
mounted disk. This solution still relies on distributed consensus at storage level to
ensure transactional consistency, which can harm the performance for distant storage
nodes. In this architecture, to achieve global distribution, we can either have the
clients distant from the processing/storage nodes, have the clients and processing
nodes distant from the storage, or have the clients/processing close to a storage
node but having the storage nodes distant from each other. Either way, performance

2.5. Distributed Database Systems Architectures 16

penalties inherent from network latency are unavoidable. Aurora itself only allows for
a maximum of two primary database nodes, with the additional requirement that they
need to be in the same AWS region [8].

Separating the storage from the engine is also the basis of Hyder [19]. In Hyder,
all servers process both reads and writes over the entire dataset (to avoid distributed
transactions, two-phase commit, . . .), which is stored in the form of a log and accessed
through the network. To reduce latencies, each server caches a partial copy of the
database with the most recent data accessed. Missing data will have to be acquired
from the shared log. Hyder employs a MVCC protocol, meaning that a transaction
executes over a snapshot from when it started. In addition, it also executes them under
OCC, relying on a certification step before commit. At commit time, the transaction’s
write-set is broadcasted to all servers, which append it to their log. It is also sent to
the central shared log, which is responsible for providing the servers the order by
which it must be certified (in the form of an offset), to guarantee that same outcome
in all servers. After receiving both the write-set and the offset, a server executes
the certification (in the intended order), updating its local cache in case it commits.
By relying on central synchronization, Hyder avoids the performance penalties of
distributed consensus protocols. A disadvantage of this architecture is the fact that
cache misses might incur great response time delays, since data must be fetched
through network, just like Aurora. Just like MySQL Group Replication and other
architectures, all servers must process the certification step, limiting the total available
resources as work is repeated (Hyder mitigates this by relying on an efficient tree-based
certification process designated Meld, however certification overhead is unavoidable).

Apart from consensus, there is also the option to use a central transactional man-
ager to handle certification. Although this solution contains a single point of failure,
requiring solutions such as failover that causes the delay of some operations, it avoids
the delays caused by the resolution time of distributed synchronization algorithms,
especially visible in geo-distributed environments. Such example is the central certifi-
cation algorithm that ensures PCSI [39], that employs a transactional manager which
stores transactions timestamp and write-sets in the form of a log. When a transaction
T is certified, in addition to sending the result to the replica that requested it, the
transaction manager also sends the data of transactions committed after T started, so
they can too be applied. There are several problems with this algorithm: First, since
PCSI requires total order, a transaction can only be committed in a replica only after
all previous committed transactions are applied, leading to increased response time.
Second, how is duplicate data in the transaction response handled? For example, if
transactions T1 and T2 start at the same time t in the same site and both commit, does
the transaction manager send the data of transactions that committed after t twice,
increasing packet size and therefore transmission time? (the paper does not seem to

2.5. Distributed Database Systems Architectures 17

mention how this is handled); Third, by the algorithm’s definition, in order to achieve
total order, the transactions will have to be seemingly sequentially certified, leading
to increased response times and scalability issues; Forth, by replicating transaction
data only after a commit response, we can have a situation where a site presents a
significantly old snapshot due to executing few update transactions; Finally, since the
data in the transaction manager is kept in the form of a log, it can grow indefinitely.
The authors solve this by having a garbage collector that periodically cleans old entries,
according to minimum snapshot timestamp among all replicas (in order to still allow a
site to recover from the transaction manager, after a crash). However, if a transaction
starts in some snapshot at time t that later evolves to t + δ and causes the transaction
manager to remove the entries previous to t + δ, the transaction will not be able to be
properly certified, since some entries are missing. To guarantee safety in this situation,
the algorithm has to rely on aborting, even if the transaction was conflict-free. There is
also a distributed certification algorithm to ensure PCSI, presented in the same paper,
that relies on atomic broadcast.

In addition to systems that rely on replication for scalability, there are also systems
that rely on sharding/partitioning. Examples include Citus [30] for PostgreSQL,
MongoDB [83], Google’s Cloud Spanner [27], Calvin [114], ConfluxDB [24], Granola
[28], TAPIR [124], Carousel [121], Ocean Vista [40], Jessy [11], Blotter [86], among
others. Sharding the data allows for the load to be distributed across a set of nodes.
At the same time, depending on the type of transactions executed, network latency
can be reduced, since this architecture allows for different subsets of data to be close
to different users. However, when it comes to distributed transactions, there needs to
be a mechanism in place to ensure multi-instance atomicity, such as two-phase commit
[18], which introduces a negative impact caused by the network latency of multiple
exchanged messages and the locking of records. Also, the partitions themselves also
require replication in order to guarantee fault tolerance. Unlike systems that rely on
replication for scalability, the replicas in sharding might not be able to independently
handle reads or writes, depending on the consistency level adopted.

Citus and MongoDB use two-phase commit for multi-node transactions, having a
separate node designated as coordinator. Citus also uses the coordinator to route the
statements to the respective data nodes. Spanner, on the other hand, shards the data
across sets of Paxos state machines, where it is replicated inside each one to provide
high availability and to scale read-only transactions, while read-write ones have to
be directed to the Paxos leader. Transactions execute under a conservative execution
method implemented with two-phase locking, together with what the authors call a
lock-table, in order to provide serializability. The reason behind the conservative model
is due to the fact that the system was designed for long lived transactions, which have
a lower starvation in this mode than in an optimistic one. Each Paxos group leader

2.5. Distributed Database Systems Architectures 18

implements the lock-table that manages concurrent accesses. For transactions affecting
multiple Paxos groups, two-phase commit is used, managed by the transaction managers
implemented by all group leaders. Spanner uses synchronized wall clocks in order
to present consistent snapshots throughout its shards (True Time). To guarantee that
different clocks present the minimum drift, it uses expensive hardware, including
atomic clocks and GPS antennas. As clock skews are unavoidable, transactions pick
an upper bound (twice the uncertainty) as its timestamp that is guaranteed to be
consistent across all shards, waiting to it after acquiring all the needed locks (on
average, it has to wait around 10 ms). An interesting optimization done by Spanner is
the buffering of writes in the client. Although it could allow for a better performance,
a transaction cannot read the effects of its own writes, which can be problematic for
some applications.

Calvin is formed by multiple clusters for high availability, each one composed by
multiple nodes. Each cluster holds the entire copy of the data while each node in
a cluster holds a partition. To execute transactions, a sequencer places the requests
into a global input sequence, distributed across all replicas. Paxos is used to ensure
coordination between clusters in a synchronous mode, while in an asynchronous mode
a cluster is designated the primary. Then, transactions will have to acquire all locks for
the data they will access, managed by a scheduler. By using deterministic locking to
prevent conflicts, Calvin avoids the need to use the expensive two-phase commit. This
comes with the drawback that a transaction must specify beforehand its entire read
and write-set, which can be unfeasible for some workloads.

ConfluxDB, that ensures CGSI, shards the data among multiple primary nodes.
However, these nodes do not directly process clients’ requests. That task is instead left
to secondary servers, that hold the entire copy of the data. The secondaries receive
requests and process read-only transactions, while write transactions are redirected to
the respective participant primaries. Two-phase commit is again used, to ensure atomic
commitment among primaries. After commit, data is asynchronously replicated from
the primaries to a node that executes log merging, proving data to the secondaries.
This architecture thus allows scaling the system based on the type of workload. If
the workload is read-heavy, more secondaries can be added. If the workload is write-
heavy, more primaries can be added. However, it is still subjected to the performance
penalties of distributed transactions and increased abort rates due to ensuring a stricter
consistency level with partitioned snapshots (e.g. total ordered transactions).

Granola, a transaction coordination infrastructure applied to partitioned data, avoids
two-phase commit by relying on a form of consensus for its independent distributed trans-
actions, i.e. transactions that execute on different partitions but always reach the same
commit decision. Consensus is used to determine the total order by which transactions
are executed. In detail, each participant assigns a timestamp to a transaction, based on

2.5. Distributed Database Systems Architectures 19

several counters. Then, each participant broadcasts the timestamp to the other ones, in
the form of a vote. Finally, after receiving all votes, a participant chooses the maximum
value to be the transaction’s actual timestamp, which will indicate its position in a
globally serialized queue. Since each participant will agree on the same timestamp, the
order is consistent throughout different partitions. The main disadvantages of Granola
are the fact that transaction processing is mostly sequential, as its execution must
respect the queue order, and the fact that it only supports single-round transactions, i.e.
there is no interaction between the client and the server at runtime. Furthermore, as
total order must be kept, a participant’s crash can cause the stall of the entire system,
since a transaction can be stuck at voting phase and other transactions with higher
timestamp will have to wait. Granola also employs coordinated distributed transactions,
where the decision might vary from node to node due to applicational logic. To
achieve this, it relies on preemptive locking of all resources needed and the exchange
of votes related to commit/conflict/abort decisions among participants (the conflict
vote is based conflict inherent from acquiring the needed locks, while abort relates to
applicational logic).

The TAPIR keystore also employs sharding to scale performance and replication to
ensure fault tolerance. In contrast to relying on a classic algorithm such as Paxos to
implement replication, TAPIR relies on a method designated Inconsistent Replication,
allowing transactions to be executed in a different order by different replicas but in
the end returning the same result to the application (in its consensus mode). Briefly, a
client sends the transaction request to the replicas, which in turn execute it and reply
with the result. In the best-case scenario, if the client (which acts as the coordinator)
receives a 3

2 f + 1 replies with the same result (where f is the maximum number of
tolerated failures), returns to the application protocol and asynchronously sends the
final result to replicas. If the client doesn’t receive the required majority, it has to decide
which will be the actual result and synchronously reply it to the replicas, awaiting new
confirmation to guarantee consensus. This, in turn, leads to a resolution time of one
round for the best-case scenario, just like Fast Paxos [65]. The fact that some replicas
might have missed transactions or executed them out of order means that they need
to be periodically synchronized, using a merge process. Because of this, replication
can only be used to implement fault tolerance and not scale reads/writes in strong
consistency systems. Furthermore, since replica commits are asynchronous, a client
might not be able to read/update its immediate writes.

The Carousel keystore, similar to TAPIR, that partitions data and replicates it in
a consensus group using Raft, aims to reduce transaction latency in sharded and
replicated systems by running its execution and certification (two-phase commit and
consensus) in parallel. To do this, in its optimized mode (based on Fast Paxos [65])
the client sends a prepare message with the read and write-set keys to each replica

2.5. Distributed Database Systems Architectures 20

in each participant consensus group (the coordinator also receives a similar message,
replicating to its consensus group). Each replica then independently certifies against
the other pending (i.e. concurrent) transactions, setting it as pending if it passes and
returning the response to the coordinator (a participant leader local to the client). If
the coordinator receives a super-majority of equal responses related to some partition
(in the condition that the partition leader must belong to the majority and all majority
members must be up-to-date), it can safely consider it as the partition response (fast
path). If not, it waits for the certification, replication and reply by the partition leader
(slow path). Both slow and fast paths are simultaneously executed to reduce latency
and the coordinator ignores the slow path messages when the fast path succeeds.
Meanwhile, the client is receiving the data it requested to read. Having received
all reads, the client prepares the writes and sends them to the coordinator, which
replicates it to its consensus group. After knowing the responses for all partitions,
the coordinator returns the result to the client. Then, it asynchronously tells all the
replicas in all partitions to commit or abort. Serializability is still ensured since replicas
perform read-set certification. While this allows to reduce, for the most part, latencies
inherent from sequentially executing different phases, it suffers from a few drawbacks.
Namely, a client must know and provide beforehand its entire read and write-set keys
(if the write-sets are unknown, the paper proposes a workaround with a reconnaissance
transaction, i.e. first determine the write-set and then execute the actual transaction),
and read-write transactions are limited to two rounds: first all reads and then all
writes. Additionally, two-phase commit effectively locks the records in the write-set keys.
Because of this, client stalls or a slow/distant partitions can limit the performance
of several other transactions in the system. Given that the commit at the partitions
is asynchronously executed, immediate reads and writes by the same client to the
same data can be met with transactional aborts. Furthermore, executing the fast and
slow paths concurrently generates repeated work, as each replica must both certify
and receive the replicated data from the leader. Moreover, since not all partitions are
guaranteed to be replicated in all zones, remote reads might be necessary.

The Ocean Vista architecture is also similar to TAPIR and Carousel, aiming to
provide low latency to geo-distributed serializable transactions. It is comprised by
multiple clusters, each with multiple data partitions and a gossip server (replicated
for fault tolerance) that is used to exchange timestamps (or watermarks). Contrary to
both TAPIR and Carousel, it does not rely on the locking of records inherent from
implementations based on two-phase commit. Instead, it uses multiple versions per
object, allowing the concurrent execution of even conflicting transactions, on what the
authors call Asynchronous Concurrency Control. Read-write transactions are provided
in the form of stored procedures. In detail, the client sends the transaction data to
any partition, which becomes its coordinator. The coordinator assigns it a unique

2.5. Distributed Database Systems Architectures 21

timestamp based on its id, a monotonically incremented clock and a physical clock
(synchronized using NTP). Then, the S-Phase is executed: the transaction’s data is
replicated to the other partitions, which then store the writes as placeholders, whose
real value might depend on the values read in other partitions; the confirmations are
then returned to the coordinator (this execution is based on Fast Paxos [65]). After that,
a transaction needs to wait until its timestamp is lower than VWatermark (value which
guarantees that all transactions with a lower timestamp concurrently being processed
have completed the S-Phase). Then, the E-Phase is executed: the replicas that write
request the needed read values from other replicas, if necessary; after collecting all
values, the transaction logic is executed, i.e. the placeholder values are replaced, and
the result is returned to the coordinator; the coordinator can return after receiving the
first response, since the system assumes deterministic execution. Finally, the values
are asynchronous replicated to all replicas belonging to the write-set. Some problems
with this approach include the fact that transactions are limited in their logic (all reads
then writes; deterministic) and require the entire read and write sets to be known (just
like Carousel, it is suggested a workaround with an extra reconnaissance transaction). In
addition, the read operation might need to be processed by multiple, possibly distant
replicas, if the replica watermark (which guarantees that transactions with a lower
timestamp are fully replicated in all replicas) is lower than the transaction’s timestamp,
increasing response times and reducing scalability as work is repeated. To ensure
serializability, transaction processing also requires a delay until the VWatermark reaches
the required value, possibly leading to higher response times even for non-conflicting
transactions. This can be further aggregated since the timestamps rely on a physical
clock, meaning that a transaction might need to wait even more if its coordinator clock
is ahead.

Jessy, that ensures NMSI [11], shards objects across multiple processes. Unlike
similar solutions, Jessy relies on partial replication, meaning different processes hold
different subsets of data and an object is held by multiple processes, in order to achieve
fault tolerance and balance loads. To start a transaction, a client contacts any process
in the system, which becomes the transaction’s coordinator. Writes are buffered in the
coordinator, while reads are either executed locally, if the coordinator has the object
stored or the transaction being executed has overwritten it, or remotely if not. When
the client wants to commit a transaction, the coordinator atomically multicasts its write-
set to every process that stored a copy of at least one of the modified objects. When a
process receives a commit request, it certifies the data against previously committed
transactions, multicasting the vote to all participant processes and the coordinator.
The votes must be exchanged since a process might not hold the transaction’s entire
write-set, meaning it might not be able to completely certify it on its own. Each process
can commit after it received enough votes to account for every object in the write-set.

2.5. Distributed Database Systems Architectures 22

This means consensus can be effectively avoided if a transaction only updates data
stored in a single process. The main disadvantages are the fact that a transaction
might need to rely on remote reads and its certification might require votes from
multiple participants and the exchange of multiple messages that have to be atomically
multicasted. These problems are further aggravated in the context of geo-distribution,
given that network latency is higher.

Blotter, like Jessy, also ensures NMSI [11] and also has the writes buffered, this time
by the client, not appearing to support transactions reading their temporary writes. On
commit, the transaction manager executes two-phase commit over the participant data
managers. Blotter provides cluster geo-replication by relying on Paxos to implement
a replicated state machine (full-replication, unlike Jessy). Apart from reads, which
are local, every operation needs to be executed by every cluster, thus replication
serves to reduce read latency and provide high availability but not to improve write
scalability. Blotter improves state machine replication throughput by allowing conflict-
free transactions to execute in parallel, effectively implementing a state machine per
object instead of one per database.

A hybrid solution between replicas and partitions can be found in the Walter keystore
[109]. Walter uses the concept of preferred sites to execute transactions, where data is
replicated across many nodes but only one can modify some record. This way, all
transactions affecting one particular record all go to the same replica, avoiding the
need for distributed coordination. Walter justifies this technique on the assumption
that most transactions will only affect a local subset of data (such as users’ interaction
in a social network). Despite that, there is still the downsides of having a sharded
system, such as forced coordination in transactions that affect multiple replicas (Walter
uses two-phase commit to achieve this). To ensure PSI, Walter uses vector clocks that
represent the number of transactions applied for each node. These vectors are also
assigned to a transaction when it begins and to each object in the database. Applying
transactions thus needs to follow the order indicated by those vectors.

The concept of preferred sites can also be found in the SLOG system [101], where
all writes and consistent reads to an object must processed by its home region. SLOG
supports two types of transactions: single-home transactions, that affect a single region;
and multi-home transactions, that affect multiple regions. To ensure isolation, multi-
home transactions must be redirected to the same region to be totally ordered. In
addition, SLOG requires that both types of transactions must lock all records used
before the transaction starts, as well as relying on a deterministic execution to avoid
two-phase commit. This means that the entire transaction must be provided to the
system, limiting client-server interaction.

There solutions whose purpose is to provide transactional guarantees in the form of
a middleware over a storage engine that does not support them (e.g. Cassandra and

2.5. Distributed Database Systems Architectures 23

HBase). Examples include Apache Omid [42], pH1 [26] and CloudTPS [125]. Since they
are layered on top of existing systems, they cannot avoid some performance penalties
arising. Omid executes transactions over Snapshot Isolation, requiring an underlying
store that supports multi-versioned data, such as HBase, where it also stores metadata.
It uses a centralized transaction manager in order to ensure transactional consistency.
pH1 uses a distributed cache to store multi-versioned data, so transactions execute
under the Snapshot Isolation without the need for any changes to the underlying
database engine, which only stores the most recent data, unlike Omid. pH1 runs
transactions under a optimistic model, making use of a transaction manager to certify
them at commit time. Since both Omid and pH1 use multi-versioned data, they
enable non-blocking reads. CloudTPS, like pH1, is also not limited to a store that
supports multi-versioned data. It uses multiple transaction managers, each one being
responsible for handling a subset of data, in order to reduce the bottleneck of a single
central one. Because of this, it has to rely on two-phase commit in order to execute
transactions, since the data they depend on can span multiple managers.

Since providing strong consistency guarantees in distributed database systems
negatively impacts both performance and availability [21], operations can be executed
by different nodes without any form of synchronization, other than convergent post-
commit replica merges. In this architecture, conflicts are often dealt with using vector
clocks and rules such as last-writer-wins [113] and/or rules defined by the application
developers. Systems that run under weak consistency guarantees (e.g. eventual
consistency [118], causal+ [71]) include Amazon’s DynamoDB [34], Postgre-BDR [1],
Bucardo [22], SQL Server Merge Replication [79], Apache CouchDB [10], Microsoft’s
CosmosDB [78], Riak [103], Cassandra [63], AntidoteSQL [73], COPS [71], Eiger [72],
Cure [6] and others. This provides full availability, since no node depends on any other
to write and commit data, at the cost of a weaker consistency.

To prepare against a large variety of use cases, some systems offer the option
to choose between strong and weak consistency. For example, AntidoteSQL [73],
CosmosDB [78] and Riak [102]. AntidoteSQL uses a distributed multi-level locking to
prevent conflicts, while both CosmosDB and Riak rely on consensus.

Finally, a way to obtain stronger consistency in multi-writer databases without
coordination is to model workloads in a way that avoids conflicts altogether. By the
nature of some use cases, the data of different replicas could be easily merged if the
writes were made to disjoint data. Since this is not always possible to ensure, some
research has been made in creating data types, such as counters and sets, that allow
for concurrent writes in the same object to be merged without conflict, as seen in
Section 2.4. Examples of databases using these data types include Riak [104], Redis
[20], CosmosDB [107], AntidoteSQL [73], Walter [109], Cure [6], among others.

2.6. Summary 24

2.6 summary

Database systems design has to weigh between strong consistency and high perfor-
mance. Centralized databases can offer strong consistency guarantees using efficient
concurrency control protocols; however, they lack the scalability to process a rela-
tively high number of, possibly geographically distant, clients’ requests. Distributed
databases that ensure strong consistency rely on expensive synchronization control
protocols, that often require the exchange of multiple messages, the synchronization of
multiple sites or repeated work, which can hinder performance and limit scalability
of geo-distributed databases. On the other hand, distributed databases that favor
performance over consistency are limited in the functions they provide, which in turn
increases applicational completely if stronger consistency is desired.

There is still room for improvement, namely in the research of different concurrency
control/isolation protocols and different ways to implement them. This could further
improve transactional performance on distributed databases with strong consistency
guarantees, especially ones that are aimed at geo-distribution.

3

T H E P R I M A RY S E M I - P R I M A RY A R C H I T E C T U R E

3.1 motivation

As an application’s load increases, so does the need to scale the data layer. Since
a server can’t be indefinitely vertically scaled, relying on multiple ones becomes a
necessity to process high loads, as different sites can process different requests. In
addition, multi-instance databases can also decrease the response time for clients
in different geographical locations, by reducing the client-server distance. However,
multi-instance architectures must deal with the fact that providing strong consistency
guarantees to distributed databases is more complex than for centralized ones [17].

Some systems opt to provide weak consistency guarantees in order to obtain higher
performance and availability. This, however, makes them unfeasible for some use cases
such as financial or retail, and attempts to use them in such areas demands introduced
applicational complexity. Other systems provide stronger consistency guarantees
by relying on two-phase commit, distributed consensus, distributed locking, among
others [17]. Such protocols have visible performance penalties, as they can require the
exchange of multiple messages and/or the need for transactions to be processed by
multiple or all nodes in the system.

The main motivation is therefore the design of a database architecture that can
provide both high performance/availability and strong consistency, by reducing the
impact caused by latencies of distributed synchronization protocols. The next section
proposes an architecture designed to achieve this.

3.2 overview

The Primary Semi-Primary architecture is a distributed database system designed to
provide strong transactional guarantees (in a form of Snapshot Isolation), in both local
and geo-distributed environments, without incurring high performance penalties. It
comprises two components: the primary (single node), that handles transaction certifi-
cation and data replication but not client operations, and the semi-primary (multiple

25

3.3. Architecture 26

nodes), that processes client’s reads and writes. The Primary Semi-Primary operates
under full-replication as a means to ensure low latencies to clients in different geo-
locations and to avoid the need for expensive distributed transactions. Because of
this, the primary and semi-primary have an entire copy of the database. It can be
seen as a middle ground between the multi-primary architecture, where all nodes
can commit/certify transactions, and the primary-standby one, where just one of the
nodes is responsible for writes/commit. Just like systems that don’t offer transactional
guarantees, transactions executed on one semi-primary are eventually replicated to
the others. Even though data is eventually replicated, the fact that there is a central
certification still allows to ensure strong consistency guarantees, since the primary
certifies a transaction against all previously committed data.

3.3 architecture

3.3.1 Overview

The Primary Semi-Primary architecture is composed by a single primary replica and
multiple semi-primary replicas. The primary is a central component, responsible for
transactional isolation and recovery semantics. It does not handle client’s query
execution. Each semi-primary provides read and write access to clients, thus being
directly responsible for query execution. They relay transactional write-sets to the
primary for certification and persistency.

Figure 1 outlines the interactions with and within the Primary Semi-Primary architec-
ture as follows: 1© To start a transaction, a client performs a begin operation against the
chosen semi-primary, that assigns it a unique identifier and a snapshot for reading. This
operation does not have to wait and the snapshot contains all previous local writes.
2© Reads are done from a data snapshot based on the assigned timestamp, using an

MVCC method like Snapshot Isolation [16] and writes are stored in the memory of the
respective semi-primary, indexed by the transaction’s id. 3©When the client issues a
commit request, the semi-primary processes it and 4© sends the write-set to the primary1,
which in turn 5© certifies it against all committed data. If the global certification
succeeds, the primary commits the changes, storing them into its database. 6© The
commit response is then sent to the semi-primary, which in turn applies the transaction
in case of commit 7©, by persisting its data and updating the timestamps of the now
obsoleted data. This operation does not have to wait for pending updates from remote
transactions. Finally, 8© the semi-primary replies to the client. In case of success, 9© the
transaction changes are asynchronously propagated to the other semi-primaries.

1 Read only transactions don’t require certification.

3.3. Architecture 27

Primary

Semi
Primary

Semi
Primary

Semi
Primary

Semi
Primary

Semi
Primary

Semi
Primary

Client

begi
n

Reads	and	writes	are
done	in	the	same
replica.	Writes	are
stored	in	the
replica's	memory

comm
it

com
mit

certification

resp
onse

resp
onse

Each	semi-primary
has	a	copy	of	the
database

Com
mit

	re
que

sts
	ar

e	s
ent

wit
h	t

he	
dat

a	w
rit

ten
	(n

o

sta
tem

ent
s)	

and
	th

eir

tim
est

amp
s

Commit	requests	are
certified	by	the	primary
using	snapshot	isolation

replication

Changes	are	eventually
replicated	to	the	other
replicas.	Meanwhile,
their	clients	read	from
an	older	but	consistent
snapshot

re
pl
ic
at
io
n

To	reduce	the	load,	the
primary	doesn't	process
directly	the	clients'
requests

After	a	transaction,
the	client	should
access	the	same
replica	used	before
("read	your	writes")

apply

The	semi-primary
applies	the
transaction	in
case	of	commit

apply

apply

...

R/W
1

2

3

4

5

6

7

8

9

9

9

9

Figure 1: Primary Semi-Primary’s architecture overview.

Although Figure 1 represents the semi-primaries as single instances, the storage itself
can rely on multiple ones. The architecture only predicts that each semi-primary holds
the entire copy of the data, but not how they do it. In case of sharding, it would still
not require two-phase commit since the storage nodes don’t need to vote, just write to
disk.

The remainder of this section focuses on how the system as a whole enforces
transactional isolation, a high degree of parallelism, replicates data and recovers from
faults while ensuring that a client is never blocked while starting or after committing a
transaction and can still read all previous local writes.

This architecture is designed to work with either SQL, NoSQL or even a combination
of both. For example, the semi-primary could use a SQL database for their clients
to interact while the primary could use a NoSQL database for the write-set storage.
The remaining issue is how the components of the Primary Semi-Primary architecture
map to actual SQL and NoSQL database engines, thus allowing the architecture to be
realized with existing software packages. This is addressed in Section 3.4.

3.3. Architecture 28

3.3.2 Isolation and Consistency

Ensuring Snapshot Isolation, in which each transaction is provided with the most
recent snapshot globally, would mean that a client might need to wait (either on begin
or on commit) for all preceding remote transactions to be propagated and locally
applied to read their most recent writes. On the other hand, if transactions start with
an outdated snapshot to avoid waiting [39], it would lead to missing local writes by
previous transactions and an increase in the number of aborts, as more transactions
are concurrent.

However, it is expected that clients that access one semi-primary mostly update a dif-
ferent subset of data than other clients that access other semi-primaries. This assumption
is exploited to allow for local writes to be made immediately available to new transac-
tions such that a client does not need to wait. This makes snapshots in semi-primaries
evolve independently from each other while ensuring that all conflicting updates are
seen in the same order by all clients, achieving PSI [109], which extends Snapshot
Isolation to allow different sites to apply non-conflicting, non-causally dependent
transactions in different orders.

To achieve this, in addition to a global timestamp incremented sequentially by the
primary when each transaction is committed (global_t), there is for each semi-primary
a local timestamp (local_t) that is incremented when a transaction is applied locally.
A client transaction that initiates on a semi-primary is assigned a snapshot at the start
based on local_t at that semi-primary (begin_t).

All participants, both the primary and the semi-primaries, store for each item the
global_t of the last transaction that modified it. Each semi-primary also stores, for each
record, two local timestamps that control its validity: from when it can be read (f rom_t),
to when it became obsolete (to_t, which can be infinite). Clients can also read their own
temporary writes, despite not being yet committed and not having been assigned any
timestamps. Those temporary writes will have to, when selected, overwrite persistent
records based on their key, as otherwise they would violate primary key constraints.

For deletions, a flag will be placed next to every one stating if it was deleted or
not (also known as a “tombstone”). Clients will then only be able to read values
that succeed both time and deleted restrictions. Given a transaction T with begin
time begin(T), that modified records TempT and started in a semi-primary with P
data, the functions f rom(x) and to(x), that return the f rom_t and to_t values of
the record x, respectively, key(x), that returns the primary key/id of the record x,

3.3. Architecture 29

keys(X) = {key(x) | x ∈ X} and del(x) as the boolean function that indicates if a
record x was deleted, values that can be read by a transaction are defined as follows:

ST = {x | x ∈ TempT ∧ ¬del(x)}
∪ {x | x ∈ P ∧ ¬del(x) ∧ f rom(x) ≤ begin(T) ≤ to(x)

∧ key(x) /∈ keys(TempT)}

(1)

When a client requests that a transaction is committed, the write-set composed by
the modified items and their global timestamps that are stored locally are sent to
the primary. To ensure consistency, the primary will only commit it if no previously
committed transaction has also updated any of the same keys concurrently. If a
transaction T modifies a record r that has a global_t of g in its respective semi-primary,
the primary will only commit T if the most recent global_t of r is equal to g, i.e. T
started in a snapshot with the most recent version of r. If the global_t of r stored in
the primary is bigger than g, this means that r was already modified by a concurrent
transaction, implying that T started before the most recent data of r reached the semi-
primary it started on. Algorithm 1 formally presents the primary’s certification. Note
that this can be efficiently implemented using indexes and relational joins (Section 3.4).

Algorithm 1: Primary’s global certification definition
1 Function certi f y(T):
2 foreach record r ∈ T.write_set do
3 curr ← get(r.pk)
4 if curr 6= NULL ∧ curr.global_t > r.global_t then
5 abort(T)
6 return False
7 end
8 end
9 commit(T)
10 return True

When some transaction T is certified by the primary, it gets assigned a unique
global_t. When T is applied by each semi-primary, for each record in its write-set, the
semi-primary sets the f rom_t to its own current local_t + 1, the to_t to infinity and
the global_t to T’s global_t. Records deprecated by the new modifications in T have
their to_t set to the current local_t. Finally, the semi-primary increments its current
local_t, making transactions that start after T finished be able to read T’s modifications.
Algorithm 2 formally specifies the semi-primary’s apply operation.

Note that neither Algorithms 1 nor 2 account for conflicts arising from concurrent
executions. That will be handled later in Section 3.3.3.

3.3. Architecture 30

Algorithm 2: Semi-primary’s apply operation definition
1 Function apply(T):
2 foreach record r ∈ T.write_set do
3 old← get(r.pk)
4 if old 6= NULL then
5 old.to_t← current_local_t
6 end
7 r. f rom_t← current_local_t + 1
8 r.to_t← ∞
9 r.global_t← T.global_t
10 add(r)
11 end
12 current_local_t← current_local_t + 1

It is also ensured that if a transaction T2 started on a snapshot modified by T1, T2 is
applied after T1 in all semi-primaries (causal order is kept, more detail in Section 3.3.3).
If two transactions are applied by different semi-primaries in different orders, this
means that at least one of them is local and that they were not related to each other,
and whichever order they are applied, the final result is always the same. The only
exception to this are write-skew anomalies2, also not prevented by the Snapshot Isolation
[16].

k v from_t to_t global_t

k1 1 3 ∞ 6

sp-1

k v from_t to_t global_t

k1 1 2 ∞ 6

sp-2

t1-5
k v global_t

k1 2 6

t2-4

pk global_t data

k1 6 0x...

primary

no	conflict
last	global_t	=	6
new	global_t	=	9

wait	... pk global_t data

k1 9 0x...

primary
conflict

global_t	=	9	>	6
abort

k v from_t to_t global_t

k1 1 3 4 6

k1 2 5 ∞ 9

sp-1a)

b)

k v global_t

k1 0 6

current	local_t	=	4

current	local_t	=	2

current	local_t	=	5

Figure 2: Example of the Primary Semi-Primary isolation.
It presents two concurrent transactions being executed at the same time on different
semi-primaries. a) displays a successful transaction while b) displays one that aborts.

Figure 2(a) shows an example of how timestamps are stored and transactions
certified. In detail, semi-primary sp-1 initially has local_t of 4, meaning that it has
applied 4 transactions, and k1 set to 1. This value was set by a transaction with global
timestamp 6 that was applied locally as timestamp 3. Semi-primary sp-1 then executes
a transaction t1−5 that sets k1 to 2 and tries to commit. This sends k1 with its locally
known global_t of 6 to the primary. Assuming that no other change has been made

2 The primary semi-primary architecture could be extended to prevent write-skews, by supporting read-set
certification. However, since it is expected that the majority of applications don’t need this requirement,
the performance penalty and implementation complexity would not be worth it.

3.3. Architecture 31

to k1, the primary will compare the timestamp for each key with the one stored there
and determine that there was no conflict, issuing it a new global timestamp of 9.
Upon reception the acknowledgement of commit with timestamp 9, the semi-primary
will immediately apply the transaction issuing it local timestamp 5. Note that the
difference between local_t = 5 and global_t = 9 at this time means that there are 4
remote transactions that have already been committed but not yet locally applied. At
this time we know that none of those transactions conflicts with t1−5 – otherwise it
would have aborted.

Figure 2(b) shows an example of a transaction that cannot be committed. In detail,
semi-primary sp-2 executes transaction t2−4 whose snapshot also contains k1 with
global_t = 6 and tries to assign it a new value 0. When the primary gets its write-set it
has to wait until its turn to be certified, in this case, until t1−5 has been decided (more
details in Section 3.3.3). Then, as the global_t for k1 is still 6, lower that the current 9, a
conflict is discovered, leading to t2−4 to be aborted.

Finally, since we rely on a MVCC method, there must exist a mechanism in place
to remove obsolete versions of records. In addition, temporary structures that hold
the transactions’ write-sets need to be cleared. Having an asynchronous operation to
periodically do this instead of doing it every time before returning to the client ensures
a lower response time.

3.3.3 Parallelism

The Primary Semi-Primary architecture exploits parallelism as much as possible
to improve throughput and mask communication latencies, in particular, in a geo-
distributed setting.

Semi-Primary

The key opportunity to exploit parallelism in semi-primaries is to allow snapshots
to advance independently, such that clients don’t need to wait before starting new
transactions. In addition, since we rely on an MVCC method, clients’ reads can be
executed concurrently, without needing to acquire any locks. Finally, as clients’ writes
are redirected, together with their transactions’ ids, to temporary data structures, we
can think of all inserts/updates/deletes as insert operations that do not physically
interfere. Because of this, writes themselves are also completely independent from each
other. These three points make clients’ transactions able to execute without conflicting
with each other, guaranteeing maximum parallelism.

As for applying transactions, we have two different cases:

3.3. Architecture 32

1. local transactions – transactions that were executed in the same semi-primary that
applies them;

2. replications – transactions that were executed on another semi-primary.

Local transactions applied at the same time never conflict with each other. This is
because if they did conflict, one them would have been aborted by the primary based
on the global_t of the conflicting record(s). Because of this, local transactions don’t
need to wait for other local transactions to be applied. When it comes to updates
propagated from other replicas, however, we have to control the order they are applied,
to guarantee that if some transaction T2 modifies data written by transaction T1, then T2

is applied after T1 in all semi-primaries. This can be done either by having dependency
information in each transaction so they can be applied by their causal order (similar to
CSI [95]) or by applying replications sequentially by the order of their global_t (similar
to PSI; the latter also needs to wait for local transactions with smaller global_t to be
applied first).

Although transactions can be applied in parallel, special consideration must be had
when evolving the snapshot, i.e. assigning and updating timestamps. If the underlying
semi-primary database supports Snapshot Isolation, this task is the responsibility of the
engine. If not, a possibility is to leave that assignment/update to the end of the apply
operation and execute it under an exclusive lock.

Primary

As there is only one primary handling the global certification of all the transactions
in the system, it has to be designed with special care in order to explore parallelism.
Transaction certification can’t be sequential since it would gravely impact performance
under heavy load. At the same time, it also can’t be completely parallel, because
different transactions could update the same data, resulting in undefined behavior and
possibly breaking consistency. With that said, transactions that update disjoint data
(parallel transactions) can be certified at the same time. Two transactions are parallel
(||) if the intersection of their keysets, i.e. set of records’ primary keys/ids, is empty:

T1 || T2 ⇐⇒ keys(T1) ∩ keys(T2) = ∅ (2)

The concurrency problem is addressed by exploiting an existing database engine to
implement the primary, as database engines are already optimized for this case. In fact,
in the Primary Semi-Primary architecture the primary does not handle query execution
load and can be fully dedicated to this. Briefly, if the primary’s underlying engine
supports Snapshot Isolation, we can simply send all transactions to the database and
not worry about conflicts, as the database will handle the concurrency control itself.

3.3. Architecture 33

As an alternative, for instance, if the primary is implemented with a NoSQL database
engine that does not provide the desired isolation, the following mechanism imple-
mented in middleware is used instead. First, to improve performance, transaction
certification is split into two parts:

1. Scheduler: pre-certification (sequential) – checks if a transaction can be certified or
has to wait, based on the set of all keys currently being certified/committed (K) :

pre_cert(T) ⇐⇒ keys(T) ∩ K = ∅ ⇐⇒ (∀ T′ ∈ C)(T || T′) (3)

, where C is the set of all transactions currently being certified/committed.

2. Executor: certification (parallel) – certifies the transaction against already commit-
ted data and commits/aborts it.

This improves performance as transaction certification is slower than pre-certification,
since it compares against a larger set of data and needs to commit modifications to
disk. However, pre-certification itself can be parallelized if we know beforehand that
two transactions modify disjoint data. To achieve this, transactions are preemptively
classified based on the tables they modify or on some arbitrary partition key defined
by the application’s developers (e.g. geographical region). Transactions with different
classes are then processed by different schedulers. To protect against the possibility
of transactions spanning multiple classes be certified at the same time, the schedulers
must acquire a lock of that class. Transactions with the same class are always assigned
to the same scheduler, in order to reduce lock contention (transactions with multiple
classes are assigned to the worker responsible for the smallest one, based on its hash).
Locks must always be acquired by the same order to avoid deadlocks. Since we don’t
want to restrict the data model by having static classes defined, class assignment is
dynamic, meaning that when a transaction with a new class arrives to the primary, it is
assigned to some scheduler. We can now update the certification stages above with an
extra one:

1. Classifier: classification (parallel) - classifies a transaction based on the data it
modifies; can be implemented in the semi-primary or the primary;

2. Scheduler: pre-certification (sequential in the same class, parallel between classes);

3. Executor: certification (parallel).

3.3. Architecture 34

3.3.4 Replication

Who sends the data

Data replication is handled directly by the primary, since it is already connected
to all the semi-primaries in system. If replication was peer-to-peer, i.e. semi-primary
to semi-primary, we could have all semi-primaries knowing each other or knowing a
small subset, making sure that there is a path between every semi-primary. Either
way, semi-primary connection or disconnection would become more complex. Also,
although primary load would be reduced, it would be expected that replication would
take far longer to occur, since source and target semi-primaries could be distant from
each other or the message could take multiple hops to reach the destination. Finally,
a semi-primary would require the same availability guarantees as the primary, since
we need to make sure that a transaction’s data reaches all semi-primaries, increasing
implementation complexity.

How the data is sent

As for how data is packaged and sent, we have two different choices:

1. Send a transaction’s data as soon as it finishes. Advantages:

• reduced replication delay, possibly reducing aborts;

• can reuse the transactions certification’s payload directly as the replication
message;

• easier implementation (“just send”).

2. Batch multiple transactions’ data in a single replication message or send what’s
available after a timeout. Advantages:

• smaller TCP/IP overhead;

• lighter network load;

The disadvantages for each option is the other’s advantages. Unlike the decision
of who sends the data, either choice about how the data is sent is feasible, and its
implementation will be dependent on the system’s requirements (smaller delay vs
lighter network load).

3.3.5 Recovery

Since both primary and semi-primaries can fail, recovery is a needed functionality the
system must provide, being a crucial one in order to maintain consistency.

3.3. Architecture 35

In recovery, data is also replicated from the primary to the semi-primaries, as the
former is the only component guaranteed to have all the data persisted. Every time
a semi-primary connects or reconnects to the primary, it issues a recovery request. To
decrease recovery time, the primary only needs to send the data the semi-primary might
have missed. To do this, a semi-primary sp with spT transactions applied sends the
maximum global_t (recovery_tsp) which guarantees that all transactions with a smaller
one are applied in sp. Briefly, assuming that globals(X) = {global(x) | x ∈ X} and
global(T) returns the global_t of a transaction T:

recovery_tsp = max({x | x ∈ {1, ..., max(globals(spT))}
∧ {1, ..., x} ⊆ globals(spT)}) + 1

(4)

With a practical example, considering that globals(spT) = {1, 2, 3, 5}. The set of
elements that would pass the condition {1, ..., x} ⊆ globals(spT) would be {1, 2, 3}.
5 would not pass since {1, 2, 3, 4, 5} 6⊆ {1, 2, 3, 5}. Therefore, recovery_tsp would be
max({1, 2, 3}) + 1 = 4. The primary then only needs to send the records whose global_t
≥ 4, minimizing data sent. The semi-primary then ignores the recovery values that were
already applied by it (in the above example it would be the data with global_t = 5).

The recovery process must also handle transactions that were running at the time
of crash. To ensure that the client, with or without primary/semi-primary failure,
always receives the correct status of a transaction, running transactions can’t be simply
considered aborted because they could have been committed by the primary without
being applied by the semi-primary. For the recovery to work, each transaction will have
a status assigned to it, stored in its semi-primary’s log. The list of possible statuses is
presented below:

• running (R) – transaction is being executed by the client;

• waiting (W) – transaction certification was received and processed by the semi-
primary; global certification may or may not been issued to the primary;

• committed (C) – transaction committed and applied in the semi-primary;

• aborted (A) – transaction aborted;

• pending (P) – special status that implies that the transaction is waiting resolution
from the recovery.

When a semi-primary issues a recovery request after it crashes, it sets all running
transactions as aborted, since it means that temporary data was lost, as it is kept in
memory. It also sets all transactions in waiting state to pending, knowing its final state
after processing the recovery message from the primary.

3.3. Architecture 36

In addition to the data, the primary also has to send a log that displays the result
for every transaction. To minimize the message’s size, recovery_t is again used to only
send the missing transactions.

When the semi-primary receives the recovery message, it applies the new data (akin
to a normal replication) and sets the pending transactions to their real result, based on
the log received. If some transaction was pending but wasn’t present in the recovery
log, this means it was lost3. For these transactions, the semi-primary can safely set their
status to aborted.

Since a semi-primary has no knowledge of the clients that were waiting for a response,
the clients themselves have to retry the commit request if they sense that the system
crashed (e.g. timeout). When a semi-primary receives a repeated recovery request, it
does the following: if the status is committed or aborted, returns the status; if the status
is waiting (can happen if the primary crashed), retries the global certification request;
finally, if the status is pending, it does nothing, since it is waiting for the recovery reply.

If the primary crashed, it only has to send a welcome message to the semi-primaries
when they reconnect. When a semi-primary receives a welcome message, it can assume
that either the primary crashed or the connection between the two was lost. Either way,
it issues a recovery request, this time without updating the running transactions, since
they are all still valid.

The flowchart presented in Figure 3 resumes the recovery process.

Crash	in
the	system

Who
crashed

?

Reconnect
(transaction
aborted)

client

Update	log	
(R	->	A,	W	->	P)

Send	recovery
request

semi-primary

Wait	for
reply

no

yes Reply	is
recovery?

Process
regular
message

Proceed
with	normal
execution

Apply
recovery

data

Apply
recovery

log

Update
missing	tx
(P	->	A)

primary

Compute
recovery_t

Figure 3: Recovery in the point-of-view of the client, the primary and the semi-primary

3 This is ensured by making the primary process the recovery request only after finishing the certification
of that semi-primary’s transactions, to avoid the possibility of having a transaction that was supposed to
go in the recovery response but was not yet certified.

3.3. Architecture 37

3.3.6 Discussion

The proposed architecture aims to minimize the disadvantages of current replicated
and partitioned architectures, by avoiding the need for geo distributed transactions or
distributed synchronization methods – such as two-phase commit, distributed consensus,
distributed locking, among others – respectively, which can negatively impact response
times. In addition, semi-primaries can be deployed strategically next to clusters of clients
in order to reduce network latency (reads and writes are done with small latencies, only
the commit step requires a possible longer network distance). Also, we can deploy as
many semi-primaries as we want to scale both reads and writes, as transaction execution
and certification performance is not limited by its number. The fact that semi-primaries
evolve independently avoids the need for clients to wait before starting/finishing
transactions. Moreover, the fact that transactions are only certified once, by the primary,
means that there is no repeated work at the replicas (unlike systems where multiple
replicas execute the certification such as MySQL Group Replication [92], Hyder [19],
TAPIR [124], Carousel [121] and others), freeing semi-primary resources to execute more
useful work. Furthermore, even though data is eventually replicated, a client can
immediately read its own writes as long as it uses the same semi-primary. Finally, since
the semi-primary presents a regular interface, it is not limited to key-store models, to
one-round or other restricted transactions, or requiring to know a priori the read and
write-set keys (unlike Calvin [114], TAPIR [124], Carousel [121] and others).

Perhaps the most similar architecture to the Primary Semi-Primary is the central
algorithm that ensures PCSI [39], as described in Section 2.5.2. Just like the Primary
Semi-Primary, it is based on multiple replicas and the use of a central certification
node. There are, however, several differences between the two architectures. First, PCSI
requires total ordering of transactions, which forces a transaction to commit only after
all previous committed ones have been applied. The Primary Semi-Primary instead only
requires for causal order to be respected, allowing snapshots to evolve independently
and leading to faster response times. Second, the algorithm that enforces PCSI relies
on asynchronous but lazy replication, sent in the reply of a transaction certification
response. Although this reduces the number of messages in the network, it delays
the transmission of the certification reply. In addition, this could mean that a replica
that only executes a few update transactions will lag behind, since it does not receive
new data frequently. Third, the algorithm’s definition states that a transaction must be
compared to all previously committed ones, which points to a sequential certification,
reducing throughput and limiting scalability. In contrast, the Primary Semi-Primary only
requires sequential certification for transactions whose write-sets conflict. Finally, the
log-based storage of the transaction manager means that the algorithm that enforces
PCSI might need to rely on aborting transactions that might have been conflict-free.

3.4. Implementation 38

Conversely, the primary in the Primary Semi-Primary has a copy of the most recent data
present, preventing this problem. In addition, a new semi-primary can be connected
at any time and be able to recover all data, unlike the central algorithm that enforces
PCSI, whose transaction manager only stores the data that might not be applied by the
other connected replicas.

Unlike middleware over NoSQL databases that also uses central certification such as
pH1 [26], the Primary Semi-Primary reads and writes are done directly to the database,
without having the need use a proxy in order to store the writes sets, reducing overhead.
Furthermore, since it has full control of the distribution, it avoids writes on multiple
nodes, possibly distant nodes, again improving response times.

The main disadvantage of having a centralized certification is the fact that it becomes
a single point of failure, so it has to rely on failover. Another disadvantage is the fact
that since in the semi-primary the client writes are redirected to temporary structures as
unique inserts, executing transactions under a OCC method, it is not feasible to detect
conflicts while a transaction is running, potentially leading to wasted times. However,
this is mitigated with the semi-primary’s local certification.

3.4 implementation

The implementation of the Primary Semi-Primary architecture is useful as a prototype,
that can be experimentally evaluated and compared to state of the art alternatives,
but is also a demonstration of how components of the architecture can be mapped to
existing database engines and leverage existing query processing and transactional
systems. In fact, a key feature of the proposed implementation is expressing key
operations (e.g. certification) in terms of database queries. The source code can be
found at https://github.com/nuno-faria/p-sp.

3.4.1 Semi-Primary

Database engine

The integration of SQL query processing in the semi-primary is desirable to fully
demonstrate the proposal and to be able to compare it with existing alternatives
running industry standard benchmarks. In addition, SQL systems can adapt to a wider
range of use cases, given most can now directly index and query JSON fields [98]. We
have two implementation options: use a traditional ACID SQL database or use a SQL
engine layered over a NoSQL store. Using an ACID SQL database would mean that
only a small part of the concurrency control would have to be implemented, as some
operations could rely on the native isolation, but would be harder to integrate due

https://github.com/nuno-faria/p-sp

3.4. Implementation 39

to its monolithic nature. Using a SQL engine on top of a NoSQL store could provide
better performance, given that we want to implement our own custom isolation, that
could be more easily integrated as a middleware layer. In short, we have to consider
both performance and ease of integration.

Regarding performance, to find out which is the better option, different query
engines are deployed on top a Cassandra and/or MongoDB stores. The native perfor-
mance of Cassandra, MongoDB and PostgreSQL is also tested. The micro benchmark
uses the query SELECT x, SUM(y) FROM Z GROUP BY x (or equivalent), with Z being
defined as CREATE TABLE Z(x varchar, y int), with x indexed. The database size
consists of 250k entries, with 20% of unique x values. Each test runs the query for 20

times, sequentially, reusing the initial connection in order to reduce overhead. The
first run is ignored. The means obtained are displayed in Figure 4

4. Given that the
PostgreSQL results surpassed even the native results of both Cassandra and MongoDB,
it was decided to use a traditional SQL database.

212
595

1904
1397

345

2477

530
865

1970

0

1000

2000

3000

Native PrestoDB Calcite Dremio Drill

rt
 (
ms
)

PostgreSQL
Cassandra
MongoDB

Figure 4: Comparison of SELECT x, SUM(y) FROM Z GROUP BY x using various Engines/DBMS

Since it is going to be implemented possibly complex queries, the Orca[43] query
optimizer is tested, using the Greenplum database system (based on PostgreSQL), also
designed for analytical workloads. When a complex query is executed (namely nested
SELECTs), the Greenplum database reverts to using the PostgreSQL planner. This
limitation lead to ignoring this engine.

Regarding the ability to integrate the proposed isolation mechanisms, the focus is
on the ability to do so using the SQL language itself. In fact, the reason for choosing
PostgreSQL is that it, unlike MySQL 5, offers a way to completely rewrite the logic of
Insert, Update and Delete statements [53], which allows to implement the isolation
in a way that hides most of the complexity in the database itself.

Finally, in order to improve response times, the PostgreSQL synchronous_commit is
set to off [52]. This allows for the client to receive a quicker response at the cost that
a transaction can be lost if the database crashes. The disadvantage, however, is not a
problem in this system, as there is the guarantee that data is persisted in the primary.

4 The SparkSQL engine was also tested with Cassandra. However, it presented abnormal results.
5 MySQL requires for the underlying table of a view to have a one-to-one relation to be updatable, not

allowing any type of logic rewrite [89].

3.4. Implementation 40

Schema and Operations

To implement the custom isolation defined in Section 3.3.2, given that PostgreSQL
is used as the semi-primary database, we only need to store the deleted flag and the
global_t timestamp. We don’t need to store the f rom_t and to_t since we can use
Snapshot Isolation in PostgreSQL (selected with Repeatable Read) to provide local
snapshots. Table 1 represents the schema transformation needed. It takes the original
table and converts it into two, to store the persistent (T_persistent) and temporary
data (T_temp), and a view (T), that returns the correct data from both tables , i.e.
no deleted rows, only the current transaction’s temporary writes and no auxiliary
columns). This transformation makes it possible to hide the implementation behind
the view, making it easier to be adopted by application developers.

Table 1: Before (a)) and after (b)) converting the table T in the semi-primary to use the custom
isolation.
Bold column names represent primary keys.

a) b)
T T (view)

k1 k2 v1 v2 k1 k2 v1 v2
T_persistent

k1 k2 v1 v2 del global_t
T_temp

tx_id k1 k2 v1 v2 del global_t

For the Select statement, three different implementation options are considered,
as presented in Table 2. Since all three options can be advantageous in certain
situations, an option is provided to change the Select mode at any time, even during
a transaction’s execution.

When it comes to writes, they must be inserted in the temporary tables. The
PostgreSQL concept of rules, that allow us to define the behavior of the Insert, Update

and Delete statements made to a view, is used to achieve this task. The rules simply
make the new row(s), generated by the statement, be inserted to the temporary tables,
together with the transaction id and the respective global_t6 (or 0 if it is a new insert).
For the Delete operation, it is also set the deleted field to true.

With these changes, the exchange between the client and the database is as close
as possible to regular SQL store. The only extra required steps are setting the Select

mode and issuing begin and request certification to every transaction (the former
two directly to the database and the latter one to the semi-primary’s middleware). To
facilitate schema creation, there is a Python script to automatically fulfil this task.

6 Due to a limitation of the database engine, to be able to get the respective global_t, it is necessary to
return the global_t column in the view.

3.4. Implementation 41

Table 2: Comparison between different types of Select in the semi-primary
Name Description When to use SQL

union

Queries the persis-
tent and temporary
tables, combining
the results with a
Union

Query returns a relatively small
number of rows, since the Append

operation to implement the Union

is heavy for a large number; makes
better usage of the available in-
dexes.

SELECT	P SELECT	T

WHERE

UNION	ALL

WHERE

fulljoin

Full joins the persis-
tent and filtered tem-
porary tables and
then filters the result

Query returns a large number of
rows, since its faster than Append,
but might not be able to use the nec-
essary indexes because of the join.

SELECT	P SELECT	T

WHERE

FULL	JOIN

WHERE

nryotw

Doesn’t consider
temporary writes
("not read your own
temporary writes")

Whenever the query doesn’t need
to read its temporary writes; faster
performance than all the other op-
tions. SELECT	P

WHERE

P – persistent table
T – temporary table

Middleware

The middleware handles the semi-primary logic the database can’t handle itself. This
includes receiving and processing certification requests, requesting global certification
and receiving and applying transactions. The choice of language for this middleware
is C++, chosen because of its high performance capabilities. The system is comprised
by five different components:

• main (number of copies: 1) – receives messages from the clients, its workers and
the primary, assigning jobs to its workers and replying to client;

• lworker (local worker) (1..*) – processes jobs related to transactions local to that
semi-primary, such as preparing and issuing global certification requests and
applying local transactions after primary response;

• rworker (replication/recovery worker) (1) – processes replications and recovery
response from the primary; applies transactions by the order of their global_t;

• gc (garbage collector) (1) – responsible for periodically calling the database
procedure that cleans temporary data;

• monitor (1) – periodically sends heartbeats to the primary, so it can know the
semi-primary is still active.

3.4. Implementation 42

To facilitate network communication, ZeroMQ7 is used. Not only this abstracts
network components such as low level sockets, making communication easier, but
also allows to easily implement the main event thread in a non-blocking fashion, since
ZeroMQ directly handles multiple connections to be processed by one thread without
the need of having one listener thread per connection. The need for a monitor comes
from the fact that ZeroMQ, being a high level communication framework, also used by
the primary, does not provide the ability to tell if a connection was closed.

Jobs are distributed from the main to the lworkers using a blocking queue8. For the
replication/recovery jobs, it is also used a blocking queue to abstract the wait/notify
paradigm. The queue used can’t store the replication jobs directly since it does not
guarantee total order, thus being used only as a notification framework.

To serialize message communication between semi-primary and primary, Protocol
Buffers9 is used, mainly due its fast speeds and simple usage.

To enable customization, a YAML config file10 contains several options that can be
tweaked to user preference, such as number of lworkers, the garbage collector timer,
database and primary connections, and so on. Among these, it is important to refer to
the local_certification and wait_for_apply options. The former tells the semi-primary to or
to not process the local certification, which can allow for a faster response time and
reduce semi-primary load if we know that the probability for transactions to abort is
small. The latter tells the semi-primary to or to not wait to reply after the transaction is
applied. Turning wait_for_apply off should yield better response times by sacrificing
consistency, since the client might not be able to read its modifications right after
receiving confirmation that the transaction committed.

To summarize, Figure 5 presents an overview of the semi-primary’s internal architec-
ture and the communication with the other components.

3.4.2 Primary

Database engine

Unlike the semi-primary database, the primary one does not process clients’ requests,
and therefore does not need to provide any specific interface. For this reason, the
choice to pick a database will be solely based on performance and isolation. The
primary database has two tasks: store data to provide to the semi-primaries that issue
a recovery request and to check if a transaction can commit. The first task does not
demand any special requirements, since we can afford the recovery to be a slower

7 https://zeromq.org/
8 https://github.com/cameron314/concurrentqueue
9 https://developers.google.com/protocol-buffers/

10 The configuration options can be overwritten by passing command line arguments.

https://zeromq.org/
https://github.com/cameron314/concurrentqueue
https://developers.google.com/protocol-buffers/

3.4. Implementation 43

Semi-Primary

Client

DB
Session

DEALER ROUTER
req

reply

Semi-
Primary

DB

r/w
BQueue

Local
Worker

PUSHDEALER

Local
Worker

PUSHDEALERadd	job

...
add	job

tx	result

local	cert/
read	write-sets/

apply	tx

global	
cert	req

Monitor PUSH

heartbeat

BQueue
Rep/Rec
Worker

apply	rep/rec

Primary

ROUTER DEALER

global	cert/replication/recovery/welcome

Main
Event
Thread

...

global	
cert	req

Figure 5: Architecture of the semi-primary implementation

process, given that it should be rarely performed. The second one, however, must be as
fast as possible, as it is executed once for every transaction. To guarantee a fast global
certification time, we need to not only rely on a fast database, but also make sure our
data access is as efficient as possible, by performing the certification directly in the
database (as to not load large datasets into memory). Since the certification is a process
that requires some operations that are easily solved by joins (namely finding conflicts
and updating old data), a SQL database is used, namely PostgreSQL. Although it
could be possible to solve the certification entirely in database using a NoSQL store
such as MongoDB, the implementation would definitely be more complex, with no
guarantees that it would actually be any faster. The choice of a database that natively
supports Snapshot Isolation also means that we can push the entire certification to the
engine itself, certainly leading to reduced overheads.

Storage and Certification

To reduce certification complexity, all persistent data is stored into a single table,
where the primary key is the original table’s name concatenated with the original
column’s primary key (e.g. customer.jdoe12). This way, conflict detection can be
achieved with a single SQL query instead of multiple ones, greatly improving per-
formance. The actual original column’s data (primary key(s) and values) is stored
in a single, binary field. There is also a table that stores the results of all executed
transactions (log), used in the semi-primary recovery and duplicate client requests.

3.4. Implementation 44

Briefly, the certification process for a transaction T is implemented as follows:

1. First, it is verified if T was already processed, by checking its id (tx_id_) in the
log (in case of a crash and duplicate request), returning its result if it was;

2. If not, the transaction’s write set is inserted into an in-memory, unlogged table;

3. Next, T’s write set is joined with the persisted data by their primary keys and the
result is filtered to only return the columns whose persistent global_t is bigger
than the respective temporary columns’ global_t:

SELECT COUNT(*) INTO n_conflicts

FROM Data_Temp

JOIN Data ON Data_Temp.pk = Data.pk

WHERE Data_Temp.tx_id = tx_id_

AND Data.global_t > Data_Temp.global_t;

4. If the above query finds any conflicts (i.e. n_conflicts > 0), T aborts;

5. If not, T gets assigned a GLOBAL_T_ and its data is persisted (and the log updated):

INSERT INTO Data (pk, global_t, table_name, data)

SELECT pk, GLOBAL_T_, table_name, data

FROM Data_Temp

WHERE Data_Temp.tx_id = tx_id_

ON CONFLICT (pk) DO UPDATE

SET data = EXCLUDED.data,

global_t = GLOBAL_T_;

The certification process runs on a transaction under the Repeatable Read isolation.
This prevents possible conflicts from concurrent certifications, guarantees atomicity
and ensures that the underlying concurrent control is efficiently implemented.

Middleware

Just like the semi-primary, the primary middleware is implemented using C++. It is
composed by:

• main (number of copies: 1) – receives the semi-primaries’ transaction certification
and recovery requests and assigns jobs to the executors;

• executor (1..*) – certifies and commits transactions; assigns jobs to replicators;

• replicator (1..*) – sends committed transactions’ data to all the semi-primaries
connected (except the one that issued the transaction), with total order guarantees;

3.4. Implementation 45

• recoverer (1..*) – processes the recovery requests;

• monitor (1) – receives heartbeats from the semi-primaries and removes inactive
semi-primaries’ connections;

• connections (1) – stores the sockets of all semi-primaries connected (static class).

The frameworks used for the primary are the same to the semi-primary when it comes
to communication and job distribution.

To handle replication, it was decided that it would occur as soon as a transaction
finishes (no batching). The replicators reuse the Protocol Buffer messages sent by
the semi-primaries, updating just a few fields. This way, there is no need to build a
replication message from scratch, saving processing power, trips to the database and
reducing semi-primaries’ snapshots age.

Figure 6 summarizes the internal architecture of the primary.

Primary

ROUTER

global	cert
request

Main
Event
Thread

...

Connections
(map)

DEALER

DEALER

...

Executors'
Queue

Primary
DB

Replicator

Replicators'
Queue

Recoverers
Queue

Recoverer

...

add	job

add
job

get	recovery	data/log

Recoverer

Executor

Replicator

Monitor

remove	conn

add	job

heartbeat

Semi-
Primary

PUSH

PUSH

...

...
ROUTER

global	cert/replication/recovery/welcome

add
job

...

add
job

add
job

add
job

get	conn

get	conn

get	conn

get
conn

create	conn

certify/
commit	tx

Executor

Figure 6: Architecture of the primary implementation

Availability

High availability can be effortlessly implemented using synchronous streaming replica-
tion in PostgreSQL. With this, there is no need to implement a new one, as the existing
one presents guarantees of a stable and efficient implementation. When the primary
fails, we only need to promote the standby database, start a primary that uses it and

3.5. Evaluation 46

assign the floating IP to the new machine. Because we are using ZeroMQ, there is no
need to manually reopen connections. Also, because the new primary has no memory
of the previous semi-primaries, each time a new one sends a request or a heartbeat it
will receive a “welcome” message, triggering its recovery. The diagram in Figure 7

sketches an example of a top level architecture to ensure high availability.

Floating	IP

Backup	Primary

Primary

Standby
DB

Main	Primary

Primary

Primary
DB

keepalived keepalived
health	check

synchronous	streaming
replication

Figure 7: Example of a possible implementation to ensure high availability in the Primary.

3.4.3 Client

Given the fact that we are using PostgreSQL for the database and ZeroMQ for
the communication with the semi-primary, the client can be implemented in several
languages. The implemented API only needs to implement the methods connect to
connect to both the database and the semi-primary (can be done directly in a constructor
if using object oriented programming), begin to start a transaction and return its id
and commit, which sends the transaction’s id to the semi-primary and returns the result.
The API should also support the methods commit_async, that issue a commit request
without waiting for the response, and get, that waits for the semi-primary response,
blocking if not yet available. To ensure correct system operation under failures, the
client must retry the transaction request in case the primary or semi-primary failed (e.g.
retry every 10 seconds).

3.5 evaluation

This section evaluates and discusses the performance of the Primary Semi-Primary
using the implementation described in Section 3.4, to answer the following questions:
What is the overhead of the certification protocol? How well does the primary scale to
multiple semi-primaries? Does the architecture offer advantages when using multiple

3.5. Evaluation 47

semi-primaries in a local network? What about when geo-distributed? How does the
Primary Semi-Primary compare to other multi-database solutions? What is the cost of
ensure high availability?

All the scripts used to deploy and obtain the results can be found at https://github.
com/nuno-faria/p-sp.

3.5.1 Benchmark and architectures

The performance is evaluated using the TPC-C benchmark.11 When using multiple
client threads, the databases are populated once at the start using 64 warehouses.

The Primary Semi-Primary (p-sp) is compared to the baseline PostgreSQL (native)
and three state-of-the-art competitors:

• Primary Standby - a single node that handles writes, replication and load balancing,
with multiple ones that process reads. Implementation by Pgpool-II [48] (pgpool);

• Multi-Primary Replica - multiple nodes that handle reads and writes, with certifi-
cation processed by all nodes in the same order, determined with a consensus
algorithm. Implementation by MySQL Group Replication [92] (mysqlgr);

• Multi-Primary Shards - a single coordinator node that distributes transactions to
one of multiple worker nodes that handle both reads and writes, each with a
subset of the data. Implementation by Citus [30] (citus).

It would be also worth comparing the Primary Semi-Primary to other commercial
available systems, such as Amazon’s Aurora or Google’s Spanner. However, the fact
that they are closed source solutions makes them difficult to directly compare against,
as its not feasible to ensure similar deployments.

3.5.2 Environment

All tests are executed on Google Cloud Engine (GCE) virtual machines (Series N1

CPUs), using Ubuntu 18.04 LTS. The version of PostgreSQL used is always PostgreSQL
12, as well as Pgpool-II 4.1.2 and Citus 9.4. MySQL 8.0.17 is used for the native MySQL
and MySQL Group Replication tests, the latter with the number of applier threads for
executing replications in parallel (loose-slave-parallel-workers) configured to 1024.
Both the TPC-C client and the MySQL servers are deployed using Docker containers
(19.03.12), in order to simplify deployment.

11 http://www.tpc.org/tpcc/, Implementation by https://github.com/Percona-Lab/sysbench-tpcc

https://github.com/nuno-faria/p-sp
https://github.com/nuno-faria/p-sp
http://www.tpc.org/tpcc/
https://github.com/Percona-Lab/sysbench-tpcc

3.5. Evaluation 48

The number of semi-primary local workers is set to double the number of CPU cores
12, while the number of primary executors is set to 8 times.

Pgpool-II relies on PostgreSQL’s streaming replication, as recommended by the
developers [46]. In addition, to better simulate the Primary Semi-Primary architecture,
synchronous_commit is set to local, meaning the primary can return to the client
before replication occurs. Unlike the Primary Semi-Primary, however, this does not
guarantee that a client can read its own writes immediately after their transaction
finishes. The parameter disable_load_balance_on_write is set to off, meaning reads
in a transaction can be balanced even after writes [47]. The primary only processes
writes, meaning all reads are balanced across the replicas.

The Citus test is configured with 64 shards, using the warehouse identifier as the
partition key for all tables expect Item, as it is not specific to a single warehouse. It is
instead modeled as a reference table, that creates a copy at each worker [33]. Since all
operations in the TPC-C benchmark are contained in a single shard, this should be the
optimal distribution method.

Finally, both PostgreSQL and MySQL use their default configurations, the exception
being the maximum number of connections.

3.5.3 Results

Certification overhead

The first test evaluates the overhead of the Primary Semi-Primary when compared
to a native PostgreSQL database. The native runs an instance with 8 vCPUs, 8 GB of
RAM and 250 GB SSD, while the p-sp uses two of those same machines, one for the
primary and the other for the semi-primary. The benchmark runs on a 4 vCPUs instance,
using 1, 2, 4, ... and 1024 threads, each with a duration of 5 minutes and a cooldown
of 10 seconds. All instances are deployed in the same network. The throughput results
are presented in Figure 8.

1 2 4 8 16 32 64 128 256 512 1024
threads

100
200
300
400

tx
/s

native
p-sp

Figure 8: Throughput comparison between the Primary Semi-Primary and native PostgreSQL
(single semi-primary).

12 1 Core = 1 vCPU = 1 execution thread

3.5. Evaluation 49

The Primary Semi-Primary throughput is between 45% and 90% the native PostgreSQL.
This means that, on average, we would need at least two semi-primaries in order to
match native performance (assuming linear scalability). The main reason for this can
be visualized in Figure 9, which reports that 32% of the transaction time is spent on
certification. In addition, there is also some execution overhead, as all operations are
rewritten by views and rules. This is the cost of implementing the Primary Semi-Primary
without changes to the database engine level, using only high level SQL queries and
middleware code.

68% 32%
Execution Certification

28%12%

[sp]	apply[p]	certification
and	commit

[sp]	process
local	tx

12% 28%

[sp]	prepare
write	set

22% 38%

Figure 9: Percentage of a transaction’s time used in execution and certification’s in the Primary
Semi-Primary.

Primary scalability

The second test evaluates how well does the primary scale relatively to the scale of
semi-primaries, as it is a centralized component and potentially the bottleneck of the
system. To do this, several primaries with 1, 2 and 4 cores (and 4 GB RAM) handle the
workload from a 16 core, 16 GB RAM semi-primary. The client, using a 4 core machine,
starts at 1 thread and doubles every 120 seconds, until 1024. There is a 10 second
cooldown between every number of threads. The plot in Figure 10 shows the average
time taken by the primary to process a certification request.

4 5 6
10

27

79
180

752 756
1464 2364

4 4 4 5

10
29

67
129

250
407

3211

6 8 10 9 8 7 7
1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

re
sp

on
se

 t
im

e
(m

s)

threads

1 vCPU
2 vCPUs
4 vCPUs

Figure 10: Primary certification time with 1, 2 and 4 cores.

These results tells us that for a low to medium load (1 to 32 threads) a single core
is enough to quickly handle the certification. For a medium to high load (32 to 128

3.5. Evaluation 50

threads), we need to have a primary with at least 2 cores for a relatively quick response
time (less than or around 100ms). 4 cores looks to be enough to comfortably handle
any load of a 16 threaded semi-primary. These results let us conclude two things: 1)
just a single core primary can handle a significant number of client threads and 2) the
primary greatly benefits from multiple cores, therefore proving it can indeed vertically
scale. As a side note, one has to keep in mind that the default TPC-C benchmark only
has about 8% of read-only transactions. On an application with a higher percentage,
we would need relatively less primary processing power to handle the same number of
semi-primaries, as read-only transactions do not require global certification.

Multiple semi-primaries

The next test evaluates the overall Primary Semi-Primary performance when using
multiple semi-primaries. To achieve this, the benchmark is tested against clusters with 1,
2, 4 and 8 semi-primaries, together with a primary node. Each primary and semi-primary
runs on different machines, each with 2 vCPUs, 8 GB RAM 13 and 50 GB SSD. The
native test runs on a single machine with the same specs. The throughput ratio
between p-sp and native (i.e. p-sp

native) is compared to the throughput ratio between
other architectures and their respective native version 14. Pgpool tests use 1 primary
plus 1, 2, 4 and 8 standbys. Citus tests use 1 coordinator plus 1, 2, 4 and 8 worker nodes.
MySQL Group Replication tests use 1, 2, 4 and 8 nodes. To better model this benchmark
as a real application, warehouse access is sharded across semi-primaries/MySQL Group
Replication nodes, to simulate locality. For example, if we have 2 semi-primaries/MySQL
Group Replication nodes, transactions to the first one updates warehouses 1 to 32

while the second updates warehouses 33 to 64. The client, deployed on a machine
with 6 vCPUs, executes with 1, 2, 4, ... and 1024 threads, each for a duration of 2

minutes and a cooldown of 10 seconds. Client’s threads are evenly assigned across
semi-primaries/MySQL Group Replication nodes. In the Citus test, each worker has
the same number of shards. The client and servers are deployed in the same network.
Throughput ratios between the architectures and the single native counterparts are
shown in the heat maps of Figure 11. Response time rations are displayed in a similar
fashion in Figure 12. Figure 13 plots the average throughput and response time ratios
for each size, to visualize how each architecture scales.

13 The relatively high RAM is required for the MySQL GR to be populated quickly.
14 Citus is compared to PostgreSQL’s Read Committed since it is the maximum isolation supported by it.

3.5. Evaluation 51

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 0.54 0.79 0.71 0.65 0.23 0.31 0.29 0.29 0.55 0.65 0.62 0.78 0.91 0.87 0.75 0.46

2 0.75 0.52 0.78 0.75 0.46 0.48 0.45 0.46 0.77 0.82 0.76 0.83 0.99 0.63 0.84 0.83

4 0.81 0.89 0.73 2.05 1.29 1.37 1.46 1.00 0.89 1.65 1.61 1.68 0.99 0.92 0.59 0.73

8 0.78 1.12 1.53 1.29 1.17 1.22 1.45 1.01 1.11 2.76 2.60 2.76 0.98 0.93 0.84 0.58

16 0.55 1.10 2.05 2.30 0.83 1.05 1.17 0.81 1.07 2.64 2.53 2.74 0.99 0.95 0.89 0.74

32 0.57 0.95 2.26 2.53 0.91 0.99 1.01 0.78 0.98 1.87 1.92 2.15 1.00 0.99 1.08 0.98

64 0.48 0.92 2.38 3.84 0.94 0.88 1.15 0.76 0.75 1.74 1.76 1.84 1.01 1.14 1.21 1.29

128 0.47 0.89 2.24 3.73 0.99 0.95 1.27 0.84 0.80 1.83 1.82 1.88 1.00 1.06 1.21 1.59

256 0.50 0.98 2.25 3.48 1.01 1.07 1.35 1.06 0.72 1.81 1.85 1.90 0.98 1.05 1.22 1.74

512 0.48 1.02 2.53 3.70 1.16 1.19 1.26 1.43 0.77 1.91 1.87 1.95 1.02 1.08 1.29 2.00

1024 0.29 0.68 2.09 3.04 1.11 0.98 1.28 0.92 0.75 1.78 1.77 1.80 1.31 1.37 1.65 2.56

threads
p-sp pgpool citus mysqlgr

Figure 11: Throughput ratio between the Primary Semi-Primary / PostgreSQL and other alterna-
tive architectures and their respective native counterparts, for a variable number of
nodes and threads, in a local network.

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 1.84 1.27 1.40 1.53 4.36 3.24 3.42 3.46 1.83 1.54 1.61 1.28 1.10 1.14 1.33 2.19

2 1.33 2.00 1.28 1.35 2.19 2.10 2.22 2.15 1.30 1.23 1.32 1.21 1.01 1.63 1.26 1.31

4 1.24 1.14 1.47 0.51 0.78 0.73 0.68 1.00 1.12 0.61 0.62 0.60 1.01 1.10 1.76 1.57

8 1.30 0.90 0.66 0.78 0.86 0.82 0.69 0.99 0.90 0.36 0.39 0.36 1.02 1.12 1.19 1.74

16 1.82 0.91 0.49 0.44 1.21 0.95 0.85 1.23 0.94 0.38 0.40 0.37 1.01 1.06 1.12 1.45

32 1.76 1.07 0.44 0.40 1.10 1.02 0.99 1.29 1.02 0.54 0.52 0.47 1.00 1.01 0.93 1.03

64 2.07 1.09 0.42 0.26 1.06 1.14 0.87 1.31 1.33 0.58 0.57 0.54 0.99 0.87 0.83 0.78

128 2.11 1.13 0.45 0.27 1.01 1.04 0.79 1.19 1.26 0.55 0.56 0.54 1.00 0.94 0.83 0.63

256 1.97 1.02 0.45 0.29 1.00 0.94 0.74 0.94 1.42 0.57 0.56 0.54 1.02 0.95 0.82 0.58

512 2.01 0.98 0.40 0.28 0.86 0.85 0.80 0.70 1.32 0.54 0.55 0.53 0.98 0.92 0.77 0.50

1024 3.46 1.52 0.51 0.35 0.94 1.05 0.82 1.11 1.36 0.58 0.59 0.58 0.76 0.72 0.60 0.38

threads
p-sp pgpool citus mysqlgr

Figure 12: Response time ratio between the Primary Semi-Primary / PostgreSQL and other
alternative architectures and their respective native counterparts, for a variable
number of nodes and threads, in a local network.

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

p-sp pgpool citus mysqlgr

av
er

ag
e

ra
ti

o

throughput

response time

Figure 13: Average throughput and response time ratios between the Primary Semi-Primary /
PostgreSQL and alternative architectures and their respective native counterparts, in
a local network.

3.5. Evaluation 52

In the Primary Semi-Primary results we can observe that having just one semi-primary
yields approximately half the single PostgreSQL throughput, which is in line with
the data in Figure 8. Using 2 semi-primaries under medium loads results in a similar
throughput to the native. For 4 and 8 semi-primaries, however, the results are consid-
erably better under medium to high loads, with throughput reaching up to 2.5 times
higher with 4 and 3.8 times higher with 8, while response time reaches down to 0.4
times lower with 4 and 0.3 times lower with 8. These results show that the Primary
Semi-Primary architecture can indeed scale, almost linearly, to multiple semi-primaries
in a local network. The drop in performance after 64 clients for 8 semi-primaries can be
justified by the fact that the primary is under more load than it can handle (Figure 10).

The Pgpool results do not display relatively significant performance increases,
reaching at most 1.4 times the throughput of the native counterpart. Since the TPC-C
is a write heavy benchmark, the majority of operations won’t be able to be balanced.
In addition, all operations, including Begin and Commit, need to be first processed by
the primary node, increasing its load. Furthermore, we can see that having 8 nodes
performs worse than having 1, 2 and 4, which can be explained by the fact that, at
some point, adding more nodes only increases the replication overhead on the primary
without offering any advantages apart from increased availability.

The Citus tests present a significant increase in performance when using 2 workers
over 1, reaching up to 2.8 times the throughput and reaching down to 0.4 times the
response time of a single native PostgreSQL. However, adding more nodes does not
seem to impact the overall performance. By analyzing the CPU load, it was discovered
that, for 4 and 8 workers, the coordinator was under full usage before the workers.
Just like the Pgpool, all operations have to be processed first by the coordinator, which
reduces scalability. To solve this, Citus allows us to add more than one coordinator
[32] or the option route the operations directly to the workers [31], although this
last solution is commercial only. One has to keep in mind that, for this particular
benchmark, this architecture didn’t have to deal with distributed transactions, which
could have negatively impacted the performance.

Looking at the MySQL Group Replication tests, we can immediately see that using
one node has no significant impact on the performance, unlike the Primary Semi-Primary
and the other architectures. However, unlike the Primary Semi-Primary, adding more
nodes does not appear to have the same level of impact in the throughput. In fact, at
low to medium loads, more nodes actually end up generating less throughput. This
can be justified by the fact that, as more and more nodes are added to the system, the
more expensive becomes the consensus step to determine certification order. Despite
this, using multiple MySQL Group Replication nodes has its advantages. As we can
analyze, there is a clear benefit when using it under high loads, with throughput
ratio reaching up to 1.7 times higher with 4 nodes and 2.6 times higher with 8, while

3.5. Evaluation 53

response time reaches down to 0.6 times lower with 4 nodes and 0.4 times lower with
8.

In conclusion, we can see that the Primary Semi-Primary architecture scales relatively
well to multiple semi-primaries in a local network environment.

Geo replication

This test evaluates the Primary Semi-Primary performance in a geo-distributed envi-
ronment. Since now there is a greater network latency, it is expected that the difference
in throughput between Primary Semi-Primary and native be higher comparatively to the
results in the previous section. Clients with 2 vCPUs are placed in 7 locations across
the globe, namely: us east1, us central1, us west1, southamerica east1, europe
west4, europe north1 and asia east1.15 The geographical locations of these zones
can be inspected in Figure 14.

Figure 14: Locations of the clients for the geo replication test.

All clients execute simultaneously, each running tests with 1, 2, 4, ... and 64 threads
(so 7× N threads in total), each with a duration of 5 minutes and a cooldown of
1 minute. The primary and the native are deployed in us east1. A semi-primary is
deployed next to each client. In the p-sp test, each client accesses the closest semi-
primary. The throughput difference between p-sp and native is once again compared
to the difference between mysqlgr and mysql, using a similar deployment. Just like
the last test, warehouse access is balanced across clients. Neither Pgpool nor Citus
are evaluated since, it does not seem to be possible to specify the standby where the
Pgpool load balances a query nor the locations of the shards in Citus. This means that a

15 https://cloud.google.com/about/locations

https://cloud.google.com/about/locations

3.5. Evaluation 54

client could be routed to a distant server in these implementations, which would make
it an unfair comparison. Each server is deployed on a 2 vCPUs, 8 GB RAM and 100 GB
SSD machine. Figure 15 displays, for each zone, the average throughput for all number
of threads. Figure 16 displays the average response times in a similar fashion. Both
figures present the zones in ascending order of distance to us east. The throughput
and response time differences between Primary Semi-Primary/PostgreSQL and MySQL
Group Replication/MySQL are displayed in Figures 17 and 18, respectively.

157.3

10.3 5.0 3.4 3.1 2.6 1.9

57.7 46.1 36.3 31.0 28.6 28.0 23.1

0
25
50
75
100
125
150
175

us east us
central

us west eu west s.
america
east

eu north asia
east

tx
/s

native p-sp

Figure 15: Throughput of the Primary Semi-Primary and the native PostgreSQL, in a geo-
distributed environment.

0.2
1.3

2.8
4.0 4.5 5.0

7.4

0.4 0.4 0.5 0.5 0.5 0.5 0.6

0
1
2
3
4
5
6
7
8

us east us
central

us west eu west s.
america
east

eu north asia
east

re
sp
on
se
 t
im
e
(s
) native p-sp

Figure 16: Response time of the Primary Semi-Primary and the native PostgreSQL, in a geo-
distributed environment.

0.2
1.9

5.0
7.0 8.1

6.4

12.5

0.4

4.5

7.3
9.1 9.4

10.6
12.3

0

5

10

15

us east us
central

us west eu west s.
america
east

eu north asia
east

tx
/s
 r
at
io

(t
im
es
 h
ig
he
r)

mysqlgr p-sp

Figure 17: Throughput difference between the Primary Semi-Primary / PostgreSQL and MySQL
Group Replication / MySQL, in a geo-distributed environment.

3.5. Evaluation 55

0.3
1.9

3.1
4.2 5.0

6.6
7.7

0.4

3.1

6.0
7.8 8.5 9.3

12.0

0

5

10

15

us east us
central

us west eu west s.
america
east

eu
north

asia
east

rt
 r
at
io

(t
im
es
 l
ow
er
)

mysqlgr p-sp

Figure 18: Response time difference between the Primary Semi-Primary / PostgreSQL and
MySQL Group Replication / MySQL, in a geo-distributed environment.

Analyzing the throughput comparison (Figure 15) we can see that, in us east zone,
the native PostgreSQL is clearly superior to the Primary Semi-Primary, which can be
justified by the latter’s overhead. However, as the distance between the client and the
native database server increases, the Primary Semi-Primary presents substantial higher
throughput, up to 12 times higher. This is due to network latency between client and
server adding up to response time (up to 12 times higher) in native PostgreSQL, as we
can analyze from the response time results (Figure 16). For example, if a transaction has
5 read/write operations and the client-server latency is 100ms, the transaction needs
to wait 1 second just in communication. In contrast, the Primary Semi-Primary would
only be affected by that 100ms latency twice, at certification (request and response).
The other operations would have a lower response time, as long as the there is a
semi-primary close to the client. This also explains why the throughput in the Primary
Semi-Primary decreases relatively less when the distance to the primary increases.

As for the results that compare the difference between Primary Semi-Primary/native
PostgreSQL and MySQL Group Replication/native MySQL (Figures 17 and 18), the
Primary Semi-Primary shows a relatively higher difference in the response time ratio, as
it is expected since MySQL Group Replication relies on a more expensive certification
protocol. When it comes to throughput, it is also higher in the Primary Semi-Primary,
except for the asia east zone. Despite not shown here, the native PostgreSQL pre-
sented, unexpectedly, a considerably higher response time than the MySQL (but at the
same time a higher throughput) for all zones except us east. In addition, the overall
abort rate was, on average, much higher in the native PostgreSQL (19%) and Primary
Semi-Primary (25%) than in the MySQL Group Replication and the native MySQL (both
less than 1%). Since aborts have a bigger impact on geo distributed systems, as they
lead to more wasted work, it is not easy to make a direct comparison between the two
architectures, since PostgreSQL and MySQL behave differently. Overall, the Primary
Semi-Primary presented a throughput 37% higher than the native PostgreSQL while
the MySQL Group Replication was 5% higher than the native MySQL. Furthermore,
on average, each client in the Primary Semi-Primary displayed 7.6 times higher the

3.5. Evaluation 56

throughput and 6.7 times lower the response time of the native PostgreSQL while each
one in the MySQL Group Replication presented 5.9 times higher the throughput and
4.1 times lower the response time.

Despite not being evaluated, it is expected for both Pgpool and Citus tests to perform
worse than the Primary Semi-Primary/MySQL Group Replication, as each operation
needs to be first routed to a single node.

High availability overhead

Finally, it is evaluated the performance of the Primary Semi-Primary with high
availability guarantees, given it is an integral part of any database system. To do so,
two deployments will be tested: one where the primary has a standby copy (p-sp-HA),
implemented with PostgreSQL’s synchronous replication, with the max_wal_senders
16 option set to 128, and one without (p-sp). Each server is deployed on a 6 vCPUs,
6 GB RAM and 165 GB SDD machine. The tests with high availability use three of
those instances (one for the semi-primary, one for the primary and one for the primary
backup), while the tests without high availability use two. The client runs on a 4

vCPUs machine, with a variable number of client threads, each executing for 5 minutes
with a 10 second cooldown. All instances are deployed in the same local network.
Figure 19 presents the throughput of the two deployments.

1 2 4 8 16 32 64 128 256 512 1024
threads

0

100

200

tx
/s

p-sp
p-sp-HA

Figure 19: Throughput comparison between the Primary Semi-Primary with and without high
availability guarantees.

By looking at both results we can infer that there is not a substantial difference
between the two deployments. In fact, on average, adding high availability guarantees
only incurs a 3% throughput loss. This relatively low variance can be justified by the
fact that most of the transaction execution is centered in the semi-primary (Figure 9),
so the overall throughput will rely mainly on its performance. As we can see, the
difference under low loads is higher than the difference under high ones. Therefore,
providing high availability guarantees to the Primary Semi-Primary is something with
little impact of the overall performance.

16 max_wal_senders specifies the maximum number of concurrent connections from standby servers to the
primary [50].

4

M U LT I - R E C O R D VA L U E S

4.1 motivation

Transactional database management systems are designed to safely handle a large
number of concurrent requests. Snapshot Isolation has become the choice for many
systems to achieve this, as it ensures that read operations do not conflict among them
or with concurrent updates and can always proceed, providing optimal performance
for read-intensive workloads.

When it comes to handling concurrent updates, the choice is less clear. Database
systems offering Snapshot Isolation rely on first-committer wins and rollback trans-
actions to maintain isolation. In particular, when some items are frequently updated,
this results in a large number of rollbacks and wasted work. This applies to both
centralized and especially distributed systems, where network latencies play a major
role in the overall performance.

To better understand how this problem can be improved, the topmost common types
of conflicts in the TPC-C1, a frequently used OLTP benchmark, are analyzed. The
results are presented in the Table 3.

The results presented show that most aborts are generated by simple additions/sub-
tractions on the same record. These aborts can be divided in two types:

1. successive increments of one unit to the value to generate unique identifiers, e.g.
increment the next order identifier of some district in TPC-C (UPDATE District SET

d_next_o_id = d_next_o_id + 1 WHERE ...)

2. additions to a value, e.g. add an order’s total amount to its warehouse’s year-to-date
value in TPC-C (UPDATE Warehouse SET w_ytd = w_ytd+__h_amount WHERE ...);

In the first case, conflicts can often be avoided with auto incremented fields (common
in SQL), at the expense of being non-transactional – in case of rollback, the counter is
not decremented back. There is no high throughput solution to this operation if we
want to ensure monotonicity [45].

1 http://www.tpc.org/tpcc/, implementation by https://github.com/rmpvilaca/EscadaTPC-C

57

http://www.tpc.org/tpcc/
https://github.com/rmpvilaca/EscadaTPC-C

4.2. Overview 58

Table 3: Top 5 most common abort causes in the TPC-C benchmark (Repeatable Read).
The presented queries concern updating a warehouse’s year-to-date by some order’s amount
(1), incrementing a district’s next order identifier (2), updating a district’s year-to-date by some
order’s amount (3), deleting the information of some new order (4) and updating a stock’s
year-to-date by some amount and incrementing its number of sales count (5).

TX statement %

payment UPDATE warehouse SET w_ytd = w_ytd + __h_amount WHERE w_id =
__w_id

36.68

neworder UPDATE district SET d_next_o_id = d_next_o_id + 1 WHERE d_w_id

= _w_id AND ...

28.27

payment UPDATE district SET d_ytd = d_ytd + __h_amount WHERE d_w_id =
__w_id AND ...

27.06

delivery DELETE FROM new_order WHERE no_w_id = _w_id AND no_d_id =
_d_id AND ...

3.07

neworder UPDATE stock SET s_ytd = s_ytd + _li_qty, s_order_cnt =

s_order_cnt + 1 WHERE ...

2.89

The second case can be mitigated by acquiring exclusive locks early in the trans-
action, either implicitly in an UPDATE statement or explicitly with a SELECT ... FOR

UPDATE. Although it reduces wasted work, it results in serially executing conflicting
transactions, thus impacting efficiency. In addition, it can also be handled with some
high-performance solutions already presented in Section 2.4. However, they do not
come without limitations. Namely, failing to ensure a limit restriction to the values
modeled, meaning they are not viable to model fields that require strong consistency
guarantees, such as stocks or balances.

Since both aborting and locking negatively impact transactional performance, espe-
cially on geo distributed databases given the significant network latencies, the main
motivation is the creation of a data structure that helps ease this problem. The next
sections present such structure, together with its algorithms, physical implementation
and evaluation.

4.2 overview

Multi-Record Values (MRVs) consist in partitioning numeric values over multiple data
records whose sum equals the original value. Concurrent operations – namely add and
subtract2 – on the same value can be spread over multiple records, avoiding aborts or

2 Updating a numeric value without explicitly adding or subtracting an amount (e.g. SET value =
10 instead of SET value = value + 2) also counts as an add or subtract operation, depending on the

4.3. Architecture 59

locking contention. This is possible since those operations are commutative, meaning
they can be applied in any possible order and the final result will always be the same.

The key property of MRVs is that they are able to preserve a lower limit invariant
– for example, a requirement that the value cannot be lower than zero. They could
also be implemented to deal with upper limit invariants. However, since its usage
is not as widespread as the lower limit ones, it was not considered in the design of
the presented MRVs. Besides, an upper limit can be easily modeled as lower limit
by inverting the way the operations are done – for example, modeling ticket sales as
tickets remaining instead of tickets already sold.

Another interesting property is that they are independent of application semantics
and do not require the developer to determine and maintain sensible partitions. MRVs
are assisted by background workers that dynamically manage the total number of
records, based on the abort rate at any given time. In addition, there are also workers
that balance the amount between records of an MRV, to avoid high deviations.

MRVs take advantage of the underlying isolation to handle conflicts. If the un-
derlying database does not support transactional guarantees, records will have to be
manually locked at applicational level.

4.3 architecture

The proposal for MRVs to reduce the impact of update hotspots addresses the key
challenges in partitioning: How to balance and maintain the appropriate number
of partitions? How to enforce global invariants without having to read, update, or
lock all the partitions? The approach is inspired by consistent hashing and its use
in distributed hash tables (DHTs) [60, 111]. In particular, the use of randomness for
spreading the load and in structure to enforce global invariants with local knowledge.

4.3.1 Overview

For each numeric column that is transformed into an MRV, an additional table and
an n-to-1 relation with the original table is assumed, established by the original’s
primary key (pki). We have thus one or more partition records vi,j for each original
value vi. Each of these is identified by the pair (pki, rki,j), where rki,j is a unique integer
between [0, N − 1] and contains a partition of the value. Therefore, the original value
vi corresponding to pki is reconstructed as the sum of partitions vi,j for all j.

The assumption is that this aggregation is not often needed. Frequent operations
will only add to or subtract from vi, while enforcing some limit, e.g. vi ≥ 0. To achieve

difference between the new and old values. If the difference is negative, it counts as a subtraction, else it
counts as an addition.

4.3. Architecture 60

this efficiently, partitions of a value – records with the same pki – are seen as organized
in a ring structure of size N, akin to the one found in the Chord DHT [111] and
depicted in Figure 20. Solid black circles represent the record partitions, while empty
circumferences represent indices that do not correspond to any record.

pki

T1

T2

T3

T4

rki,1 = 2

rki,2 = 6

rki,3 = 9

rki,4 = 11
rki,5 = 13

rki,6 = 14

rki,7 = 18

rki,8 = 20

rki,9 = 21
0

N − 1

Figure 20: Diagram of the structure of one MRV and various possible transactions alternatives.

To add some value to vi, one must first pick a random rk′, in the range [0, N − 1],
that will be used to lookup a random record. The record selected for update is the one
whose rk is equal to rk′ or, if none exists, the one that comes immediately after rk′ in
terms of natural numbers order. This is shown in Figure 20 as T1, where rk′ = 4 and
the selected record is the one identified by ri,2 = 6.

To subtract some δ from vi while enforcing that vi ≥ 0, one starts the same way
with a random rk′ and if the next vi,j ≥ δ, simply subtracts the value and then its
done. If not, vi,j is set to 0 and the remainder carries on to the next partition. Figure 20

illustrates this with T2, that starts with rk′ = 8, sets vi,3 to 0 and subtracts the remainder
from vi,5. A key advantage of this strategy is that, assuming an index on (pki, rki,j), a
second lookup can be avoided by iterating to the next value.

Note that transactions T1 and T2 do not conflict and can be adding, subtracting, and
checking the invariant at the same time, possibly in different nodes in a distributed
system, without interfering. The probability of conflict can be decreased by increasing
the number of partitions, but conflicts cannot be fully avoided. For instance, in
Figure 20 T3 starts with rk′ = 16 and T4 starts with rk′ = 17 and both end up trying
to modify the value associated with rki,7 = 18. MRVs are designed to take advantage
of the underlying database’s concurrency control. This means that one of T3 or T4 is

4.3. Architecture 61

automatically rolled back/locked by the engine, as both write on the same physical
record. This can also be achieved manually at applicational level, in case the underlying
engine doesn’t offer transactional guarantees. Another advantage of this strategy is
that by acquiring locks in a predictable order, according to increasing j in rki,j, deadlock
probability is greatly reduced.

Finally, there is the case where there is an attempt to subtract from vi more than the
current value, thus violating the invariant. In this case, it will iterate over the entire
structure and, once it reaches back to the initial record, it will still have an amount left
over to deduct. In this case, the transaction will have to rollback to preserve the lower
limit of zero. This is the only scenario where vi is fully materialized and conflicts with
all other transactions on the same item.

The remainder of this section describes each of the operations in detail, then how
the number of partitions can be adjusted, and finally how partitions can be balanced
to further reduce the need to lookup more than once in each sub operation.

4.3.2 Operations

The detailed description of operations in this section does not explicitly include con-
currency control. Instead, it is assumed that these operations run within a transaction
in an existing database system that enforces Snapshot Isolation, aborting conflicting
transactions, or uses a locking protocol that acquires and holds fine-grained row locks
at least for the duration of these procedures. Coarse granularity locking (e.g., table
locks) would defeat the purpose of MRVs. We also assume that possible deadlocks are
dealt with by eventually aborting transactions.

Algorithm 3 describes the basic lookup at the core of every sub and add operation.
It is used to find the first (or next) relevant record while iterating over partitions. In
detail, it filters rows corresponding to the same pk (line 2) and selects the record with
the minimum value of rk that is greater or equal to the input (line 3). If not found, it
wraps around the ring (lines 4-6). Note that, in practice, this reduces to a single index
traversal for the first lookup and an index iteration for subsequent records.

Algorithm 3: Lookup of a record in an MRV (definition)
1 Function lookup(pk, rk):
2 f iltered ← { r | r ∈ Values ∧ r.pk = pk }
3 selected ← minx→x.rk ({r | r ∈ f iltered ∧ r.rk ≥ rk})
4 if selected = Null then
5 selected ← minx→x.rk (f iltered)
6 end
7 return selected

4.3. Architecture 62

Algorithm 4 shows how to add a positive amount to an MRV: first, perform a lookup
using a random starting point (line 2) and then update the quantity in the obtained
record (line 3). This is simple since the value can always be added to a single partition.

Algorithm 4: Add a value to an MRV (definition)
1 Function add(pk, v):
2 r ← lookup(pk, random(0..N))
3 r.v← r.v + v

Algorithm 5 shows the sub operation, i.e. subtracting a positive amount from an
MRV while guaranteeing that the result is non-negative. In contrast to add, it is not
as straightforward as we want to guarantee the lower limit invariant. Therefore, after
performing a first lookup (line 2), the sub operation must consider the remaining
amount left in the retrieved record (line 6). If the lower limit is set to zero,3 the
operation must guarantee that the remaining amount is greater than or equal to zero,
to ensure the MRV’s total value is kept above or equal to zero. Thus, just a single
lookup and subtract might not be enough to deduct the entire desired amount (line
9). To circumvent this, the sub operation must keep updating the next records until it
subtracted everything it needed to subtract, by performing the lookup operation with
the current record’s rk + 1 (line 10). These lookup operations are likely to, in practice,
reduce to iterating over the index and thus be highly efficient.

Algorithm 5: Subtract a value to an MRV where the final value ≥ 0 (definition)
1 Function sub(pk, v):
2 r ← lookup(pk, random(0..N))
3 rk0 ← r.rk
4 done← False
5 while v > 0∧ ¬done do
6 to_sub← min(r.v, v)
7 r.v← r.v− to_sub
8 v← v− to_sub
9 if v > 0 then
10 rk← r.rk + 1
11 r ← lookup(pk, rk)
12 if rk0 = r.rk then
13 done← True
14 end
15 end
16 end
17 return v = 0

3 Limits different than zero can be convert them into a zero one, by removing or adding the difference to
the original value. For simplicity sake, the remainder of this thesis establishes zero as the lower limit.

4.3. Architecture 63

Finally, Algorithm 6 is the total_value operation, that simply sums the amounts of
the entire record set to compute the value of an MRV. Note that with Snapshot Isolation
this still does not conflict with any other concurrent operation.

Algorithm 6: Compute the total value of an MRV (definition)
1 Function total_value(pk):
2 partial_amounts ← { r.v | r ∈ Values ∧ r.pk = pk }
3 total ← ∑ partial_amounts
4 return total

In terms of time complexity based on the number of partitions for a single record (N),
the lookup operation is O(log(N)), assuming a tree structured index. The add operation
is O(log(N)), as only one lookup and update are required. The sub operation is O(N)

as one lookup is needed and then possibly the traversal of all partitions. However,
as long as the records are properly balanced, a single partition will suffice and in
practice it will be as efficient as add. Finally, the total_value is O(N) as it cannot avoid
traversing all partitions.

4.3.3 Adjusting to workload

As the number of records increases in an MRV, the collision probability decreases.
However, considering that the number of records in an MRV has a negative impact
on read performance and wasted space, the number of records cannot be blindly
set to an arbitrarily high value. In addition, the number of total records needs to
be limited by the total amount, since a high number of records for a small value is
counterproductive, namely for sub operations, as it increases the chance having to visit
and change multiple partitions. Defining a static number of records is not feasible,
given the fact that the load an MRV is subjected to and its total amount can vary over
time. To solve these problems, MRVs are aided by a background task responsible for
controlling the number of records, designated adjust worker.

To highlight the relevance of this issue, it is used a simulation that shows what is the
expected abort rate given the number of records, number of transactions per second
(tx/s) and transaction duration (fixed to 5ms). It is assumed that each transaction starts
randomly between 0 and 995ms and they all update the same value. The abort rate
is computed by averaging 10 runs of the given parameters. The results in Figure 21

show the average amount of records necessary to reach some target abort rate, with a
variable number of tx/s.

The results of Figure 21 show that as the target abort rate decreases, the number
of records required to reach it grows exponentially, therefore configuration needs to

4.3. Architecture 64

0 200 400 600 800 1000
tx/s

0

100

200

300

400

re
co
rd
s

1.0%
2.5%
5.0%
7.5%
10.0%
20.0%

Figure 21: Average number of records in an MRV necessary to reach abort rates of 1%, 2.5%,
5%, 7.5%, 10% and 20%, given a variable number of tx/s, for the custom simulation.

balance an acceptable abort rate (argoal) with space and time overhead resulting from
increasing the number of partition records.

Having set the target abort rate, it is now necessary to define the behavior of the
adjust worker. We want to have, for some MRV, at any given time, the ideal number of
records to reach the target abort rate. However, it is not possible to directly compute
what is the number of records required to add or remove from the current structure
just based on the current abort rate, as this depends on the workload. The adjust worker
thus needs to incrementally add or remove records and monitor the changes in the
abort rate. Moreover, as this has to be done individually for each record, we want to
avoid storing additional state, for instance, to implement a classical PID controller for
each record.

Considering that we desire the number of records to converge to the target as swiftly
as possible, various algorithms for adjustment can be used, namely:

• binary – adds or removes one record (Algorithm 7);

• linear – adds or removes the current records times the current abort rate (Algo-
rithm 8);

• quadratic – adds or removes the current records times the current abort rate,
squared (Algorithm 9).

Moreover, in addition to the target abort rate, it is also necessary to define the
minimum abort rate (armin) at which the worker should remove records. It could also
be set to same value; however, it would be expected for the worker to be constantly
adding and removing records while trying to keep the abort rate exactly at the target.
Due to this, the abort rate at which the worker starts removing records should be set

4.3. Architecture 65

to a lower value. Although these targets vary with applications, for all the remaining
results, the target abort rate is set to 5% and the rate at which records are removed is
set to 1%.

The adjust worker also has two extra parameters that specify the minimum (nrmin)
and maximum (nrmax) number of records each MRV should have. The latter is espe-
cially important since it can avoid MRVs with an unlimited number of records, since
those have a negative impact on read performance.

Algorithms 7, 8 and 9 return, for a given abort rate, number of records, record
bounds, target abort rate and minimum abort rate, the number of records necessary to
add to the MRV (or remove if the returned value is negative).

Algorithm 7: Binary adjust records strategy
1 Function binary(ar, nr, nrmin, nrmax, argoal, armin):
2 if ar > argoal ∧ nr < nrmax then
3 return 1
4 else if ar < armin ∧ nr > nrmin then
5 return −1
6 else
7 return 0
8 end

Algorithm 8: Linear adjust records strategy
1 Function linear(ar, nr, nrmin, nrmax, argoal, armin):
2 if ar > argoal ∧ nr < nrmax then
3 return min(1 + nr · ar, nrmax − nr)
4 else if ar < armin ∧ nr > nrmin then
5 return max(−(1 + nr · ar), nrmax − nr)
6 else
7 return 0
8 end

Algorithm 9: Quadratic adjust records strategy
1 Function quadratic(ar, nr, nrmin, nrmax, argoal, armin):
2 if ar > argoal ∧ nr < nrmax then
3 return min(1 + (nr · ar)2, nrmax − nr)
4 else if ar < armin ∧ nr > nrmin then
5 return max(−(1 + (nr · ar)2, nrmax − nr)
6 else
7 return 0
8 end

4.3. Architecture 66

The different methods are tested using the same simulation used in the results of
Figure 21. The number of transactions per second is initially set to 1000, increasing
15% when the simulation reaches the half mark. Each test starts with an MRV with
one record, adjusting every second for the duration of 150 seconds. Figures 22 presents
the evolution of the abort rate over time with the different algorithms, as well as the
current number of records.

0 25 50 75 100 125 150
time (s)

100.0
75.0
50.0

25.0

10.0

5.0

2.5

1.0

ab
or
t
ra
te
 (
%)

0

25

50

75

100

125

150

175

re
co
rd
s

binary
linear
quadratic

Figure 22: Comparison of the evolution of the abort rate and number of records in an MRV,
using different adjust records strategies.

The results in Figure 22 shows that both the linear and quadratic strategies converge
relatively quickly to the ideal abort rate of 5%, while the binary seems to take the
entire simulation duration and thus can be discarded. Between the linear and quadratic
strategies, we can infer that while the quadratic converges almost immediately, it also
overshoots the ideal number of records when the simulation increases the load by
15%, meaning it is less stable than the alternative. As a result, the linear strategy is
considered the optimal one and as such is implemented by the adjust worker.

Another consideration when designing the adjust worker is the MRV’s total value. If
the total value is decreased to the point of having more records than units, then we
could have a situation where sub operations keep aborting because they will always
end up updating the same records, as the majority will have zero amount. The adjust
worker can look at the increased aborts and keep adding more records, not helping
solve the problem. To prevent this, there is a configuration that tells the worker to
apply the adjust strategy if and only if the ratio between the total amount and the
number of records is greater than some min_average_amount_per_record. If there is a
sudden decrease in the value that pushes the average amount per record below this
parameter, the worker will start to remove records to meet the criterion.

4.3. Architecture 67

The design of the adjust worker thus rests on being able to observe aborted transac-
tions as an input. This can be achieved with an additional tx_status worker that collects
transaction results – asynchronously – to be used by the adjust worker. By making this
a background task, it minimizes the impact on response time.

Finally, there might be situations where the modeled fields do not generate any
aborts and yet multiple records might still be useful to reduce locking overhead. In that
case, we could refactor the adjust worker to also have in consideration the response time
of the updates, together with a rt_goal and rt_min parameters. In this thesis, however,
the number of records is simply set to a static value and the adjust records turned off
for those situations.

4.3.4 Balancing partitions

Common workloads may lead to situations that would degrade the performance
of MRVs. For example, a stock of some product would probably have frequent sub
operations of a few units – i.e. clients buying the product – and less frequent add
operations of many units – i.e. the store restocking the item. This leads to most
partitions having a zero value and some have a high value, thus defeating the purpose
of partitioning. To prevent this from happening, MRVs need to periodically balance
the existing value between partition records.

The ideal balancing would be obtained by reading the total value and equally
dividing the amount between all records. Although this ensures that the records end
up perfectly balanced in just one iteration, it also means that one has to update the
entire set simultaneously, which most likely will require a few tries to succeed given
that the balancing operation would conflict with any other concurrent update.

Another option is to select just a few random records and balance their sum among
them. Although it needs multiple iterations to balance the entire set, it has a low
collision probability. Furthermore, picking just two records should be enough for a
quick convergence to a low deviation [81].

Finally, there is also the option of selecting the minimum and maximum records
based on their amount. This technique allows for a considerably faster convergence
when dealing with a relatively high number of records. However, computing the
maximum and minimum records takes up more time than just selecting two at random.

All three possibilities above are feasible and can all be useful in different situations.
For the results presented in this thesis, the balance worker uses the second strategy when
dealing with an overall number of adds greater than or equal to subs (microbenchmark
and TPC-C) and the third one for situations with more subs than adds (STAMP
Vacation).

4.3. Architecture 68

4.3.5 Discussion

In theory, MRVs allow for higher throughput and lower response time than the
single-record alternative, as they reduce abort probability and/or locking contention to
updates on the same numerical object. The usage of workers to adjust the number of
records and balance their amounts not only removes responsibility from the developers,
but also enables low overhead in both operation complexity and space utilization.
MRVs, in comparison to alternatives such as CRDTs, are designed for objects subjected
to strong consistency guarantees, such as account’s balance or item’s stock, as they
ensure limit invariants. The fact that MRVs are modeled using a generic structure
means that they can be implemented in any database that employs numeric records.

The main disadvantage of MRVs is the fact that they increase the time complexity
of read operations, since the real value has to be computed each time. This problem
is alleviated by the usage of the adjust worker, that tries to ensure that the number
of records is kept at the minimum necessary in order to meet the target abort rate.
Nevertheless, this problem is, to a certain extent, unavoidable for hotspots. In addition,
computing the value each time also stops MRVs from being indexed. However, it is not
expected that the type of values that would benefit from MRVs – for example, stock of
some item – would require indexing. Given MRVs target write-heavy hotspots, these
problems should be outweighed by its performance gains.

Table 4 summarizes the comparison of MRVs and different alternatives. In short,
MRVs are the only solution that support limit invariants, are viable in distributed
systems - unlike escrow locking - and maximize parallelism - unlike RedBlue, where
sub operations with lower limit invariants are not commutative, and timestamp splitting,
that doesn’t target same-field concurrency.

Table 4: Comparison between MRV and similar alternatives.
Locking

independent?
Has limit
invariant?

Primary
parallelization target

Consistency
level

MRVs yes yes numeric fields strong
Escrow L. no yes numeric fields strong
Delta txs. yes no numeric fields strong

Timestamp
splitting yes yes records strong

CRDTs yes no records and
various fields

strong
eventual

Counting Sets yes no set fields strong
eventual

Operation
transformation yes no various

operations
strong

eventual
Post-Commit

Rules yes no various
operations eventual

RedBlue yes yes commutative
operations

strong/strong
eventual

4.4. Implementation 69

4.4 implementation

Two main implementation strategies are considered: The first is to rewrite application
queries to use MRVs where appropriate, used for the microbenchmark. The second
alternative is to make use of views and stored procedures in a SQL database system.
For example, in PostgreSQL one can create a view and specify rules on how the
INSERTS/UPDATES/DELETES are processed on that view [53]. This alternative is
used in the TPC-C and STAMP Vacation benchmarks. A third possible alternative
would be to implement MRVs within the database engine itself, but the second
approach underlines that MRVs are feasible on existing database systems and that they
can be layered on existing transactional and query processing mechanisms.

The first step in both implementations is to modify the schema to accommodate
MRVs. As an example, consider table T in Figure 5(a), with a composite key (k1, k2)
and two value columns v1 and v2, for which we want to transform v1 into an MRV. As
shown in Figure 5(b), this is transformed in tables T_Orig, from which v1 is removed,
and an MRV support table T_v1, which includes the original primary key (k1, k2), the
partition key rk and partition value column v1. In the database level implementation,
in PostgreSQL, the schema transformation is done by a Python script that automatically
generates the schema to convert columns into MRVs. It also generates a view, with the
same name as the original table, that joins the two tables and computes the MRV value,
together with Insert/Update/Delete rules that call the respective procedures. In
MySQL that is not possible, as there needs to exist a one-to-one relationship between
the view and the table we want to modify [89].

Table 5: Before (a)) and after (b)) converting the column v1 of table T into an MRV.

a) b)

T T (T_Orig + T_v1)

k1 k2 v1 v2 k1 k2 v1 v2

T_Orig T_v1

k1 k2 v2 k1 k2 rk v1

The second step is to implement the operations which is straightforward for lookup,
add and total_value given the definitions. The exception is the sub operation, as it
requires one lookup per record updated. Two alternatives are considered: First, a single
statement implementation that relies on window functions, but neither PostgreSQL
nor MySQL planners could optimize them well enough within complex queries. The
second alternative, that results in good performance, is to use a cursor that performs

4.5. Evaluation 70

an extended lookup query at the start of the procedure, providing records as they are
needed. In addition, the sub operation does not perform an update on a record if its
amount is equal to zero. The reasons for this are 1) the update would be meaningless,
as the value would be same and 2) updates, even on values that doesn’t change, are
still processed, as in locks are acquired and new versions of that row are created, which
impacts performance.

The sub code used for the MongoDB database was similar to the formal definition,
given the fact that it has limited stored procedure functionally[85]. This should result
in a higher overhead for this particular system, as it requires multiple lookups and
round trips to the database.

As for the adjust and balance workers, the microbenchmark directly implements their
logic together with application code, while the remaining benchmarks use generic,
standalone workers implemented in Java. They also provide the option to configure
the number of runners per worker, to speed up processing.

4.5 evaluation

This section aims at answering to the following questions: What is the read and
write overheads of MRVs comparatively to the native solution? How does the read
overhead change when the number of records per value increases? Does the read/write
overhead stay the same in both single and multi-threaded workloads? How effectively
do MRVs reduce conflicts? Is it worth to use MRVs in situations where there are no
aborts but rather just locking? Does the MRV overhead justify its usage in centralized
databases? What about distributed? Do MRVs bring performance advantages to both
SQL and NoSQL databases?

To answer these questions, different benchmarks with different database systems are
evaluated, comparing the throughput, abort rate and response time of MRVs versus
the native solution. This section is divided in three parts:

1. Benchmarks – an overview of the benchmarks that will be used to evaluate the
performance;

2. Database engines – an overview of the different type of database engines that
will be used to evaluate the performance;

3. Results – charts displaying the obtained results, accompanied with a discussion
of them.

All the code of the benchmarks, scripts, and raw data is available online at https:
//github.com/nuno-faria/mrv-benchmarks, together with a description on how to
build and run them.

https://github.com/nuno-faria/mrv-benchmarks
https://github.com/nuno-faria/mrv-benchmarks

4.5. Evaluation 71

4.5.1 Benchmarks

Microbenchmark

A microbenchmark, that simply models the stock of several products, is used to
evaluate both the read/write overheads and maximum performance gain. For the
read test, it obtains the stock of a random product. For the write test, it issues
either add or subtract operations of a few items to a random product (read and write
tests run separately). In this test, given that both add and subtract operations are
of similar frequency and as there is a balance worker in place, it is expected for the
sub operation’s time complexity to average its best-case scenario, i.e. one update. By
creating a microbenchmark that purely focus on the problem MRVs are trying to solve,
it highlights the effective overhead/performance gain, without having to worry about
operations other than updating or reading numeric values.

The parameters that configure this microbenchmark are listed and described in
Table 6, together with the values used in the experiments. One thing to point out is
the number of initial records per value used in the benchmark. Because it is expected
for the adjust worker to take some time to converge to ideal number of records if each
product starts with just one, the number of initial records is set to the same number
clients, unless otherwise stated.

The microbenchmark is implemented in Java and compiled with openjdk-11. There
is a cooldown period of 10 seconds between each test except for the multi-writer cluster
architecture (MySQL Group Replication), where the cooldown is set to 30 seconds.

TPC-C

The sysbench implementation4 of TPC-C is used as an example of how MRVs
perform in the context of a more general workload.

To determine which columns should be converted to MRVs, the updates that are
responsible for update conflicts and lead to concurrency control aborts are examined.
The results, summarized in Table 3, show that updates to columns w_ytd in warehouse
and d_ytd in district are the main hotspots and therefore will be modeled as MRVs.

For the adjust worker, each client, after every transaction that uses an MRV, inserts in
a table what was the outcome, together with the identification of the MRV(s) used in
that transaction. Workers are only used when running under the Repeatable Read

isolation.
It is populated with a variable number of warehouses, between 1 to 8, and tested

against an also variable number of clients (1, 2, 4, ..., 512). Each test has a duration of

4 https://github.com/akopytov/sysbench/

https://github.com/akopytov/sysbench/

4.5. Evaluation 72

Table 6: MRV microbenchmark parameters and respective values.

Name Description Value(s) used

mode Mode of the benchmark read, write

time Benchmark duration in seconds 60

clients Number of clients used (each client is represented by
a thread)

1, 2, 4, ..., 2048

size Number of products 1, 2, 4, ..., 128

initialStocks Initial amount of units for each product in the
database

8192

amountLimits Upper limit on the amount to add/subtract in each
transaction (between [1,amountLimit])

3

isolations Database isolation level RC*, RR**

maxRecords Maximum number of records per product allowed 1024

minRecords Minimum number of records per product allowed 1

initialRecords Number of initial records per product 0*** (write),
1, 2, 4, ..., 128 (read)

workers Whether workers are used true (RR**),
false (RC*)

adjustDelta Time between records adjustment in milliseconds 2000

balanceDelta Time between records balancing in milliseconds 500

arGoal Target abort rate ([0, 1]) 0.05

arMin Abort rate below which the adjust worker starts remov-
ing records ([0, 1])

0.01

*Read Committed **Repeatable Read

***Records per product equal to the number of clients

60 seconds. There is a cooldown period of 10 seconds between each test. The adjust
and balance workers have the same configurations as the microbenchmark.

STAMP Vacation

The Vacation benchmark, included in the STAMP suite [80], simulates a travel reser-
vation system. This benchmark, originally designed for software transactional memory
(STM) systems, has a high number of add and subtract operations on numeric values.
It comprises five tables: customer, reservation_info, car_reservation, flight_reservation and
room_reservation. Each table is populated with r rows.

It offers five different tasks:

4.5. Evaluation 73

• Make reservation (probability: U%) – the client checks the price of n items and
reserves a few; items can be rooms, flights and cars;

• Delete customer (probability: 100−U
2 %) – the total cost of a customer is computed

and associated reservations are released; the customer information is deleted;

• Add items (probability: 100−U
4 %) – increases the stock of n random items;

• Delete items (probability: 100−U
4 %) – decreases the stock of n random items.

Table 7 presents the statements that generate most conflicts in this benchmark.
These results leads the columns numfree, numtotal and price of the tables car_reservation,
flight_reservation and room_reservation to be modeled as MRVs.

Table 7: Top 5 most common abort causes in the STAMP Vacation benchmark.
The presented queries concern reducing a reservation’s stock in one unit (1, 2, 4), increasing
a reservation’s stock in one unit (3) and restocking a reservation and updating its price (5).

Statement %

UPDATE car_reservation SET numFree = numFree - 1 WHERE id = $1 25

UPDATE flight_reservation SET numFree = numFree - 1 WHERE id = $1 22

UPDATE car_reservation SET numFree = numFree + 1 WHERE id in (...) 22

UPDATE room_reservation SET numFree = numFree - 1 WHERE id = $1 19

UPDATE car_reservation SET numTotal = numTotal + 100, numFree =

numFree + 100, price = $1 WHERE id = $2

2

To obtain the results, a Java implementation is used 5, compiled with openjdk-11.
Both the number of clients and the number of rows per table are dynamically set (1,
2, 4, ..., 512 and 20, 40, 60, ..., 200, respectively). The percentage of user requests (U)
was set to 80%, n was set to 10 and each test ran for 60 seconds. There is a cooldown
period of 10 seconds between each test. The amount of initial records per value is the
same as the number of clients, the adjust worker is called every 4 seconds while the
balance worker is called every 100 milliseconds.

5 Based on https://github.com/jopereira/vacationdb

https://github.com/jopereira/vacationdb

4.5. Evaluation 74

4.5.2 Database architectures

Single instance

A traditional single database instance using PostgreSQL 12, with the default config-
uration apart from the max_connections variable. Both Repeatable Read and Read

Committed isolation levels are considered. Note that selecting Repeatable Read

isolation in PostgreSQL results in Snapshot Isolation [49] and aborts conflicting update
transactions. In contrast, the Read Committed isolation level does not generate aborts
on concurrent updates, relying only on statement locking to serialize them.

Single-writer cluster

A MongoDB 4.2.2 cluster with a single-writer database deployed with three nodes
in a replica set cluster, since MongoDB only supports transactions in multi-node envi-
ronments [84]. To guarantee consistency similar to Snapshot Isolation, the transactions’
executions were setup with the following configuration: Read preference6 – primary,
to avoid aborts due to stale data; Read concern7 – snapshot; Write concern8 – majority.

Multi-writer cluster

A multi-writer database cluster, deployed with MySQL Group Replication, where
transactions executed at one node are then certified by all others to commit [92].
This is an example of a distributed architecture where conflicts have a bigger impact
comparatively to single-writer architectures, given that it relies on a relatively more
expensive certification protocol. MySQL Server 8.0.17 is used with the Repeatable

Read isolation. The number of applier threads for executing replications in parallel
(loose-slave-parallel-workers) is set to 1024.

4.5.3 Environment

All tests are executed on a single GCE virtual machine, configured with 24 vCPUs
(Series N1), 24 GB of RAM and a 500 GB SSD, running Ubuntu 18.04 LTS. For the
multi-node tests (MySQL Group Replication and MongoDB), Docker 19.03.12 is used
to evenly share the resources among them, each being assigned 8 vCPUs and 8 GB of
RAM.

6 https://docs.mongodb.com/manual/reference/read-preference/
7 https://docs.mongodb.com/manual/reference/read-concern/
8 https://docs.mongodb.com/manual/reference/write-concern/

https://docs.mongodb.com/manual/reference/read-preference/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/write-concern/

4.5. Evaluation 75

4.5.4 Results

The results presented in this section are rendered using either bar charts or heat
maps. The latter represent the ratio of the MRV over the native performance (i.e. MRV

native).
A value of 1× means they both have the same result, 2× means MRV has twice the
amount, and so on. These heat maps are color coded red or green to represent worse
or better results for the MRV architecture, respectively. The higher the throughput ratio
the better it is for the MRV. On the other hand, when it comes to abort rate or response
time, the lower the ratios the better it is for the MRV. Due of readability concerns, some
results were omitted. However, all can be found together with the source code.

Microbenchmark

The first tests performed in the microbenchmark concern the read and write over-
heads, calculated by measuring the average response times. For the read tests, multiple
number of records per value are evaluated (1, 2, 4, ..., 128), to see how the MRV
performance varies. The number of products is fixed to 32 and both reads and writes
are tested in single and multi-threaded workloads. For the SQL test, PostgreSQL is
used with the Read Committed isolation (Figures 23 and 25) so no aborts would occur.
As for the NoSQL test, MongoDB is used in a replica set cluster (Figures 24 and 26).

1 32
clients

0.0

0.1

0.2

0.3

re
sp
on
se
 t
im
e
(m
s)

native
mrv-1
mrv-2
mrv-4
mrv-8

mrv-16
mrv-32
mrv-64
mrv-128

Figure 23: Comparison of the average read response time between MRV and the native, using
the microbenchmark with PostgreSQL.

Analyzing the read results for PostgreSQL (Figure 23), the MRV response time
comparatively to the native counterpart is between 17% and 60% higher for 1 client and
between 15% and 64% higher for 32 clients (average of 30%). As expected, computing
the result using a GROUP BY + SUM is slower than retrieving a simple value. However,
although the number of records was increased by a factor of two each run, the average
response time increase was relatively small, which shows reads can scale well in
terms of number of records for SQL systems. On the other hand, MongoDB’s results

4.5. Evaluation 76

1 32
clients

0.0

2.5

5.0

7.5

10.0

re
sp
on
se
 t
im
e
(m
s)

native
mrv-1
mrv-2
mrv-4
mrv-8

mrv-16
mrv-32
mrv-64
mrv-128

Figure 24: Comparison of the average read response time between MRV and the native, using
the microbenchmark with MongoDB.

(Figure 24) show an increase in response time of about 12.5 times for 1 client and
10 times for 32 clients. This can be explained by the fact that the native solution
just performs a simple filter, while the MRV solution uses MongoDB’s Aggregation
framework to compute the sum of the sharded amounts, which most likely has a
significant setup overhead. Just like PostgreSQL, the difference in response time
between different number of records is relatively small.

1 32
clients

0.0

0.5

1.0

1.5

2.0

2.5

re
sp

on
se

 t
im

e
(m

s)

native
mrv

Figure 25: Comparison of the average write
response time between MRV and
the native, using the microbench-
mark with PostgreSQL.

1 32
clients

0

5

10

15

re
sp

on
se

 t
im

e
(m

s)

native
mrv

Figure 26: Comparison of the average write
response time between MRV and
the native, using the microbench-
mark with MongoDB.

Examining the write results for PostgreSQL (Figure 25) shows us that the MRV
response time is about 30% higher than the native for a single client. However,
increasing the number of clients to 32 makes the MRV solution comparatively faster,
which justified by the fact that it has less locking contention. With that said, the
MongoDB results (Figure 26) show that the MRV is slower in both single and multi-
threaded tests, averaging response times 60% and 30% higher, respectively. Just like
the reads, the writes had to rely on a slower set of instructions, namely retrieving a
random record and then updating it, in contrast with the native’s single instruction.

4.5. Evaluation 77

The next tests measure the throughput, abort rate and response time in the different
database architectures using the write workload. It starts off with the single Post-
greSQL instance, evaluating both Repeatable Read (Figures 27, 28 and 29) and Read

Committed (Figures 30 and 31) isolations. Next up, it is displayed the multi-writer
cluster using MySQL Group Replication (Figures 32 and 33). Lastly, it is presented the
single-writer cluster using MongoDB (Figure 34).

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

0.8x 1.2x 1.2x 1.0x 1.3x 1.9x 1.8x

0.7x 1.2x 1.4x 1.6x 2.9x 3.2x 5.1x

0.8x 1.2x 1.9x 4.4x 6.5x 3.9x 5.2x

0.8x 1.4x 4.6x 14.8x 18.7x 8.6x 5.2x

0.8x 1.5x 5.9x 15.0x 20.4x 19.0x 14.6x
0

2

4

6

8

10

re
la

ti
ve

 t
x/

s

Figure 27: Throughput ratio between MRV and native, using the microbenchmark with Post-
greSQL (Repeatable Read).

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

1.00x 0.65x 0.81x 0.09x 0.02x 0.01x 0.02x

1.00x 0.56x 0.23x 0.07x 0.04x 0.04x 0.06x

1.00x 0.28x 0.08x 0.05x 0.08x 0.12x 0.18x

1.00x 0.11x 0.07x 0.08x 0.12x 0.25x 0.41x

1.00x 0.09x 0.09x 0.12x 0.16x 0.31x 0.47x
0.0

0.5

1.0

1.5

2.0

re
la

ti
ve

 a
bo

rt
 r

at
e

Figure 28: Abort rate ratio between MRV and native, using the microbenchmark with Post-
greSQL (Repeatable Read).

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

1.32x 0.86x 0.85x 1.19x 1.36x 2.24x 5.67x

1.34x 0.84x 0.82x 1.08x 1.44x 3.78x 2.87x

1.23x 0.88x 0.82x 0.99x 2.15x 9.71x 14.01x

1.24x 0.97x 0.92x 0.99x 2.84x 17.90x 82.72x

1.24x 1.25x 1.28x 1.79x 4.77x 14.14x 39.99x
0

2

4

6

8

10

re
la

ti
ve

 r
t

Figure 29: Response time ratio between MRV and native, using the microbenchmark with
PostgreSQL (Repeatable Read).

4.5. Evaluation 78

The PostgreSQL Repeatable Read results show a clear MRV increase in throughput
over the native as the number of clients increases and the number of products decreases,
i.e. when the overall collision probability is higher (Figure 27). The MRV throughput
ends up being up to 20 times higher than the native. The only exception is the results
with 1 client, where it reaches about 80% the rate of the native, since there are no
conflicts and as such MRVs offer nothing but overhead. These increases in throughput
are the result of the considerable lower abort rate in the MRV architecture (Figure 28).
As transactions are not prematurely aborted due to conflicts, it also causes the response
time to increase as there is a lot more useful work being completed (Figure 29). Overall,
these results present clear advantages in using MRVs in a single centralized SQL
database.

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

1.0x 1.1x 1.1x 1.0x 0.8x 0.9x 2.1x

0.9x 1.0x 1.1x 1.9x 1.6x 1.7x 6.1x

1.0x 1.1x 1.5x 4.5x 6.3x 3.6x 4.8x

0.9x 1.1x 2.6x 8.5x 14.8x 10.5x 6.8x

1.0x 1.1x 1.9x 4.5x 11.8x 6.3x 8.9x
0

2

4

6

8

10

re
la

ti
ve

 t
x/

s

Figure 30: Throughput ratio between MRV and native, using the microbenchmark with Post-
greSQL (Read Committed).

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

1.03x 0.95x 0.94x 1.00x 1.31x 1.09x 0.47x

1.06x 0.96x 0.89x 0.52x 0.62x 0.58x 0.16x

1.04x 0.89x 0.67x 0.22x 0.16x 0.28x 0.21x

1.06x 0.87x 0.38x 0.12x 0.07x 0.10x 0.15x

1.04x 0.93x 0.53x 0.22x 0.08x 0.16x 0.11x
0.0

0.5

1.0

1.5

2.0

re
la

ti
ve

 r
t

Figure 31: Response time ratio between MRV and native, using the microbenchmark with
PostgreSQL (Read Committed).

As for the PostgreSQL Read Committed, MRVs also present a significant increase in
throughput (Figure 30), even though the microbenchmark does not generate aborts for
this isolation (unless the stock is not enough for a decrement operation, which must
rollback). This increase is due to the fact that a transaction in the native solution has
to wait more than the MRV when it comes to acquiring a write lock, as we can infer
from the response time ratios (Figure 31). Despite the overall MRV throughput ratio

4.5. Evaluation 79

not being as higher as the Repeatable Read tests, it still shows an increase in up to
15 times the native, showing that this architecture can also be applied in situations of
high lock contention.

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

0.8x 0.8x 0.9x 1.0x 2.7x 4.9x 3.3x

0.9x 0.9x 1.0x 1.8x 2.8x 1.8x 2.3x

0.8x 0.9x 1.2x 3.6x 3.7x 1.9x 1.9x

0.8x 1.0x 2.5x 7.1x 5.9x 4.5x 3.5x

0.9x 1.5x 4.7x 12.1x 8.7x 6.6x 5.1x
0

2

4

6

8

10

re
la

ti
ve

 t
x/

s

Figure 32: Throughput ratio between MRV and native, using the microbenchmark with MySQL
Group Replication.

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

1.00x 0.96x 0.76x 0.06x 0.01x 0.02x 0.27x

1.00x 1.16x 0.79x 0.03x 0.03x 0.31x 0.63x

1.00x 1.01x 0.28x 0.04x 0.58x 0.78x 1.01x

1.00x 0.18x 0.05x 0.23x 0.95x 0.95x 1.00x

1.00x 0.08x 0.06x 0.22x 0.88x 0.91x 1.00x
0.0

0.5

1.0

1.5

2.0

re
la

ti
ve

 a
bo

rt
 r

at
e

Figure 33: Abort rate ratio between MRV and native, using the microbenchmark with MySQL
Group Replication.

Looking now at the MySQL Group Replication results, we can again see a significant
increase in throughput comparatively to the native (Figure 32), especially when we
inspect the lower middle where it reaches up to 12 times, making them also practical
in multi-writer distributed databases. The relatively smaller – when comparing to
PostgreSQL – but still high increase in throughput for a high number of clients can
be explained by the fact that three database nodes are sharing the same storage. One
thing to note is the fact that the MRV abort rate shows the biggest improvements when
looking at the bottom left to top right diagonal and not necessarily when there is a
high collision probability (bottom right corner). This could be justified by the fact
that transactions require a more expensive certification method. To achieve similar
results in a multi-writer cluster comparatively to a single writer instance, the maximum
number of records per node should be higher. The fact that for 2048 clients and 1

product it shows at the same time the same abort rate (Figure 33) while providing 4

4.5. Evaluation 80

times the performance could mean the MRVs also reduce the wait time for some form
of locking.

1 2 8 32 128 512 2048
clients

128

32

8

2

1

pr
od

uc
ts

0.6x 0.8x 0.7x 0.7x 0.9x 1.1x 1.0x

0.6x 0.7x 0.7x 0.8x 1.3x 2.4x 2.0x

0.6x 0.7x 0.8x 1.5x 2.6x 5.7x 4.2x

0.6x 0.7x 1.4x 4.5x 7.7x 16.9x 12.2x

0.7x 0.7x 2.5x 9.1x 14.8x 47.3x 120.7x
0

2

4

6

8

10

re
la

ti
ve

 t
x/

s

Figure 34: Throughput ratio between MRV and native, using the microbenchmark with Mon-
goDB.

Finally, assessing the MongoDB results shows that there is a considerable reduction
in the MRV throughput in the areas with lower collision probability, reaching down to
0.6 times the native performance (Figure 34). This is caused by the higher overhead
of the MRV implementation in MongoDB, as seen in Figures 24 and 26. On the areas
with more collisions, however, MRV presents a substantially increase in throughput,
reaching more than 100 times the native performance, despite the higher overhead.
These results show that MRVs are viable even for a NoSQL system, as long as the
collision probability justifies its usage.

TPC-C

The next results evaluate the MRV performance on the TPC-C benchmark, using
both Repeatable Read (Figure 35) and Read Committed isolation levels (Figure 36),
under the single-instance architecture (PostgreSQL).

1 2 8 32 128 512
clients

8

4

2

1

wa
re
ho
us
es

0.9x 1.0x 0.9x 1.1x 1.4x 1.6x

0.9x 0.9x 1.0x 1.4x 1.7x 1.5x

0.9x 0.8x 1.1x 1.8x 2.1x 1.6x

1.0x 1.1x 1.4x 2.6x 2.9x 1.9x

2.0

1.5

1.0

0.5

0.0

re
la
ti
ve
 t
x/
s

Figure 35: Throughput ratio between MRV and native, using the TPC-C with PostgreSQL
(Repeatable Read).

The Repeatable Read results (Figure 35) show the MRV overhead comparatively
to the native, when the number of clients is low and the number of products is high,

4.5. Evaluation 81

which corresponds to a low collision probability. This makes the MRV have around
90% the throughput of the native. As the number of clients increases, so does the
throughput ratio, which stays around 1.5-2 and even reaches 3, even though updating
numerical values is not the only task this benchmark has to perform. Although not
displayed, both abort rate and response time ratios present overall improvements,
being between 1 and 0.3, and between 1.2 and 0.3, respectively.

1 2 8 32 128 512
clients

8

4

2

1

wa
re
ho
us
es

0.9x 0.9x 0.8x 1.1x 1.3x 1.2x

0.9x 0.9x 1.0x 1.5x 2.0x 1.7x

0.9x 0.9x 1.2x 1.9x 2.3x 2.1x

1.0x 1.1x 1.7x 2.4x 2.7x 2.8x

2.0

1.5

1.0

0.5

0.0

re
la
ti
ve
 t
x/
s

Figure 36: Throughput ratio between MRV and native, using the TPC-C with PostgreSQL
(Read Committed).

The Read Committed results (Figure 36) present a similar trend to the alternative
isolation. However, they surprisingly show the same or even higher MRV-to-native
throughput ratio when comparing to the Repeatable Read results, even though there
are no generated aborts by the fields modeled with MRVs. The reason for this is that
transactions must acquire a row lock in this isolation level when updating, causing
a greater negative impact on the native tests (higher contention). In addition, the
wait time is higher than in the microbenchmark, since there are more operations after
the numeric value update. On the other hand, the transactions in the Repeatable

Read isolation level abort when simultaneously updating the same value, ceasing the
need for clients to wait for a high contention lock. They instead continue and execute
another transaction, which could end up committing, leading to a higher throughput9.
The MRV response time ratio comparatively to the native in this isolation is situated
between 1.2 and 0.3.

In summary, both isolation levels benefit from MRVs even if updating numeric
values is not the workload’s main concern, as long as the collision probability justifies
its overhead.

STAMP Vacation

Finally, it is presented the STAMP Vacation results. Just like the TPC-C, this bench-
mark ran on the single instance architecture, using the Repeatable Read isolation
level (Figures 37 and 38).

9 In the sysbench-tpcc benchmark, transactions do not restart the same operation with the same parame-
ters, as they are randomly generated each time.

4.5. Evaluation 82

1 2 8 32 128 512
clients

200

160

120

80

40

20

ro
ws
 p
er
 t
ab
le

0.6x 0.7x 0.7x 0.8x 1.2x 0.9x

0.6x 0.5x 0.8x 0.9x 1.6x 2.0x

0.6x 0.6x 1.0x 2.0x 2.3x 2.1x

0.6x 0.5x 1.4x 2.3x 4.2x 6.2x

0.7x 0.4x 2.5x 7.8x 23.0x 16.3x

0.6x 0.9x 4.1x 21.0x 14.0x 20.1x
0

2

4

6

8

10

re
la
ti
ve
 t
x/
s

Figure 37: Throughput ratio between MRV and native, using STAMP Vacation with PostgreSQL.

1 2 8 32 128 512
clients

200

160

120

80

40

20

ro
ws
 p
er
 t
ab
le

1.00x 1.10x 0.62x 0.50x 0.39x 0.31x

1.00x 1.20x 0.57x 0.49x 0.40x 0.32x

1.00x 0.96x 0.50x 0.45x 0.43x 0.34x

1.00x 0.84x 0.46x 0.44x 0.45x 0.36x

1.00x 0.70x 0.38x 0.44x 0.50x 0.44x

1.00x 0.67x 0.43x 0.50x 0.56x 0.52x
0.0

0.5

1.0

1.5

2.0

re
la
ti
ve
 a
bo
rt
 r
at
e

Figure 38: Abort rate ratio between MRV and native, using STAMP Vacation with PostgreSQL.

These results show a strong positive correlation between a high number of clients/low
rows per table and high throughput ratio, where the MRV reaches up to 24 times
the transactions per second of the native alternative (Figure 37). However, the MRV
overhead is relatively higher compared to the other tests, reaching on average half the
throughput of the native for a low number of clients. The cause for this is that there
are many subtract operations and just few add ones, and since the overhead is higher
in the former the overall performance loss is more noticeable. In addition, there is
also a relatively high number of materializations of MRVs’ total value, namely when
the benchmark needs to know if some item is in stock before updating it (e.g. WHERE
numFree > 0). An implementation at database engine level could cease the need to
iterate over an MRV’s entire set, by stopping as soon as the necessary amount has been
found. However, this generic implementation is not capable of such optimizations.
With that said, MRVs still present clear advantages for this benchmark when dealing
with situations with high collision probability. The MRV abort rate ratio comparatively
to the native is mostly below one, averaging about 0.5 (Figure 38).

4.5. Evaluation 83

Summary

A summary of the results previously presented is displayed in Table 8, where one
can find the minimum and maximum throughput, abort and response time ratios
between the MRV and native.

Table 8: Minimum and maximum throughput, abort rate and response time ratios between
MRV and native.

throughput abort resp. time

min max min max min max

M
ic

ro
be

nc
h

PostgreSQL [RR] 0.72 20.37 0.01 1 0.78 89.4

PostgreSQL [RC] 0.68 14.78 - - 0.07 1.48

MySQL GR 0.79 12.1 0.01 1.27 0.13 2.88

MongoDB 0.61 120.7 0.02 84.43 0.7 1.65

TP
C

-C PostgreSQL [RR] 0.82 3.02 0.31 1 0.33 1.22

PostgreSQL [RC] 0.81 2.77 - - 0.34 1.23

STAMP Vacation 0.45 24.11 0.31 1.29 - -

5

C O N C L U S I O N S A N D F U T U R E W O R K

Strong consistency, although a necessity in many cases, limits the performance of
database systems, specifically geo-distributed ones. The two novel solutions presented
in this work address exactly that limitation.

The Primary Semi-Primary architecture reduces latency and improves scalability of
both reads and writes of strongly consistent transactions, especially in the context
of geo-distributed deployments. It accomplishes this by using the following tech-
niques: relying on full replication to reduce latency and avoid expensive distributed
transactions, unlike systems that rely on partitioning to scale computation; a central
certification to avoid distributed synchronization; and independently evolving snap-
shots to allow asynchronous replication, that results in reduced response time while
still enabling a client to read its most recent modifications. Although it relies on a
central certification that requires failover, results show that a single primary core can
comfortably handle up to 64 concurrently executing client threads with the write-heavy
TPC-C benchmark, demonstrating its efficiency. By exploiting the underlying database
isolation to implement a distributed one, it simplifies implementation and possibly
reduces overhead, since it relies on an efficiently and continuously updated foundation.
The developed design shows a better scalability when compared to other multi-instance
architectures. For similar local deployments, the Primary Semi-Primary reaches up to 3.8
times the native throughput, while the Primary-Standby reaches 1.5, the Multi-Primary
Replicas 2.6 and the Multi-Primary Shards 2.8. For a geo-distributed deployment, each
client in the Primary Semi-Primary presents, on average, 7.6 times the native client
throughput for each zone, while in the Multi-Primary Replica it reaches 5.9 times.

Multi-Record Values (MRVs) address a classical problem in transactional data pro-
cessing: Reducing the impact of update hotspots in the performance and efficiency of
high throughput systems. By splitting numeric values into multiple physical records,
it allows the concurrent, mostly conflict-free execution of updates, leading to reduced
abort rate and response time, and consequently higher throughput. MRVs make this
possible by exploiting the commutative property of addition and subtraction opera-
tions. In contrast to some alternatives, MRVs also enable modelling fields that require
strong consistency guarantees, such as stocks or balances, since they ensure limit

84

85

invariants (e.g., the stock of some product can’t be negative), all without materializing
the aggregate value, which would defeat the purpose of partitioning. Furthermore,
MRVs also address the challenge of generating and managing partitions for each
item, not requiring manual intervention. By not depending on locking or additional
coordination, it is suitable to the novel generation of distributed and scalable transac-
tional systems based on Snapshot Isolation [11, 24, 36, 95, 109]. The management of
partitions in MRVs is inspired by consistent hashing and judiciously designed to be
layered on an transactional system. It thus can be applied in existing systems at the
application level or, as demonstrated with an implementation in PostgreSQL, made
mostly transparent to the application by using database views and rules. It is also
designed to exploit typical indexing structures and avoid deadlock probability when
more than one partition has to be used. The proposal is evaluated experimentally
with multiple implementations, database management systems, and benchmarks. This
has shown that MRVs are beneficial even on a state-of-the-art traditional centralized
database system such as PostgreSQL, where it achieved up to 20×, 3× and 24× more
than the native throughput on the microbenchmark, TPC-C and STAMP Vacation,
respectively. With MySQL Group Replication, it was shown that the approach is also
beneficial in a distributed setting that relies on certification, reaching up to 12× the
native throughput in the microbenchmark. Finally, with MongoDB, it was shown
that it is also useful in transactional distributed NoSQL systems, reaching more than
100× the native throughput in the microbenchmark. The main limitation is that MRVs
cannot be indexed, as this would force the materialization of the value and generate
conflicts when updating the index. Moreover, MRVs should not be applied when the
underlying value is zero or close to zero most of time, as they won’t be able to be
properly distributed them over multiple records.

The results obtained throughout this work show that both solutions can be applied
to real world applications, where they can significantly improve transactional perfor-
mance. This thus proves that it is worth to explore, in the future, an implementation
more suitable for production, relying on code closer to the database engine instead of
middleware/SQL queries, reducing the overall overhead. That implementation could
combine both Primary Semi-Primary and MRV contributions, since they both tackle the
problem of high-performance consistency in distributed databases. In addition, a future
implementation can also consider exploring different decisions than the ones presented
here. For example, both the semi-primary and primary prototypes were implemented
using a single database engine. However, since for very large databases this might not
be feasible, one can consider the usage of multiple instances per node, each with a
partition of the data, to further increase storage capabilities and possibility allow higher
throughput. This would still avoid the problems of geo-distributed synchronization
methods, since every semi-primary would still have the entire copy of the database. A

86

future implementation can also take advantage of multiple semi-primaries to distribute
read-only queries that handle large amounts of data, reducing response time for those
cases. As the MRV architecture also shows it can be applied to reduce not only aborts
but also lock contention, it is also worth exploring the usage of a transaction’s response
time to adjust the number of nodes, since the current implementation only accounts the
number of aborts. In addition, further optimization of operations that is not possible
in a generic SQL implementation can be possible in a low level one, such as avoiding
complete materialization for conditions (e.g. value > 0), being useful to cases such as
the ones presented in the STAMP Vacation benchmark.

B I B L I O G R A P H Y

[1] 2ndQuadrant. 2019. Postgres-BDR. Retrieved 2019-12-01 from https://www.

2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/

[2] Daniel J. Abadi. 2019. Demystifying Database Systems, Part 4: Isolation levels
vs. Consistency levels. Retrieved 2020-10-17 from https://fauna.com/blog/

demystifying-database-systems-part-4-isolation-levels-vs-consistency-levels

[3] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. 1995. Effi-
cient optimistic concurrency control using loosely synchronized clocks. ACM
SIGMOD Record 24, 2 (1995), 23–34.

[4] Atul Adya and Barbara Liskov. 1997. Lazy consistency using loosely synchro-
nized clocks. In Proceedings of the sixteenth annual ACM symposium on Principles of
distributed computing. 73–82.

[5] Divyakant Agrawal, Arthur J Bernstein, Pankaj Gupta, and Soumitra Sengupta.
1987. Distributed optimistic concurrency control with reduced rollback. Dis-
tributed Computing 2, 1 (1987), 45–59.

[6] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. 2016. Cure:
Strong semantics meets high availability and low latency. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 405–414.

[7] Amazon. 2019. Aurora User Guide: Working with Aurora Multi-Master Clusters.
Retrieved 2020-19-10 from https://docs.aws.amazon.com/AmazonRDS/latest/

AuroraUserGuide/aurora-multi-master.html

[8] Amazon. 2019. Aurora User Guide: Working with Aurora Multi-Master
Clusters - Limitations of Multi-Master Clusters. Retrieved 2019-11-
30 from https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/

aurora-multi-master.html#aurora-multi-master-limitations

[9] Yair Amir, Louise E Moser, Peter M Melliar-Smith, Deborah A Agarwal, and
Paul Ciarfella. 1995. The Totem single-ring ordering and membership protocol.
ACM Transactions on Computer Systems (TOCS) 13, 4 (1995), 311–342.

87

https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://fauna.com/blog/demystifying-database-systems-part-4-isolation-levels-vs-consistency-levels
https://fauna.com/blog/demystifying-database-systems-part-4-isolation-levels-vs-consistency-levels
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html#aurora-multi-master-limitations
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html#aurora-multi-master-limitations

bibliography 88

[10] J.C. Anderson, J. Lehnardt, and N. Slater. 2010. CouchDB: The Definitive
Guide: Time to Relax. O’Reilly Media. https://books.google.pt/books?id=

G4N-DPk9R5sC

[11] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic
snapshot isolation: Scalable and strong consistency for geo-replicated transac-
tional systems. In 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems. IEEE, 163–172.

[12] Michael Armbrust et al. 2015. Spark SQL: Relational Data Processing in Spark.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (Melbourne, Victoria, Australia) (SIGMOD ’15). ACM, New York, NY, USA,
1383–1394. https://doi.org/10.1145/2723372.2742797

[13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein,
and Ion Stoica. 2013. Highly available transactions: Virtues and limitations.
Proceedings of the VLDB Endowment 7, 3 (2013), 181–192.

[14] Catalonia-Spain Barcelona. 2008. Mencius: building efficient replicated state
machines for WANs. In 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 08).

[15] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data. 221–230. https://doi.org/10.

1145/3183713.3190662

[16] Hal Berenson, Philip Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. 1995. A critique of ANSI SQL isolation levels. In Sigmod Record,
Vol. 24. 1–10. https://doi.org/10.1145/568271.223785

[17] Philip A Bernstein and Nathan Goodman. 1981. Concurrency control in dis-
tributed database systems. ACM Computing Surveys (CSUR) 13, 2 (1981), 185–221.

[18] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1986. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[19] Philip A Bernstein, Colin W Reid, and Sudipto Das. 2011. Hyder-A Transactional
Record Manager for Shared Flash.. In CIDR, Vol. 11. 9–20.

[20] Cihan Biyikoglu. 2018. Under the hood: Redis crdts (conflict-free replicated data
types).

https://books.google.pt/books?id=G4N-DPk9R5sC
https://books.google.pt/books?id=G4N-DPk9R5sC
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/568271.223785

bibliography 89

[21] Eric Brewer. 2000. Towards robust distributed systems. In PODC. 7. https:

//doi.org/10.1145/343477.343502

[22] Bucardo. 2019. Bucardo. Retrieved 2019-12-01 from https://bucardo.org/

Bucardo/

[23] Michael J Carey and Waleed A Muhanna. 1986. The performance of multiversion
concurrency control algorithms. ACM Transactions on Computer Systems (TOCS) 4,
4 (1986), 338–378.

[24] Prima Chairunnanda, Khuzaima Daudjee, and M Tamer Özsu. 2014. ConfluxDB:
Multi-master replication for partitioned snapshot isolation databases. Proceedings
of the VLDB Endowment 7, 11 (2014), 947–958.

[25] Lei Chang, Zhanwei Wang, Tao Ma, Lirong Jian, Lili Ma, Alon Goldshuv, Luke
Lonergan, Jeffrey Cohen, Caleb Welton, Gavin Sherry, and Milind Bhandarkar.
2014. HAWQ: A massively parallel processing SQL engine in Hadoop. Proceedings
of the ACM SIGMOD International Conference on Management of Data (06 2014).
https://doi.org/10.1145/2588555.2595636

[26] Fábio Coelho, Francisco Cruz, Ricardo Vilaça, José Pereira, and Rui Oliveira.
2014. PH1: A transactional middleware for NoSQL. In Proceedings of the IEEE
Symposium on Reliable Distributed Systems, Vol. 2014. https://doi.org/10.1109/

SRDS.2014.23

[27] James Corbett et al. 2013. Spanner: Google’s Globally Distributed Database.
ACM Transactions on Computer Systems (TOCS) 31 (08 2013). https://doi.org/

10.1145/2491245

[28] James Cowling and Barbara Liskov. 2012. Granola: low-overhead distributed
transaction coordination. In Presented as part of the 2012 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATC} 12). 223–235.

[29] Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph Koch. 2016.
Repairing conflicts among MVCC transactions. arXiv preprint arXiv:1603.00542
(2016).

[30] Citus Data. 2019. Citus. Retrieved 2019-11-30 from https://www.citusdata.com/

[31] Citus Data. 2020. Citus 9.4 Documentation - Citus MX. Retrieved 2020-08-23 from
https://docs.citusdata.com/en/stable/arch/mx.html

[32] Citus Data. 2020. Citus 9.4 Documentation - Cluster Management: Adding a coor-
dinator. Retrieved 2020-08-23 from http://docs.citusdata.com/en/v9.4/get_

started/concepts.html

https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://bucardo.org/Bucardo/
https://bucardo.org/Bucardo/
https://doi.org/10.1145/2588555.2595636
https://doi.org/10.1109/SRDS.2014.23
https://doi.org/10.1109/SRDS.2014.23
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://www.citusdata.com/
https://docs.citusdata.com/en/stable/arch/mx.html
http://docs.citusdata.com/en/v9.4/get_started/concepts.html
http://docs.citusdata.com/en/v9.4/get_started/concepts.html

bibliography 90

[33] Citus Data. 2020. Citus 9.4 Documentation - Concepts. Retrieved 2020-08-23 from
http://docs.citusdata.com/en/v9.4/get_started/concepts.html

[34] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
In Operating Systems Review - SIGOPS, Vol. 41. 205–220. https://doi.org/10.

1145/1294261.1294281

[35] Dremio. 2019. Dremio - The Data Lake Engine. Retrieved 2019-12-05 from https:

//www.dremio.com/

[36] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot
isolation for partitioned data stores using loosely synchronized clocks. In 2013
IEEE 32nd International Symposium on Reliable Distributed Systems. IEEE, 173–184.

[37] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. Gen-
tlerain: Cheap and scalable causal consistency with physical clocks. In Proceedings
of the ACM Symposium on Cloud Computing. 1–13.

[38] Clarence A Ellis and Simon J Gibbs. 1989. Concurrency control in groupware
systems. In Proceedings of the 1989 ACM SIGMOD international conference on
Management of data. 399–407.

[39] Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel. 2005. Database
replication using generalized snapshot isolation. In 24th IEEE Symposium on
Reliable Distributed Systems (SRDS’05). IEEE, 73–84.

[40] Hua Fan and Wojciech Golab. 2019. Ocean vista: gossip-based visibility control
for speedy geo-distributed transactions. Proceedings of the VLDB Endowment 12,
11 (2019), 1471–1484.

[41] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. 2005. Making snapshot isolation serializable. ACM Transactions on
Database Systems (TODS) 30, 2 (2005), 492–528.

[42] Daniel Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam Ya-
bandeh. 2014. Omid: Lock-free transactional support for distributed data
stores. In Proceedings - International Conference on Data Engineering. 676–687.
https://doi.org/10.1109/ICDE.2014.6816691

[43] Tom ZJ Fu, Jianbing Ding, Richard TB Ma, Marianne Winslett, Yin Yang, and
Zhenjie Zhang. 2015. DRS: dynamic resource scheduling for real-time analyt-

http://docs.citusdata.com/en/v9.4/get_started/concepts.html
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://www.dremio.com/
https://www.dremio.com/
https://doi.org/10.1109/ICDE.2014.6816691

bibliography 91

ics over fast streams. In 2015 IEEE 35th International Conference on Distributed
Computing Systems. IEEE, 411–420.

[44] Google. 2019. BigQuery Docs - Standard SQL. Retrieved 2019-12-05 from https:

//cloud.google.com/bigquery/docs/reference/standard-sql/

[45] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Techniques
(1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[46] PgPool Global Development Group. 2020. pgpool-II 4.1.2 Documentation - 3.3.2.
Running mode of Pgpool-II. Retrieved 2020-08-23 from https://www.pgpool.net/

docs/pgpool-II-4.1.2/en/html/configuring-pgpool.html

[47] PgPool Global Development Group. 2020. pgpool-II 4.1.2 Documentation -
5.7.4. Load Balancing Settings. Retrieved 2020-08-23 from https://www.pgpool.

net/docs/pgpool-II-4.1.2/en/html/runtime-config-load-balancing.html#

GUC-DISABLE-LOAD-BALANCE-ON-WRITE

[48] PgPool Global Development Group. 2020. Pgpool-II Wiki. Retrieved 2020-08-23

from https://www.pgpool.net/mediawiki/index.php/Main_Page

[49] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation -
13.2. Transaction Isolation. Retrieved 2020-06-23 from https://www.postgresql.

org/docs/12/transaction-iso.html

[50] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation -
19.6. Replication. Retrieved 2020-10-31 from https://www.postgresql.org/docs/

12/runtime-config-replication.html

[51] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation
- 26.5. Hot Standby. Retrieved 2020-09-11 from https://www.postgresql.org/

docs/12/hot-standby.html

[52] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation -
29.3. Asynchronous Commit. Retrieved 2020-08-04 from https://www.postgresql.

org/docs/12/wal-async-commit.html

[53] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation -
CREATE RULE. Retrieved 2020-04-29 from https://www.postgresql.org/docs/

12/sql-createrule.html

[54] The PostgreSQL Global Development Group. 2019. Postgresql 12 Documentation -
SQL Commands: VACUUM. Retrieved 2020-10-18 from https://www.postgresql.

org/docs/12/sql-vacuum.html

https://cloud.google.com/bigquery/docs/reference/standard-sql/
https://cloud.google.com/bigquery/docs/reference/standard-sql/
https://www.pgpool.net/docs/pgpool-II-4.1.2/en/html/configuring-pgpool.html
https://www.pgpool.net/docs/pgpool-II-4.1.2/en/html/configuring-pgpool.html
https://www.pgpool.net/docs/pgpool-II-4.1.2/en/html/runtime-config-load-balancing.html#GUC-DISABLE-LOAD-BALANCE-ON-WRITE
https://www.pgpool.net/docs/pgpool-II-4.1.2/en/html/runtime-config-load-balancing.html#GUC-DISABLE-LOAD-BALANCE-ON-WRITE
https://www.pgpool.net/docs/pgpool-II-4.1.2/en/html/runtime-config-load-balancing.html#GUC-DISABLE-LOAD-BALANCE-ON-WRITE
https://www.pgpool.net/mediawiki/index.php/Main_Page
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/runtime-config-replication.html
https://www.postgresql.org/docs/12/runtime-config-replication.html
https://www.postgresql.org/docs/12/hot-standby.html
https://www.postgresql.org/docs/12/hot-standby.html
https://www.postgresql.org/docs/12/wal-async-commit.html
https://www.postgresql.org/docs/12/wal-async-commit.html
https://www.postgresql.org/docs/12/sql-createrule.html
https://www.postgresql.org/docs/12/sql-createrule.html
https://www.postgresql.org/docs/12/sql-vacuum.html
https://www.postgresql.org/docs/12/sql-vacuum.html

bibliography 92

[55] The PostgreSQL Global Development Group. 2020. PostgreSQL Wiki - Serializable
Snapshot Isolation. Retrieved 2020-10-21 from https://wiki.postgresql.org/

wiki/SSI

[56] Rachid Guerraoui and André Schiper. 1996. Fault-tolerance by replication in
distributed systems. In International conference on reliable software technologies.
Springer, 38–57.

[57] James Hamilton. 2009. The Cost of Latency. Retrieved 2020-10-26 from https:

//perspectives.mvdirona.com/2009/10/the-cost-of-latency/

[58] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.
Opportunities for optimism in contended main-memory multicore transactions.
Proceedings of the VLDB Endowment 13, 5 (2020), 629–642.

[59] AI Impacts. 2017. Trends in the cost of computing. Retrieved 2020-10-31 from
https://aiimpacts.org/trends-in-the-cost-of-computing/

[60] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing. Association
for Computing Machinery. https://doi.org/10.1145/258533.258660

[61] Marcel Kornacker et al. 2015. Impala: A Modern, Open-Source SQL Engine for
Hadoop. In CIDR.

[62] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[63] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010),
35–40.

[64] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/

359545.359563

[65] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79–103.

[66] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M
Patel, and Mike Zwilling. 2011. High-performance concurrency control mech-
anisms for main-memory databases. Proceedings of the VLDB Endowment 5, 4

(2011), 298–309.

https://wiki.postgresql.org/wiki/SSI
https://wiki.postgresql.org/wiki/SSI
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://aiimpacts.org/trends-in-the-cost-of-computing/
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

bibliography 93

[67] Lamport Leslie. 1998. The part-time parliament. ACM Transactions on Computer
Systems 16, 2 (1998), 133–169.

[68] Mihai Letia, Nuno Preguiça, and Marc Shapiro. 2010. Consistency without
concurrency control in large, dynamic systems. Operating Systems Review 44 (04

2010), 29–34. https://doi.org/10.1145/1773912.1773921

[69] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. 2012. Making geo-replicated systems fast as possible, con-
sistent when necessary. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). 265–278.

[70] Barbara Liskov and Rivka Ladin. 1986. Highly available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the fifth annual ACM
symposium on Principles of distributed computing. 29–39.

[71] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
2011. Don’t settle for eventual: scalable causal consistency for wide-area storage
with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 401–416.

[72] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
2013. Stronger semantics for low-latency geo-replicated storage. In Presented as
part of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). 313–328.

[73] Pedro Lopes, João Sousa, Valter Balegas, Carla Ferreira, Sérgio Duarte, Annette
Bieniusa, Rodrigo Rodrigues, and Nuno M. Preguiça. 2019. Antidote SQL:
Relaxed When Possible, Strict When Necessary. CoRR abs/1902.03576 (2019).
arXiv:1902.03576 http://arxiv.org/abs/1902.03576

[74] John C. McCallum. 2020. Disk Drive Prices 1955+. Retrieved 2020-10-31 from
https://jcmit.net/diskprice.htm

[75] John C. McCallum. 2020. Flash Memory and SSD Prices. Retrieved 2020-10-31

from https://jcmit.net/flashprice.htm

[76] John C. McCallum. 2020. Memory Prices 1957+. Retrieved 2020-10-31 from
https://jcmit.net/memoryprice.htm

[77] Microsoft. 2017. SQL Server Docs - Disaster recovery for SQL Server. Retrieved
2020-09-11 from https://docs.microsoft.com/en-us/sql/database-engine/

sql-server-business-continuity-dr?view=sql-server-ver15

https://doi.org/10.1145/1773912.1773921
http://arxiv.org/abs/1902.03576
https://jcmit.net/diskprice.htm
https://jcmit.net/flashprice.htm
https://jcmit.net/memoryprice.htm
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-business-continuity-dr?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-business-continuity-dr?view=sql-server-ver15

bibliography 94

[78] Microsoft. 2019. Microsoft Azure CosmosDB Documentation - Consistency levels
in Azure Cosmos DB. Retrieved 2019-12-03 from https://docs.microsoft.com/

en-us/azure/cosmos-db/consistency-levels

[79] Microsoft. 2019. SQL Server Docs - Merge Replication. Retrieved 2019-
12-03 from https://docs.microsoft.com/en-us/sql/relational-databases/

replication/merge/merge-replication?view=sql-server-ver15

[80] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford transactional applications for multi-processing. In 2008 IEEE
International Symposium on Workload Characterization. IEEE, 35–46.

[81] Michael Mitzenmacher. 2001. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094–1104.

[82] MongoDB. 2019. MongoDB 4.2 Documentation - Replication. Retrieved 2020-10-19

from https://docs.mongodb.com/v4.2/replication/

[83] MongoDB. 2019. MongoDB 4.2 Documentation - Sharding. Retrieved 2020-10-19

from https://docs.mongodb.com/v4.2/sharding/

[84] MongoDB. 2019. MongoDB 4.2 Documentation - Transactions. Retrieved 2019-12-03

from https://docs.mongodb.com/manual/core/transactions/

[85] MongoDB. 2019. MongoDB 4.2 Documentation - Tutorial: Store a JavaScript Function
on the Server. Retrieved 2020-06-24 from https://docs.mongodb.com/v4.2/

tutorial/store-javascript-function-on-server/

[86] Henrique Moniz, João Leitão, Ricardo J Dias, Johannes Gehrke, Nuno Preguiça,
and Rodrigo Rodrigues. 2017. Blotter: Low latency transactions for geo-replicated
storage. In Proceedings of the 26th International Conference on World Wide Web. 263–
272.

[87] Patrick E O’Neil. 1986. The escrow transactional method. ACM Transactions on
Database Systems (TODS) 11, 4 (1986), 405–430.

[88] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consen-
sus algorithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 305–319.

[89] Oracle. 2018. MySQL 8.0 Documentation - 24.5.3 Updatable and Insertable
Views. Retrieved 2020-06-29 from https://dev.mysql.com/doc/refman/8.0/

en/view-updatability.html

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/sql/relational-databases/replication/merge/merge-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/merge/merge-replication?view=sql-server-ver15
https://docs.mongodb.com/v4.2/replication/
https://docs.mongodb.com/v4.2/sharding/
https://docs.mongodb.com/manual/core/transactions/
https://docs.mongodb.com/v4.2/tutorial/store-javascript-function-on-server/
https://docs.mongodb.com/v4.2/tutorial/store-javascript-function-on-server/
https://dev.mysql.com/doc/refman/8.0/en/view-updatability.html
https://dev.mysql.com/doc/refman/8.0/en/view-updatability.html

bibliography 95

[90] Oracle. 2019. Mysql 8.0 Reference Manual - 8.1.1.1 Primary-Secondary Replica-
tion. Retrieved 2020-09-11 from https://dev.mysql.com/doc/refman/8.0/en/

group-replication-primary-secondary-replication.html

[91] Oracle. 2019. Mysql 8.0 Reference Manual - Chapter 17 Replication. Retrieved 2020-
10-19 from https://dev.mysql.com/doc/refman/8.0/en/replication.html

[92] Oracle. 2019. Mysql 8.0 Reference Manual - Group Replication. Retrieved 2019-12-01

from https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

[93] Oracle. 2019. Oracle 19 Concepts and Administration - Introduc-
tion to Oracle Data Guard. Retrieved 2020-09-11 from https:

//docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/

introduction-to-oracle-data-guard-concepts.html

[94] Codership Oy. 2019. Galera Cluster. Retrieved 2019-12-01 from https:

//galeracluster.com/

[95] Vinit Padhye and Anand Tripathi. 2012. Causally coordinated snapshot isolation
for geographically replicated data. In 2012 IEEE 31st Symposium on Reliable
Distributed Systems. IEEE, 261–266.

[96] Percona. 2019. Percona XtraDB Cluster. Retrieved 2019-12-01 from https://www.

percona.com/software/mysql-database/percona-xtradb-cluster

[97] José Pereira and Ana Nunes. 2013. Improving transaction abort rates without
compromising throughput through judicious scheduling. In Proceedings of the
ACM Symposium on Applied Computing. ACM, 493–494.

[98] Dusan Petkovic. 2017. JSON Integration in Relational Database Systems.
International Journal of Computer Applications 168 (06 2017), 14–19. https:

//doi.org/10.5120/ijca2017914389

[99] David Patrick Reed. 1978. Naming and synchronization in a decentralized computer
system. Ph.D. Dissertation. Massachusetts Institute of Technology.

[100] Colin Reid, Philip A Bernstein, Ming Wu, and Xinhao Yuan. 2011. Optimistic
concurrency control by melding trees. Proceedings of the VLDB Endowment 4, 11

(2011).

[101] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. SLOG: serializable, low-latency,
geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019),
1747–1761.

https://dev.mysql.com/doc/refman/8.0/en/group-replication-primary-secondary-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-primary-secondary-replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/introduction-to-oracle-data-guard-concepts.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/introduction-to-oracle-data-guard-concepts.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/introduction-to-oracle-data-guard-concepts.html
https://galeracluster.com/
https://galeracluster.com/
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://doi.org/10.5120/ijca2017914389
https://doi.org/10.5120/ijca2017914389

bibliography 96

[102] Riak. 2017. Riak 2.2.3 Documentation - Strong Consistency. Retrieved 2019-
12-03 from https://docs.riak.com/riak/kv/2.2.3/developing/app-guide/

strong-consistency/

[103] Riak. 2017. Riak KV 2.2.3 Documentation - Conflict Resolution. Retrieved
2019-12-03 from https://docs.riak.com/riak/kv/2.2.3/developing/usage/

conflict-resolution/index.html

[104] Riak. 2017. Riak KV 2.2.3 Documentation - Data Types. Retrieved 2020-07-04 from
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/crdts

[105] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,
H. Jin, E. Hwang, N. Shingte, and C. Berner. 2019. Presto: SQL on Everything.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 1802–1813.
https://doi.org/10.1109/ICDE.2019.00196

[106] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-free replicated data types. In Symposium on Self-Stabilizing Systems.
Springer, 386–400.

[107] Dharma Shukla. 2018. Azure Cosmos DB: Pushing
the frontier of globally distributed databases. Retrieved
2020-07-04 from https://azure.microsoft.com/en-us/blog/

azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/

[108] Dale Skeen. 1982. A quorum-based commit protocol. Technical Report. Cornell
University.

[109] Yair Sovran, Russell Power, Marcos Aguilera, and Jinyang Li. 2011. Transactional
storage for geo-replicated systems. In SOSP’11 - Proceedings of the 23rd ACM
Symposium on Operating Systems Principles. 385–400. https://doi.org/10.1145/

2043556.2043592

[110] Dan Stocker. 2010. Delta Transactions. Retrieved 2020-07-01 from https://

collectiveweb.wordpress.com/2010/03/01/delta-transactions/

[111] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-
nan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

[112] Michael Stonebraker. 2012. Newsql: An alternative to nosql and old sql for new
oltp apps. Communications of the ACM. Retrieved (2012), 07–06.

https://docs.riak.com/riak/kv/2.2.3/developing/app-guide/strong-consistency/
https://docs.riak.com/riak/kv/2.2.3/developing/app-guide/strong-consistency/
https://docs.riak.com/riak/kv/2.2.3/developing/usage/conflict-resolution/index.html
https://docs.riak.com/riak/kv/2.2.3/developing/usage/conflict-resolution/index.html
https://docs.riak.com/riak/kv/2.2.3/learn/concepts/crdts
https://doi.org/10.1109/ICDE.2019.00196
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592
https://collectiveweb.wordpress.com/2010/03/01/delta-transactions/
https://collectiveweb.wordpress.com/2010/03/01/delta-transactions/

bibliography 97

[113] Robert H Thomas. 1979. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems (TODS) 4, 2

(1979), 180–209.

[114] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel Abadi. 2012. Calvin: Fast distributed transactions for parti-
tioned database systems. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 1–12. https://doi.org/10.1145/2213836.2213838

[115] Ashish Thusoo, Joydeep Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning
Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. 2010. Hive - A
Petabyte Scale Data Warehouse Using Hadoop. In Proceedings - International
Conference on Data Engineering. 996–1005. https://doi.org/10.1109/ICDE.2010.

5447738

[116] Alexandre Verbitski et al. 2017. Amazon Aurora: Design Considerations for
High Throughput Cloud-Native Relational Databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052. https://doi.

org/10.1145/3035918.3056101

[117] Ricardo Vilaça, Francisco Cruz, José Pereira, and Rui Oliveira. 2013. An Effec-
tive Scalable SQL Engine for NoSQL Databases. In Distributed Applications and
Interoperable Systems, Jim Dowling and François Taïani (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 155–168.

[118] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40–44.

[119] WonderNetwork. 2020. Global Ping Statistics. Retrieved 2020-07-24 from https:

//wondernetwork.com/pings

[120] Reynold Xin, Josh Rosen, Matei Zaharia, Michael Franklin, Scott Shenker, and
Ion Stoica. 2012. Shark: SQL and Rich Analytics at Scale. Proceedings of the
ACM SIGMOD International Conference on Management of Data (11 2012). https:

//doi.org/10.1145/2463676.2465288

[121] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-latency transaction process-
ing for globally-distributed data. In Proceedings of the 2018 International Conference
on Management of Data. 231–243.

[122] Anand Yendluri, Wen-Chi Hou, and Chih-Fang Wang. 2004. Improving concur-
rency control in mobile databases. In International Conference on Database Systems
for Advanced Applications. Springer, 642–655.

https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/3035918.3056101
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1145/2463676.2465288

bibliography 98

[123] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
toc: Time traveling optimistic concurrency control. In Proceedings of the 2016
International Conference on Management of Data. 1629–1642.

[124] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent
Replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New
York, NY, USA, 263–278. https://doi.org/10.1145/2815400.2815404

[125] W. Zhou, Guillaume Pierre, and Chi-Hung Chi. 2011. CloudTPS: Scalable Trans-
actions for Web Applications in the Cloud. Services Computing, IEEE Transactions
on 5 (01 2011), 1 – 1. https://doi.org/10.1109/TSC.2011.18

https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1109/TSC.2011.18

	1 Introduction
	1.1 Problem statement
	1.2 Objectives
	1.3 Contributions
	1.4 Structure of the document

	2 State of the Art
	2.1 Isolation and Consistency
	2.2 Concurrency control
	2.3 Distributed database synchronization
	2.4 Conflict avoidance
	2.5 Distributed Database Systems Architectures
	2.5.1 Single-writer
	2.5.2 Multi-writer

	2.6 Summary

	3 The Primary Semi-Primary architecture
	3.1 Motivation
	3.2 Overview
	3.3 Architecture
	3.3.1 Overview
	3.3.2 Isolation and Consistency
	3.3.3 Parallelism
	3.3.4 Replication
	3.3.5 Recovery
	3.3.6 Discussion

	3.4 Implementation
	3.4.1 Semi-Primary
	3.4.2 Primary
	3.4.3 Client

	3.5 Evaluation
	3.5.1 Benchmark and architectures
	3.5.2 Environment
	3.5.3 Results

	4 Multi-record values
	4.1 Motivation
	4.2 Overview
	4.3 Architecture
	4.3.1 Overview
	4.3.2 Operations
	4.3.3 Adjusting to workload
	4.3.4 Balancing partitions
	4.3.5 Discussion

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Benchmarks
	4.5.2 Database architectures
	4.5.3 Environment
	4.5.4 Results

	5 Conclusions and future work

