
A COMPARATIVE STUDY OF
TRANSACTION MANAGEMENT
SERVICES IN MULTIDATABASE

HETEROGENEOUS SYSTEMS

by

KAREN VERA RENAUD

submitted in part fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

/

SUPERVISOR: MRS P KOTZE

APRIL 1996

Abstract

Multidatabases are being actively researched as a relatively new area in which many aspects

are not yet fully understood. This area of transaction management in multidatabase systems

still has many unresolved problems. The problem areas which this dissertation addresses

are classification of multidatabase systems, global concurrency control, correctness criterion

in a multidatabase environment, global deadlock detection, atomic commitment and crash

recovery. A core group of research addressing these problems was identified and studied. The

dissertation contributes to the multidatabase transaction management topic by introducing

an alternative classification method for such multiple database systems; assessing existing

research into transaction management schemes and based on this assessment, proposes a

transaction processing model founded on the optimal properties of transaction management

identified during the course of this research.

Key terms:

Multidatabase; Recovery; Reliability; Autonomy; Heterogeneity; Distribution; Concurrency

control; Atomic Transaction; Transaction; Serializability; Global serialization; Global trans­

action atomicity; Global deadlock; Two-phase commit protocol; Compensation; Recover­

ability; Strictness.

A8!l\!Vi!: ..
..... ,._,.""11¥!

---- -

1111111\\11111\11
1661982

To my delightful sons,

Gareth Lloyd, Ashley Norman and Keagan Philip.

Acknowledgements
• All glory be to my Lord and Saviour Jesus Christ from whom all good gifts

come and without whom this work would never have been completed.

• Special thanks to my husband, Leon, for his support, encouragement, patience,
tolerance and above all, his love and understanding.

• I am especially grateful to my supervisor, Paula Kotze for her superb aca­
demic supervision, support, motivation, many hours of hard work, and for her
unflagging patience.

• Heartfelt thanks to my Aunt, Felicity Howard, for proofreading this disserta­
tion.

Contents

1 Introduction

1.1 Why a Study on Multidatabases?

1.2 Database Background

1.3 Aim, Structure and Achievements of the dissertation

1.3.1 A summary of problems addressed

1.3.2 A summary of achievements .

2 The Multidatabase Concept

2.1 Characteristics of Multiple Database Systems

2.1.1 Distribution ..

2.1.2 Heterogeneity

2.1.3 Autonomy

2.1.4 Quantification of autonomy

2.1.5 Cost of autonomy

2.2 Classification of Multiple Database Systems

2.2.1 Non-distributed multiple database system

2.2.2 Distributed multiple database system

2.3 Multidatabases

14

14

15

18

19

20

22

22

22

22

23

25

31

32

32

34

42

2.3.1 Definition 42

2.3.2 Reasons for using the multidatabase concept 42

2.3.3 Transactions and users in multidatabases . . 43

2.3.4 Management of heterogeneous distributed multidatabase systems 44

2.3.5 Functionality of an MDMS 46

2.4 Summary

3 Concurrent Transaction Processing

3.1 Introduction to Transaction Processing .

3.2 Transaction and System Concepts

3.2.1 Transaction states

3.2.2 The system log

3.2.3 Commit point of a transaction

1

47

49

49
50

50

51

51

3.2.4 Checkpoints in the system log

3.2.5 Desirable properties of transactions .

3.3 Transaction Execution

3.3.1 Basic transaction operations

3.3.2 A model for transaction execution

3.4 Transaction Models

3.5 Why Concurrency Control?

3.5.1 The lost update problem

3.5.2 The temporary update problem.

3.5.3 The incorrect summary problem

3.5.4 Violation of integrity constraints

3.5.5 The unrepeatable read .

3.6 Why Recovery?

3.7 Transaction Schedules

3. 7.1 Schedules (histories) of transactions

3. 7 .2 Serializability of schedules

3. 7 .3 Recoverable schedules

3.8 Concurrency Control Techniques in Centralized Databases .

3.8.1 Timestamp methods

3.8.1.1 Basic timestamping algorithm

3.8.1.2 Conservative timestamp ordering rule

3.8.1.3 Multiversion timestamp ordering rule

3.8.2 Locking methods

3.8.2.1 Deadlock

3.8.2.2 Deadlock prevention .

3.8.2.3 Deadlock avoidance .

3.8.2.4 Deadlock detection and resolution

3.8.2.5 Livelock ..

3.8.2.6 Starvation

3.8.3 Optimistic methods

3.8.4 Serialization graph method

3.8.5 Value date methods

3.9 Summary

4 Transaction Management

4.1 Transaction Management in Multidatabase Systems

4.1.1 The role of the global transaction manager .

4.1.2 Extending the formal transaction model to include multidatabase con-

cepts

52

52

53

53

54

56

57
58

58

59

59

62

62

64

64

67
71

75
76
76
78

78
79
80
80
81

82

83

83

83

84

85

85

86

86

88

90
4.2 Transaction Management Approaches . 94

4.2.1 Barker & Ozsu's basic MDB model .

4.2.2 Pu's hierarchy of superdatabases

4.2.3 Breitbart et al's work

4.2.4 Elmagarmid et al's work

4.2.5 Chen et al's distributed MDMS .

4.2.6 Kang & Keefe's decentralized GTMs

4.2.7 Garcia-Molina & Salem's sagas ...

4.2.8 Yoo & Kim's client server approach

4.2.9 Other research

4.2.9.1 Nodine & Zdonik's step scheme

4.2.9.2

4.2.9.3

4.2.9.4

4.2.9.5

Rusinkiewicz et al's flexible transactions .

Litwin & Tirri's timestamps

Georgakopoulos et al's forced local conflicts .

The StarGate MDMS

4.3 Integrating Various Concurrency Control Methods

4.3.1 The global transaction atomicity problem

4.3.2 The global serialization problem

4.3.3 The global deadlock problem

4.4 Global Concurrency Control

4.4.1 Serializable executions

94

94

97

99

99

100

100

103

103

103

105

105

106

106

107

109

110

112

113

113

4.4.1.1 Schemes that preserve local autonomy . 114

4.4.1.2 Violation oflocal autonomy. 120

4.4.2 Relaxing serializability 121

4.4.2.1 Schemes that exploit knowledge of integrity constraints 122

4.4.2.2 Schemes that exploit transaction semantics . . 125

4.4.2.3 Schemes that tolerate bounded inconsistencies 127

4.4.3 Relaxing atomicity 128

4.4.4 Other approaches . .

4.4.5 Summary

4.5 Global Deadlock Detection

4.6 Summary

5 Reliability

5.1 Transaction Atomicity

5.2 Global Commit Protocols in the Core Group

5.2.1 Barker & Ozsu's transaction atomicity scheme

5.2.2

5.2.3

5.2.4

5.2.5

Pu's hierarchy of superdatabases

Breitbart et al's work

Elmagarmid et al's work

Chen et al's distributed MDMS .

129

130

130

134

135

136

139

139

140

141

141

141

5.2.6 Kang & Keefe's decentralized GTMs

5.2.7 Garcia-Molina & Salem's sagas ...

5.2.8 Yoo & Kim's client server approach

5.2.9 Other relevant research

142

143

144

145

5.2.9.1 Georgakopoulos's simulated prepared to commit state 145

5.2.9.2 Perrizo et al's atomic commitment 146

5.3 Analysis .

5.4 Summary . .

6 Recovery and Recoverability

6.1 Failure in a Multidatabase .

6.1.1 Transaction failure

6.1.2 Site failures ...

6.1.3 Media failures ..

6.1.4 Network failures

6.1.5 DBMS failures .

6.1.6 System failures .

6.1.7 Failures to be considered

6.2 Issues in Multidatabase Recovery

6.2.1 The retry approach

6.2.1.1 Requirements for retrying a subtransaction

6.2.2 The redo approach

6.2.3 The compensate approach .

6.3 Extension of the Database Model .

6.4 Recoverability in Multidatabases .

6.4.1 The problem of multidatabase recoverability .

6.5 Global Logging

6.6 Multidatabase Recovery Approaches

6.6.1 Barker & Ozsu's basic MDB model .

6.6.2

6.6.3

6.6.4

6.6.5

6.6.6

6.6.7

6.6.8

6.6.9

Pu's hierarchy of superdatabases

Breitbart et ars work

Elmagarmid et ars work

Chen et al's distributed MDMS .

Kang & Keefe's decentralized GTMs

Garcia-Molina et ars sagas

Yoo & Kim's client server approach

Other relevant research

6.6.9.1 Georgakopoulos's work

6.7 Analysis .

6.8 Summary . .

146

148

149

149

150

150

151

151

152

153

153

153

155

155

156

156

157

159

159

162

163

163

165

166

166

167

167

168

168

169

169

170

170

7 Appraisal

7.1 Autonomy Quantification

7.1.1 Barker & Ozsu's basic MDB model .

7.1.2

7.1.3

7.1.4

7.1.5

Pu's hierarchy of superdatabases

Breitbart et al's work

Elmagarmid et al's work

Chen et aI's distributed MDMS .

7.1.6 Kang & Keefe's distributed GTMs

7.1.7 Garcia-Molina & Salem's sagas ..

7.1.8 Yoo & Kim's client server approach

7 .2 A M ultidatabase Transaction Processing Model

7.3

7.2.1 Assumptions about the global transaction manager .

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

Assumptions about the transaction model

Multidatabase serializability

Global concurrency control

Reliability in a multidatabase environment

Recovery in a multidatabase environment .

7.2.6.1 Failure and how Chen et aI's recovery protocol succeeds

7.2.6.2

Summary

Comment.

8 Conclusion

8.1 Method of research

8.2 Issues Studied and Achievements

8.3 Future Research

A Glossary

B Terms used in Formal Transaction Modelling

C Commit Protocols

C.1 Two-Phase Commit

C.1.1 Two Phase Commit Protocol

C.1.2 Properties of an atomic commit protocol .

C.1.3 Problems with two-phase commit

C.1.4 Timeout protocol for two-phase commit

C.2 Three-Phase Commit Protocol

" C.2.1 Three-phase commit with no failures ..

C.2.2 Timeout protocol for three-phase commit protocol

C.2.3 Termination protocol for three-phase commit

C.3 Multidatabase Two-Phase Commit

172

172

172

173

174

175

177

177

178

179

180

181

182

183

187

189

190

190

191

191

193

193

194

196

197

201

203

203

203

204

205

205

206

206

206

207

207

C.4 Byzantine Generals Problem . 208

D ANSI-SPARC Architecture 210

List of Figures

1.1 Overall architecture of the example multidatabase system

2.1 Modification dimension's axes

2.2 Execution dimension's axes

2.3 Information exchange dimension's axes .

2.4 Classification of multiple database systems .

2.5 Schema architecture of a distributed heterogeneous global schema multiple

17

25

27

28
33

database system . 36

2.6 Architecture of a distributed heterogeneous federated multiple database system 38

2. 7 Unaffiliated multiple database system architecture

3.1 Two sample transactions T1 and T2 .
3.2 The lost update problem

3.3 The temporary update problem .

3.4 The incorrect summary problem

3.5 Initial state of SCHEDULE table

3.6 Initial state of SURGEON table.

3. 7 Operations of transactions T3 and T4

3.8 End to end transaction execution ..

3.9 Schedule (a) involving transactions T1 and T2

3.10 Schedule (b) involving transactions T1 and T2

3.11 Schedule (c) involving transactions T1 and T2

3.12 Schedule (d) involving transactions T1 and T2

3.13 Concurrent execution of transactions

3.14 Classification of concurrency control schemes

4.1 Depiction of the computational model

4.2 Components of an MDB in Barker & Ozsu's model

4.3 Pu's multidatabase transaction processing model .

4.4 Breitbart et ars multidatabase transaction processing model .

4.5 Chen, Bukhres & Sharif-Askary's MDMS architecture

4.6 Kang & Keefe's multidatabase architecture

7

39

56

58
59

60
60
60
61

67

69
69
70
70
75
85

89
95

96
98

101

102

4.7 Yoo & Kim's multidatabase system architecture . 104

5.1 State transition in the R2PC protocol 144

6.1 Barker & Ozsu's global recovery manager architecture 164

C.1 State Diagram for multidatabase two-phase commit 208

D.1 The ANSI-SPARC three-level architecture 211

List of Definitions

3.1 Database operations

3.2 Read-set(RS), Write-set(WS) and Base-Set(BS)

3.3 Transaction termination

3 .4 Confii cting operations . .

3.5 Transaction

3.6 Conflicting transactions .

3. 7 Schedule

3.8 Complete schedule

3.9 Projection of a schedule .

3.10 Committed projection

3.11 Serial schedule

3.12 Conflict equivalence of schedules (=:) .

3.13 Serializable / Conflict serializable .

3.14 Ti reads from Tj

3.15 Recoverability

3.16 Avoids cascading rollbacks

3.17 Strict

3.18 lligorous schedule

3.19 Strongly recoverable schedule

3.20 Semi-rigorous schedule ..

3.21 Ageing transactions ...

3.22 Basic timestamp ordering

3.23 Strict timestamp ordering

3.24 Multiversion timestamp rule

3.25 Wait-die rule

3.26 Wound-wait rule .. .

3.27 No-waiting algorithm

3.28 Cautious-waiting algorithm

3.29 Optimistic concurrency control rules

4.1 Local database ..

4.2 Local transaction

53

54

54

54

55

55

64
64
66

66
67

68

68

71

72

73

73

74

74

74

76

77

78

79

81

81

82

82

84
91

91

4.3 Global transaction ...

4.4 Global subtransaction .

4.5 Local history

4.6 Global subtransaction history

4. 7 Global history

4.8 MDB history

5.1 Correctness of atomic commitment protocols

6.1 Local recoverable (LRC)

6.2 Avoids local cascading aborts (ALCA)

6.3 Locally strict (LST)

6.4 Global recoverability

6.5 Global transaction termination uniformity

6.6 Avoids global cascading aborts (AGCA)

6.7 Globally strict (GIST)

7.1 Conflicting global subtransaction

7.2 M-Serial history

7 .3 Equivalence of histories (=) . . .
7.4 M-Confl.ict

7.5 Locally and globally complete histories

7.6 M-Serializable (MSR)

91
92

93
93
93
94

139
157

158

158

159
160

160

160

183

183
184

184

184

184

List of Examples

3.1 Applying the transaction model to transactions Ti and T2

3.2 Recoverability of schedules

3.3 A non-strict schedule

3.4 Problems with concurrently executing transactions

3.5 Deadlock

4.1 Execution order and serialization order

4.2 Global transaction atomicity problem

4.3 The global serialization problem

4.4 The global deadlock problem

5.1 Problems with submitting commit and abort operations separately

6.1 Problem of recovery in a multidatabase

6.2 Different levels of recoverability

6.3 Global recoverability

6.4 Recovery transactions

7.1 Application of the transaction model to the pharmacy example.

7.2 Application of the GCC algorithm

65

72

73
75
80

107

109

111

112

138

155
158

161

161

185

188

List of Synopses

4.1 Gligor et al's altruistic locking scheme

4.2 Breitbart et al's site graph scheme

4.3 Elmagarmid et aI's serialization event scheme

4.4 Wolski's 2PC agent method

4.5 Georgakopoulos's optimistic ticket method ..

4.6 Georgakopoulos et al's forced conflict scheme .

4. 7 Batra et al's decentralized GTM scheme

4.8 Breitbart et al's rigorous schedule scheme .

4.9 Raz's commitment ordering

4.10 Breitbart et al's partitioning scheme .. .

4.11 Kang & Keefe's distributed strict timestamp ordering scheme

4.12 Mehrotra et al's serialization function scheme

4.13 Yun et al's PTM scheme

4.14 Zhang et al's hybrid approach

4.15 Pu's DBMS modification approach .

4.16 Perrizo et al's pessimistic protocol

4.17 Soparkar et al's violation of autonomy scheme.

4.18 Du and Elmagarmid's quasi-serializability

4.19 Rastogi's 2LSR scheme

4.20 Korth et al's predicate-wise serializability

4.21 Mehrotra et al's RS-correctness scheme

4.22 Barker's M-Serializability

4.23 Jin et al's FT-Serializability scheme

4.24 Chen et al's distributed GTM scheme

4.25 Garcia-Molina & Salem's saga scheme

4.26 Lynch's and Garcia-Molina's compatibility set schemes .

4.27 Rastogi's graph based approach

4.28 Pu & Leff's epsilon serializability scheme

4.29 Wong & Agrawal's seralizability with bounded inconsistency

4.30 Gray's and Garcia-Molina's compensating transactions .

4.31 Levy et al's isolation of recoveries scheme

114

114

115

115

116

116

116

117

117

118

119

119

120

120

120

121

121

122

122

123

123

124

124

125

126

126

127

127

127

128

128

4.32 Korth's and Herlihy's exploitation of operation semantics

4.33 Weihl's commuting operations

4.34 Badrinath & Ramamrithan's recoverability

4.35 Shasha et afs partitioning of transactions .

129
129
129
129

Chapter 1

Introduction

Research and development during the last decade have made great strides towards making

distributed databases a commercial reality. A number of products are already readily avail­

able on the market and more are being introduced. Stonebraker et al [Sto94] claim that in

the next 10 years there will be such a significant move toward distributed data managers

that centralized data managers will become an "antique curiosity".

Distributed databases are an ideal means of sharing data and resources without affecting

the autonomy of the database systems comprising the distributed database system. When

distributed database systems are built in a bottom-up fashion from pre-existing database

systems, we have a multidatabase system which can be loosely defined as an interconnection

of autonomous database systems [Bar90]. This dissertation addresses this special type of

distributed database system. A more precise definition of the multidatabase concept is

given in Chapter 2.

1.1 Why a Study on Multidatabases?

More and more applications today require access to data residing in multiple, geographically

distributed information stores. As a result, the integration of these stores has assumed

some importance in recent years and the rapid development in the networking technology

has made this integration tenable.

There is now effectively one world-wide telephone system and one world-wide computer

network. Some people talk about a world-wide file system where data will be available

to everyone anywhere. Likewise, we can contemplate a world-wide database system from

which users could obtain data on any topic covered and where data is made available for

public use. This type of application could be quite far away but it is necessary to start

developing the technology for it now.

In many instances, the information sources are pre-existing database management sys­

tems operating in heterogeneous hardware and software environments, and following dif­

ferent protocols for concurrency control and recovery. Multiple database systems are an

14

Introduction -----------------------------15

important research area and the research into this area is expected to gain momentum with

the advent of scientific and CAD/ CAM(Computer Aided Design/ Computer Aided Manufac­

turing) database applications. In a recent report of the NSF Workshop in Future Directions

in database management system (DBMS) Research [Lag90], the area of heterogeneous, dis­

tributed database was identified as one of the two most important research areas in the

90's. [Sil83, Ras93b]

There are a number of applications that are now becoming feasible and that will help

drive the technology needed for worldwide interconnection of information [Sil83]:

• Collaborative efforts are under way in many physical science disciplines, entailing

multiproject databases. The project has a database composed of portions of research

assembled by independent researchers. The human genome1 project is one example

of this phenomenon.

• A typical defence contractor has a collection of subcontractors assisting with por­

tions of the contractor project. The contractor wants a single project database that

spans the portions of the project database administered by the contractor and each

subcontractor.

• An automobile company wishes to allow suppliers access to new car designs under

consideration. In this way, suppliers can give feedback on the cost of components.

This feedback will allow the most cost-effective design and manufacturing method for

the car. This requires a database that spans multiple organizations.

While the need for integrating pre-existing systems is accepted and well understood,

the difficulties inherent in this approach are still being investigated. The integration of

multiple pre-existing databases is not a trivial task as one does not want to integrate them

and rewrite all applications, but rather simply access the data without interfering with

the autonomy, ownership, security considerations and unique features of each particular

DBMS. This dissertation addresses the concurrent transaction management aspects of these

multidatabase systems.

1.2 Database Background

Databases were originally introduced in order to collect all the data in an organization into

a sort of reservoir of data so that all data access could be done via a kit of database access

tools, such as data description languages, data manipulation languages, access mechanisms,

constraint checkers and high level languages. This kit of tools which controls all access

to the database is referred to as the database management system (DBMS). The physical

database together with the DBMS is called the database system.

1 the genetic material of an organism

Introduction -----------------------------16

However, after providing this centralized database service to users, it was found, over

time, that the situation was far from satisfactory. Some users did not want to lose control

of their data, and dynamic tailoring of data structures to suit many different users became

increasingly difficult to provide. Because of these factors, databases gradually became more

decentralized with each department once again having their own database. This resulted in

difficulties with communicating data between users, which in turn gave rise to the need for

a more formal approach to the decentralization of databases and database functions while

maintaining an integration of resources and perhaps a certain measure of centralized control

[Bel92].

This decentralization trend has led to the development of multiple database systems

(MDBS). A multiple database system typically consists of a software layer (ie. the DBMS)

built on top of a set of multiple pre-existing database systems. Each individual database

system of the set of multiple databases can be referred to as a component database system.

Transactions2 can be submitted to a DBMS of a component database system of the mul­

tiple database system either directly, or via the software layer above the multiple database

systems, or both, depending on the implementation alternative chosen.

The transactions submitted directly to a component database system are referred to as

local transactions and the users of the component database systems are called local users.

The transactions submitted to the multiple database system software layer are referred to

as global transactions and the users who submit them are called global users. The databases

in the component database systems are also sometimes referred to as local databases. The

entire multiple database system is referred to in the literature as a multidatabase.

The multidatabase concept can be best illustrated by means of an example. In Figure 1.1

we illustrate a typical multiple database system. This multiple database system represents

the computer setup in a company which has decided to purchase three pharmacies, one each

in Pretoria, Cape Town and Port Elizabeth. The new company needs to access the data

records of three pharmacies with three different database systems:

• Tonic Pharmacy, situated in Pretoria, which currently uses a relational database sys­

tem,

• Medilots Pharmacy, situated in Cape Town, which currently uses a network database

system and

• Harbour Pharmacy, situated in Port Elizabeth, currently using an object-oriented

database system.

Each individual pharmacy database system must still continue to function as it always has

but in addition we need to do global queries which combine data from all three sites as well

as update and retrieval type transactions on the data in all the databases.

2 0perations on data items in the database

Introduction ______________________________ l 7

Multi database
Management
System

Relational
DSMS

Pretoria Cape Town

Global
User

Port Elizabeth

Figure 1.1: Overall architecture of the example multidatabase system

Introduction -----------------------------18

For instance, the new company needs to access all three databases to check sales; to

do stock control; to keep tabs on the Schedule 6 and 7 medicines and to generate monthly

accounts. The individual database systems must still be able to execute local transactions

to register sales, issue prescriptions and enter purchases on customer accounts. Because the

database systems at each site are autonomous and pre-existing, we choose not to standardize

them to all use the same DBMS and underlying database structure.

Each pharmacy database system is independent, and continues to function as it always

has, with local users submitting transactions, and the local database administrator (DBA)

admitting users and doing all the things for the database that he/she regularly does.

1.3 Aim, Structure and Achievements of the dissertation

The research into multidatabases has been concentrated on schema integration, semantic

heterogeneity, transaction management and query optimization. In this dissertation we

look at the topic of transaction management in heterogeneous distributed database sys­

tems which is a difficult issue. The main problem is that the various independent database

systems comprising a multidatabase system will probably have different DBMSs and there­

fore will use different concurrency control, global commit and crash recovery schemes. A

fair amount of work has been done into the global concurrency control problem. Very lit­

tle has been done in the field of reliability and recovery of multidatabases and therefore

this dissertation also addresses these aspects of transaction management in multidatabase

systems.

In this dissertation an attempt has been made to define a model for transaction man-.

agement in a heterogeneous distributed database system based on an in-depth study of past

research in this area.

Chapter 2 defines the multidatabase concept and Chapter 3 introduces the basic con­

currency control and recovery concepts in centralized database systems.

A core group of existing transaction management schemes which propose different mech­

anisms for transaction management in multidatabase systems has been selected and has been

introduced in Chapter 4.

Most of the research efforts which form the core group have been done by what is consid­

ered to be a leading contributor in this area (Barker & Ozsu; Breitbart, Olson, Thompson,

Silberschatz, Georgakopoulos, Rusinkiewicz, Litwin & Garcia-Molina; Elmagarmid, Helal,

Leu, Du, Litwin & Rusinkiewicz; Chen, Bukhres & Sharif-Askary; Garcia-Molina & Salem;

Pu). Some relative newcomers have been included in the core group because they provide

a new approach to the transaction management problem (Kang & Keefe and Yoo & Kim).

This is by no means a complete list but serves to give an indication of related work done in

the area of transaction management in multidatabases.

The respective concurrency control schemes of each of the core group's transaction

management schemes are also discussed in this chapter. The field of global concurrency

control in multidatabase systems has been given a great deal of attention and for the sake

of completeness, I have given brief synopses of various other concurrency control schemes

that have been proposed in the literature.

The global deadlock issue has been briefly touched upon but since it is not inclu-ded in

the central theme of this dissertation, it is not discussed exhaustively.

Chapter 5 discusses global commit protocols and Chapter 6 discusses the crash recovery

protocols used in the core group's transaction management schemes, when details of the

global commit and recovery protocol are available in the literature. These fields have not

enjoyed much attention from researchers into multidatabase concepts and the literature is

quite sparse. In Chapter 7, the various transaction management schemes are summarized

and finally evaluated and a model for transaction management in multidatabase systems is

proposed.

1.3.1 A summary of problems addressed

This dissertation studies the following key problems in multidatabase systems:

• Classification of multidatabase systems - There are presently three distinct classi­

fication taxonomies for multidatabase systems. One which classifies multidatabases

according to architectural differences [Bel92], another which classifies them accord­

ing to degree of autonomy, heterogeneity and distribution [Ozs90] and yet another

which classifies them according to how tightly the participating local databases are

coupled [Bri92]. This can cause some confusion and this problem has been addressed

in Chapter 2 by introducing an alternative classification combining three taxonomy

schemes.

• Transaction management - Various transaction management approaches have been

proposed. The approach which has gained favour is the client-server approach started

by Breitbart et al [Bre95]. There have been articles recently which advocate a totally

decentralized global transaction manager which is located at each participant database

system [Hwa94, Bat92, Kan93, Ye94].

• Global concurrency control - At first global serializability was the accepted method

of ensuring correctness of concurrently executing global multidatabase transactions.

Lately, however, various schemes have been proposed which do not maintain global

serializability but which define other correctness criteria because global serializability

is often seen as too restrictive. The various proposals are considered in Chapter 4.

• Global deadlock detection - This field has not received much attention. The latest

work in the field is summarized in Chapter 4. The latest method, proposed by [Nam93]

proposes using a graph structure in order to detect cycles which may exist and if they

do exist, to resolve them.

Introduction ______________________________ 20

• Global commitment - Many multidatabases use a variation of the two-phase commit

protocol (discussed in Appendix C) and assume that the local database systems will

support a prepare-to-commit state. In some systems, all transactions have to declare

their data needs in advance and the commit process is then handled by tile global

transaction manager by controlling submission of operations. The latest trend which

seems to be gaining favour is the one used by the decentralized and client-server type

systems which handle global commitment by allowing their server or local agent to

provide a prepare-to-commit state. The server or agent acts as a go-between between

the global transaction manager and the local DBMS. This issue has been addressed

in Chapter 5.

• Global crash recovery - Crash recovery is a question that has not had much attention

from researchers. There are three approaches, redo, retry and compensate. A fair

amount of research has been done into compensation but compensation is not viable

in every type of system. Some recovery protocols require an exclusive access period

when a site comes up after a crash (Geo91a). The decentralized and client-server

architectures will allow the local agent to control crash recovery (Yoo95). This issue

is discussed in Chapter 6.

• Recoverability of global transactions - Determining conditions under which multi­

database consistency can be ensured is not a trivial task. This concept goes hand in

hand with the correctness criterion used by the multidatabase system. This issue is

also addressed in Chapter 6.

• Correctness criterion - Various correctness criteria for multidatabase systems have

been proposed by different researchers. The m-serializability correctness criteria seems

to be seen by researchers as a reasonable alternative to the rather restrictive global

serializability. This issue is touched upon in Chapter 4 and then again in Chapter 6.

1.3.2 A summary of achievements

The dissertation achieved the following:

• A multiple database system classification taxonomy was derived from three existing

classification methods and is presented in Chapter 2.

• The multidatabase concept is formally defined in Chapter 2.

• A formal transaction model is presented in Chapter 3 and extended in Chapters 4 and

6 to include multidatabase concepts.

• A core group of divergent transaction management schemes has been chosen for this

study and their various distinguishing features have been summarized in Chapter 4.

Introduction ------------------------------2.1

• A brief synopsis is given of recent research into various global concurrency control

protocols and correctness in Chapter 4.

• A summary is given of recent research into global deadlock detection in Chapter 4.

• The need for global commit protocols in multidatabase systems is outlined and the

various global commit protocols used by the core group are described and analyzed

in Chapter 5.

• Crash recovery in the core group is elaborated upon in Chapter 6 where the concept

of recoverability in multidatabase systems is also addressed.

• In the penultimate chapter, ~he eight transaction management schemes comprising

the core group are evaluated and compared with one another.

• A formal transaction model - A transaction model was introduced by Bernstein

[Ber87]. This transaction processing model has been extended by incorporating the

work of Tang [Tan93], Mehrotra et al [Meh92c] and Barker [Bar90].

• Finally, a recommendation is made as to the transaction management scheme which

seems to best satisfy the autonomy requirements in multidatabase systems. All the

transaction management, global commitment and crash recovery schemes are evalu­

ated and one scheme has been advanced as being the best at the moment. Reasons

are given for the choice.

Chapter 2

The Multidatabase Concept

This chapter will introduce the multidatabase concept. The three dimensions defining mul­

tidatabases are discussed and a quantification method for the autonomy dimension is intro­

duced. A classification for multiple database systems is introduced and the multidatabase

concept is formally defined and elaborated upon.

2.1 Characteristics of Multiple Database Systems

There are three features which characterize multiple database systems: distribution, het­

erogeneity and autonomy [Ozs90].

2.1.1 Distribution

The distribution characteristic deals with the location of data. Two cases can be identified

[Ozs90]. The data is either physically distributed over multiple sites or stored at one site:

• Physically distributed - this means that the software controlling the access to the mul­

tiple databases must utilize a network to communicate with the individual database

system's DBMS.

• Stored at one site - the multiple database system software level does not need to

use a communication medium to communicate with each component of the multi­

ple database system but simply performs a logical integration of all the component

database systems at one site. This type of multiple database system does not have to

deal with problems involving failure of communication mediums and delay in responses

inherent in a geographically distributed database system.

2.1.2 Heterogeneity

Heterogeneity refers to the diversity with respect to the multiple databases which make up

the component databases of the multiple database system. This diversity can present as

one of the following [Geo90]:

22

The Multidatabase Concept ----------------------23

1. Diversity of hardware: configuration, instruction sets, data formats and representation

(e.g., IBM mainframes, VAXes or UNISYS hardware).

2. Operating system diversity: file system, interprocess communication and trans.action

support (e.g. IBM/VM, VAX/VMS or UNIX).

3. Diversity in networking protocols: the networks connecting the various databases

to the MDBS may have different protocols (e.g. TCP /IP, DECnet, SNA or remote

procedure calls - RP Cs).

4. Variations in data managers: this types of difference manifests where perhaps two

component databases both use a relational database but while one uses dBase as the

DBMS, another uses Access.

5. Differences in underlying data models: network, hierarchical, relational, object-oriented.

6. Transaction management protocols:

• transaction management primitives and related error detection facilities available

through the local database interfaces.

• concurrency control, global commitment and recovery schemes used by the local

database system's DBMS.

2.1.3 Autonomy

Autonomy refers to the distribution of control. It indicates the degree to which individual

component databases in a multiple database system can operate independently. Breitbart

et al [Bre95] and Ozsu & Barker [Ozs90] each cite three levels of autonomy. They use

different terminology but basically the autonomy levels boil down to the following:

1. Design autonomy - no changes are to be made to local DBMS software or existing

local data to accommodate the multiple database system. The local operations of

the individual DBMSs are not affected by their participation in the multiple database

system. Making changes to existing software may be possible but even so, modifying

it is expensive and creates a major maintenance problem. Design autonomy implies

that local DBMSs in a MDBS environment may use different data models and fol­

low different concurrency control protocols, and that no modifications are made to

local DBMS software. This autonomy is important since local database systems are

pre-existing and may thus have followed different concurrency control protocols be­

fore their integration into the MDBS environment. Implementing a new concurrency

control mechanism in all local DBMSs could degrade performance in local database

systems and prove to be expensive to implement and above all would require extensive

changes in the software of existing DBMSs. In cost terms, this would therefore be

impractical.

The Multidatabase Concept ----------------------2.4

2. Execution autonomy- each local DBMS at the database site retains complete control

over the execution of transactions at its site. The manner in which the individual

DBMSs process queries and optimize them is not affected by the execution of global

queries that access multiple databases. An implication of this constraint is that a

DBMS may abort a transaction executing at its site at any time during its execution,

including the time when a global transaction is in the process of being committed

by the multiple database system software layer. Even if one were to have design and

communication autonomy, and not have execution autonomy, the local DBMS would

not retain control over its database. It would be possible for a global transaction to

hold onto locks on certain data items at a local database for an unbounded period

of time. These data items would then not be available to local transactions and

therefore degrade performance. This type of autonomy is especially important if

participating database systems belong to different, competing organizations that may

not have complete trust in one another, and wish to retain complete control over their

databases.

3. Communication autonomy - the local DBMSs integrated by the multiple database

software layer are not able to coordinate the actions of global transactions executing

at several different sites. This constraint implies that the local DBMSs do not share

their control information with each other or with the software layer system. This is

important because each of the component database systems were built as a central­

ized system, and are thus unaware of any other component database systems. Also,

most existing DBMSs do not communicate concurrency control information or recov­

ery information to users. Incorporating these features and requiring local DBMSs to

communicate concurrency control information may not be cost-effective and may be

impractical from a software engineering point of view. Furthermore, a local DBMS

which follows a locking protocol may not have serialization information readily avail­

able. Thus requiring it to provide such information may degrade performance to

unacceptable levels.

It can be argued [Ras93b], that the preservation of local autonomy is both desirable and

necessary in a multiple database system for the following reasons:

• Since a local or component database is essentially an independent database system,

many applications have been developed prior to integration. These applications should

continue to run after integration.

• Since local DBMSs controlling access to local databases had total control over their

database before integration, it is desirable for them to have as much control as before,

after integration.

• Local autonomy allows participating database systems to be added or removed very

easily to or from a MDBS environment.

The Multidatabase Concept ----------------------25

Data

1

0.5

0.25 0.75
1

System

Design

Figure 2.1: Modification dimension's axes

[Bar94, p.156]

It would be useful to have some sort of method for determining the autonomy level in

specific MDBSs with specific software. We will introduce one such scheme in the following

section.

2.1.4 Quantification of autonomy

Barker [Bar94] has set out a number of guidelines for the quantification of autonomy on

what he calls multidatabase systems. We shall apply this strategy to our multiple database

systems and outline his quantification methodology here in some detail for the sake of

clarity. This quantification strategy will be referred to when we evaluate various protocols

in Chapter 7. Barker identifies three fundamental dimensions: modification, execution and

information exchange. The variations in these dimensions are not necessarily absolute but

should be viewed as a continuum where some autonomy can be sacrificed rather than an all

or nothing situation. Each dimension is awarded a value ranging from 0 to 1 - as described

below - and then a method is outlined for using these values to arrive at a single value

indicating the autonomy violation of a particular software protocol.

1. Modification - This addresses what needs to be modified to permit a database

system's participation in the MDBS. This dimension relates to the design autonomy

as identified in section 2.1.3. Figure 2.1 depicts the various aspects of this dimension.

The Multidatabase Concept ______________________ 26

Each axis has an equal weight, all axes have the same length. This means that each

dimension which is used to quantify autonomy is equally important in the calculation

of a value for autonomy violation. When no violation occurs the value zero is assigned

to the axis while a maximal violation will be assigned a value of 1. The axes are:

• The data itself (on the y axis): We look at whether changes must be made to

how data is stored on local databases. This means that extra data items must

be added to, or removed from, the database to fit in with other databases which

are going to be components of the MDBS. The origin is where modification to

the data is unnecessary. Adding new data is the next point on the axis. This

may be used to provide concurrency between different DBMSs or to facilitate the

mapping of heterogeneous schema's. This is a 0.5 violation. The worst violation

occurs when changes must be made to existing data to permit participation in

the MDBS. For this a weight of 1 is assumed.

• The DBMS system (on the x axis): We can identify four important points

on this axis, each representing a more invasive modification to the system. If

the DBMS is not modified, then it is placed at the origin. Ideally no additional

software would be required at the local DBMS. This is an unrealistic goal because

all recovery protocols which have been devised for multiple database systems,

thus far require certain changes to the local DBMSs. Thus we must consider the

various possible violations of the autonomy. If additional software is required,

this is not a major violation so it is placed at the 0.25 mark. Most MDBSs make

assumptions about the environment and require component systems to conform

to the assumption or be modified. This is a significant invasion of autonomy and

is weighted at 0. 75. Finally, if the number of modifications to the local systems

is such that assumptions about the DBMS impose new standards on it, a major

autonomy violation has occurred and such proposals will be assigned a 1 on the

system modification axis.

• The way the database is designed (on the z axis): This addresses changes to

the underlying local schemas used by each DBMS. The ideal point is the origin

where nothing is changed. The midpoint of the axis indicates that mapping

functions are necessary to permit the data to be used by another DBMS. The

most invasive point occurs when it is not possible to do a mapping and so some

or other local schema has to be changed. These will inevitably cause changes to

the local applications as well.

2. Execution - This addresses the level, either global or local, that controls the execu­

tion sequence at the individual database site. This dimension relates to the execution

autonomy as identified in section 2.1.3. Autonomy measurement can be based on

the component that controls local transactions and global transactions. Global trans-

The Multidatabase Concept ----------------------27

Global Transactions

0.

0.5 0.75

Local Transactions

Figure 2.2: Execution dimension's axes

[Bar94, p.158]

actions are typically split up into global subtransactions - one such subtransaction

for each database which is accessed by the global transaction. Global subtransactions

(GS Ts) can thus be seen as agents for global transactions which execute the part of the

global transaction which accesses the data items in that particular local database sys­

tem. When discussing the component that controls them, they are logically the same.

Transactions carry out various operations on the database but the most important for

the purpose of this discussion are read, write, commit and abort. The transaction will

eventually reach a commit point and then will either commit (in which case all the

operations carried out on the database become permanent) or abort (in which case

none of the operations carried out on the database will be reflected on the database).

Figure 2.2 illustrates how the two types of transactions are measured.

• Local transactions (on the x axis): execute independently of the MDBS -

shown by the 0 value on the axis. Where it is necessary to coordinate the

execution of local transactions with other transactions through interactions with

the MDBS, an autonomy violation occurs. This is indicated at the 0.5 point on

the axis. If local transactions have to be submitted through the MDBS software

layer instead of, or in addition to, the normal local transaction interface, then a

point value of 0. 75 is assigned. Finally a 1 is assigned if local transactions can

only be executed by submitting them to the MDBS layer.

• If we have a look at the global transaction axis (the y axis), the zero level is

allocated to systems where the global subtransactions are submitted and treated

in exactly the same way as the local transactions. The midpoint of the axis indi­

cates that GSTs are executed to commit point and then must get confirmation

The Multidatabase Concept ----------------------28

Data Information

1

0.5

0.25
1

xecution Information

Schema Information

Figure 2.3: Information exchange dimension's axes

[Bar94, p.159]

from the MDBS before the transaction is committed. Finally, the most serious

violation occurs when the MDBS wholly controls the execution sequence of the

global transactions. In this case the local DBMS becomes simply a workhorse

for the MDBS.

3. Information exchange - This dimension addresses the amount of information

that must pass between the local and global levels to permit a database system to

join or leave the MDBS and to ensure correct execution while it is functioning. This

dimension relates to the communication autonomy as identified in section 2.1.3. The

dimensions are illustrated in Figure 2.3. Dimensions of interest here are:

• Data information {on the y axis): How data is exchanged between levels.

The zero on this axis indicates that all heterogeneity between data and data

models is handled by the MDBS. If data from one database must be stored at

another database, possibly in another format, a value of 0.5 is assigned. The most

invasive approach occurs when data intended to represent a particular value must

be changed to guarantee consistency over multiple databases.

• Schema information {on the z axis): How schema information is exchanged

when a database system joins or leaves the multiple database system. The origin

The Multidatabase Concept ----------------------2.9

represents the approach where only schema information for data that the local

data wants to make available is transmitted to the MDBS. The midpoint is where

additional mapping information must be exchanged by the DBMSs either directly

or via the MDBS. Most invasive of all is when a DBMS must provide its-entire

conceptual schema so that the database system can participate in the MDBS.

• Execution information (on the x axis): How concurrency control, deadlock

and reliability information is exchanged at runtime. The origin on this axis is

where no information must be exchanged between the levels during the transac­

tion's execution. If information is exchanged then communication autonomy is

sacrificed. It may be possible to exchange certain kinds of information without

being too invasive. For example, if the MDBS only requests status information

from the DBMS, that does not violate autonomy. In this type of situation, we use

the 0.25 mark to acknowledge that a trade-off has occurred. When the DBMS

must get status information from the MDBS regarding a transaction's execution,

this is regarded as a severe invasion and a value of 1 is awarded.

There is some overlap between the axes of various dimensions. This is because there is a

close relationship between the various autonomy dimensions as described above and should

be considered beneficial in measuring autonomy because a small violation in one area may

impact on other dimensions. When we have values for the three (or two) axes of autonomy

violation for any of the individual dimensions, namely x, y and z, we can work out the fi­

nal overall autonomy violation indicator for that dimension by using the following formula:

n = J x2 + y2 + z2.

The maximum value for n is J3 ""' 1. 732. A maximal violation of any single axis is

significant because if it is maximally violated, it represents 5 7. 7% of the maximum and

a maximal violation along two axes is 81.6%. This reflects the characteristic of this quan­

tification method which reflects maximal violations far more seriously than multiple minor

violations. One also needs to make an adjustment so that the execution dimension makes

the same impact on the final result as the other two dimensions because if we use the same

method its maximum contribution would be .J2 which is less than the maximum value of

the other dimensions, namely J3. The easiest way to do this would be to multiply the final

value awarded to the execution autonomy by Jf.5. This permits the execution dimension

to exhibit the same characteristics as the other.

After quantifying these three dimensions, we can work out a total autonomy violation

taking the three dimensions: m : modification, e : execution, and i : information into

account. Now finally we can work out an autonomy violation value, a, for the entire system

The Multidatabase Concept ______________________ .30

as follows:

a= ../m2 + e2 + i2.

The maximum length of each dimension is J3 so that the maximum value of a will be

J9 = 3. A single value therefore represents a measure of the autonomy violated by a par­

ticular system integration approach [Bar94].

Using these measurements, we can define the terms fully autonomous, semi-autonomous

and non-autonomous.

• A multiple database system is said to be fully autonomous if the individual database

systems making up the system are stand-alone database systems that know nothing

about the existence of other database systems that make up the multiple database

system. They also have no notion of any type of communication with the DBMSs

of the other component database systems. In this case the value for the autonomy

violation would be 0.

• A multiple database system is said to be semi-autonomous if the component database

systems can operate independently but have decided to participate in a federation to

make their local data shareable. They are not fully autonomous because they require

certain changes to be made to their DBMSs in order to participate in the federa­

tion. The final overall autonomy violation would probably be midway between the

maximum ../9 and the minimum 0.

• A multiple database system is said to be non-autonomous if a single image of the

entire database is available to any user who wants to share the information which may

reside in the multiple databases. The individual database systems will typically not

operate independently even though they probably have the functionality to do so.

An example of a typical autonomy evaluation of a non-autonomous MDBS may look

as follows:

Modification Dimension

System

Data

Design

Total value of m = 1

1

0

x

New standards are imposed

Data remains untouched

Not discussed

The Multidatabase Concept ----------------------31

Execution Dimension

Local Transaction 1

Global Transaction 1

Total value of e = 1.732

Information Exchange Dimension

Execution

Data

Schema

1

x
1

Total value of i = 1.414

Submitted via the MDBS

Controlled by the MDBS

Execution coordinated by the MDBS

Not discussed

Entire Schema provided

The overall autonomy violation is a= Jm2 + e2 + i2 = 2.5.

2.1.5 Cost of autonomy

Autonomy does not come free. Four aspects can be identified that can be adversely affected

by autonomy [Gar94]:

• Correctness - If there is a high level of transaction autonomy, the question of ex­

ecution correctness can be raised. For example, one way of maintaining correctness

in distributed systems is through the use oflock-based distributed concurrency con­

trol mechanisms. When a node has lock autonomy, it can release a lock acquired by

a nonlocal transaction and thereby possibly violate an established locking protocol,

which may breach correctness criteria.

• Timeliness - With autonomous setting of priorities for nonlocal transactions, no

guarantees can be made about how soon such requests will be serviced. This could

cause a global request to have an unacceptably long response time or to be starved

altogether.

• Level of cooperation - The issue of cooperation involves data load sharing among

nodes in a distributed system. \i\Then cooperation is mandatory, node autonomy is

very difficult to maintain.

• Degree of data replication - High autonomy almost certainly implies that data will

be replicated because we will essentially be integrating pre-existing databases with

their own data contents. Because of nodal autonomy, this replication will have to

be maintained. On the one hand, the replication eases scheduling, name translation

and execution autonomy, but it also carries with it the problems of ensuring data

consistency among replicated data items.

The Multidatabase Concept ______________________ .32

2.2 Classification of Multiple Database Systems

There seems to be much confusion in the literature about the classification of multiple

database systems. Three main classification methods have been identified; firstly classifi­

cation according to architectural alternatives [Bel92], secondly classification according to

degree of autonomy, heterogeneity and distribution [Ozs90] and thirdly according to how

tightly the participating multiple databases are coupled in the resulting system [Bri92].

A combination of these methods resulted in the taxonomy of multiple database systems

described below and illustrated in Figure 2.4.

The levels of the classification firstly consider distribution, followed by heterogeneity

and autonomy at the lowest level. Within each of these sublevels the different architectural

alternatives are used as differentiators.

2.2.1 Non-distributed multiple datatjase system

If the multiple databases are not distributed over a number of sites, the system is referred

to as a Non-distributed multiple databas~ system. It can also be called a logically

integrated multiple database system. There are: not many examples of this type of system,

but this type of system could be suitable for a!system consisting of multiprocessors where

all the databases reside at one site and are acc~ssed by all the users in the system.

Within this main group we can further distinguish between heterogeneous and homoge­

neous database systems.

1. Heterogeneous Non-Distributed Int¢grated Multiple Database System: In

this type of system one has multiple databases which are heterogeneous with respect to

database structure, data managers or other aspects, but which provide an integrated

view to the user. This type of system, for !example, could provide access to a network,

hierarchical and relational database, all r~siding on the same machine.

• Single Site Heterogeneous Fede*ated Database System - In this type of

system the non-distributed, heteroge:neous databases are semi-autonomous. This

could be a system where the various 1existing databases at a single site must still
I

be used individually but they also fbrm part of a multiple database system for

another set of users who require acc$ss to all the available data at the site. The

individual databases will probably hlve to have certain alterations made in order

to participate in the multiple database system.

• Heterogeneous Unaffiliated Multiple Database System - In this type of

system non-distributed, heterogeneous database systems are fully autonomous.

This means that the individual databases and their data managers will not have

any changes made to them in order to participate in the multiple database system.

The Multidatabase Concept ______________________ 33

'fl' 'J

Multiple
Databuo

..,

System
Implementation

-·

' '" ·m ~ .'/ "" g

I
-

Nora-Dia'lribate4 Dillriln11icl
M1'J1iple m

~~pte
~ Daabue
Sys!• 'System

'
....

I
Heterogeneous Homogeneous Distributed Distributed
Non-Distributed Integrated Heterogeneous Homogeneous
Integrated Non-Distributed Integrated Integrated
Multiple Multiple Multiple Multiple
Databases Databases Database Database

System System

I
Single Site Heterogtnoous Single Sito HQ111.ogOR001$S
Heterogcmeoui UnaffiJiated Fodoratod Una11iliated
Federated Multiple Multiple Multiple
System Databuo Database Database

Systan System System

I
I

Distnl>utlld Dislributod Distributed Distributed Distributed Distributed
HomtogCllleoUI HoterogOllOOUI HeterogOdeous lleterogoneous Dis1ribaliod Homogeneous Uutriliatod
Coalition of Global Schema Fedoratod Unaffiliated Databue Federated Multiple
Multiple MuhiploDB Multiple DB Multiple DB System Multiple DB Database ~

Databases System System System System System

Figure 2.4: Classification of multiple database systems

The Multidatabase Concept ______________________ ,34

The databases will all reside at the same site, will be heterogeneous and because

of the full autonomy, will see the multiple database system software layer as

simply another user.

2. Homogeneous Integrated Non-Distributed Multiple Database System: This

multiple database system would typically consist of a set of databases which all have

the same data managers and the same underlying structure all residing at the same

site.

• Single Site Federated Multiple Database System - In this type of sys­

tem, the non-distributed homogeneous multiple databases are semi-autonomous.

Thus certain changes may be made in order to reconcile differences between data

items stored in different databases, or changes could be made to transaction

management methods in the local DBMS.

• Homogeneous Unaffiliated Multiple Database System - In this type

of system the non-distributed, homogeneous, multiple databases are fully au­

tonomous. In this architecture, no changes would be made to individual databases

and the multiple database software layer would have to reconcile any differences

between the databases before doing queries or updates on the databases.

2.2.2 Distributed multiple database system

If, however, the multiple databases are distributed, the system is referred to as a dis­

tributed multiple database system. In this type of system the database is distributed

over various sites even though an integrated view is provided to the users. A communication

medium will be used to communicate with the component database systems.

Within this main group we can once again further distinguish between heterogeneous and

homogeneous database systems.

1. Distributed Heterogeneous Integrated Multiple Database System- In this

type of system the component database systems are heterogeneous. As the name

suggests, the component databases in this system are distributed over various sites

and would have various differences between them and/or their data managers.

• Distributed Heterogeneous Coalition of Multiple Database Systems: In

this type of system, also called a tightly-coupled system, the component database

systems would have no autonomy whatsoever, thus non-autonomous, and would

probably not function independently even though they have the functionality

to do so. The global system has total control over local data and processing.

The system will create a global schema by integrating the schemas of all the

participating multiple database systems. A single image of the database would be

The Multidatabase Concept ______________________ 35

made available to any user who wants to use the data in the multiple databases.

From the users' perspective, the data is logically centralized in one database.

This type of system is described by Ozsu et al [Ozs90] as a tightly integrated

multidatabase management system. Because it is so tightly integrated, this type

of system can closely synchronize global processing. Also, since the global system

has complete control over local systems, processing can be optimized for global

requirements. These systems have good global performance but this is achieved

at the cost of significant local modification and loss of control [Bri92].

If our pharmacy example were to be implemented this way, it would mean that

all transactions would have to be entered by the new owner - the global user.

There would be no local users in the system at all.

• Distributed Heterogeneous Global Schema Multiple Database System:

This type of system integrates semi-autonomous multiple databases. These types

of systems are more loosely coupled than the coalition of multiple database sys­

tems described above, because global functions access local information through

the external user interface of the local DBMS. However, the multiple database

system software layer still maintains a global schema, also called the global

conceptual schema, so the local sites must cooperate closely to maintain the

global schema. These systems are typically designed bottom-up and can in­

tegrate pre-existing multiple databases without modifying them. This class of

multiple database systems is introduced by [Bri92].

Creating the global schema here is more difficult than in the coalition of multiple

database type of system because the DBA(Data Base Administrator) of the

global system has no control over local schema input to the global schema and

the local schemas are not modified when they join the global schema multiple

database system.

In this type of multiple database system, we have three extra levels on top of the

ANSI-SPARC architecture (see Figure D.1, Appendix D):

- The global conceptual schema - In this type of system the global conceptual

schema is simply a logical view of all the data available to the multiple

database system. It is only a subset of the union of all the local conceptual

schemas, since the local DBMSs are free to decide what parts of their local

databases they wish to contribute to the global schema.

- The participation schema - A component database's participation in the

multidatabase system is defined by means of a participation schema and rep­

resents a view defined over the underlying local conceptual schema [Bel92]. It
represents the extent of the local database's participation in, or contribution

towards, the multiple database system.

The Multidatabase Concept ______________________ 36

Global user
view 1

Auxiliary
schema

Local user
view 1

Local user
view 2

GlobaLConcevtual Schema

Local participation
schema 1

ocal int~mal
schema 1

Local participation
schema n

"
Local ..
conceptual
schema n

Local intern
schema n

Auxiliary
..,_ _ _.schema

Local user
view x

Local user
view y

Figure 2.5: Schema architecture of a distributed heterogeneous global schema multiple

database system

[Bel92, p.50]

The Multidatabase Concept ______________________ 37

- The global external views - Support for user views, which is very important

because the global conceptual schema will probably be extremely large, is

provided by the auxiliary schema. The auxiliary schema, illustrated in Figure

2.5, describes the rules which govern the mappings between local and ·global

levels. For example, rules for unit conversion may be required when one site

expresses distance in kilometres and another in miles. Rules for handling

null values may be necessary where one site stores additional information

which is not stored at another site, for example one site stores the name,

home address and home telephone number of its employees, whereas another

just stores name and address.

Some multiple database systems also have a fragmentation schema although not

an allocation schema since the allocation of fragments to sites is already fixed as

multiple database systems integrate pre-existing databases.

• Distributed Heterogeneous Federated Multiple Database System -

In this type of system, component database systems are also semi-autonomous

but in this type of system there is no global schema. The component database

systems typically sacrifice some of their autonomy to become part of the MDBS.

This would cause some additional difficulties in allowing databases to join or

leave the system but on the other hand, would make concurrency and recovery

maintenance easier to enforce.

These systems - illustrated in Figure 2.6 - are once again more loosely coupled

than the global schema multiple database system. Each local system maintains

a local import and export schema.

- The export schema is a description of the information the local node is willing

to share with the global system.

- The import schema is a description of the information from the other database

systems that may be accessed locally. Each import schema is therefore a par­

tial global schema.

Therefore, each local participating database system must cooperate closely only

with the nodes it accesses in order to carry out some transaction. This is done by

means of the import schema provided by the remote database system that needs

to be accessed. User queries are restricted to local data and the data represented

in the local import schema. [Bri92]

This would probably be the best option for our pharmacy example multiple

database system because the component database systems would retain their

functionality while allowing the global user access to most of the data as well.

• Distributed Heterogeneous Unaffiliated Multiple Database System -

In this type of system the multiple database systems are fully autonomous. Ozsu

The MuJtidatabase Concept ______________________ 38

Export
Schema 1

Global
user view 1

Export
Schema2

Local
internal
schema a

Global
user view 2

,

Global
user view m

..., .,. -. I --... ,

Export
Schema3

Local
internal
schema2

-..,_ , _....._ __
Export
Schema4

Local
internal
scbeman

Export
Schema I

Figure 2.6: Architecture of a distributed heterogeneous federated multiple database system

[Bel92, p52]

The Multidatabase Concept _______________________ 39

Local
user
view I

Local
user
view 2

Global
user view

Local
internal
schema2

.. , .. ,
"" ..

Global
user view

, .. , ..

Figure 2.7: Unaffiliated multiple database system architecture

[Bel92, p.51]

et al refer to this system as the total isolation option [Ozs90]. This means that

absolutely no changes are made to the DBMSs of the component database sys­

tems in order for them to be part of the multiple database system.

This option is almost impossible to achieve if we want any update functionality at

all. In this type of system, the processing of user operations is especially difficult

since there is no global control over the execution of transactions by individual

DBMSs [Ozs90]. The components of this type of system are illustrated in Figure

2.7.

In these systems no global schema is maintained. The global system supports all

global database functions by providing query language tools to integrate infor­

mation from separate databases in the multiple database system. User queries

can specify data from the local schema of any of the individual databases par­

ticipating in the system [Bri92].

The construction of a global conceptual schema is a difficult and complex task and

involves resolving both semantic and syntactic differences between sites [Geo90]:

The Multidatabase Concept ______________________ 40

- Semantic differences relate to the meaning and intended use of data. These

include inconsistencies in the domain definitions for attributes, discrepancies

in naming (synonyms and homonyms), data values and value precision.

- Syntactic differences include differences in data types used (e.g. identity

number can be defined as a string or an integer), data manipulation operators

(e.g. the set of operations in the CODASYL model which is equivalent to a

join operation in the relational model) and units of measurement (e.g. feet

or metres).

Sometimes these differences are so extensive that it does not warrant the huge

investment involved in developing the global schema, especially when the num­

ber of multisite global queries is relatively low [Bel92]. Several researchers argue

that this type of organization gives this system a significant advantage over non­

autonomous type multiple database systems. The unaffiliated multiple database

system typically has two layers, the local database system layer and the multi­

ple database system layer on top of it. The local system layer consists of the

component database systems. The responsibility for providing access to multi­

ple heterogeneous databases is delegated to the mapping between the external

schemas and the local conceptual schemas. This is fundamentally different from

the global schema multiple database option, where this responsibility is taken

over by the mapping between the global conceptual schema and the local ones.

This difference in responsibility has a practical consequence. If a global schema

is defined, then the consistency rules of the global database can be specified

according to this single definition. If a global schema does not exist, however,

dependencies have to be defined between the various local conceptual schemas

[Ozs90].

2. Distributed Homogeneous Integrated Multiple Database System - Because

the component database systems are homogeneous, the task of the multiple database

system software layer is simplified a great deal. It has none of the problems associated

with heterogeneous systems. Our pharmacy example does not fit into this category

because the component databases are not homogeneous.

• Distributed Database System - In this system, the component databases

have no autonomy at all. The traditional distributed database concept falls into

this category. These systems are typically designed in a top-down fashion, with

local and global functions implemented simultaneously. The same functional in­

terfaces are presented at all levels even though they may be implemented on

different machines. The global system has control over local data and process­

ing. Global users access the system by submitting queries over the global schema.

The Multidatabase Concept ----------------------·41

They closely synchronize global processing because they are so tightly integrated.

Processing can also be optimized very well. This type of database system usually

performs well but this is achieved at the cost of significant local modification and

loss of control. [Bri92] To formally define this concept:

A distributed database (DDB) can thus be defined as a logically in­

tegrated collection of shared data which is physically distributed across

the nodes of a computer network [Bel92].

while a distributed database management system can be defined as:

A distributed database management system (DDBMS) is a mul­

tiple database system software layer which manages a distributed, ho­

mogeneous, non-autonomous or autonomous set of multiple databases

in such a way that the distribution aspects are transparent to the user.

• Distributed Homogeneous Federated Multiple Database System - In

this system the distributed, homogeneous, component databases are semi-aut­

onomous. Because the component database systems are homogeneous, the comp­

onent database systems are the same, and it is a lot simpler to integrate them

into a federated type system. Certain changes may be required, for example in

the recovery protocols of the various systems, in order to make them part of the

federation. The component database systems will still function independently

however. The structure of this system is the same as the distributed heteroge­

neous federated multiple database system.

• Distributed Homogeneous Unaffiliated Multiple Database System-In

this system, the component database systems are fully autonomous, distributed

and homogeneous. Ozsu et al also refer to this system as the total isolation op­

tion [Ozs90]. The organization of this type of system as well as its management

is quite different from that of a traditional distributed database system. The

fundamental difference lies in the difficulties caused by the autonomy of compo­

nent data managers. The structure of this system is the same as the distributed

heterogeneous unaffiliated multiple database system.

The Multidatabase Concept ----------------------·42

2.3 Multidatabases

2.3.1 Definition

In some of the literature, full autonomy, distribution and heterogeneity is required when a

multidatabase system is referred to. For the purpose of this dissertation, we are going to

include the semi-autonomous, distributed, heterogeneous multiple database systems in our

general definition of a multidatabase. A multidatabase can thus be defined as:

Multidatabases (MDB) are systems which are composed of autonomous or

semi-autonomous, heterogeneous, distributed, pre-existing databases, together

with a software layer, built on top of them, to control access to all data in all

the component databases from the point of view of the user of the multidatabase

system, while the component database systems still function independently.

A Multidatabase Management System (MDMS) is the software layer built

on top of the multiple database systems that facilitates access and manipulation

of data at local sources (the component databases), distributed among nodes of

a computer network by both users at the local databases as well as users of the

multidatabase system.

This would then include the following categories:

• Distributed Heterogeneous Global Schema Multiple Database Systems,

• Distributed Heterogeneous Federated Multiple Database Systems,

• Distributed Heterogeneous Unaffiliated Multiple Database Systems.

2.3.2 Reasons for using the multidatabase concept

There has been much research into the integration of information resources. The main

objective of multidatabase systems is to provide organized access to multiple database sys­

tems. In this section we look at the motivation behind the development of the multidatabase

concept.

The demand for a multidatabase arises in response to the need for an integration mech­

anism for an organization which has a large number of operational database systems that

are already in use and support their own databases, applications and users. The organi­

zation cannot simply create a distributed database system here because of the investment

which went into developing these individual systems. The need for multidatabases has also

emerged in public networks which provide access to many different types of databases. These

databases are often owned by a variety of different people or organizations and provide a

The Multidatabase Concept ______________________ 43

vast variety of services. The motivation behind not integrating these types of databases

into a single database, can be summarized as [Geo90]:

• User autonomy - Users have different needs and prefer to represent their ~ata in

different ways. Instead of providing a database schema and a DBMS to satisfy all

ne<lds, users with similar requirements can be accommodated far more effectively by

allowing them to design their own databases to suit their own needs.

• Ownership and security considerations - In a large organization, one often has data

which belongs to some or other department in the organization. Other groups may

need occasional access to the data but the group which creates and has frequent access

to the data, should control it. The multidatabase approach allows this facility.

• Unique features provided by a particular DBMS - Depending on the data in the

database, different features can be required. For instance, transactions in a business

database usually have a short lifespan while transactions in a technical database often

take hours to perform. Technical DBMSs also require additional functionality not

required in a business database. These needs can be met in specific DBMSs but are

almost impossible to achieve in an integrated system.

• Reliability, availability and flexibility- In a multidatabase system, the loose coupling

of component database systems increases the overall system reliability and availability.

It also allows flexibility to add and remove individual databases as the need arises.

We need a facility to access these multiple databases. Multidatabase systems attempt to

solve this type of difficulty.

2.3.3 Transactions and users in multidatabases

In multidatabases, the component databases will be referred to as the local databases and

their users will be referred to as local users. In our example, the databases in Pretoria, Port

Elizabeth and Cape Town are the local databases and the users at each of these sites are

the local users.

However, a new dimension has been added. We now also have a new set of users, the

global users. These users access all data incorporated into the MDB which resides in the

local component databases, via the MDMS. These users are controlled by the MDMS data

administrator and are unknown to the individual local component databases. The MDB

will accept transactions from these users, split them up into subtransactions and submit

them to the applicable databases as transactions. To the local database, the transaction

that comes from a local user and the transaction coming from the MDMS level, looks ex­

actly the same, and is treated identically. This means that while each local database has

facilities to execute transactions, each individual local database has no notion of executing

distributed transactions that span multiple components (because they have neither global

The Multidatabase Concept ______________________ 44

concurrency control mechanisms nor distributed commit protocol implementation).

In summation: a MDMS thus supports two types of transactions and users. Transactions

are divided into:

• Local transactions that access data at a single local site outside of the MDMS control.

These transactions result from the execution of user programs submitted directly to

the local DBMS.

• Global transactions that are executed under the MDMS control. These result from the

execution of user programs submitted to the MDMS. A global transaction consists of

a number if subtransactions, each of which is an ordinary local transaction from the

point of view of the local DBMS where the transaction is submitted.

There are also both local and global users in a MDMS:

• Local users can continue to access their databases in the normal way unaffected by

the existence of the MDMS. Each local DBMS has its own transaction processing

components, including a concurrency control mechanism that ensures serializable and

deadlock-free execution of all transactions submitted, both from local and global users

[Bre95].

• Global users which access the individual databases only via the MDMS layer. From the

perspective of each DBMS, the MDMS layer is simply another 'user' from which they

receive transactions and present results. The only type of communication between

the autonomous database systems is via the MDMS layer.

The terms local and global has been used throughout this dissertation in order to distinguish

between aspects which refer to a single site (local) as contrasted to those aspects which refer

to the system as a whole (global). The global database is a virtual concept as it does not

exist physically anywhere.

If we refer back to our pharmacy example, the pharmacist and his/her assistants at each

individual pharmacy are the local users while the new owner of the pharmacies will use the

data as a global user via the MDMS layer. The global transaction will be submitted to the

local DBMS as if it comes from simply another user and the results of the transaction will

be sent to that user - thus the MDMS layer.

The scheduling of the global transactions is done at the MDMS layer by the global

transaction manager (GTM) [Ozs90]. The objective of MDMS transaction management is

to ensure multidatabase consistency in the presence of local transactions.

2.3.4 Management of heterogeneous distributed multidatabase systems

Data in the multiple database system is handled by the global data manager (GDM). The

GDM performs both the mappings between the global view of the data and the local DBMSs

The Multidatabase Concept ----------------------45

and all the relevant 1/0 operations [Gli84].

• Input - The initial input to the GDM is either a query or transaction formulated

on the global schema, global external views or the export schemas. If the qll:ery or

transaction is directed to an individual DBMS, then it is translated into the local

query language and passed to the local database system. If a distributed query or

transaction is formulated, the GDM transforms the original query or transaction into

a collection of subqueries, each in a format acceptable to one of the local DBMSs.

• Output - The GDM generates a plan of subquery execution and passes these to the

multiple database systems. At each of the multiple database systems the subquery

will be presented to the appropriate DBMS. The local DBMS will send the results of

the query or transaction back to the GDM and the GDM will assemble the results of

all the subqueries and produce the answer to the original query.

• Functions - A GDM must include the following five functions:

- Global data model analysis - If the multiple database system has a global

schema, there is a unified view of all the data in the multiple database system.

If there is no global schema, we would still have the export schemas of each local

database system and that would be used in order to set up a data dictionary

which would be consulted by the GDM in order to do the mappings between

user queries and data held in the multiple databases.

- Query decomposition - the query decomposer takes the original query and frag­

ments it into subqueries. In order to divide the global query into its subquery

components, the GDM uses the distributed data dictionary as a guide. A global

query which references only a single local database system does not need to be

decomposed since the entire query can be carried out at a single site.

- Query translation - this is a language to language translation which takes into

account the underlying data model di:ff erences. The user would be assumed

to issue the query in the unified global query language. The translator may

receive the original query that is formulated on the data available throughout

the multiple database system, and translate it to a global query that is based on

the global schema of the multiple database system (or the union of the external

schemas provided by the multiple databases). Then the translator would have

to translate a subquery, for each database system that has to be accessed, into

the language used by that DBMS. The translated subquery is then sent to the

local database system.

- Execution plan generation - this part of the GDM interacts with the network

by passing the subqueries generated by the GDM to each individual database

system. The execution plan generator decides which subqueries can be sent in

The Multidatabase Concept ----------------------46

parallel, which subqueries must precede others and what the relationships are

among intermediate results.

Results integration - the results of the subqueries are combined by the results

integrator which then combines them and represents the results in a form ac­

ceptable to the original user.

These five functions are basic features of a GDM in both heterogeneous and homo­

geneous systems although the query translation and results integration are far more

elaborate in heterogeneous systems.

Following this description of what is required of the data manager in a multi database system,

we can now delineate the functionality of a multidatabase management system.

2.3.5 Functionality of an MDMS

We have spent some time defining exactly what a multidatabase is, now we can set out

exactly what the functionality of a multidatabase management system should be. To return

to the problems identified initially with centralized database systems and the need for

autonomy of individual databases, we can now explain how the multidatabase concept

tends to solve the problems and provide the means to satisfy user needs while still providing

access to all the data by global users. The overall goal of a MDMS is to ease the burden of

the application programmers by providing a layer of integrating and coordinating services,

acting as a front-end to individual component databases. Ideally, the user is presented with

a single uniform view of a virtual database and is unaware of the autonomy, heterogeneity

and distribution of the underlying data sources.

In order for the MDMS to do this, the MDMS must provide support for schema inte­

gration and management, query optimization and processing, transaction management and

security [Tan93]. To elaborate:

• The MDMS should provide an integrated view of the data needed by an application or

a group of applications. Some MDMSs assume that a global schema will be available

while others have no global schema. A partial schema is also a possibility. However,

the MDMS must use what is available and perform schema translation, integration

and management functionalities.

• The MDMS must develop a global query plan and then perform the processing required

for a given query. A global query plan consists of a set of component queries against

individual databases as well as a data integration plan. The data integration plan will

specify how to integrate the results obtained from the individual databases to produce

the final result.

• The MDMS must provide full support for global transactions. [Tan93] contends that

the autonomy and heterogeneity of the component database systems cause great dif-

The Multidatabase Concept ----------------------·47

ficulties in transaction management in multidatabase systems. Ozsu et al [Ozs90],

however, make a convincing argument for discounting the heterogeneity aspect since

it can only introduce slight additional difficulties. They conclude that the real tricky

issue is that of autonomy.

• The MDMS must guarantee the security of the data made available through the

MDMS. Each component database handles its security differently so this function

is not that easy to provide. This aspect has enjoyed very little attention from re­

searchers up to now.

Distributed multidatabase systems thus share the problems of DDBMSs and introduce

additional ones of their own, such as the problem of how to split up transactions into sub­

transactions, how to maintain the consistency of local databases in the face of heterogeneity,

and how to produce integrated results. (Ozs94, Bel92, Bre95, Geo90]

It is very important to note that Ozsu and Barker (Ozs90] state that fundamental issues

related to multidatabase systems can be investigated without reference to their distribution

or heterogeneity. The additional considerations that distribution brings being no different

than those of logically integrated distributed database systems for which many solutions

have already been developed. Furthermore, heterogeneity need not cause any additional

difficulty from the point of view of database management. The only heterogeneity aspects

which we need to consider are those mentioned in item 6 in section 2.1.2 and this refers

to heterogeneity of transaction management which is what we have been evaluating in

this dissertation. We can thus state unequivocally that the most important issue is that of

autonomy. Therefore, when discussing various alternative systems in the following chapters,

we will always evaluate them with the autonomy perspective in mind.

2.4 Summary

The concept of multiple database systems and multidatabases has been introduced. In

section 2.2 a classification scheme was introduced that can be used for the precise definition

of concepts and terms related to multiple database systems. I found during the course

of my research that there were basically three classification methods, one which classified

multidatabases according to architectural differences (Bel92], another which classified them

according to degree of autonomy, heterogeneity and distribution [Ozs90] and yet another

which classified them according to how tightly the participating local database were coupled

[Bri92]. I decided to integrate the methods in order to arrive at a classification method which

took all these aspects of multidatabase implementations into account and came up with the

classification method presented in this chapter.

The specific multiple database system called a multidatabase has been placed in the

classification taxonomy. The autonomy dimension has been identified as the characteris­

tic which is the most important distinguishing feature of these systems and a quantifica-

The Multidatabase Concept ----------------------·48

tion method has been presented for measuring this dimension. Now that the background

has been given, transaction management concepts of concurrent transaction processing in

databases in general and later more specifically in multidatabases can be discussed.

Chapter 3

Concurrent Transaction

Processing

This chapter introduces concurrent transaction processing concepts as applicable to a single

database with its accompanying DBMS. The basic precepts of serializability theory are

presented and various concurrency control mechanisms are outlined and illustrated by means

of examples. The next chapter will show how these principles can be applied to concurrent

transaction processing in multidatabases.

3.1 Introduction to Transaction Processing

Each DBMS has certain components which allow it to handle transactions [Els94]. These

components are:

• a local transaction manager(LTM),

• a local scheduler(LS) and

• a local recovery manager(LRM), also called a local data manager(LDM) [Bar91].

The function of the LTM is to interface with the user and guarantee the atomic execution

of transactions. The local scheduler ensures the correct execution and interleaving of all

transactions submitted to the LTM. Finally, the LRM ensures that the local database

contains the effects of all committed transactions and none of the effects of uncommitted

ones.

\Vhen talking about transaction processing concepts, database systems can be classified

according to the number of users who generally use the system concurrently. A DBMS is

single-user if at most one user at a time can use the system and it is multi-user if many

users can use the system concurrently. While single-user systems are usually restricted

to microcomputer platforms, most other DBMSs are multi-user systems. In a multi-user

DBMS, the stored data items are the primary resources that may be accessed concurrently

49

Concurrent Transaction Management ____________________ .50

by user programs. These programs can either retrieve or modify the contents of the data

items.

The execution of a program that accesses or changes the contents of a database

is called a transaction [Els94].

3.2 Transaction and System Concepts

The concept of an atomic transaction is fundamental to many techniques for concurrency

control and recovery from failures. As mentioned before, the execution of a program that

includes database access operations is called a database transaction, or simply a transaction.

If the operations in the transaction do not perform any update operations, it is called a

read-only transaction. We will use the term transaction to refer to a transaction which does

do update operations in the database.

3.2.1 Transaction states

A transaction is an atomic unit of work that is either completed entirely or not done at

all. The system needs to keep track of when the transaction starts, terminates, commits or

aborts. Thus the recovery manager keeps track of the following database operations [Els94]:

• Begin-transaction: This marks the beginning of transaction execution.

• Read or Write: These specify read or write operations on the database items that are

executed as part of a transaction.

• End-transaction: This specifies that read and write transaction operations have ended

and marks the end limit of the transaction. Next a check needs to be carried out to

see whether the changes made by the transaction can be made permanently to the

database (committed) or whether the transaction needs to be aborted because it

violates concurrency control requirements.

• Commit-transaction: This signals a successful end of the transaction so that any

changes executed by the transaction can be safely committed to the database and will

not be undone.

• Rollback (or Abort): This signals that the transaction was ended unsuccessfully so

that any changes or effects that the transaction may have applied to the database

must be undone.

In addition to these states, recovery procedures require the following additional operations:

• Undo: Similar to rollback except that it applies to a single operation rather than a

whole transaction.

Concurrent Transaction Management ____________________ ,51

• Redo: This specifies that certain transaction operations must be redone to ensure that

all the operations of a committed transaction have been applied to the database.

3.2.2 The system log

To be able to recover from transaction failures, the system maintains a log. The log keeps

track of all transaction operations that affect the values of database items. The log is kept

on disk and so is not affected by any failure except disk or catastrophic failures. The log is

often backed up onto tape to guard against disk failure. The log entries are enclosed in []

and written in bold to distinguish them from transaction operations. Types of log entries

are (Els94]:

[start-transaction, T] : Records that transaction T has started execution.

(write-item, T, X ,old-value, new-value] : Records that transaction T has changed the

value of database item X from old-value to new-value.

[read-item, T, X] : Records that transaction T has read the value of database item X.

[commit, T] : Records that transaction T has completed successfully, and affirms that its

effect can be committed to the database.

[abort, T] : Records that transaction T has been aborted.

Some protocols do not require read operations to be written to the log. Often only the

other log entries mentioned above are required as it makes the log smaller and simpler to

maintain. Using the log to recover from failure is the job of the recovery manager and has

been discussed in greater detail in Chapter 6.

3.2.3 Commit point of a transaction

A transaction T reaches its commit point when all its operations that access the database

have been executed successfully and the effect of all the transaction operations on the

database have been recorded in the log. Beyond the commit point, the transaction is said

to be committed, and its effect is permanently recorded in the database. The transaction

then writes an entry [commit, T] into the log. If a system failure occurs, we search back in

the log for all transactions T that have written [start-transaction, T] in the log but not

[commit, T] entry yet; these transactions may have to be rolled back to undo their effect

on the database during the recovery process. Transactions that have written their commit

entry to the log must also have recorded all their write operations in the log so their effect

on the database can be redone from the log entries [Els94].

Note that the log must be kept on disk. Because writes to disk are buffered, the system

log is always force-written at commit point so that if there is a system crash the effects of

the transaction will be recorded on permanent memory (Els94].

Concurrent Transaction Management ____________________ ,52

3.2.4 Checkpoints in the system log

Another type oflog entry is called a checkpoint [Els94]. A checkpoint record is written to disk

periodically at that point when the system writes to the database all the effects of th~ write

operations of committed transactions. Hence, all transactions that have their [commit, T]

entries in the log before a [checkpoint) entry need not have their write operations redone

in case of a system crash.

The recovery manager decides when to take a checkpoint. It may be done every n

minutes, or after a number of committed transactions have taken place. Taking a checkpoint

involves doing the following:

1. Suspend execution of transactions temporarily.

2. Force-write all update operations of committed transactions from main memory buffers

to disk.

3. Write a [checkpoint) record to the log, and force write to disk.

4. Resume executing transactions.

The checkpoint record in the log may also include additional information, such as the list of

active transaction identifiers, and the locations of the first and most recent records in the

log for each active transaction. This can make it easier to undo transactions that have to

be rolled back at a later stage.

3.2.5 Desirable properties of transactions

Atomic transactions should possess several properties [Els94, Bel92, Ozs91). These are often

called ACID properties (Atomicity, Consistency, Isolation, Durability), and they should be

enforced by the concurrency control and recovery methods of the DBMS. The following are

the ACID properties:

• Atomicity: There are two aspects of transaction atomicity [Pu91b]:

- Recovery atomicity: this means that when a transaction is executed, it is either

executed in its entirety or does not have any effect whatsoever on the database.

It is the responsibility of the recovery method to ensure recovery atomicity. If

a transaction fails to complete for some reason, the recovery method must undo

any effects of the transaction.

Concurrency atomicity: This means that users are assured that concurrent exe­

cution of another transaction will not affect their own transaction.

• Consistency preservation: The consistency of a database is simply its correctness.

A correct execution of the transaction must take the database from one consistent

state to another. The consistency preservation property is generally considered to be

Concurrent Transaction Management ____________________ ,53

the responsibility of the programmers who write database programs. The transaction

should execute in such a way that if the database was consistent before execution

of the transaction then it will be consistent thereafter as well, assuming no other

transaction interferes.

• Isolation: A transaction should not make its updates visible to other transactions until

it is committed; this property, when enforced strictly, solves the temporary update

problem and makes cascading rt>llbacks of transactions unnecessary1 . Isolation is

enforced by the concurrency control method.

• Durability or permanency: Once a transaction changes the database and the changes

are committed, these changes must never be lost because of subsequent failure. This

property is the responsibility of the recovery method.

3.3 Transaction Execution

In this section a formal transaction model based on the work of [Ber87, Ozs91, Bar91, Bel92]

has been outlined. This model makes it easier to reason about the transaction concepts

that apply to concurrency control and recovery in database systems. First of all, the basic

transaction operations need to be formally defined.

3.3.1 Basic transaction operations

A DBMS supports various commands that may be used to access data items in a database.

These are called operations. The database access operations that a transaction can include

are:

• read-item(X): Reads a database item named X into a program variable. We assume

that the program variable is also called X.

• write-item(X): Writes the value of program variable X into the database item named

x.

Definition 3.1 - Database operations

We denote by Oij(X) some operation Oj of transaction Ti that operates on

database entity X. 0 j E {read-item, write-item}.

0 Si denotes the set of all the operations in Ti.

[Ozs91] 0

1See section 3.5

Concurrent Transaction Management ____________________ ,54

The read-item and write-item operations will be denoted by r and w, respectively, for

the rest of this dissertation. We have also used the convention of using calligraphic lettering

to denote formal sets and roman fonts for acronyms. Thus in the following definition, BS

is an abbreviation for "base-set" while BS denotes the set of data items in the base- set of

a transaction.

Definition 3.2 - Read-set(RS}, Write-set(WS) and Base-Set(BS)

The set of data items that a transaction reads are said to constitute the read­

set (RS). Similarly, the set of data items that a transaction writes are said to

constitute its write-set (WS). The read-set and the write-set need not be mutu­

ally exclusive. Finally, the union of the read-set and the write-set is called the

base-set (BS). Thus for transaction Ti, BSi = RSi U WSi.

[Ozs91] 0

Definition 3.3 - Transaction termination

A transaction can terminate by aborting or committing, denoted by a and c re­

spectively. We denote by Ni the termination condition for Ti, where

Ni E {a,c}.

[Ozs91] 0

Definition 3.4 - Conflicting operations

Two operations Oi(X) and Oj(X) conflict if Oi = w or Oj =wand they operate

on the same data item X.

[Els94, Ozs91] 0

In other words, two operations are said to be conflicting if they access the same data item

and at least one of them is a write.

3.3.2 A model for transaction execution

Having defined the basic transaction concepts, we can continue with the presentation of the

model for transaction execution which is used fairly often in the literature [Ozs90, Ozs91,

Bar91, Ber87]:

Concurrent Transaction Management ____________________ 55

Definition 3.5 - Transaction

A transaction Ti is formally defined as a partial order Ti = fEi, -<i} where:

1. ~i is the domain of Ti and consists of the operations of the transaction and

the termination condition, i.e. ~i = OSiU {Ni}·

2. -<i is an irreflexive and transitive binary relation indicating the execution

order of these operations in the transaction; i.e. for any two operations

Oij, Oik E OSi, if Oij = r(X) and Oik = w(X), for any data item X, then

either Oi; -<i Oik or Oik -<i Oii or j = k.

3. 'V Oij E osi 'Oij -<i Nj.

4. ai E Ti i:ff Cj ~ Tj.

[Ozs91, Ber87) 0

The first condition defines the domain of the transaction as a set of read and write

operations as well as the termination conditions for the transaction, either commit or abort.

The second condition specifies the ordering relation between conflicting operations of the

transaction. The third condition indicates that the termination condition always follows

all the other operations. The last condition states that a transaction must either abort or

commit but not both.

Using the above definitions, conflicting transactions can be defined [Tan93). It is impor­

tant to know which transactions conflict in order to determine which transactions have to

have their order of execution controlled in order to maintain database consistency.

Definition 3.6 - Conflicting transactions

A transaction Tj is said to conflict with another transaction Ti if any operation

of T; conflicts with any operation of Ti and the operation in Ti precedes the

operation in Tj. The conflict relationship is denoted by Ti ~ T;. The transitive

closure is denoted by ~.

[Meh92c) 0

Concurrency control and recovery mechanisms are mainly concerned with the database

access commands in a transaction.

Consider the transaction T1 illustrated in Figure 3.1. According to our formal notation,

the specification for the transaction is:

~I= {r(X),r(Y),w(X),w(Y),c}

-<i = {(r(X), w(X)), (r(Y), w(Y)), (r(X), c), (w(X), c), (r(Y), c), (w(Y), c)}

Concurrent Transaction Management ____________________ .56

read-item(X);

X:=X-N;

write-item(X);

read-item(Y);

Y:=Y+N;

write-item(Y);

commit

read-item(X)

X := X + M
write-item (X)

commit

II

Figure 3.1: Two sample transactions T1 and T2

Transactions submitted by various users may execute concurrently and may access and

update the same database items. If this concurrent execution is uncontrolled it may lead to

problems such as an inconsistent database. In section 3.5 we discuss the problems that may

occur when concurrent transactions do not execute in a controlled manner. In the following

section we take a brief look at the different types of transactions which may be found in

database systems.

3 .4 Transaction Models

In the literature, suggested transaction models abound [Gra93):

• Flat transactions are used in all commercially available database systems, and they

are about to be used in operating systems and communication systems. The imple­

mentation techniques are well understood and so are the limitations. The "all or

nothing" characteristic of flat transactions is both a virtue and a vice. It gives the

simplest of failure semantics but in the case of failure, the application programmer

can either thread his way back through the application logic by repairing this and

reestablishing that or he can rollback the transaction and thereby give up everything

done so far.

• Flat transactions with savepoints give us the option of having a position inside the

transaction to which we could step back in case of failure.

A savepoint is a place in a transaction where the current state of processing is recorded.

A handle is returned to the application program which can be used to refer to that

savepoint. Now, if a transaction has to do a rollback, it will rollback to a specified

savepoint and will find itself re-instated at that same savepoint.

• Chained transactions are a variation of flat transactions. The idea of a chained trans­

action is that the application program commits what has been done so far, releases all

objects no longer needed and waives its right to do a rollback; but at the same time

Concurrent Transaction Management ____________________ .57

stays within a transaction. It does not lose database objects acquired during the pre­

vious (committed) part of the transaction. The commitment of the first transaction

and the beginning of the next are wrapped together into one atomic transaction.

• Nested transactions are a generalization of savepoints. Savepoints allow organizing a

transaction into a sequence of actions that can be rolled back individually, and nested

transactions form a hierarchy of pieces of work. Rather than taking a savepoint

after each partial execution, each of the subtransactions becomes a self-contained but

dependent action which can be computed or rolled back individually.

Nested transactions have the following properties:

1. A nested transaction is a tree of transactions, the sub-trees of which are either

nested or flat transactions.

2. Transactions at leaf level are flat transactions.

3. The transaction at the root of the tree is called the top level, the others are called

sub transactions.

4. A subtransaction can either commit or rollback; its commit will not take effect

unless the parent commits. The subtransaction can only finally commit if the

root commits.

5. The rollback of a transaction anywhere in the tree causes all subtransactions to

roll back.

• Multi-level transactions are a generalized and more liberal version of nested trans­

actions. They allow for the early commit of a subtransaction and thereby give up

the possibility of unilateral backout of the updates. In the case of a subtransaction

which should not have committed, it is assumed that there will be a compensating

transaction which will reverse the effects of the committed subtransaction.

• Open nested transactions are the anarchic version of multi-level transactions. Sub­

transactions can abort or commit independently of the status of the final outcome of

the parent transaction. They constitute unprotected actions.

• Long lived transactions are transactions which run for a long time. If one were to use

a traditional flat transaction, an abort in the last minute of the transaction would

lose work done which perhaps took hours to do. We need to find a way to structure

the transaction so that loss in the face of failure is minimal. Some solutions to this

problem have been proposed in [Kor88, Nod93, Sal89].

3.5 Why Concurrency Control?

Several problems can occur when concurrent transactions interfere with one another during

execution [Els94, Bel92]. Five problems can be identified which may occur when transactions

Concurrent Transaction Management ____________________ .53

II time I T1 II
t1 read-item(X);

t2 X:=X-N;

t3 read-item(X)

t4 X := X + M

t5 write-item(X);

t6 read-item(Y);

t7 write-item (X)

t8 commit

t9 Y:=Y+N;

tlO write-item(Y);

tll commit

Figure 3.2: The lost update problem

execute concurrently. We will elaborate on these problems by means of the two transactions

in the example in Figure 3.1.

3.5.1 The lost update problem

The lost update problem occurs when two transactions that access the same database items

have their operations interleaved in a way that makes the value of some database item

incorrect. Suppose the transactions T1 and T2 are submitted at approximately the same

time, and that their operations are interleaved by the operating system as shown in Figure

3.2. The final value of data item X will then be incorrect, because T2 reads the value of X

before T1 changes it in the database and the updated value resulting from the execution of

T1 is lost [Els94, Bel92].

3.5.2 The temporary update problem.

The temporary update problem occurs when one transaction updates a database item and

then the transaction fails for some reason (see section 3.6). The updated item is accessed

by another transaction before it is changed back to its original value. We illustrate this

situation in Figure 3.3. This example shows the situation where T1 updates item X and

then fails before completion, so the system must change X back to its original value. Before

it can do that, however, transaction T2 reads the "temporary" value of X. The value of X

thus obtained is called dirty data, because it has been created by a transaction that has not

completed and committed yet; hence this problem is also known as the dirty read problem

[Els94].

Concurrent Transaction Management ____________________ 59

II time I Ti II

tl read-item(X);

t2 X:=X-N;

t3 write-item(X);

t4 read-item(X)

t5 X := X + M

t6 write-item (X)

t7 commit

t8 read-item(Y);

t9 abort

Figure 3.3: The temporary update problem

3.5.3 The incorrect summary problem

If one transaction is calculating an aggregate summary function on a number of records

while another transaction is updating some of the values, the aggregate may read some

values before they have been updated and others after they have been updated [Els94).

This type of situation is illustrated by Figure 3.4. This example shows a situation where

transaction T3 reads data item X after N is subtracted, and reads Y before N is added, so

a wrong summary is the result (which will be off by N).

3.5.4 Violation of integrity constraints

This problem can occur if two transactions are allowed to execute concurrently without

being synchronized [Bel92). Consider a hospital database containing two relations:

SCHEDULE (Surgeon..name, Operation, Date).

SURGEON (Surgeon_name, Operation).

SCHEDULE specifies which surgeon is scheduled to perform a particular operation on a

certain date. The SURGEON relation records the qualifications by operation for each sur­

geon. An important integrity constraint for this database is that surgeons must be qualified

to perform operations for which they are scheduled. The initial state of the database is

shown in Figures 3.5 and 3.6.

Suppose there are two transactions T3 and T4 which concurrently access the database.

The transaction details are given in Figure 3.7.

Transaction T3 changes the operation scheduled on 04.04.95 from a tonsillectomy to

an appendectomy. It does integrity checking before making the change. Meanwhile, it is

discovered independently that Mary will not be able to do the operation as she is otherwise

engaged so a transaction T4 then changes the surgeon to Tom after checking that Tom is able

to carry out the operation currently scheduled for 04.04.95, namely a tonsillectomy. The

Concurrent Transaction Management -------------------60

II time I T1 II
t1 sum:= 0

t2 read-item(A);

t3 sum := sum+A;

t4 • • •
t5 read-item(X);

t6 X:=X-N;

t7 write-item(X)

t8 read-item(X)

t9 sum := sum + X;

tlO read-item(Y);

tll sum := sum + Y;

t12 read-item(Y);

t13 Y:=Y+N;

t14 wri te-i tem(Y);

t15 commit

t16 commit

Figure 3.4: The incorrect summary problem

II Surgeon_name I Operation Date II
Mary Jones Tonsillectomy 04.04.95

• • •
• • •
• • •

Figure 3.5: Initial state of SCHEDULE table

II Surgeon_name I Operation II
Tom Bones Tonsillectomy

Mary Jones Tonsillectomy

Mary Jones Appendectomy

• •
• •
• •

Figure 3.6: Initial state of SURGEON table

Concurrent Transaction Management ------------------~-61

fl time I T3 II
tl read-item(Surgeon..name, Operation, Date)

in SCHEDULE where date="04.04.95"

t2 read-item(Surgeon..name, Operation, Date)
in SCHEDULE where date="04.04.95"

t3 read-item(Surgeon..name) in SURGEON
where SCHEDULE.Surgeon_name =

SURGEON .Surgeon..name
and where SURGEON.Operation=

"Appendectomy"

t4 read-item(Surgeon..name) in SURGEON
where SCHEDULE.Surgeon..name

= "Tom Bones"
and SURGEON.Operation=

SCHEDULE.Operation

t5 If not found, then ABORT T3
(See note 1 below)

ELSE, SCHEDULE.Operation =
"Appendectomy"

t6 If not found, then ABORT T4
(See note 2 below)

ELSE, SCHEDULE.Surgeon..name =
"Tom Bones"

t7 COMMIT(T3)

t8 COMMIT(T4)
1: Indicates switch of operations not
possible because surgeon scheduled on
04.04.95 is not qualified to perform the
new operation.

2: Indicates switch of surgeons not
possible because new surgeon is not
qualified to perform operation scheduled.

Figure 3. 7: Operations of transactions T3 and T4

Concurrent Transaction Management ____________________ ,62

effect of these two operations is to produce an inconsistent database. Neither transaction

is aware of the other as they are updating different data.

3.5.5 The unrepeatable read

This occurs where a transaction Ti reads an item twice, and the item is changed between

the two reads by another transaction. Hence, Ti receives different values for its two reads

of the same item [Els94].

3.6 Why Recovery?

Whenever a transaction is submitted to a DBMS for execution, the system is responsible

for making sure that either:

• all the operations in the transaction are completed successfully and their effect is

recorded permanently in the database, or

• the transaction has no effect whatsoever on the database or on any other transactions.

The DBMS must not permit some operations of a transaction Ti to be applied to the

database while other operations of Ti are not. This may happen if a transaction fails

after executing some of its operations but before executing all of them [Els94].

There are various reasons why a transaction can fail in the middle of execution [Els94]:

1. A computer failure (system crash): This could be caused by either a hardware or

software failure.

2. A transaction or system error: Some operation in the transaction may cause it to fail,

such as integer failure or division by zero. On the other hand the user may abort the

transaction physically.

3. Local errors or exception conditions detected by the transaction: During transaction

execution, the transaction may need to be cancelled. This could happen if the required

record in the database could not be found, for example.

4. Concurrency control enforcement: The transaction may have to be aborted because

of a deadlock situation or because the concurrency control method decides to abort

it.

5. Disk failure: Some disk blocks may lose their data because of a read/write problem.

This could also be caused by, for example, virus activity.

6. Physical problems and catastrophes: This refers to power failures, theft, sabotage etc.

Concurrent Transaction Management ____________________ ,53

7. Timeouts: If a transaction is present in a system for longer than a specified time, the

system could abort the transaction because of a timeout failure. The timeout value

is system dependent.

Failures of types 1 to 4 happen more frequently than the others. For failures 1 to 4 the

system must have sufficient information about the transaction to recover from the failure.

It is very difficult to recover from failures of types 5 and 6.

Recovery techniques for centralized database systems can be divided into seven different

categories [Ver78]:

1. Salvation program: A salvation program is run after a crash to restore the system

to a valid state. It uses no recovery data. It is used after a crash if other recovery

techniques fail or are not used, or if no crash resistance is provided. The program

scans the database after a crash to asses the damage and to restore the database to

some valid state. It rescues the information that is still recognizable.

2. Incremental dumping: This involves the copying of updated files onto archival storage

after a job has finished or at regular intervals. It creates checkpoints for updated files.

Backup copies of files can then be restored after a crash.

3. Audit trail: An audit trail records sequences of actions on files. It can be used to

restore files to their states prior to a crash or to roll back a particular transaction.

4. Differential files: A file can consist of two parts: the main file which is unchanged,

and the differential file which records all the alterations requested for the main file.

The main files are regularly merged with the differential files, thereby emptying the

differential files. The differential file also helps implement crash resistance.

5. Backup/current version: The files containing the present values of existing files form

the current version of the database. Files containing previous values form a consistent

backup version of the database. Backup versions can be used to restore files to previous

values.

6. Multiple copies: More than one copy of each file is held. The different copies are

identical except during update. A "lock bit" can be used to protect a file during

updating, while its state is inconsistent. If there is an odd number of files, comparison

can be done to select a consistent version. This technique provides crash resistance

and may also be used to detect faults if different copies are kept on different devices.

The difference between multiple copies and backup/currentversion is that all multiple

copies are active at any one time while with backup/current version there is only one

active copy.

7. Careful replacement: The principle of careful replacement is that it avoids updating

any part of the database in place. Altered parts are put in a copy of the original; the

Concurrent Transaction Management --------------------64

original is only deleted after the alteration is completed and has been certified. In

this method two copies exist only during update. This technique also provides crash

resistance because the original will always be available in case a crash occurs during

update.

A full discussion of these techniques can be found in [Ver78]. Multidatabase recovery

concepts have been discussed in greater detail in Chapter 6.

3. 7 Transaction Schedules

When transactions are executing concurrently in an interleaved fashion, the order of exe­

cution of operations from the various transactions forms what is known as a transaction

schedule. We shall now define the concept of a schedule.

3. 7.1 Schedules (histories) of transactions

Definition 3. 7 - Schedule

Given a DBMS with a set of transactions Ta schedule (S) is a partial order

S = (E, -<)where:

1. E = U; E; where E; is the domain of T; ET.

2. -<s2 U; -<; where -<; is the ordering relation for transaction T; at the

DBMS.

3. for any two conflicting operations p, q E S, either p -<s q or q -<s p .

[Els94, Bar90] 0

A schedule S of n transactions T = {T1 , T2 , •••• Tn} is an ordering of the operations of the

transactions subject to the constraint that, for each transaction Ti that participates in S,

the operations of Ti in S must appear in the same order in which they occur in Ti. Note

that operations from transaction T; can be interleaved with the operations of Ti in S

For the purpose of concurrency control and recovery, we are interested in the read-item

and write-item operations of the transaction as well as the commit and abort operations. We

will use the notation ri, Wi, Ci and ai for the operations read-item, write-item, commit and

abort of transaction Ti respectively. The subscript corresponds to the specific transaction

under discussion.

Definition 3.8 - Complete schedule

A complete schedule Sf [Ozs91] defined over a set of transactions T = {Ti, T2, Tn}

is a partial order Sf = {Er, -<r} where:

Concurrent Transaction Management -------------------65

2. -<T 2 Ui=l -<i·

3. For any two conflicting operations Oij, Okr E :ET, either Oij -<T Ok1,

or Oij -<T Oki.

4. lli E Ti iff Ci </.Ti.

0

Informally: a schedule S of n transactions T = {Ti, T2, Tn} is said to be a complete

schedule if the following conditions hold:

1. The operations in Sare exactly those operations in Ti, T2, Tn, including a commit

or abort operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their order of appearance in

S is the same as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the other in the

schedule.

4. Any transaction in S must either commit or abort but not both.

Example 3.1 : Applying the transaction model to transactions T1 and T2

Consider once again transactions the set of transactions T = {T1 , T2} in Figure

3.1. We can express these transactions formally in terms of the model outlined

above:

-<T = {(r1(X), w1(X)), (r1(Y), w1(Y)), (r1(X), c1),

(w1(X), c1), (r1(Y), c1), (w1(Y), c1),

(r2(X), w2(X)), (r2(X), c2), (w2(X), c2),

(w1(X),r2(X)),(w2(X),r1(X)),(c1,c2),(c2,c1)}

A possible complete schedule for transactions T1 and T2 can be specified as:

We will use the notation of Bx where S refers to a particular schedule of the opera­

tions in T1 and T2 and x denotes a particular ordering of those operations that will

be used.

Concurrent Transaction Management --------------------66

Using this notation, a possible schedule for transactions T1 and T2 could be:

Similarly, a schedule for T1 and T2 in Figure 3.1 can be written as follows if it

is assumed that T1 aborts after its read-item(Y) operation:

<>

It is very difficult to encounter complete schedules in a transaction processing environ­

ment, because new transactions are continually being introduced into the system [Els94).

Hence, the concept of a committed projection C(S9r) of a schedule S is introduced. This

includes only the operations in S that belong to committed transactions - that is, trans­

actions Ti whose commit operation Ci is in S.

Definition 3.9 - Projection of a schedule

A projection of a schedule Son a set of transactions T' is:

S7 ' = (T', -<sT') where -<sT'~-<s such that for all oi, Oj operations in T', oi
-<s Oj iff oi -<sT' Oj.

[Meh92c). 0

A projection of a schedule S on a set of transactions T' denoted by S7 ' is a schedule

obtained from S by deleting all operations that do not belong to transactions in T'

Definition 3.10 - Committed projection

A committed projection C(S9r) of SJ: can de defined as: Given a partial order

SJ: ={:E, -<} then C(S9r) = {:E', -<'} where:

1. :E' ~ :E.

2. V elements ei E :E', ei -<' e2 iff ei -< e2.

3. V ei E :E', if 3ej E :E and ej -<' ei, then ej E :E'.

4. For each Ti in C(S9r), there exists some pair (oi, Ci) or (oi, ai) in -<' where

OiE{r,w}.

[Ber87) 0

To obtain the complete schedule, simply delete all operations that belong to transactions

that have not yet committed in S.

All schedules from here onwards will be considered to be committed projections of

complete schedules. In the next section the question of why schedules are so important

when considering concurrency and recovery in database systems is discussed.

Concurrent Transaction Management --------------------67

T.2
3 IT? I

I Ti I
T.2 IIr_J13

r-111

Time

Figure 3.8: End to end transaction execution

[Bel92, p.167]

3.7.2 Serializability of schedules

Serializability theory attempts to determine which schedules are correct and which are not

in order to develop techniques that allow only correct schedules [Els94]. This section will

define the concepts of serializability theory.

To understand serializability, one must first define a serial schedule because a serial

schedule causes transactions to execute consecutively. This serial execution of a set of

transactions will always maintain the consistency of a database [Ozs91].

Definition 3.11 - Serial schedule

A database schedule S for a set of n transactions T = { Ti, ... ,Tr } is serial iff

(30i E Ti, 30; ET; such that Oi -<s O;) I= (VOr E Ti, VOu ET;, Or -<s Ou)·

[Bar90] 0

A serial schedule is one in which all the reads and writes of each transaction are grouped

together so that the transactions are run one after the other, otherwise it is a non-serial

schedule. Serial execution of transactions is illustrated in Figure 3.8.

A schedule Sis said to be serializable if all the reads and writes of each transaction can

be reordered in such a way that when they are grouped together as in a serial schedule, the

net effect of executing this reorganized schedule is the same as that of the original schedule

S. This reorganized schedule is called the equivalent serial schedule. A serializable schedule

will therefore be equivalent to, and have the same effect on the database, as some serial

schedule.

Concurrent Transaction Management ____________________ 68

Definition 3.12 - Conflict equivalence of schedules (=)

Two schedules Sa and Sb are conflict equivalent if:

1. They are defined over the same set of transactions with identical operations-,

and

2. they order conflicting operations of non-aborted transactions in the same

way; that is, for any conflicting operations Oi and Oi belonging to trans­

actions Ti and Tj (respectively) where ai, ai ¢ S, if Oi -<sa Oj then Oi -<sb

Oi.

[Bar90, Ber87] 0

Recall that two operations in a schedule are said to conflict if they belong to different

transactions, if they access the same data item, and if one of the two operations is a write­

item operation. If two conflicting operations are applied in different orders in two schedules,

the effect of the schedules can be different on either the transactions or the database, and

hence the schedules are not conflict equivalent [Els94].

Definition 3.13 - Serializable /Conflict serializable

Using the notion of conflict equivalence, we define a schedule to be conflict seri­

alizable (also referred to as simply serializable) if it is equivalent to some serial

schedule S' .

[Ozs91] 0

A serializable schedule is not the same as a serial schedule. The objective of the con­

currency control algorithm is to produce correct schedules so that the transactions are

scheduled in such a way that they transform the database from one consistent state to

another consistent state and do not interfere with one another.

Serializability is taken as proof of correctness. Thus, if the concurrency control algorithm

generates serializable schedules, then these schedules are guaranteed to be correct. Deciding

whether a schedule is equivalent to a serial schedule is difficult. Intuitively, we can say that

two schedules are equivalent if their effect on the database is the same. Thus each read on

data item X in both schedules sees the same value for X and the final write operation on

each data item will be the same in both schedules. In terms of schedule equivalence, it is

the ordering of conflicting operations which must be the same in both schedules [Bel92].

In a serializable schedule, we can reorder the non-conflicting operations in S until we

form the equivalent serial schedule S'. To illustrate this, consider the transactions T1 and

T2 defined in Figure 3.1. In Figures 3.9 to 3.12, we can see four possible schedules for these

two transactions.

Concurrent Transaction Management __________________ 69

II time I T1 I Value of X in the database II
t1 read-item(X); 90

t2 X:=X-N;

t3 write-item(X); 87

t4 read-item(Y);

t5 Y:=Y+N;

t6 write-item(Y);

t7 commit

t8 read-item(X) 87

t9 X := X+M

tlO write-item(X) 89

tll commit

Figure 3.9: Schedule (a) involving transactions T1 and T2

ll time l T1 J Value of X in the database II
tl read-item(X) 90

t2 X := X+M

t3 write-item(X) 92

t4 read-item(X); 92

t5 commit

t6 X:=X-N;

t7 write-item(X); 89

t8 read-item(Y);

t9 Y:=Y+N;

tlO write-item(Y);

tll commit

Figure 3.10: Schedule (b) involving transactions T1 and T2

Concurrent Transaction Management ------------------70

II time I Ti I Value of X in the database=il

tl read-item(X); 90

t2 X:=X-N;

t3 read-item(X) 90
t4 X := X+M

t5 write-item(X); 87

t6 read-item(Y);

t7 write-item(X) 92

t8 commit

t9 Y:=Y+N;

tlO write-item(Y);

tll commit

Figure 3.11: Schedule (c) involving transactions Ti and T2

II time I T1 j Value of X in the database II
tl read-item(X); 90

t2 X:=X-N;

t3 write-item(X); 87

t4 read-item(X) 87

t5 X := X+M
t6 write-item(X) 89
t7 commit

t8 read-item(Y);

t9 Y:=Y+N;

tlO write-item(Y);

tll commit

Figure 3.12: Schedule (d) involving transactions Ti and T2

Concurrent Transaction Management --------------------71

According to the definition of conflict serializability, schedule (d) in Figure 3.12 is equiv­

alent to the serial schedule (a) in Figure 3.9. In both these schedules, the r2(X) of T2 reads

the value of X written by Ti, while the other read-item operations read the database values

from the initial database state. In addition, T1 is the last transaction to write item Y, and

T2 is the last transaction to write X in both schedules. Because schedule (d) is equivalent

to serial schedule (a), (d) is a serializable schedule. Schedule (c) is not equivalent to either

of the serial schedules (a) or (b) so (c) is not serializable. A simple algorithm for testing

the conflict serializability of a schedule is outlined in [Els94].

The concept of serializability of schedules has been examined and we can now proceed

to discussing whether schedules are recoverable or not.

3. 7.3 Recoverable schedules

In order to ensure correctness in the presence of failures, the scheduler must produce exe­

cutions that are not only serializable but also recoverable. For some schedules it is easy to

recover from transaction failures, whereas for others the recovery process is quite involved.

Hence it is important to characterize the types of schedules for which recovery is possible,

as well as those for which recovery is quite simple. First of all, it is desirable to ensure that

once a transaction has committed, it should never be necessary to roll back a transaction

Ti. The schedules that meet this criterion are called recoverable schedules.

A transaction Ti is said to read from transaction Tj in a schedule if some item Xis first

written by Ti and later read by Ti.

Definition 3.14 - Ti reads from Ti

We say transaction Ti reads data item X from Tj in S if

1. Wj(X)--< ri(X)

2. ai -f. ri(X) 2
, and

3. if there is some wk(X) such that Wj(X)--< wk(X)--< ri(X), then ak --< ri(X).

[Ber87] 0

In the schedule S, Ti should not have aborted before Ti reads item X, and there should

be no transactions that write X after Tj writes it and before Ti reads it (unless those

transactions, if any, have aborted before Ti reads X). It is also possible for a transaction

to read from itself.

2p !. q denotes that operation p does not precede q in the partial order

Concurrent Transaction Management ____________________ 72

Definition 3.15 - Recoverability

A schedule Sis called recoverable if:

1. Whenever Ti reads from Tj (i -::J j) in S, and

2. Ci E s' then Cj -< Ci •

[Ber87] 0

A schedule is said to be recoverable if no transaction Ti in S commits until all transactions

Tj that have written an item that Ti reads have committed.

These concepts are best illustrated by an example.

Example 3.2 : Recoverability of schedules

Consider the following schedules for transactions Ti and T2:

Sc is not recoverable because T2 reads item X from Ti. and then T2 commits before

Ti commits. If Ti aborts after the c2 operation in Sc, then the value of X that

T2 read is no longer valid and T2 must be aborted after it has already committed,

leading to a schedule that is not recoverable. For the schedule to be recoverable,

the c2 operation in Sc must be postponed until after Ti commits, as shown in Sd.

In a recoverable schedule, no committed transaction ever needs to be rolled back

but a phenomenon known as cascading rollback (or cascading abort) can still occur.

This happens when an uncommitted transaction has to be rolled back because it

read an item from a transaction that failed. This is illustrated in schedule Se, where

transaction T2 has to be rolled back because it read item X from Ti, and Ti then

aborted.

Cascading rollback is quite time consuming so we need to characterize schedules

where the problem does not present.

Concurrent Transaction Management ____________________ 73

Definition 3.16 - Avoids cascading rollbacks

A schedule S avoids cascading rollbacks if:

Whenever transaction Ti reads X from Tj (i-:/; j), then Cj -< ri(X) .

[Ber87]

0

A schedule is said to avoid cascading rollbacks if every transaction in the schedule only

reads items that were written by committed transactions.

To satisfy this criterion, the r 2(X) command in schedule Se (shown above) must be

postponed until after T1 has committed (or aborted), thus delaying T2 but ensuring no

cascading rollback if T1 aborts.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in

which transactions can neither read nor write an item X until the last transaction that

wrote X has committed (or aborted). Strict schedules simplify the process of recovering

write operations to a matter of restoring the before image of a data item X, which is the

value that X had prior to the aborted write operation.

Definition 3.17 - Strict

A schedule S is strict if:

Whenever Wj(X) -< Oi(X) i -:/; j,

1. either aj -< Oi(X), or

2. Cj -< Oi(X) where Oi(X) is ri(X) or wi(X) .

[Ber87] 0

Once again, this concept is best illustrated by an example:

Example 3.3 : A non-strict schedule

Consider the schedule:

Suppose the value of X was 9 originally. When transaction T1 aborts, the value of

X will be restored to 9 (which is not correct because T2 already changed the value

to 8). This happens because T2 was allowed to write X even though the previous

transaction that wrote to X had not yet committed. A strict schedule does not

have this problem. 0

Concurrent Transaction Management ____________________ 7 4

Bernstein [Ber87] proves that recoverability (RC), avoiding cascading aborts (AC A) and

strictness (ST) are increasingly restrictive properties. i.e. ST C AC A C RC

We can now develop a classification of schedules based on conflicts between various

transactions in a schedule S. This helps us to identify the requirements of S when defining

still further restrictions on schedules [Meh92c].

• ROW: For all pairs of transactions Ti, Tk in S, if Ti reads a dataitem X that is later

written by Tk, then Tk does not commit before Ti either commits or aborts.

• AROW: For all pairs of transactions Ti, I'k in S, if Ti reads a data item X that is

later written by Tk, then Tk does not write on X before Ti either commits or aborts.

• WOR: For all pairs of transactions Ti, Tk in S, if Ti writes a data item X that is

later read by Tk, then Tk does not commit before Ti either commits or aborts.

• AWOR: For all pairs of transaction Ti, Tk in S, if Ti writes data item X that is later

read by Tb then Tk does not read X before Ti either commits or aborts.

• WOW: For all pairs of transactions Ti, Tk in S, if Ti writes on a data item X that is

later written by Tk, then Tk does not commit before Ti either commits or aborts.

• AWOW: For all pairs of transactions Ti, Tk in S, if Ti writes on data item X that is

later written by Tk, then Tk does not write on X before Ti either commits or aborts.

Certain combinations of these classes of schedules can now be identified [Meh92c]:

Definition 3.18 - Rigorous schedule

A schedule is rigorous if it is AROW and AWOR and AWOW.

[Bre91a]

Definition 3.19 - Strongly recoverable schedule

A schedule is strongly recoverable if it is ROW and WOR and WOW.

[Bre91a]

Definition 3.20 - Semi-rigorous schedule

A schedule is semi-rigorous if it is ROW and AWOR and WOW.

[Meh92c]

0

0

0

The concepts in the above definitions have been used in later chapters when the prin­

ciples outlined here are applied to multidatabases. Concurrency control in databases is

concerned with preventing interference or conflict between concurrently executing transac­

tions. The techniques for concurrency control are discussed in section 3.8.

Concurrent Transaction Management ____________________ 75

I TJ T2
3 ITl I

~ Ti ITil
Tf IT[I ~

Time

Figure 3.13: Concurrent execution of transactions

[Bel92, p.157]

3.8 Concurrency Control Techniques in Centralized Data­

bases

Figure 3.13 illustrates concurrently executing transactions.

Example 3.4 : Problems with concurrently executing transactions

To illustrate the problems which can be caused by concurrently executing transac­

tions, consider the transaction schedules shown in Figures 3.9 to 3.12. Assume that

the starting values for X=90, Y=90 and that N=3, M=2. After executing transac­

tions T1 and T2 1 we would expect data values to be X=89 and Y=93. If schedules

(a) or (b) are executed, the values will be correct. If schedule (c) is considered, the

results X =92 and Y =93 are obtained, in which X is erroneous whereas (d) gives

the correct results. Schedule (c) gives the wrong results because of the lost update

problem. Transaction T2 reads the value of X before it is changed by transaction

Ti. so only the effect of transaction T2 is seen in the database. <>

Numerous concurrency control methods have been proposed in the literature. Depending

on the behaviour of the concurrency control mechanism, the mechanisms can be classified as

schedulers or certifiers. In addition, schedulers can be classified as conservative or aggres­

sive. Conservative schedulers tend to delay operations that introduce conflicts. Aggressive

schedulers tend to reject such operations, and cause the transaction that issued them to

abort. While schedulers determine whether an operation will cause a conflict before they

execute it, certifiers execute all operations immediately. Certifiers test completed but not

yet committed transactions to determine whether their execution was serializable. If a

Concurrent Transaction Management ____________________ 76

transaction is found to violate serializability, it is aborted. Otherwise, it is permitted to

commit [Geo90].

There are five basic concurrency control techniques which allow transactions to execute

safely in parallel subject to certain constraints:

1. Timestamp methods

2. Locking methods

3. Optimistic methods

4. Serialization graph methods

5. Value date methods.

Locking, timestamping and value date are schedulers because they delay transactions in case

they conflict with other transactions at some time in the future. Optimistic and serialization

graph methods allow transactions to proceed unsynchronized and only check for conflicts

just before a transaction commits and are thus certifiers.

3.8.1 Timestamp methods

3.8.1.1 Basic timestamping algorithm

In basic timestamping, each transaction Ti is given a unique timestamp ts(Ti) at its initi­

ation. These timestamp values are derived from a totally ordered domain. A timestamp is

not a transaction identifier. With the timestamping algorithm it is simple to order trans­

actions' operations according to their timestamps.

Definition 3.21 - Ageing transactions

Given two conflicting operations Oij and Oki on a database item X belonging

respectively to transactions Ti and Tk, Oij(X) is executed before Ok1(X) if and

only if ts(Ti) < ts(Tk)· In this case Ti is said to be the older transaction and Tk

is said to be the younger transaction.

[Els94] 0

A scheduler checks each new operation against conflicting operations that have already

been scheduled. If the new operation belongs to a younger transaction than all the con­

flicting ones that have already been scheduled, the operation is accepted; otherwise it is

rejected, causing the entire transaction to restart with a new timestamp.

There can be no deadlock (see section 3.8.2.1) because transactions do not wait for each

other. If two transactions conflict, one of them is simply rolled back and restarted. The

fundamental goal is to order transactions globally in such a way that older transactions,

Concurrent Transaction Management --------------------77

i.e. transactions with smaller timestamps, get priority in the event of a conflict. If a

transaction attempts to read or write a data item, then the read or write will only be

allowed to proceed if the last update was carried out by an older transaction; otherwise the

requesting transaction will be rolled back and restarted with a new timestamp.

However, the comparison between timestamps can only be done when all the operations

to be scheduled have been received by the scheduler. If they arrive one at a time (the most

probable scenario), it is necessary to check if an operation has arrived out of sequence.

To facilitate this check, each data item X is assigned two timestamps: a read timestamp

[rts(X}j, which is the largest of the timestamps of the transactions that have read X, and

a write timestamp [wts(X}j, which is the largest of the timestamps of the transactions that

have written (updated) X. It is now sufficient to compare the timestamp of an operation

with the read and write timestamps of the data item that it wants to access to determine

if any transaction with a larger timestamp has already accessed the data item. To express

it formally:

Definition 3.22 - Basic timestamp ordering

1. If transaction Ti issues a wi(X) operation:

(a) If rts(X) > ts(Ti), or if wts(X) > ts(Ti), then abort and roll back

Ti and then reject the operation. This should be done because some

transaction with a timestamp greater than ts(Ti) - and hence after

Ti in the timestamp ordering - has already read or written the value

of data item X before Ti had a chance to write X, thus violating

timestamp ordering.

(b) If the condition in part (a) does not occur, then execute the Wi(X)

operation of Ti and set wts(X) to ts(Ti)·

2. If transaction Ti issues a ri(X) operation:

(a) If wts(X) > ts(Ti), then abort and roll back Ti and reject the opera­

tion. This should be done because some transaction with a timestamp

greater than ts(Ti) - and hence after Ti in the timestamp ordering -

has already read or written the value of X before Ti had a chance to

read X, thus violating timestamp ordering.

(b) If wts(X) ~ ts(Ti), then execute the ri(X) operation of Ti and set the

rts(X) to the larger of ts(Ti) and the current rts(X).

[Els94] 0

Hence, the basic timestamp ordering algorithm checks whether two conflicting transac­

tions occur in the incorrect order, and rejects the later of the two operations by aborting

the transaction that issued it. The schedules produced by this algorithm are always serial­

izable, which are equivalent to the serial schedule defined by the timestamps of successfully

Concurrent Transaction Management --------------------78

committed transactions [Bel92, Els94]. Unfortunately this algorithm does not produce re­

coverable, cascadeless or strict schedules. A variation of basic timestamp ordering called

strict timestamp ordering ensures schedules that are both strict and conflict serializable.

This algorithm works as follows:

Definition 3.23 - Strict timestamp ordering

If a transaction Ti issues a ri(X) or a wi(X) such that ts(X) > wts(X) then the

operation is delayed until the transaction Tj that wrote the value of X (hence

ts(Tj) = wts(X)) has committed or aborted.

[Els94] 0

To implement the algorithm, it is necessary to simulate the locking of an item X that

has been written by transaction Tj until Tj is either committed or aborted. This algorithm

cannot cause deadlock because Ti only waits for Tj if ts(Ti) > ts(Tj) [Els94].

3.8.1.2 Conservative timestamp ordering rule

In the basic algorithm operations are never delayed, but instead transactions are simply

restarted. Although this causes a deadlock free system, it causes numerous restarts and

adversely affects performance. The conservative algorithm attempts to lower overhead by

reducing the number of transaction restarts. The conservative timestamp ordering rule

algorithm will delay each operation until there is an assurance that no operation with

a smaller timestamp can arrive at the scheduler which reduces the problem of frequent

restarts but on the other hand introduces a deadlock possibility.

The basic technique here is based on the following: the operations of each transaction

are buffered until an ordering can be established so that rejections are not possible, and

they are executed in that order.

The timestamp algorithm then actually executes transactions serially at each site. This

is very restrictive [Ozs91].

3.8.1.3 Multiversion timestamp ordering rule

Multiversion Timestamp Ordering (TO) is an attempt at eliminating the restart overhead

cost of transactions. In multiversion TO, the updates do not modify the database; each

write operation creates a new copy of that data item. Each version is marked by the

timestamp of the transaction that created it. This algorithm trades storage space for time.

It then processes each transaction serially in timestamp order. The existence of versions is

transparent to the user because the scheduler will ensure that the user reads the latest value

for a particular data item. The scheduler simply assigns a timestamp to each transaction

which is also used to keep track of the timestamps of each version.

The operations are processed by the scheduler as follows:

Concurrent Transaction Management ___________________ 79

Definition 3.24 - Multiversion timestamp rule

1. A ri(X) is translated to a read on one version of X. This is done by finding

a version of X (say Xv) such that ts(Xv) is the largest timestamp less tha~

ts(Ti)· ri(Xv) is then sent to the data processor.

2. A Wi(X) is translated to Wi(Xw) so that ts(Xw) = ts(Ti) and sent to

the data processor if and only if no other transaction with a timestamp

greater than ts(Ti) has read the value of a version of X (say Xr) such that

ts(Xr) > ts(Xw)· In other words, if the scheduler has already processed a

r;(Xr) such that ts(Ti) < ts(Xr) < ts(T;) then Wi(X) is rejected.

[Els94] 0

A scheduler that processes the read and write operations of transactions according to

the rules above is guaranteed to generate serializable schedules [Ozs91]. To save space, the

DBMS may purge some of the versions from time to time. This will be done when the

DBMS is sure that no transaction will require the purged version again.

3.8.2 Locking methods

This is the most widely used approach to handling concurrency control in DBMSs. A

transaction must claim a (shared) read lock (rl) or (exclusive) write lock (wl) lock on a data

item prior to the execution of the corresponding read or write operation on that data item.

Since read operations cannot conflict, it is permissible for more than one transaction to hold

read locks for a data item. A write lock, however, gives a transaction exclusive access to a

data item. As long as a transaction holds a write lock on a data item, no other transaction

can either read or write that data item.

A typical schedule for the transactions in Figure 3.1 would be:

S = { wli(X), r1(X), w1(X), rli(X), wl2(X), wl1(Y), r1(Y), r2(Y),

tv1(Y),w2(X),c1,c2}

The most common locking protocol is known as two-phase locking (2P L). The transac­

tions which obey this protocol operate in two distinct phases: a growing phase during

which the transaction acquires all the locks, and a shrinking phase during which it releases

those locks (denoted by rell).

A typical schedule for the transactions in Figure 3.1 using the 2P L protocol would be:

S = { wli(X), wli(Y), r1(X), w1(X), rell1(X), wl2(X), r1(Y), r2(X),

w1 (Y), w2(X), rell2(X), rell1(Y), ci, c2}

Concurrent Transaction Management --------------------80

There are a number of variations of 2P L. The technique described above is known as

basic 2PL. A variation known as conservative 2PL requires a transaction to lock all the items

it accesses before the transaction begins execution, by predeclaring its read set and write

set. Conservative 2PL is a deadlock free protocol. In practise, the most popular version of

2PL is strict 2PL, which guarantees strict schedules. In this variation, the transaction does

not release any of its locks until after it commits or aborts. Hence no other transaction

can access a data item until after the other transaction has committed or aborted which

leads to a strict schedule. Strict 2PL (also sometimes called rigorous 2PL [Bre95]) is not

deadlock-free unless it is combined with conservative 2PL. Of course, the use of locks leads

to the problems of deadlock. How to deal with this is discussed next.

3.8.2.1 Deadlock

Deadlock occurs when each of two transactions is waiting for the other to release the lock

on an item. Informally, a deadlock is a set of requests that can never be granted by the

concurrency control mechanism.

Example 3.5 : Deadlock

For example, consider two transactions Ti and Tj that hold locks on two entities X

and Y (i.e. wli(X) and wlj(Y)). Suppose now that Ti issues a rli(Y) or a wli(Y).

Since Y is currently locked by Tj, Ti will have to wait until transaction Tj releases

its lock on Y. However, if during this waiting period, Tj now requests a lock (read

or write) on X, there will be a deadlock. This is because Ti will be blocked waiting

for Tj to release its lock on Y while Tj is blocked waiting for Ti to release its lock

on X. In this case the two transactions will wait indefinitely for each other to release

their respective locks.

A deadlock is a permanent phenomenon. If one exists in a system, it will not go away

until outside intervention takes place. There are three known methods for dealing with

deadlock: prevention, avoidance and resolution.

3.8.2.2 Deadlock prevention

In this case the scheduler will check a transaction when it is first initiated and will not

permit it to proceed if it might cause a deadlock. To perform this check, the scheduler will

require that the transaction predeclare all data items to be used. The transaction manager

will reserve all data items for a certain transaction before it is allowed to proceed.

This is not a very suitable method for database environments because of the difficulty

of knowing which data items will be accessed by the transaction. Access to certain items

may depend on the values of other items read. This method limits concurrency drastically

and also requires enormous overhead in checking all transactions. On the other hand,

Concurrent Transaction Management --------------------81

these systems require no run-time support, which reduces the overhead. In this system no

transactions will be aborted or restarted either which makes it the ideal method for systems

which have no facility for undoing processes.

3.8.2.3 Deadlock avoidance

There are two ways to accomplish deadlock avoidance; one is to employ concurrency control

techniques that will never result in deadlock and the other is to require that schedulers detect

potential deadlock situations in advance and prevent them from occurring.

The simplest way to avoid deadlock is to order the resources and insist that processes

request access to resources in that order.

Timestamping - discussed in section 3.8.1 - also prevents deadlock from happening,

as no locks are involved. Here we resolve a deadlock situation by aborting transactions with

higher (or lower) priorities. Well known algorithms that use this approach are the Wait­

Die and Wound- Wait algorithms [Ozs91]. These algorithms are based on the assigning of

timestamps to transactions. Wait-Die is a non-preemptive algorithm in that if the lock

request of Ti is denied because the lock is held by Tj, it never preempts Tj. The rule is:

Definition 3.25 - Wait-die rule

If Ti requests a lock on a data item that is already locked by Tj, Ti is permitted

to wait if and only if Ti is older than Tj. If Ti is younger than Tj, then Ti is

aborted and restarted with the same timestamp. (i.e. if ts(Ti) < ts(Tj) then Ti

waits else Ti dies). Ti will be restarted later with the same timestamp.

This algorithm will cause an older transaction to wait longer and longer as it

gets older. D

A preemptive version of the same idea is the Wound-Wait algorithm, which can be

stated as follows:

Definition 3.26 - Wound-wait rule

If Ti requests a lock on a data item that is already locked by Tj then Ti is

permitted to wait if it is younger than Tj; otherwise Tj is aborted and the lock

is granted to Ti. i.e. if ts(Ti) < ts(Tj) then Tj is wounded, else Ti waits. D

By contrast to the Wait-Die algorithm, the Wound-Wait algorithm prefers the older

transaction to never wait for a younger one. In both algorithms, the younger transaction is

aborted. These algorithms are more suitable than prevention schemes for database applica­

tions. The only drawback is that there is considerable overhead involved. Other algorithms

which prevent deadlock and do not require timestamps are the No-waiting and Cautious

waiting algorithms [Els94].

Concurrent Transaction Management ____________________ 82

Definition 3.27 - No-waiting algorithm

If a transaction is unable to obtain a needed lock, it immediately aborts and is

restarted after a certain time delay without checking whether a deadlock wilJ.

actually occur or not. Because of the constant aborting and restarting, the

cautious waiting scheme was proposed to reduce the problem. 0

Definition 3.28 - Cautious-waiting algorithm

- If Ti needs to wait for a data item held by Tj, the rule is as follows: if Tj is

not blocked then Ti is blocked and allowed to wait, otherwise abort Ti.

This scheme is deadlock free. Consider the times that a transaction Ti becomes

blocked as b(Ti)· Then, if the two transactions Ti and Tj both become blocked,

and Ti is waiting on Tj then b(Ti) < b(Tj), since a transaction can only wait on

an unblocked transaction. Hence the blocking times form a total ordering on all

blocked transactions, so no deadlock cycle can be formed. D

3.8.2.4 Deadlock detection and resolution

Another way to deal with deadlock is to detect it when it happens and then deal with it.

This solution works very well in a system where most of the transactions are independent

and the possibility of interference is remote. If deadlock is detected, one of the transactions

involved will be rolled back and will have to execute again from the beginning. Detection

is done by checking for deadlock situations. Resolution is accomplished by the selection

of one or more victim transactions that will be preempted and aborted in order to break

the deadlock cycle. The choice of which victim to choose can be affected by the following

(Ozs91]:

1. The amount of effort that has gone into a transaction. This will be lost if we abort.

2. The cost of aborting a transaction. This generally depends on the number of updates

already performed.

3. The amount of effort it will take to finish the transaction. The scheduler does not

want to abort a transaction that is almost finished. It will attempt to predict the

behaviour of the transaction from the transaction type for example.

4. The number of cycles that contain the transaction. Since aborting a transaction

breaks all cycles that it is involved in, it is best to abort the transaction that is part

of more than one cycle.

Concurrent Transaction Management ____________________ ,33

3.8.2.5 Livelock

A transaction is in a state of livelock if it cannot proceed for an indefinite period of time

while other transactions proceed normally. This may occur if the waiting scheme for locked

items is unfair, giving priority to certain processes. The standard cure for this problem is

to ensure that the priority scheme is fair. One such scheme is the First Come First Served

queue; transactions can lock an item in the order in which transactions request the item.

Another scheme would increase the priority of a transaction the longer it waits for a

certain data item lock. The transaction will eventually have the highest priority and succeed

[Els94).

3.8.2.6 Starvation

Another problem which is similar to livelock is starvation which happens if the same trans­

action is repeatedly chosen to be rolled back in a deadlock situation and it never gets a

chance to complete. The exact mix of transactions that would cause an intolerable level

of restarts is an issue that remains to be studied [Ozs91). The wait-die and wound-wait

schemes avoid starvation.

3.8.3 Optimistic methods

These methods are based on the premise that conflict is rare and that the best approach is

to allow transactions to proceed unhindered and only check for conflicts when a transaction

wishes to commit. Then if there is a conflict, the transaction is restarted.

The execution of any operation of a transaction follows the sequence of phases: valida­

tion(V), read(R), computation(C), write(W). Optimistic algorithms delay the validation

phase until just before the write phase. Thus an operation submitted to an optimistic

scheduler is never delayed. The read, compute and write operations of each transaction are

processed freely without updating the actual database. Each transaction initially makes

local copies of the data items and updates these local copies. The validation phase consist

of checking if these updates would maintain the consistency of the database. If the answer

is affirmative, the changes are written to the actual database. Otherwise the transaction is

aborted and has to restart.

It is possible to have locking-based optimistic concurrency algorithms but the original

algorithms were based on timestamp ordering. We will outline the latter. In this algorithm

timestamps are associated only with transactions and not with data items. Timestamps are

also only assigned at the time of their validation step and not at transaction initiation. This

is because they are only needed at the validation stage. The algorithm has the following

rules:

Concurrent Transaction Management ____________________ ,84

Definition 3.29 - Optimistic concurrency control rules

1. Rule 1- If all transactions Tk, where ts(Tk) < ts(Tj) have completed their

write phase before Tj has started its read phase, the validation succeeds-,

because transaction executions are in serial order.

2. Rule 2 - If there is any transaction Tk such that ts(Tk) < ts(Tj) which

completes its write phase while Tj is in its read phase, the validation suc­

ceeds if WS(Tk) n RS(Ti) = 0.

3. Rule 3 - If there is any transaction Tk such that ts(Tk) < ts(Tj) which

completes its read phase before Tj completes its read phase, the validation

succeeds if WS(Tk) n RS(Ti) = 0 and WS(Tk) n WS(Tj) = 0.

[Ozs91] D

Rule 1 indicates that transactions are executed serially in their timestamp order. Rule 2

ensures that none of the data items updated by Tk are read by Tj and that Tk finishes

writing its updates into the database before Tj starts writing. Rule 3 is similar to Rule 2,

but does not require that Tk finish writing before Tj starts writing. It simply requires that

the updates of Tk not affect the read phase or the write phase of Tj.

These algorithms allow a higher level of concurrency than timestamping and locking

and this algorithm works very well when transaction conflicts are rare. A major problem is

the high storage cost. To validate a transaction, the optimistic mechanism has to store the

read and the write sets of several other terminated transactions [Ozs91].

3.8.4 Serialization graph method

While most concurrency control methods do not test for serializability, the serialization

graph method does test for conflict serializability of a schedule.

A serialization graph(SG) is a directed graph G = (N, £)that consists of a set of nodes

N = {Ti, T2, , Tn } and a set of edges £ = { e1 , e2, ... ,em }. There is one node in the graph

for each transaction Ti in a schedule. Each edge ei in the graph is of the form (Tj -+ Tk),

1 ~ j ~ n, 1 ~ k ~ n, where Tj is the starting node of ei and Tk is the ending node of

ei such that one of the operations in Tj appears in the schedule before some conflicting

operation in Tk.

It can be shown [Ber87] that the acyclicity of the SG is a necessary and sufficient

condition to guarantee conflict serializability since a topological sort of the graph provides

an ordering that corresponds to an equivalent serial execution.

Elmasri et al [Els94] give an algorithm for testing conflict serializability of a schedule

using a serialization graph. Bernstein et al [Ber87] discuss serialization graphs in great

detail and can be consulted for a comprehensive treatment of this topic.

Concurrent Transaction Management ____________________ ,85

Concurrency Locks Timestamps Other

Control

Method

Conservative 2PL Value Date

Schedulers Strict 2PL

Aggressive Wait Die Basic TO

Schedulers Wound Wait Strict TO

M ultiversion TO

Certifiers Optimistic Concurrency Control

SGT

Figure 3.14: Classification of concurrency control schemes

[Geo90]

3.8.5 Value date methods

The concurrency control method here is based on a value date [Lit89]. In executions gen­

erated by a value date scheduler, each transaction is allocated a value date which is an

over-estimation of the termination time of the transaction. When a conflict between two

transactions occurs, the one with the later value date will be delayed [Elm87].

3.9 Summary

The concept of a transaction has been defined, concurrent execution of transactions detailed

and the problems inherent in this outlined. The concept of serializability theory has been

introduced and how this relates to correctness in a database system has been elaborated

upon. Recoverability of schedules has been defined and how to deal with deadlock situations

has been explained. These concepts have been used to define concurrent transaction man­

agement concepts in multidatabases in chapters further on. Finally, various concurrency

control methods were discussed. By way of summary we present a classification of these

methods in Figure 3.14 [Geo90].

Chapter 4

Transaction Management

This chapter discusses the problems inherent in multidatabase transaction management,

global concurrency control and global deadlock. The formal transaction model which was

introduced in Chapter 3 is extended to include multidatabase concepts. The functions of the

global transaction manager are outlined and past research into transaction management,

global concurrency control and global deadlock management schemes which appear in the

literature is evaluated.

4.1 Transaction Management in M ultidatabase Systems

The major task of transaction management in a multidatabase environment is as follows

(Bri92]:

"Ensuring the global consistency and freedom from deadlocks of the multi­

database system in the presence of local transactions (i.e. transactions executed

outside of the multidatabase system control), and in the face of the inability

of local DBMSs to coordinate execution of multidatabase transactions (called

global transactions), under the assumption that no design changes are allowed

in local DBMSs."

The majority of research in multidatabases has concentrated on data models and schema

integration and not much research has been done into the problem of transaction manage­

ment in multidatabase systems.

An MDB architecture involves a number of database systems, each with its own local

transaction manager (LTMs) and a multidatabase software layer (MDMS) on top. The local

database systems may not be aware of the existence of other participating local database

systems, and thus may not be able to communicate with them. As a result, local DBMSs

may be incapable of ensuring that the concurrent execution of local and global transactions

preserve database consistency. Thus a software module, referred to as the global transaction

manager (GTM), is built on top of the existing database systems in order to coordinate the

86

Transaction Management ------------------------87

execution of global transactions in a MDB environment [Bre95]. The GTM must provide

the following functionality in a multidatabase [Kan93]:

1. Scheduling - The GTM must control the submission of global transaction _opera­

tions to the appropriate LTMs such that the global history is serializable. The main

objectives of a multidatabase scheduler are to ensure [Rus92]:

• Correctness: The scheduler must take the execution dependencies that have been

defined for the multidatabase transaction into account, as well as the constraints

imposed by the global concurrency control method which specifies allowable in­

terleavings of subtransactions.

• Safety: The scheduler must guarantee that the multidatabase transaction will

terminate in one of the specified acceptable termination states. Before executing

a transaction, the scheduler should examine it to see whether it satisfies this

requirement. If it is unable to determine the safety of a transaction, it should

reject the transaction without attempting to execute it.

• Optimal scheduling policy: A multidatabase scheduler should achieve an accept­

able termination state in the "optimal" way. This could vary from application

to application. One possibility is to define it as achieving the goal in the shortest

possible time. Alternatively, we may associate a cost function with the execution

of each subtransaction. The objective of the scheduler would then be to execute

the transaction with the minimum cost.

• Handling of failures: A scheduler should be able to reach an acceptable termi­

nation state even in the case of a failure. The scheduler must use stable storage

to log all the information about its state so that it could recover if need be.

2. Atomic commitment protocol - The GTM is assumed to perform an atomic commit­

ment protocol for supporting the atomicity of global transactions. The LTM is not

assumed to participate directly in this protocol.

3. Recovery management - The GTM must restore the multidatabase system to a

consistent state following a failure of any type. Due to the autonomy of the local

database systems, the GTM does not have access to the local log. Thus the GTM

must maintain a separate log for its own recovery purposes.

Scheduling will be discussed in this Chapter. Chapter 6 will handle the recovery manage­

ment function while the atomic commitment protocol will be discussed in chapters 5 and

6.
The computation model which will be used in the rest of this dissertation is that of

Barker [Bar90) and is shown in Figure 4.1. The general computational model can be sum­

marized as follows:

Transaction Management ________________________ ,88

A global transaction is managed by the MDMS layer which parses it into a set of

global subtransactions. Global subtransactions consist of those operations of the

global transactions which belong to a particular local database. Each subtrans­

action is submitted to a local database system. Local DBMSs are responsible

for the concurrent execution of both the global subtransactions and the local

transactions submitted to them. The synchronisation of global transactions is

the responsibility of the MDMS layer [Bar90].

4.1.1 The role of the global transaction manager

A series of conditions can be identified [Ozs91, Gli86, Bar90] that specify when global

transactions can safely update in a multidatabase system. These conditions are helpful in

determining the minimal functionality required of the various transaction managers. The

conditions are:

1. The individual database managers must guarantee local synchronization atomicity.

This means that local transaction managers are simply responsible for the correct ex­

ecution of the transactions on their respective databases. Each local recovery manager

is responsible for maintaining that its schedule is serializable and recoverable. These

schedules are made up of global subtransactions as well as local transactions. The

local DBMS therefore accepts a transaction and executes it till termination.

2. Each LTM maintains the relative execution order of the subtransactions as determined

by the GTM. The GTM is responsible for coordinating the submission of the global

subtransactions to the LTMs and coordinating their execution. This is complicated

by the fact that in a MDMS, the GTM cannot communicate directly with schedulers

at local sites. This is because:

• firstly, the individual local nodes do not necessarily know how to communicate

in a distributed environment; and

• secondly, GTMs already have difficulty scheduling transactions across multiple

sites and it may not be feasible for them to get even more involved with trans­

action scheduling across multiple DBMSs at one site. This would entail a GTM

sending a global subtransaction to another global transaction manager at another

site and expecting it to coordinate the execution of the global subtransaction.

The GTM at the other site may then further decompose the transaction into

global subtransactions, depending on the organization of the local databases at

its site.

The GTM is therefore only responsible for the serializability of the global transaction

execution histories (a history is the global version of the schedule concept as defined

in the previous chapter).

Transaction Management _______________________ .89

MDMS

DBMS2
DBM~

'~1 ' •

'~ ' ~) ''
! .' ._.,I ' I

,,\·,. .. '
j) ·, ·,· "

1,' • ' ' pl, ' '"· • ,,,.

Figure 4.1: Depiction of the computational model

[Bar90, p29]

Transaction Management __________________________ go

3. The GTM is also responsible for dealing with global deadlocks that occur amongst

global transactions and should provide the means to recover from any type of system

failure. This ordering is fairly simple to maintain if the GTM waits for the result of one

subtransaction before submitting the next one but of course the degree of concurrency

in this case is very low.

4. The GTM should guarantee the ACID properties of global transactions, even in the

presence of local transactions that the GTM is not aware of. Atomicity in a multi­

database has two properties [Gli86]:

• Failure atomicity means that a global transaction behaves as though it executes

to completion or not at all. In other words, if one of the local systems crashes

in the middle of executing a transaction, intermediate results will not be left in

the multidatabase.

• Synchronization atomicity guarantees that during the normal concurrent execu­

tion of global transactions the results will be the same as if the transactions were

executed in some serial order.

In a homogenous distributed database system, atomicity of transactions is guaranteed

by an atomic commit protocol such as the two-phase-commit (2PC) protocol1 . This

protocol requires participating local sites to provide a prepare to commit command in

their interface. When the local DBMS receives and acknowledges a prepare-to-commit

command, it makes a promise to the GTM that it will commit its work if so requested

by the GTM [Bre95].

However, this may not be possible in a multidatabase system. If participating local

database systems in a multidatabase system do all export a prepare-to-commit com­

mand (so that it is possible to use the 2PC protocol), then they lose some of their

execution autonomy since the individual DBMSs are no longer free to make decisions

regarding resources held by the global transaction at the local database system. As

stated before, the atomicity issue in multidatabases is not a trivial one.

5. Global transactions cannot be split up and submitted concurrently to the same local

database system.

6. The MDMS must be able to identify all objects referenced by all global transactions.

4.1.2 Extending the formal transaction model to include multidatabase

concepts

In Chapter 3 we introduced a basic transaction model which we now extend to include

multidatabase concepts.

1 See Appendix C

Transaction Management ________________________ 91

Local and global transactions will be formally defined with respect to the data items

they access as well as their mode of operation.

Definition 4.1 - Local database

Each of the autonomous databases that make up a multidatabase is called a

local database (LDB). The set of data items stored at a local database system

LD Bi, the local database at site i, is denoted by £1JBi .

The set of all data in the multidatabase can be defined as:

[Bar90] D

Definition 4.2 - Local transaction

A transaction Ti submitted to DBMS j, (denoted by DBM Si) is a local trans­

action (denoted by LTj) on DBMS) if BSi ~ £1JBi where £1JBi is the local

database managed by DBM Si.

We denote the set of all local transactions at LDBi by £Tj = LJi LTj. The set

of all local transactions in a multidatabase system is £T = Uk £Tk.

[Bar90] D

Definition 4.3 - Global transaction

A transaction is a global transaction (GTi) iff:

1. f},£1JBi such that BSi ~ £1JBi or

2. GTi is submitted to DBMSk but BSi ~ £1JBr(k-=/= r).

We will let gT denote the set of all global transactions in the multidatabase,

i.e.

[Bar90] D

Item (1) states that global transactions submitted to the MDMS access data items stored

in more than one database. In other words, if the transaction accesses data items contained

within a single database, the transaction is not a global transaction but is referred to as a

Transaction Management __________________________ 92

local transaction. Item (2) represents the case where a user working on one database system

requires access to the data stored and managed by another DBMS in another database

system. A global transaction GT is parsed into a set of global subtransactions GSTi, GST2, •••

GSTn which are subsequently submitted to local database systems for execution. Thus a

global transaction is executed as a set of subtransactions that execute on a number of local

DBMSs. Global subtransactions are defined in terms of the data items referenced, and with

respect to the global transaction creating them.

The decomposition of GT is mainly based on the sites at which the data items reside.

The subtransactions generated should satisfy the following conditions [Geo90]:

1. There is at most one global subtransaction per LDB for each global transaction.

2. In the case where the GTM submits operation by operation of a subtransaction to

the local database, transactions executed at local databases that do not support a

prepare to commit state must perform a handshake after each database operation so

that database operations are totally ordered. In the case where the GTM submits

service requests, this would not be a requirement of the subtransaction.

3. Subtransactions include "send" and "receive" operations whenever data movement

and task synchronization between the MDMS and the subtransactions are necessary.

It is assumed that subtransactions perform a handshake after each receive operation.

The send and receive can be modeled by write and read operations issued to data

items no other transaction accesses.

Definition 4.4 - Global subtransaction

A global subtransaction submitted to DBM Si on behalf of a global transaction

GTi (denoted GST/) is a transaction where:

1. ~i ~ ~i and

2. BS! ~ £/DBi where BS! is the base-set for GST/ .

The set of all global subtransactions submitted to a particular local database

DBM Skis denoted by QSTk while the set of all global subtransactions produced

by a global subtransaction GTi is denoted as QSTi.

Therefore the set of all global subtransactions in a multidatabase system is:

[Bar90] 0

This definition formalizes the assertion that each global subtransaction executes at only

one DBMS. Therefore a global subtransaction can be seen as a local transaction by the

DBMS to which it is submitted.

Transaction Management _________________________ 93

We will now define histories which will be used later in defining recoverability concepts.

In the previous chapter we used the concept of schedules to denote the interleaving of

operations of various transactions in a single database. When we look at the interleaving of

operations in a multidatabase, we will refer to schedules as histories to allow us to distinguish

between the two concepts.

Definition 4.5 - Local history

Given a LDBk with a set of local transactions £Tk and a set of global sub­

transactions <JSTk, a local history (LHk) is a partial order LHk = (~k, -<'LH)
where:

1. ~k = LJj ~j where ~j is the domain of transaction Tj E £Tk U <JSTk at

LDBk,

2. -<'£H2 LJj -<j where -<j is the ordering relation for the transaction Tj at

LDBk, and

3. for any two conflicting operations p, q E LHk, either p E-<'LH q or q E-<'LH
p.

[Bar90] 0

The collection of global subtransactions at each local database is sufficient to describe

the ordering of global transactions. We will define the global subtransaction history next

as a subset of the local site histories by restricting Definition 4.5.

Definition 4.6 - Global subtransaction history

The global subtransaction history of LD Bk is described by the partial order

GSHk =(~~SH' -<~sH) where:

1. ~~SH = LJj ~j, where ~j is the domain of transaction Tj E <JSTk and

2. -<~sH<;-<'£H ·

[Bar90] 0

A global transaction history can be defined by global subtransaction orders at each

local database. A global history is the union of global subtransaction histories at each

participating local database.

Definition 4. 7 - Global history

A global history G H = (~aH, -<aH) is the union of all global subtransaction

histories:

Transaction Management _________________________ 94

2. -<.aH ~ Uk -<.~8H, and

3. for any two conflicting operations p, q E G H, either p -<.aH q or q -<.aH p .

[Bar90] D

The final definition describes the history of a multidatabase execution. Essentially the

MDB history is fully described by the combination of local site histories (Definition 4.5 and

Definition 4. 7).

Definition 4.8 - MDB history

A history of a multidatabase (denoted by MH) consisting of n local histories

and a global history (G H) can be described as a tuple M H = (£7-t, G H) where

£1-t = {LH1,LH 2 , ••• ,LHn}.

[Bar90] D

4.2 Transaction Management Approaches

This section introduces the research done into transaction management in our selected core

group of schemes.

4.2.1 Barker & Ozsu's basic MDB model

Barker et al [Bar90, Ozs91] propose a very basic MDB model which is illustrated in Fig­

ure 4.2. This model serves to give a good basic understanding of multidatabase system

architecture.

The MDB consists of various local database systems each having its own DBMS, each of

which manages a different local database system. The MDMS provides a layer of software

that runs on top of these local database systems and allows users to access various database

systems. Each DBMS has its own transaction processing components: the local transaction

manager, the local data manager, and a local scheduler. The MDMS is simply seen as

another user from which transactions are received and to whom results are presented. The

MDMS layer consists of a global transaction manager, a global scheduler and a global

recovery manager. Barker uses the notion of m-serializability (see Synopsis 4.22, section

4.4.2.1) for correctness and uses multidatabase serializability graphs to maintain global

concurrency control [Bar90].

4.2.2 Pu's hierarchy of superdatabases

Pu [Pu88] describes multidatabases in terms of a hierarchy of superdatabases as illustrated in

Figure 4.3. Each participating database system (called an element database) can be pictured

Transaction Management _______________________ 95

Global
Scheduler

Global
Recovery
Manager

'•

Figure 4.2: Components of an MDB in Barker & Ozsu's model

[Bar90, plO)

Transaction Management _________________________ 96

Supcrdatabase

Figure 4.3: Pu's multidatabase transaction processing model

[Pu88, p146]

as the leaves on a tree and each internal node as a superdatabase that manages the element

databases in a hierarchical structure. Each element database operates independently but

global activities are managed at the node level of the tree. Transactions that cross multiple

element databases are called supertransactions and are posed against a superdatabase.

Superdatabases utilize serializability as a transaction correctness criteria. Serializability

is ensured by having each element database provide the superdatabase with information

about the ordering of its local transactions. Pu claims this is not necessary when element

databases provide strict schedules. Serial orderings of each local transaction at the local site

is provided by order-elements (0-elements). The 0-element for each transaction is passed to

the superdatabase, after which the ordering of supertransactions can be determined. When

the ordering has been worked out , it is analyzed and if it is serializable, the supertransac­

tion can commit, otherwise each subtransaction is aborted [Bar90]. This architecture was

implemented at Columbia University - called the Harmony system [Pu91b].

There are some problems with Pu's approach. Formation of the 0 -element ordering

requires that the local site keep the superdatabase informed of decisions made locally. This

violates local autonomy. The superdatabase, and not the local databases, makes arbitrary

decisions about whether transactions may commit, which also violates autonomy. Pu has

also not addressed the problem of crash recovery. [Bar90]

Transaction Management ________________________ 97

4.2.3 Breitbart et al's work

Breitbart et al [Bre88, Bre86, Bre85, Bre87] have done research into many aspects of mul­

tidatabase systems. We will only discuss their research into transaction managemen~ here.

They assume that data can be replicated.

Breitbart et al initially used the same multidatabase architectural model as Barker et

al (in Figure 4.2) but had a different approach to defining global transactions. Breitbart et

al defined a global database as a triple (D, S, J) where D is a set of global data items, Sis

a set of sites and f is a function: f: D x S----+ (0,1) such that J(x, i) = 1 means that data

item xis available at site i. If f(x, i) = f(x,j) = 1 where i =J j, then xis replicated at i

and j. Breitbart et al use serializability as a correctness criterion and serialization graphs

to determine when a history is serializable.

In this model global operations are mapped onto local operations and considered as a

single local schedule to determine whether schedules are serializable. The most recent work

of these researchers [Bre90a] addresses the problems of reliability. Their approach is based

on splitting up data into mutually exclusive groups of locally and globally updateable data.

Breitbart et al proposed solutions to both concurrency and reliability problems in mul­

tidatabases. Breitbart et afs reliability proposal does not provide for full autonomy of the

local databases and splitting up data into locally and globally updateable groups violates

local autonomy [Bar90].

In later work on the transaction management problem Breitbart et al extended the basic

transaction processing model to a client-server type model which uses servers at local sites

[Bre95, Geo90, Meh93, Meh92c, Meh92b, Bre90a]. They propose a transaction processing

model where the software module includes a global transaction manager (GTM) at the

multidatabase site, and a set of servers, one associated with each participating database

system. The multidatabase transaction processing model is illustrated in Figure 4.4

In this basic transaction processing model, each global transaction submits its read/write

operations to the GTM. For each submitted operation, the GTM then determines whether

to submit the operation to local sites, or to delay it, or to abort the transaction. If the

operation is to be submitted, the GTM will select a local site (or a set of sites) where the

operation should be executed [Bre95].

The GTM submits operations to the local DBMSs through the server, which acts as

a liaison between the GTM and the local DBMS. Operations belonging to a single global

subtransaction are submitted to the local DBMS by the server as a single local transaction.

There are two possible ways for these servers to be utilized. The exact way in which the

GTM and the local DBMS interact depends on the schema exported by the local DBMS.

• One possibility is for the DBMS to accept individual read and write operations. In this

case, before the server initiates actions on behalf of a global subtransaction, it starts

a new local transaction by issuing a begin transaction operation to the local DBMS.

The DBMS returns a transaction identification that is used in subsequent actions

Transaction Management _______________________ 93

GTM

Global Transactions
GTi

DBMS1

Figure 4.4: Breitbart et al's multidatabase transaction processing model

[Bre95, p576]

Transaction Management ________________________ 99

of the subtransaction. After each read and write action is submitted, the DBMS

acknowledges execution (and if a data item was read, includes the value obtained).

When the GTM wishes to commit, it issues (via the server) a commit command. This

type of scheme violates local autonomy and for this reason is not ideal.

• Another possibility is for the GTM to send service requests to the individual DBMSs

such as 'reserve a seat on flight x'. In this case the server can only call on a set

of predefined services; and each call represents an implicit local transaction [Bre95].

This scheme does not violate local autonomy and therefore has more to recommend

it.

Variations of these two server schemes are also possible and have been discussed in

the literature [Bre92c]. It all depends on whether the individual DBMS is p~epared to

participate in a global commit protocol or not.

4.2.4 Elmagarmid et al's work

Elmagarmid et al have done much work in the area of transaction management in multi­

database systems [Elm88, Elm87, Elm86]. Their initial work focused on characterizing the

problem and proposed a number of pragmatic approaches. The research proposed maintain­

ing a high level of local site autonomy while using serializability as a correctness criterion.

This autonomy is maintained by adding software to local sites to ensure serializable sched­

ules at each local site. The monitoring and submitting software is known as a stub process

[Bar90].

Elmagarmid & Helal proposed weak-stub/strong-stub processes for ensuring correct ex­

ecution of global transactions [Elm88]. The approach is to submit a subtransaction as a

weak-stub process if it could be aborted by the local DBMS and as a strong stub once

the subtransaction had to commit. Unfortunately, a situation could arise where the local

DBMS could consistently refuse to commit the subtransaction [Bar90].

Du & Elmagarmid [Du89] recognized the difficulties of using serializability as a correct­

ness criterion where a problem arises due to indirect conflicts occurring between subtransac­

tions and local transactions. This led to a notion of quasi-serializability (see Synopsis 4.18,

section 4.4.2.1) [Du89]. Du & Elmagarmid [Du89, Elm90a] later merged the pragmatic

approach with the quasi-serializability correctness criterion [Bar90].

4.2.5 Chen et al's distributed MDMS

Chen et al [Che93] extended Elmagarmid et aI's work by proposing a distributed MDMS

which is not vulnerable to failures. The regular architecture we have described up to now

has a central node which, if it fails, incapacitates the whole system.

The MDMS described by Chen et al consists of a global transaction manager and a set of

interfaces located at each site. The GTM controls execution of all MDMS transactions. For

Transaction Management -------------------------100

each MDMS transaction Ti a GTM process GT Mi, which is responsible for the consistent

and reliable execution of Ti, is issued. GT Mi is therefore coincident with the life cycle of

Ti. The interface accepts and schedules the execution order of subtransactions on the local

system where it resides and creates a server procedure for each subtransaction in the system.

The server is coincident with the lifecycle of the subtransaction.

The architecture of Chen et al's model is illustrated in Figure 4.5. Before a transaction is

executed, it requests all corresponding MDMS interfaces to arrange the scheduling order of

its subtransaction on the corresponding LDBSs so as to prevent any MDMS inconsistencies

its execution may cause. When executing a global transaction, a GTM process only inter­

acts with relevant MDMS interfaces, without the need to communicate with other GTM

processes.

Each GTM process can thus run independently and the GTM is made a distributed

entity. No assumptions are made about the LDBSs and the autonomy of the LDB is

maintained.

4.2.6 Kang & Keefe's decentralized GTMs

Kang & Keefe [Kan93] propose a multidatabase model where the GTM is totally decentral­

ized. Their model caters for multiple versions. The basic model is illustrated in Figure 4.6.

This scheme differs from Chen et al's scheme [Che93] because in Chen et al's scheme the

GTM is located at the site where the transaction is submitted and that GTM communicates

with interfaces at all the other local database sites, whereas Kang & Keefe's scheme locates

a GTM at each local site which does all the work - there are thus no servers.

At each site there is a GTM accepting global transactions from users and receiving

subtransactions from other GTMs via the network. The GTM maintains a global directory

and therefore can determine the appropriate sites at which a global transaction will execute.

All operations executed at a site from the same global transaction constitute a sub­

transaction. The LTM does not distinguish between local and global transactions. Only

the LTM can access the local database. The LTM is responsible for the concurrency con­

trol and recovery of the database while the GTM must maintain the consistency of the

multidatabase.

4.2. 7 Garcia-Molina & Salem's sagas

Garcia-Molina & Salem [Gar87] have proposed a nested transaction model intended to

deal with long lived transactions. Their model uses nested transactions called sagas, with

only two levels of nesting. A saga is not executed as an atomic unit. This means that

the results of a subtransaction's execution are visible as soon as it commits and not only

after commitment of the entire saga. Sagas are written so that they are interleavable

with any other transactions which makes concurrency control at the saga level unnecessary.

Because of this design factor, the introduction of local transactions does not cause any

I

I
I
I -.... -. - -

Site l Site 2 Siten

Figure 4.5: Chen, Bukhres & Sharif-Askary's MDMS architecture

•

t:;3
~
CJ>
~
n c;·
:=::!

~
:=::!

~
('!) s
[g

.._.
0 .._.

Transaction Management ------------------------102

Global Transactions

Site i

subtransactions

Global Transactions

GTM
;

Local Transactions

Site j

Figure 4.6: Kang & Keefe's multidatabase architecture

[Kan93, p458]

Transaction Management ------------------------103

concurrency control problems. In this model two assumptions are made which make this

approach unsuitable in multidatabase systems. Firstly, the model is not applicable to

all multidatabase environments since it may be too restrictive to require that sagas be

interleavable with other transactions. Secondly, it may not always be possible to write the

compensating transactions that this model requires. [Bar90]

4.2.8 Yoo & Kim's client server approach

Yoo & Kim [Yoo95] propose the multidatabase architecture as illustrated in Figure 4.7.

In the figure, LTj denotes a local transaction issued and executed locally in site Sj.

GTi denotes a global transaction and GST/ denotes a subtransaction of GTi submitted to

LDBMSi. The three components can be described [Yoo95]:

• Multidatabase transaction manager (MDBS_TM). The MDBS_TM submits subtrans­

actions of a global transaction to the appropriate LDBMSs via agents. The MDBS_TM

controls the submission of concurrent global transactions in order to achieve a correct

schedule.

• Agent: The agent is a component of the MDMS that runs on each site, which is

merely an application in a local DBMS's viewpoint. It receives operations of sub­

transactions from the MDBS_TM, submits them to the LDBMS and send the results

to the MDBS_TM.

• Stub: Each stub extracts concurrency control information from the requested oper­

ations on the local database and controls operation submission to the LDBMS. The

stub thus controls all database update operations, both local and global. The stub

uses stub-level locks to control submission of operations of local transactions as well

as global subtransactions.

This transaction management scheme provides a reliable transaction management mecha­

nism which maintains global consistency in the face of failures. Yoo & Kim assume that

each local database system uses 2PL as its concurrency control scheme. Yoo & Kim con­

tend that this requirement is not restrictive because most commercial DBMSs use the 2PL

protocol. [Buk93, Bre91a, Vei92, Kim93]

4.2.9 Other research

In this section we introduce other research into transaction management in multidatabase

systems which does not form part of the core group but which also merits discussion.

4.2.9.1 Nodine & Zdonik's step scheme

Nodine & Zdonik [Nod94] propose a step approach to integrating the information in lo­

cal databases into a multidatabase. This approach has been implemented in the Mongrel

Transaction Management _ ____ _ _ ______________ 104

----/MOMS

____ ,
' --------' I

I
I

MOBS TM

\
\
\
\
\

I
\
\

I
I

I
I

I
I
I
I
I
I
I

Site S .
J

I

I log I
I I L-----

LOBS ;

Global
log

\
\
\
\
\
I
I
I
I
I
I

stub

Site Sk

I

I log
I I L-----

LOBS k

Figure 4. 7: Yoo & Kim's multi database system architecture

[Yoo95, p56]

prototype multidatabase system.

In this model, each local database system defines an interface of function calls or steps

that it is willing to provide for use by the multidatabase. These steps are collected into

the local database's own step library. In the step library, each step is explicitly paired with

its compensating2 step. The compensating step will reverse the effects of the step on the

database. The step itself is not a database operation - several operations can be grouped

into a single atomic global subtransaction. The step will log information about the values

of data items as it executes so that the compensating step knows the values and can reverse

the actions of the step.

This step approach provides adequate information to determine whether a step is eas­

ily compensatable or likely to cause trouble in specific situations. Problems occur when

interference from other transactions prevents compensation from succeeding [Nod94).

4.2.9.2 Rusinkiewicz et al's flexible transactions

The concept of flexible transactions was proposed by Rusinkiewicz et al [Rus90) to extend

the basic transaction model. This model allows global transactions to release atomicity by

specifying subtransaction dependencies. Dependencies that can be specified between a pair

of subtransactions GSTt and GSTi include:

• Positive execution dependency defines that GSTi cannot be executed until GST1

completes successfully.

• Negative execution dependency exists if GSTi cannot be executed till GSTt has been

invoked and did not achieve its objectives or failed.

• Alternative dependency specifies that GSTi and GST1 accomplish the same objective.

• Compensating execution dependency specifies that GSTi rolls back the effects of

GST1 if it is executed after the successful completion of GST1.

Therefore, flexible transactions can be successful (achieve their objectives) even if some

of their actions fail and others are never executed. The flexible transaction model also

captures the temporal aspects of transaction execution because a commitment date and

expiration date and a temporal predicate can be associated with each transaction. [Geo90)

4.2.9.3 Litwin & Tirri's timestamps

Litwin & Tirri [Lit89) propose the use of timestamps to determine whether transactions

execute correctly. A data item is assigned a value date which indicates the time that

the item was given a correct value. When transactions are created, an actual date is
2 A compensating transaction is a transaction that is run to negate the effects of a transaction that has

already run. More details are given in Chapter 6

assigned to them and if the transactions actual data and data items value dates indicate

that safe access is possible, the transaction is permitted to execute. This approach delegates

the synchronization of global transactions to the local transaction managers. However, it

assumes that the individual DBMSs are able to compare transaction timestamps with data

timestamps. This scheme violates local autonomy. [Bar90]

4.2.9.4 Georgakopoulos et al's forced local conflicts

Georgakopoulos & Rusinkiewicz et al have worked on reliable multidatabase transactions

[Geo90, Geo91b]. Their method also uses serializability and introduces a class of schedules

called rigorous schedules. Their work is very significant because it seems to solve the

problem of indirect conflicts (see section 4.3.2). Rigorousness may be too restrictive but

that remains to be seen. This work also addresses atomicity of multidatabase transactions.

[Bar90]

4.2.9.5 The StarGate MDMS

StarGate is an MDMS prototype which has been developed at the University of Stellenbosch

[Key93]. The client-server based MDMS is also distributed in this system. It consists of

four components built on top of a local database system at each local site:

• A presentation manager which accepts transactions.

• The Star server which receives transactions from the presentation manager and which

creates subtransactions. This is the global component which communicates with stars

and gates at other sites. The star is multithreaded and acts like a normal centralized

DBMS server. Client processes connect to the star server and request a session to the

global database.

• The Gate server which consists of a transaction manager, scheduler and local session

manager and provides scheduling and resource control. The gate also communicates

with gates and stars at other sites. The gate is multithreaded and can serve multiple

clients simultaneously.

• The DBMS server communicates with the local DBMS This is a concurrent server

which means that each client process spawns a dedicated server process. This server

provides the user with a transparent view of any component database.

StarGate uses a commit protocol called "take-a-ticket" which ensures global serializabil­

ity while also solving the indirect conflict problem. Each site will control the commitment

of global transactions submitted at that site.

Transaction Management ------------------------107

4.3 Integrating Various Concurrency Control Methods

Virtually all DBMSs adopt a static approach to concurrency control. When the DBMS is

being designed, a number of factors are taken into consideration and on the basis of _this, a

single concurrency control method is adopted and built into the system [Bel92].

In a MDMS it is highly unlikely that the concurrency mechanisms supported by the

local DBMSs are identical.

In order to integrate heterogeneous local concurrency control algorithms, we have to

consider the following two problems [Yun93]:

1. How we can process a global transaction when it violates global serializability or has

the possibility of violation of global serializability. This is referred to as the processing

problem.

2. How we can manage an indirect conflict introduced by a local transaction. This is

referred to as the indirect conflict problem.

The traditional approaches to integrating heterogeneous concurrency control algorithms can

be classified into two groups: bottom-up and top-down approaches.

• The bottom-up approach collects local information from each local site at the global

level and thereafter checks global serializability. This approach is optimistic and

requires considerable time and cost for the modification of each local DBMS. This

approach violates. local autonomy and is therefore not ideal. Another problem is

that many global transactions may have to be aborted due to violation of global

serializability. Consequently, cascading rollback could be caused by aborting of global

transactions.

• The top-down approach maintains a global serialization order at local sites, which has

been determined already at the global level. This method is pessimistic and does not

require modification of local DBMSs at all. In this respect, this approach maintains

local autonomy. To determine the serialization order of the global transactions at each

LDB, the MDMS must deal with both direct conflicts as well as indirect conflicts.

In this approach, the indirect conflicts among global transactions via local transactions

can not be considered at the global level because the global level is unaware of them.

Some of the indirect conflicts may cause a discrepancy between the execution order

of global transactions and their serialization order. Several solutions to the indirect

conflict problem have been proposed but many of them are not satisfactory [Yun93].

Example 4.1 : Execution order and serialization order

Consider two sites with LD B 1 and LD B 2 with data items {a} and { b, c} re­

spectively. Say we have the following global transactions:

Transaction Management ------------------------108

GT1: w1(a);r1(b)

and a local transaction:

L1: WL(b);rL(c)

We now have the following global transaction history:

GH : w1(a); r1(b); r2(a); w2(c)

and two local histories are::

LH1 : w1(a); r2(a)

LH2 : W£(b);r1(b);w2(c);rL(c)

Let ~ and ~ denote direct and indirect conflicts respectively.

There is a direct conflict GT1 ~ GT2 in LH1 and an indirect conflict GT2 ~
GT1 in LH2 because L ~ GT1 and GT2 ~ L in LH2. The execution order

of LH1 and LH2 are both GT1, GT2 but an indirect conflict between GT1 and

GT2 via Lis produced in LH2. Thus at LDB1 the execution order (i.e. GT1,

GT2) becomes different from the serialization order (i.e. GT2, GT1) in LH2.

The global history would therefore be unserializable because the serialization

order is different at LDB1 and LDB2.

<>

The concurrency control mechanism in a multidatabase has to be able to synchronize

global transactions with purely local, autonomous transactions which are under the control

of the local DBMS and ensure that the consistency of the database is maintained. It is

impossible to synchronize local and global transactions while still preserving local auton­

omy [Bel92). Once the global transaction submits a subtransaction to the local DBMS, it

effectively relinquishes control over it. The local DBMS will assume all responsibility and

will decide whether to commit or reject and roll-back the transaction. Hence, some local

DBMS could commit and others could abort the same transaction, thereby destroying the

atomicity of the global transaction and compromising the consistency of the multidatabase

system.

The traditional approach to ensuring that histories preserve database consistency in a

multidatabase requires histories to be serializable. In a MDMS environment, a history is

serializable if and only if global transactions in the history are serialized in the same order

in all local database systems [Bre88). However, even serial execution of global transactions

does not guarantee global serializability.

Transaction Management ------------------------109

The problems of the provision of general support for global transactions in the presence

of local transactions are as follows:

• Maintaining global transaction atomicity.

• Global serialization.

• Detection and prevention of global deadlock.

Most existing multidatabase systems support retrieval only - all updates must be done

locally. Even with this restriction, the problem of dirty or unrepeatable reads must be

addressed. This means that read-only transactions which require a consistent view of the

database have to take into account that the database could be simultaneously updated by

local transactions.

4.3.1 The global transaction atomicity problem

If local sites want to preserve their execution autonomy, then they probably will not support

a prepare-to-commit command. In this case, a DBMS can unilaterally abort a subtransac­

tion at any time before its commit. This leads to global transactions that are not atomic

and incorrect global schedules as well.

Example 4.2 : Global transaction atomicity problem

Lets go back to our pharmacy example in Figure 1.1. Using the transaction model

introduced in Chapter 3 and extended here, let us refer to the Tonic pharmacy as

LDB1, the Medilots pharmacy as LDB2 and the Harbour pharmacy as LDB3 •

Assume the data items at each local database are as follows:

£1)81 = {d,e,f,g}

£1)82 = {s,t,u,v}

£1)83 = {w,x,y,z}

Consider the following global transaction: GT1:

Suppose that GT1 has completed its read/write actions at both sites and the GTM

sends commit requests to both sites. LDB2 receives the commit and commits

its subtransaction. However, LDB1 decides to abort its subtransaction before the

commit arrives. Therefore, at LDB1 the local DBMS undoes GT1's actions. After

Transaction Management ----------------~-------110

this is accomplished, a local transaction Lat LDB1 :

is executed and committed at the site. At this point, the resulting global his­

tory is incorrect as it only reflects the LDB2 half of GT1 . To correct the situation,

the GTM may attempt to send the missing write w1(d). This is referred to as a

redo of the transaction. The local DBMS will interpret this as a new transaction

GT2 which is not related to GT1 . Thus what has transpired is:

However, GT2's write operation is the same as w1(d) as far as the MOMS is con­

cerned and what has actually transpired is the following non-serializable history:

0

If the DBMS provided a prepare-to-commit operation and participated in a global com­

mit protocol, then the problems shown in the example above could be avoided. In the above

example, the GTM would not issue the commit transactions for GT1 until both sites had

acknowledged the prepare-to-commit. Because LDB1 is prepared for GTi, it cannot abort

it and the situation described above does not arise.

There is an ongoing debate about whether sites in a MDMS should be required to

provide prepare-to-commit operations and give up their execution autonomy. While some

argue that 2PC is standard and should be provided, others argue that there will always

be autonomous sites that want to preserve autonomy and do not want to provide this

command. They do not want their sites to hold locks for remote sites which could then be

held for an indefinite period of time. The proponents of 2PC argue that because networks

are very fast, the period of time that a lock will be held is minimal and anyway, if there

is a protracted wait, an operator can break it, but the other camp now reiterate that in

this case we are back to a state where unilateral aborts can take place anyway so are back

to square one [Bre95]. The problem of transaction atomicity forms an integral part of the

reliability of a multidatabase system. It is discussed in Chapter 5.

4.3.2 The global serialization problem

Ensuring serializability in a MDMS environment is a difficult task [Ras93b]. This difficulty

is exacerbated by the design autonomy of the local database systems and the fact that the

local systems are pre-existing, which implies that they may follow different concurrency

control algorithms. The various local DBMSs integrated by the MDMS may use different

Transaction Management ------------------------111

concurrency protocols eg. two-phase-locking (2P L), timestamp ordering (TO), serialization

graph testing (SGT) etc. Hence existing solutions for homogenous distributed database

systems cannot be used in an MDMS environment. Furthermore, since the local transactions

execute outside the control of the GTM, the resulting execution may not be serializable.

Example 4.3 : The global serialization problem

Consider once again the multidatabase in Example 4.2. Say we have the following

two non-conflicting transactions:

In addition, consider the following local transactions; L3 executing at LDB1 and

L4 executing at LDB2.

Now consider a history in which transaction GT1 first executes at sites LDB1 and

LD B2 followed by the execution of transaction GT2 at both LD B 1 and LD B 2. It

is possible for the local transactions L3 and L4 to execute in such a manner that

GT1 is serialized before GT2 at LDB1, while GT2 is serialized before GT1 at LDB2.

For example:

LH1 : ri(d); c1; w3(d); w3(e); c3; r2(e); c2;

LH2 : W4(s); ri(s); c1; r2(t); c2; w4(t); c4;

As far as the GTM is concerned, global transactions GT1 and GT2 are executed

serially. At LDB1, the resulting execution is serial: GT1, L3 and GT2 . At LDB2,

the resulting execution is also serial: GT2 1 L4 and GT1 .

Transaction Management ------------------------112

Yet, if we look at the global execution, it is non-serializable because, to be serializ-

able, GT1 should always precede GT2 or vice versa.

This problem arises because the local transactions create indirect conflicts between.global

transactions. Since the GTM is not aware of local transactions, it is also not aware of these

conflicts. This is the cause of major difficulties in a multidatabase environment [Bre95].

In this example, since the GTM is unaware of the indirect conflicts between global

transactions at the local database systems due to the execution of local transactions, the

resulting global history is non-serializable. The local DBMS will also not communicate

any information relevant for concurrency control to the GTM because of nodal autonomy.

Because of this, the GTM has no idea of the serialization order of transactions at local

database systems. Thus, to ensure serializability, the GTM would need to assume an

indirect conflict between global transactions even though in reality they do not conflict at

the local database systems. Hence, adopting serializability as the correctness criteria in

MDMS environments could result in a low degree of concurrency and poor performance

[Ras93b].

Because of this, most prototype systems built only allow retrieval of data by global

transactions and do not have any concurrency control schemes to co-ordinate the execution

of global transactions. This makes it possible for global queries to retrieve inconsistent data

in these systems. The research into this problem is discussed in section 4.4.

4.3.3 The global deadlock problem

In MDMS systems there is a possibility of global deadlock that cannot be detected by the

GTM. We can illustrate the problem in the following example:

Example 4.4 : The global deadlock problem

Consider our example multidatabase in Example 4.2 again. Local DBMSs at both

sites use the two-phase locking protocols to guarantee local serializability. Let GT1

and GT2 be two global transactions defined as follows:

GT1 r1(d); r1(t);

GT2 r2(s); r2(e);

In addition, let L3 and L4 be two local transactions at sites LDB1 and LDB2

respectively, defined as follows:

L3 w3(e); w3(d);

L4 w4(t); w4(s);

Assume that GT1 has executed r1(d) and GT2 has executed r2(s). After that,

Transaction Management -------------------------113

at LDB1 local transaction L 3 executes w3(e), submits w3 (d) and is forced to wait

for a lock on d that is kept by GT1• At LDB2 local transaction L4 executes w4(t),

submits w4(s) and is forced to wait for a lock on s that is kept by GT2. Finally,

transactions GT1 and GT2 submit their last operations and a global deadlock ensues·.

0

Due to design autonomy, local DBMSs may not wish to exchange control information

and will therefore be unaware of the global deadlock. The MDMS is unaware of the local

transactions and is therefore also unaware of the deadlock. The research into this problem

is discussed in section 4.5.

4.4 Global Concurrency Control

Concurrency control issues in multidatabase systems were first discussed by Gligor and

Popescu-Zeletin [Gli86]. They outlined the basic requirements for a transaction manage­

ment scheme to ensure database consistency in an MDMS environment, and pointed out

difficulties related to transaction management in such systems. Since then, a number of

schemes addressing the concurrency control problems in multidatabases have been pro­

posed. Most of the existing schemes preserve database consistency by ensuring that global

schedules are serializable. Non-serializable schemes have also been presented where the

serializability requirement is relaxed. Other schemes enhance the degree of concurrency

while still ensuring serializability of schedules by, for example, exploiting the semantics of

operations or relaxing the atomicity requirement by resorting to compensation. [Ras93b]

and [Meh93] have studied and evaluated various concurrency control schemes which have

been proposed for handling concurrent transactions in multidatabases. An overview of their

comments is given here as well as an evaluation of other schemes not presented by them.

4.4.1 Serializable executions

The great advantage of serializability is the simplicity thereof. The application programmer

does not have to worry about the correctness of concurrent executions. The programmer

only has to worry about the consistency of the database being maintained. Protocols

for ensuring serializability are simple, easily implementable and can be followed by the

transaction manager to ensure that schedules are serializable. [Ras93b]

However, adopting serializability as a correctness criteria could adversely affect the

performance of the system. In some systems, a weaker notion of correctness is desirable.

Proposed serializability schemes outlined in this section are either pessimistic or opti­

mistic.

• In pessimistic schemes, the GTM does not submit a global transaction operation to

the local DBMSs if its execution could potentially lead to a non-serializable schedule.

Transaction Management -------------------------114

As a result, pessimistic schemes result in very few aborts, but permit a low degree of

concurrency.

• The optimistic schemes, on the other hand, the GTM permits transaction ope~ations

to execute freely, but commits a global transaction only if its commitment cannot

result in non-serializable schedules. These schemes could result in low performance

because of frequent global transaction aborts.

Schemes that ensure serializability can be further classified according to whether or not

they preserve the local autonomy of sites. (Ras93b]

4.4.1.1 Schemes that preserve local autonomy

The schemes discussed in this section do not violate design, communication and execu­

tion autonomies of the local database systems. Local transactions are assumed to execute

outside the control of the GTM and every global transaction is assumed to have only one

subtransaction executing at any local site.

Synopsis 4.1 ==> Gligor et al's altruistic locking scheme

The first concurrency control schemes were presented by (Gli86] and (Alo87] and were

pessimistic. In (Gli86], Gligor and Popescu-Zeletin propose a scheme in which the GTM

determines serialization orders globally and then enforces them locally at the local DBMSs.

The scheme in (Alo87] uses an altruistic locking protocol [Bre92d] for controlling the sub­

mission and execution order of global transactions. The altruistic locking protocol is based

upon locking the site at which a global subtransaction executes. In both schemes there

may still be indirect conflicts between global transactions due to the execution of local

transactions at local database systems and this could violate global serializability. [Ras93b]

Synopsis 4.2 ==> Breitbart et al's site graph scheme

[Bre88] presents a pessimistic scheme for ensuring serializability in a MDMS environment

based on the notion of a site graph. This is one of the first schemes developed that correctly

ensures global serializability. A site graph is an undirected bi-partite graph consisting of

nodes corresponding to local sites (site nodes) and global transactions (transaction nodes).

When a transaction begins execution, edges are inserted into the site graph between the

node corresponding to the transaction and the sites at which the transaction executes. The

transaction will be aborted if insertion of the edges causes a cycle in the site graph. This

scheme does ensure that consistency of the database is maintained, but only provides a low

degree of concurrency because two or more global transactions cannot execute if they have

more than one site in common. Further, based only on information on the order in which

global subtransactions execute at the local DBMSs, it may not be possible to delete edges

from the site-graph without potentially risking loss of serializability.

Transaction Management ------------------------115

Breitbart et al [Bre90a] later worked on a scheme which required global transactions to

obtain locks on local data items at the GTM and also permitted multiple transactions to

be in the prepare to commit state at any site.

Synopsis 4.3 :::::;:::> Elmagarmid et al's serialization event scheme

Elmagarmid and Du [Elm90a] state that in a number of concurrency control strategies, the

serialization order of a transaction depends on the execution of an event, referred to as the

serialization event. For example, for the timestamp ordering concurrency control protocol,

the serialization event for a transaction is the operation that results in the transaction being

assigned a timestamp. Similarly, in the 2PL concurrency control protocol, the serialization

event for a transaction is the operation that results in the transaction obtaining its last lock.

By ensuring that the serialization events of global transaction are executed in the same order

at all the DBMSs, the GTM can ensure that global schedules are serializable. The notion

of serialization events is also used in [Meh92a] where they reduce the serializability problem

in multidatabases is reduced to the problem in a centralized database. Serialization events

can also be used to alleviate some of the problems associated with the site-graph scheme

which was proposed in [Bre88].

Synopsis 4.4 :::::;:::> Wolski's 2PC agent method

In (Wol90], the authors propose a solution called the 2PC agent method, which assumes

that the participating local DBMSs use 2PL and produce only strict schedules. This scheme

does not ensure global serializability since local strictness is not sufficient in order to ensure

serializability of schedules in a multidatabase environment. The 2PC agent method is

extended to an environment where local DBMSs produce only rigorous schedules in [Vei92].

The proposed method is totally decentralized, and requires local transactions not to update

data accessed by global transactions in the prepared to commit state. Unlike the scheme

in [Bre90a], which requires global transactions to obtain locks at the GTM and permits

multiple transactions to be in the prepared state at a site, the scheme in [Vei92] permits

only one global transaction per site to be in a prepared state at any given time, and requires

commit operations belonging to global transactions to be submitted to local DBMSs in a

globally unique total order. [Ras93b]

This scheme also requires local transactions not to update certain data items.

Transaction Management ------------------------116

Synopsis 4.5 ==> Georgakopoulos's optimistic ticket method

Georgakopoulos [Geo90] defines the concept of rigorous schedules and schedulers. He then

proves that by using such schedules one can ensure that serialization and execution ·orders

are analogous.

If one has underlying local database systems which do not produce rigorous schedules,

they propose another scheme to avoid inconsistent retrievals. He introduces the optimistic

ticket method (OTM). OTM is a multidatabase transaction management mechanism that

guarantees global serializability by permitting execution of multidatabase transactions only

when their relative serialization order is the same in all participating LDBs. OTM requires

the LDBs to guarantee only local serializability.

To assure correctness if the schedulers do produce rigorous schedules he introduces the

implicit ticket method (ITM) which is a refinement of OTM that eliminates ticket conflicts,

but works only when participating LDBs use rigorous transaction scheduling mechanisms.

Contrary to Wolski's 2PC agent method, this method does not assume that the local sched­

ulers use 2PC locking and also does not require local sites to provide a prepare-to-commit

state [Geo90]. The Stargate prototype [Key93] uses this method.

Synopsis 4.6 ==> Georgakopoulos et al's forced conflict scheme

Some concurrency control protocols do not have easily identifiable serialization events (e.g.

SGT). Serialization events can be introduced for these protocols by some external means

by forcing conflicts between transactions [Geo91b].

In [Geo91b], Georgakopoulos, Rusinkiewicz and Sheth present an optimistic MDMS

transaction management mechanism that permits the commitment of global transactions

only if their serialization order is the same at all participating local DBMSs. The basic idea

in the scheme is to create direct conflicts between global transactions at each local DBMS

that allows the GTM to determine the relative serialization order of their subtransaction at

each site. Every global subtransaction at a site is forced to read a data item, eg ticket~ and

then increment it by one. The value of ticket is used to determine the relative serialization

order of the subtransaction at the site. The scheme requires the local DBMS to guarantee

only local serializability. [Ras93b]

Synopsis 4. 7 ==> Batra et al's decentralized GTM scheme

The idea of forcing conflicts is also used in [Bat92] to develop a pessimistic, fully decentral­

ized, deadlock-free global concurrency control method. Each global transaction is assigned

a system-wide unique timestamp locally at the sites at which it is submitted. The GTM

at every site then ensures that global transactions are serialized at a particular site in the

order of their timestamps by requiring transactions to write on ticket, in timestamp order,

the value of their timestamps. A drawback with this scheme is that if the sites are far apart,

Transaction Management ------------------------117

then there could be a large number of aborts (timestamp values must be kept approximately

synchronized between the various sites for better performance). [Ras93b]

Synopsis 4.8 =?- Breitbart et al's rigorous schedule scheme

In [Bre91a], the authors introduce the notion of rigorous schedules which are schedules that,

in addition to being strict, have the property that no transaction writes a data item until

the transaction that previously read it either commits or aborts. A local DBMS produces

rigorous schedules if it delays the execution of an operation oi (belonging to transaction

Ti) in case it has previously scheduled an operation Oj (belonging to transaction Tj) that

conflicts with Oi, until the commitment of transaction Tj. A number of concurrency control

algorithms currently produce rigorous schedules (eg strict 2PL). If all the local schedules

are rigorous and the commit operation of a global transaction is submitted only after the

transaction has completed its execution at all DBMSs, then the serializability of global

schedules is ensured (in the absence of failures).

An additional observation made in [Bre91a] is that if in each of the participating DBMSs

the serialization order of transactions is the same as their commitment order, then the

GTM can ensure global serializability by controlling the order of global transaction com­

mits. Based on this observation, they propose an additional class of schedules, namely

the strongly recoverable3 schedules, in which the serialization event for a transaction is its

commit operation. An algorithm that ensures global serializability in failure prone MDMS

environments in which each local DBMS generates only strongly recoverable schedules is

developed in [Bre92a].

Synopsis 4.9 =?- Raz's commitment ordering

The commitment ordering (CO) property introduced by [Raz92] is the same as strong re­

coverability introduced by [Sop91b] (see synopses 4.17, 4.8) and defined in definition 3.19.

In [Raz92], the author proposes various blocking as well as non-blocking implementations

of CO for local database systems. Raz also examines the relationship between properties

of schedules generated by local DBMSs and properties of global schedules. For example, if

every local DBMS generates strict schedules, then global schedules are also strict. This does

not hold for serializability [Ras93b]. The author shows that CO of local schedules is both a

necessary and sufficient condition for guaranteeing global serializability in an environment

consisting of autonomous local database systems. [Ras93b]

3 See definition 3.19

Transaction Management ------------------------118

Synopsis 4.10 ::=:::} Breitbart et al's partitioning scheme

All of the above-mentioned schemes (with the exception of [Bre92a]) assume that a local

DBMS cannot unilaterally abort a transaction at any point during its execution. In [Bre90a,

Bre92b, Meh92c], transaction management schemes that preserve the execution autonomy

of local DBMSs as well as ensure atomicity and serializability of transactions in a failure

prone MDMS environment are presented. The GTM maintains global locks for data items

accessed by global transactions and imposes restrictions on data items accessed by local

and global transactions.

They also propose a scheme for detecting deadlocks in an MDMS environment. This

scheme requires that local DBMSs use the strict 2PL concurrency control protocol. To deal

with system failures and transaction aborts, the authors introduce the redo approach to

recovery. In their scheme, a 2PC protocol is used in which the MDMS software and the

servers, rather than the local DBMSs, participate in the protocol in order to commit global

transactions.

Since the local DBMSs have complete control over transactions at their site, they may

abort a subtransaction of a global transaction even though it is considered committed by the

MDMS software. The MDMS maintains logs in order to facilitate the redo-ing of aborted

global subtransactions. Since ~he MDMS software has no control over the execution of local

transactions, redoing the writes of aborted subtransactions may result in a loss of database

consistency. This is dealt with by partitioning the set of data items at a local DBMS into:

• globally updateable - those data items that can be updated only by global transac­

tions, and

• locally updateable - those data items that can only be modified by local transactions.

Further, a global transaction cannot read any locally updateable data item if it modifies

the values of any global data item.

This scheme was extended in [Meh92c] to cases where the local DBMSs perhaps do

not use the strict 2PL protocol. [Meh92c] also introduced the concept of semi-rigorous

schedules4 • The scheme proposed in [Bre92b] also employs a structure similar to the site­

gl,'aph, called the commit graph, in order to coordinate the commitment of global trans­

actions at the local database sites. The authors also address the issue of global deadlock

detection [Meh93].

A major drawback of these schemes is that they require local transactions not to update

certain data items [Ras93b, Meh93].

4 See definition 3.20

Transaction Management ------------------------119

Synopsis 4.11 ~Kang & Keefe's distributed strict timestamp ordering scheme

Kang & Keefe [Kan93] propose a distributed strict timestamp ordering scheme (DSTO)

which is globally serializable. Kang & Keefe also define the notion of one-copy serializability

as a correctness criteria in the place of conflict serializability.

A global history is one-copy serial if for all i,j and x, if Ti reads x from Tj in

G H, then i = j or Tj is the last transaction preceding Ti that writes into any

version of x in ·an.
Two global histories are equivalent over a set of transactions if they have the

same operations.

A global history is one-copy serializable if it is equivalent to a one-copy serial

history.

In DSTO, each global transaction is assigned a unique global timestamp when it starts.

Each subtransaction carries the parent's timestamp. The GTM at each site executes strict

timestamp ordering. Strict TO blocks transactions attempting to read or write an object

until the transaction that previously write it has either committed or aborted. The GTM

ensures that conflicting operations are executed at the local site in global timestamp order

by aborting transactions whose operations arrive too late.

All global subtransactions are required to take-a-ticket (ticket being an object not up­

dateable by local transactions). We only assume that the local data manager at each site

outputs serializable and cascadeless schedules. Kang & Keefe also require the objects to be

partitioned into locally and globally updateable sets.

Kang & Keefe prove that the DSTO scheme produces globally serializable histories in

the face of failures and also prove that the scheme is deadlock free [Kan93].

Synopsis 4.12 ~ Mehrotra et al's serialization function scheme

[Meh92a] reduces the problem of ensuring global serializability in a multidatabase envi­

ronment to that of ensuring it in a centralized database system. Concurrency control in

centralized database systems has been well studied and this therefore makes the concurrency

control problem in multidatabases more manageable.

[Meh92a] introduces the notion of serialization functions in order to assist in serializing

transactions in a multidatabase. [Meh92a) has presented a number of conservative concur­

rency control schemes to be used in conjunction with the serialization functions in order to

ensure global serializability. These schemes still need to be made fault-tolerant.

Transaction Management ------------------------120

Synopsis 4.13 ==> Yun et al's PTM scheme

Yun & Hwang [Yun93] propose a new concurrency control algorithm called the pessimistic

timestamp method (PTM). PTM approaches the concurrency control problem the following

way: the global scheduler does not schedule any operation of the global transaction which

has the possibility of violation of global serializability.

PTM schedules the global transactions so that the serialization order of global transac­

tions is the same as their execution order at all participating LDBs. PTM also disallows the

abort of a global transaction that is being executed due to the violation of global serializ­

ability or the occurrence of global deadlock except for transaction and site failures. Finally,

PTM assigns a timestamp to a local transaction, or a global subtransaction, when it is

scheduled (or the subtransaction arrives at its prepare-to-commit state). The timestamps

are used to resolve the discrepancy between the execution order and the serialization order

of global transactions.

PTM preserves local autonomy, achieves global serializability, and achieves a high degree

of concurrency. There is also no deadlock problem when using this algorithm.

A disadvantage of this approach is that there will be a high overhead for cycle detection

and the storage space needed to keep all details of timestamps would also constitute a high

overhead.

4.4.1.2 Violation of local autonomy

We can now consider the algorithms which violate local autonomy in order to ensure seri­

alizability of global schedules.

Synopsis 4.14 ==> Zhang et al's hybrid approach

Zhang and Orlowska [Zha93] have proposed a hybrid concurrency control approach which

is a combination of an optimistic concurrency control mechanism and an optimistic ticket

method. Their algorithm assumes that local DBMSs are able to distinguish between local

transactions and subtransactions of global transactions, and that local DBMSs will provide

ready-to-commit information to the GTM. They also assume that local database systems

produce strict schedules and resolve local deadlocks. This scheme sacrifices local autonomy

in order to improve multidatabase performance.

Synopsis 4.15 ==> Pu's DBMS modification approach

A scheme which violates local autonomy is presented in [Pu88]. The authors assume that

each local DBMS can be modified to return the serialization order of each global transaction

executed at the local site to the GTM. The GTM then uses the serialization orders from

all the local sites to validate the execution of a global transaction. The approach provides

a high level of concurrency [Ras93b].

Transaction Management ------------------------121

Synopsis 4.16 ==> Perrizo et al's pessimistic protocol

In [Per91], global serializability is ensured by routing local transactions through a local

server module prior to being submitted to the local DBMS. This is achieved by giving the

server the same name, feel and look as the DBMS. They implement a pessimistic concurrency

control protocol in which the GTM determines what the ordering of the global transactions

will be. The local server uses a scheme similar to the SGT concurrency control scheme to

.ensure that global transactions are serialized. Of course, the local DBMSs lose all control

over their databases and this scheme also results in poor performance due to the duplication

of the locking mechanisms in all the local database systems (i.e. at the local server as well

as in the local DBMS) [Ras93b].

Synopsis 4.17 ==> Soparkar et al's violation of autonomy scheme

In [Sop91a], the authors present a pessimistic scheme that requires local database systems

to give up control of their databases. This scheme requires local transactions to execute

under the control of the GTM. The local database systems can follow any concurrency

control protocol as long as every transaction performs a read before every write and avoids

cascading aborts (ACA). The scheme reduces overhead by minimizing the GTM control

over execution of transactions for the purpose of ensuring serializability. Serializability is

ensured by forcing conflicts between global subtransactions at the local database system.

The authors exploit the ACA property of local schedules, the fact that writes are preceded

by reads, and the two-phase-commit protocol in order to ensure that global transactions

are serialized at local sites. This scheme does not ensure serializability in the presence of

failures. [Ras93b]

In [Sop91b] the authors replace the ACA requirement on local databases by strong recov­

erability and adopt a scheme where the global atomic protocol is used to coordinate commit

operations belonging to global subtransactions so that global serializability is assured. If a

committed global transaction is aborted by some local DBMS, the set of active transactions

that potentially conflict with Ti at the local DBMS will be aborted and Ti's writes are

re-submitted to the local DBMS.

4.4.2 Relaxing serializability

Abandoning serializability as a correctness criteria could complicate concurrency control

from the point of view of the programmer as well as the GTM. Serializability has been shown

to be a sufficient but not necessary requirement for ensuring that concurrent execution of

transactions preserve database consistency [Ras93b].

Most of the schemes that use serializability cause a low degree of concurrency and usually

perform poorly. Some researchers have proposed that the serializability requirement be

relaxed and that alternative correctness criteria be investigated for multidatabases.

Transaction Management ------------------------122

In this section, various schemes for ensuring correctness without enforcing serializability

are discussed.

4.4.2.1 Schemes that exploit knowledge of integrity constraints

Synopsis 4.18 ==> Du and Elmagarmid's quasi-serializability

In [Du89], the authors introduce the notion of quasi serializability (QSR).

• A global schedule S is quasi serial iff local schedules are serializable and there is a

total order on global transactions such that, for any two global transactions Ti and

T; in S, if Ti precedes T; in the total order, then all of Ti's operations precede all of

T; 's operations at each and every local site.

• A global schedule is QSR if it is conflict equivalent to a quasi serial schedule.

The authors claim that if QSR schedules are to preserve database consistency, and QSR

is to be used as a correctness criteria in an MDMS environment, then the following must

hold:

1. There must be no integrity constraints between data items at different sites except

those arising from replication.

2. Global transactions must not have value dependencies - that is, the execution of a

global transaction at a site must be independent of its execution at other sites.

3. Local transactions must not be permitted to write replicated data.

A pessimistic deadlock-free algorithm that does not violate the local autonomy of sites

and ensures that schedules in a MDMS are QSR is presented in [Vei92]. A data structure

similar to a site graph - called an access graph - is maintained and execution of a global

transaction is delayed if insertion of its edges causes a cycle. [Ras93b]

Synopsis 4.19 ==> Rastogi's 2LSR scheme

Rastogi [Ras93b] proposes two approaches for relaxing the serializability requirement.

These approaches highlight the trade-off between the extent to which users are shielded

from the formidable task of proving the correctness of non-serializable executions, and the

performance improvement obtained as a result of exploiting the semantics of operations.

[Ras93b] proposes a new correctness criterion for MDMS environments - two-level serial­

izability (2LSR). A schedule is 2LSR if

• each of the individual DBMSs generates serializable schedules, and

• the restriction of the schedule to only global transactions is serializable.

Transaction Management ------------------------123

Any protocols for ensuring serializability in centralized DBMSs can be adapted to ensure

2LSR in an MDMS environment. Rastogi further proves that 2LSR schedules preserve

database consistency in certain MDMS models based on partitioning of data items at each

site, and restricting the read and write operations of the various data items. The problem

with this scheme is that assumes schedules to only consist of read and write operations. On

the other hand, it does free users from the task of proving correctness of non-serializable

executions.

Synopsis 4.20 :=::;. Korth et al's predicate-wise serializability

Korth, Kim and Bancilhon [Kor88] propose the notion of predicate-wise serializability

(PWSR). If database consistency is expressed as a conjunction of predicates, then the

restriction of a PWSR schedule to the set of data items in every conjunct is serializable. In

[Ras93b], it is shown that PWSR schedules preserve database consistency if transactions

and integrity constraints are of a restricted nature.

Synopsis 4.21 :=::;. Mehrotra et al's RS-correctness scheme

Mehrotra [Meh92d] proposes a new model of correctness called RS-correct schedules. This

scheme exploits the integrity constraints of the system to produce non-serializable sched­

ules. They identify two types of constraints, implicit and explicit. Explicit constraints are

easily defined - they usually would be something like "the balance of an account must

always be positive", but implicit constraints are difficult to define by just expressing them

via the data items themselves. An implicit constraint might be something like: "a transac­

tion must always see the correct balance when accessing customer accounts". To deal with

this, Mehrotra defines RS-correctness by firstly defining two types of global transactions:

RS-transactions which need to see database states consistent with both implicit and explicit

constraints, and non RS-transactions which are required to see database states only consis­

tent with respect to explicit constraints. Now a schedule can be defined to be RS-correct

if:

• It preserves the explicit integrity constraints of the database,

• Transactions in S see database states consistent with respect to explicit integrity

constraints, and

• No cycle in the serialization graph of S contains an RS-transaction (that is, no trans­

action in Sis serialized both before and after an RS-transaction).

These schedules preserve integrity constraints of the database and also ensure that

transactions see the correct database states. Their protocol combines the 2PL protocol

and the scheme of forcing local conflicts between transactions as presented by [Geo91b].

In [Meh92d), the authors call this new protocol Forced Conflict 2PL (FC2PL). They then

Transaction Management ------------------------124

prove that if the FC2PL protocol is used, every global schedule is serializable. It does not

infringe on the local autonomy of the various sites. The only problem with this scheme

is that it is, not very fault tolerant because the locking protocol could cause a deadlock

situation in the case of a site failure.

Synopsis 4.22 =:::} Barker's M-Serializahility

Barker [Bar90] proposes a new correctness criterion called M-serializability which is an

extension of serializability theory. M-serializable histories form a superset of serializable

histories. His theory captures the characteristics of both local and global transactions.

Further, multidatabase serialization graphs are developed to make it easy to determine

when a multidatabase history is M-serializable.

Barker's method does not violate local autonomy. The problems with this approach are

that the two-phase commit in his model does not permit value-dependencies that span local

database system boundaries. This means that values at multiple database systems cannot

be checked. Secondly, this approach requires that all DBMSs provide a strict level of service

[Bar90].

Synopsis 4.23 =:::} Jin et al's FT-Serializahility scheme

Jin et al [Jin93] propose the notion that the serialization order of flexible transactions (see

'Rusinkiewicz's flexible transactions' in section 4.2.9.2) should be the same only at sites

where they conflict. This scheme is applicable to the particular environment of service

provisioning (the activity of setting up a telecommunication service based on a customer's

requests). A flexible transaction (FT) is specified by providing the following: the precon­

dition of the global transaction, a set of subtransactions, externally visible states of each

subtransaction, possible transitions among these externally visible states, pre- and postcon­

ditions for the possible transitions of each subtransaction, the postcondition of the global

transaction.

They define FT-serializability as follows:

A global history is FT-serializable if for any subtransactions GST{ and GSTJ

E FTx and GSTl and GSTj E FTy such that GST{ conflicts with GSTl and

GSTJ conflicts with GSTJ then GST{ --< GSTl => GST{ --< GSTl at all sites
where they conflict.

The authors rely on the concurrency control mechanisms of the local systems to ensure

that sU:btransaction submitted to local systems will be executed correctly with respect to

local concurrency control. Therefore, the lock held by a subtransaction can be released as

soon as the subtransaction completes its submission phase. This algorithm allows a higher

degree of concurrency than the altruistic locking algorithm introduced by [Alo87] although

it uses the same locking granularity.

Transaction Management _________________________ 125

The mechanism introduced here is less general than other proposed solutions but allows

a higher performance in the specific real world environment in which it is applied.

Discussion

The above approaches relax the serializability requirement and can be shown to preserve

the integrity constraints of the database, but they do not address the issue of whether or

not the preservation of integrity constraints, by itself, is a sufficient consistency guarantee

for transactions. The answer to this depends on the particular application. Examples of

where this is not true can be seen in [Meh93].

4.4.2.2 Schemes that exploit transaction semantics

This section discusses schemes that exploit the semantics of transactions to relax the serial­

izability requirement. Schemes that exploit transaction semantics consider each transaction

to consist of a number of subtransactions with each of them having a type associated with

it. The application administrator specifies the various subtransaction types and also the

various interleavings of the subtransactions that will not result in a loss of database consis­

tency. A transaction manager will utilize this specification to permit only acceptable, and

prevent unacceptable interleavings of the transactions.

Each of the schemes that exploit transaction semantics are based on specifying the

acceptable/unacceptable interleavings to the transaction manager. They differ only in the

mechanism they employ.

Synopsis 4.24 ===? Chen et al's distributed GTM scheme

Many of the schemes above guarantee consistency of the database only if specified conditions

are satisfied [Alo87, Bre88, Geo91b, Bat92, Meh92a]. It would therefore be helpful if the

MDMS administrators could utilize the semantics of global transactions and the concurrency

control strategies of the underlying local DBMSs to customize a global concurrency control

approach. Just such a scheme is presented in [Che93]. The architecture for Chen et al's

transaction processing model was discussed in synopsis 4.2.5.

This algorithm combines two-phase locking and the linear ordering of resources. By

doing this, the algorithm provides a deadlock-free, totally distributed, and correct synchro­

nization of concurrent scheduling order requests from global transactions. The typical global

transaction will be performed in two phases. In the first phase, the relative scheduling order

of a global transaction with respect to other global transactions is determined. This means

that the algorithm applies a type of two-phase-locking for each transaction where all MDMS

interfaces must be locked at every LDB at which a subtransaction of that transaction must

be run. After this locking has been done, the scheduling order is determined after which

the interfaces are unlocked and the transaction (ie all its subtransactions) is executed in

the second phase.

Transaction Management ________________________ 126

The advantages of this algorithm are that the concurrency control decisions concerning

a global transactions are made independently either by the GTM or by the individual

MDMS interfaces in the LDBs. This algorithm is therefore fully decentralized and the

GTM is distributed among all the machines where global transactions can be issued. -[Che93]

contends that their approach is more flexible and reliable than the algorithms presented in

[Meh92a, Alo87, Vid91, Bre88, Du89].

The disadvantages of this approach are that performance is lowered by additional net­

work delays caused by the additional network traffic. This scheme also reduces concurrency

compared to other algorithms. The network delays can be alleviated by high speed networks

and the reduced concurrency is offset by the fact that no global transactions will be aborted

due to deadlocks or nonserializable executions [Buk93].

Synopsis 4.25 ==> Garcia-Molina & Salem's saga scheme

Another approach is the saga which is specified in [Gar87]. In this transaction model, a

transaction is broken into a sequence of subtransactions each of which is an independent

activity by itself. In the saga model all possible interleavings are permitted. If every global

transaction is a saga, none of whose subtransactions execute at more than one site, then

since local schedules are serializable, no global concurrency scheme is required.

Synopsis 4.26 ==> Lynch's and Garcia-Molina's compatibility set schemes

The saga approach may not be very effective in database environments where certain in­

terleavings between steps are undesirable. In order to remedy the problem, the schemes in

[Lyn83, Gar83] associate types with transactions, and mechanisms that use the type infor­

mation for specifying acceptable interleavings between steps are developed. The authors

also develop protocols for ensuring that only the specified interleavings are permitted.

In [Gar83], the set of permissible inter leavings of subtransactions are specified by group­

ing transactions into compatibility sets. Steps of transactions whose types belong to a single

compatibility set are permitted to interleave freely, while steps of transactions belonging

to distinct compatibility sets are not permitted to interleave at all. A locking protocol

is used to prevent undesirable interleavings. The concept of compatibility is discussed by

[Lyn83] and several levels of compatibility among transactions are defined. These levels are

structured hierarchically so that interleavings at higher levels include those at lower levels.

Further, [Lyn83] introduces the concept of breakpoints within transactions which repre­

sent points at which other transactions can interleave. Similar ideas have been proposed

in [Vei89]. Note that it is the responsibility of the user to specify interleavings that will

maintain the database integrity constraints [Ras93bJ.

Transaction Management ________________________ 127

Synopsis 4.27 ==> Rastogi's graph based approach

Rastogi [Ras93b) cites two approaches. One is the 2LSR approach (see Synopsis 4.19)

while the other exploits semantics of operations. In this approach, the set of und_esirable

interleavings are specified as regular expressions over the types of subtransactions in the

system. The expressions used here are more general than compatibility sets since using

regular expressions allows us to specify certain interleavings which cannot be specified using

compatibility sets. [Ras93b) also develops an algorithm that the MDMS can use to prevent

unacceptable interleavings that are specified as regular expressions. The algorithms are

graph-based and involve searching for cycles in the graph that satisfy certain properties.

This scheme also allows a higher degree of concurrency than schemes which ensure global

serializability.

4.4.2.3 Schemes that tolerate bounded inconsistencies

Schemes which are discussed in this section tolerate a certain degree of inconsistency as

long as the degree of inconsistency is bounded. In some systems it is not that important

to use exact values (e.g. statistical information gathering). The schemes mentioned in this

section will attempt to quantify the degree of the inconsistency.

Synopsis 4.28 ==> Pu & Leff's epsilon serializability scheme

Pu & Leff (Pu91a) develop one such approach. The authors propose a notion of epsilon­

serializability (ESR).

A schedule is ESR if the restriction of the schedule to only update transactions

is serializable, and the inconsistency associated with every transaction is less

that the amount specified for it.

A divergence control mechanism for ensuring schedules are ESR, based on the 2PL protocol,

is proposed in (Wu92). Transactions are classified into read-only or update transactions.

The projection of the schedule to operations belonging to update transactions is required to

be serializable and thus the consistency of the database is preserved. However, the schedule

itself may not be serializable and queries may retrieve inconsistent data. The degree of

inconsistency is measured by counting the number of conflicts it is involved in, which if not

present, would make the schedule serializable. With each query, we associate a maximum

number of conflicts that can be allowed. Non-serializable schedules are permitted if the

number of conflicts does not exceed this maximum amount (Meh93).

Synopsis 4.29 ==> Wong & Agrawal's seralizability with bounded inconsistency

In [Won92], a similar approach is developed in the context of an object based database

sysem in which the authors propose a notion of serializability with bounded inconsistency.

In their approach, each operation is associated a maximum level of inconsistency that can

Transaction Management -------------------------128

be permitted. A schedule is serializable with bounded inconsistency if the inconsistency

experienced by operations in the schedule (compared to if operations were executed serially)

is within the specified inconsistency allowed for the operation. A weakness with [Won92]

and [Pu91a] is that they seem to be applicable only in the narrow domain consisting of

applications involving numerical quantities [Meh93].

4.4.3 Relaxing atomicity

In order to preserve the autonomy of local sites, various commit protocols based upon

relaxing the atomicity requirement have been proposed.

Synopsis 4.30 ~ Gray's and Garcia-Molina's compensating transactions

Another option is to relax the atomicity properties of transactions. These schemes rely on

the notion of compensating transactions [Gra81]. Compensating transactions reverse the

effect of a committed transaction. A compensating transaction restores database consis­

tency by undoing the effects of a committed transaction and results in a weaker notion of

atomicity - semantic atomicity [Gar_83]. Compensating transactions are also used in [Gar87]

to amend partial executions of sagas [Meh93]. A comprehensive treatment of compensation

can be found in [Kor90].

Synopsis 4.31 ~ Levy et al's isolation of recoveries scheme

Ensuring atomicity of global transactions in a distributed environment implies loss of local

autonomy at local sites, long duration delays and blocking. In [Lev91a], the authors deal

with these problems by proposing an optimistic 2PC protocol in which locks are released as

soon as a site votes to commit a transaction. If, finally, the transaction is to be aborted,

then its effects are undone semantically by a compensating transaction. In [Lev91a, Lev91b],

correctness criteria are proposed that prevent unacceptable executions when atomicity is

given up for semantic atomicity. The authors note that if there are transactions that do not

satisfy the all-or-nothing atomicity property in the system, then other transactions may see

the partially committed effects of the transaction which may be unacceptable. To prevent

this, the authors introduce the correctness criteria of isolation of recoveries (IR). A schedule

is in IR if no transaction sees both the compensated-for effects, as well as the committed

effects of other transactions. Thus the IR execution prevents transactions from seeing

certain inconsistent states of a database. Further, protocols to ensure that the resulting

schedules are IR are developed under the assumption that each site follows a strict 2PL

protocol for concurrency control. [Meh93]

Transaction Management -------------------------129

4.4.4 Other approaches

Synopsis 4.32 ==:::} Korth's and Herlihy's exploitation of operation semantics

Another approach to enhancing concurrency is to retain the serializability requirement, but

to exploit the semantics of operations richer than primitive read and write operations when

defining conflicts. In (Kor83), the author generalized read and write locks to a set of lock

types that offer different degrees of exclusion based on the semantics of operations. In

(Her90), the author defines a conflict between two operations not on the basis of whether

they commute5 , but based on whether the exclusion of one invalidates the other. The paper

proposes new optimistic concurrency control techniques for objects in distributed systems,

proves their correctness and optimality properties, and characterizes the conditions under

which each is likely to be useful.

Synopsis 4.33 ==:::} Weihl's commuting operations

In (Wei88, Wei89), the auth.or proposes a pessimistic scheme that allows concurrent oper­

ations to update the same entity as long as the updates commute. The conflict relation

between operations is defined differently depending on the recovery method being adopted.

This scheme permits the results returned by operation executions, as well as their names

and arguments, to be used in determining the conflict relation. This allows a greater degree

of concurrency control while still maintaining serializability (Ras93b).

Synopsis 4.34 ==:::} Badrinath & Ramamrithan's recoverability

In (Bad92), the authors identify a property known as recoverability which is used to decrease

the delay involved in processing non-commuting operations while still avoiding cascading

aborts. An invoked operation that is recoverable with respect to an uncommitted operation

can commit even if the uncommitted operation aborts. Since performing recovery is compli­

cated here, in (Ras93a), the authors extend the notion of strictness to schedules containing

operations richer than just reads and writes. Also commutativity between operations and

operation inverses is utilized in order to develop schemes that ensure schedules are strict

(Ras93b).

Synopsis 4.35 ==:::} Shasha et al's partitioning of transactions

In (Sha92), an algorithm has been proposed that partitions global transactions into sub­

transactions which can be interleaved arbitrarily and the resulting schedule will always be

serializable. This approach differs from sagas because not all interleavings of sagas will

produce serializable schedules. This approach is applicable in environments where the set

of transactions that can run is known in advance (Ras93b].

5 do not conflict

Transaction Management ------------------------130

II Researcher Scheme Name I Synopsis II
Barker & Ozsu Basic MDB model 4.22 - Serializability graphs

Pu Superdatabases 4.15 - Violates local autonomy

Breitbart et al Replicated data model 4.2 - Site graph

4.8 - Rigorous schedules

4.10 - Partitioning

Server model 4.5 - Optimistic ticket method

Elmagarmid et al Stub approach 4.3 - Serialization events

Chen et al Distributed MDMS 4.24 - Two phase locking &

Linear ordering of resources

Kang & Keefe Decentralized GTMs 4.11 - Distributed strict

timestamp ordering

Garcia-Molina Sagas 4.25 - No scheme needed

& Salem

Yoo & Kim Client server Approach Not addressed

Table 4.1: Concurrency control - core group transaction management schemes

Discussion

In much of the work on recovery by compensation (Meh93, Gra81, Gar87, Lev91a, Lev91b,

Elm90b), it.is assumed that a compensating transaction can be associated with the original

transaction to semantically undo the effects of the transaction. The issue of conditions under

which compensating transactions exist and the related issue of designing compensating

transactions is not addressed. In contrast, in the work by (Kor90) the authors identify

sufficient conditions under which a compensating transaction is possible.

4.4.5 Summary

Table 4.1 gives a summary of the concurrency control mechanisms which are used by the

transaction management schemes in our core group.

4.5 Global Deadlock Detection

Very little research has been done into the global deadlock problem in multidatabases.

There are as yet few schemes that preserve local autonomy and global serializability while

still maintaining an acceptably high level of concurrency. Previous mechanisms for deadlock

resolution can be summarized as in Table 4.2 (Nam93, Tun92).

The mechanisms can be categorized according to three approaches.

• Firstly, the no-wait approach attempts to break the waiting conditions which could

Transaction Management -------------------------131

Approach Researcher Reference Mechanism Global Local Degree of

Serializa- site Concur-

bility Autonomy rency

No-wait Gligor et al [Gli86] Do almost No No High

nothing

Gligor et al [Gli86] Homogenous Yes No Low

LTM's

Deadlock Gligor et al [Gli86] Off-line Yes No Low

prevention updates

Kim et al [Kim92] Wait-die Yes Yes Low

Vidyasankar [Vid91] Rooted tree Yes Yes Low

access

Barker [Bar90] Total Yes No Low

ordering

Deadlock Sugihara [Sug87] Distributed Yes No High

detection cycle-detection

Breitbart et al [Bre90a] Potential Yes No Low

conflict

graph

Table 4.2: Global deadlock resolution mechanisms in MDMSs

cause deadlock occurrences, so that no more deadlock resolution is necessary. Two

mechanism exist within this approach:

- the do almost nothing mechanism in (Gli86] does nothing, but forces data to be

released immediately after the execution of each operation of global transactions,

and

- the off-line updates mechanism in (Gli86] allows only off line sequential updates.

• Secondly, the deadlock prevention approach essentially orders the way in which trans­

actions claim locks, so that cyclic waiting never occurs between global transactions.

Three mechanisms take this approach:

- the homogenous local transaction managers mechanism in (Gli86] generates only

the equivalent serializable execution schedules without the cyclic waiting in every

LDB,

- the wait-die mechanism in (Kim92] only allows an older transaction to wait for

a younger transaction when conflict occurs between them and not visa-versa,

- the deadlock-free concurrency control scheme in (Vid91] allows data access only

in a rooted tree fashion,

Transaction Management ________________________ 132

- Barker's [Bar90] scheme which orders global transactions in a total order.

• Thirdly, the deadlock detection approach checks for cycles in the wait-for graph of

transactions so that deadlocks can be detected explicitly.

- One mechanism takes this approach [Sug87], the distributed cycle-detection main­

tains a local serialization graph in each local database system so that distributed

cycle detection is possible.

- Breitbart [Bre90a] uses a potential conflict graph (PCG) which is constructed

using all the global transactions in the system. The GTM uses a timeout scheme.

If no response is obtained from a transaction within a certain time, then the PCG

is checked for cycles. If a cycle is found, the youngest transaction in the cycle is

aborted.

All eight methods outlined have significant drawbacks [Nam93]. The do-nothing mecha­

nism could cause unserializable execution histories if the data is released immediately after

each operation.

The homogenous local data manager and distributed cycle-detection mechanisms fail to

preserve local autonomy since in the former the local data manager has to be modified and

in the case of the latter the local deadlock resolution mechanisms will have to be altered so

that the global serialization graphs can be managed.

The off-line updates, deadlock-free concurrency control, and wait-die mechanisms the

degree of local concurrency is seriously hampered. In the case of off-line updates, the

data may only be updated off-line and serially; in the case of deadlock-free concurrency

control scheme the data is only accessed in rooted-tree fashion and in the case of wait­

die, unnecessary restarts could be caused due to non-real deadlocks. Breitbart's method

[Bre90a] does not allow global update of locally updateable data items, does not process

operations of the same transaction concurrently and the cycle detection algorithm wastes

a lot of time because it will be activated by all the blocked transactions in a cycle at the

same time. This scheme also runs the risk of declaring deadlock without any confirmation

and thus transactions could be unnecessarily aborted [Tun92].

Nam & Moon [Nam93] have come up with a method for performing global deadlock

detection without violating local autonomy or global serializability. Nam & Moon [Nam93]

propose that the global deadlock detector (GDD) itself must construct a local wait-for graph

at each local participating database site. It must then combine all these graphs and con­

struct a global wait for graph to see if any cycles exist. They prove that if the GDD is

implemented at each site on top of the local LDBS, local autonomy and global serialization

can be maintained while also allowing a high degree of concurrency.

The scheme in [Bat92] also maintains local autonomy and global serialization but could

cause an unacceptable number of aborts although it is fully decentralized and therefore more

fault tolerant than the scheme proposed by [Nam93) which requires active participation from

Transaction Management ------------------------133

the central site in order to succeed.

Tung [Tun92] proposes a scheme to control global deadlock in a multidatabase too. In

their scheme, a Transaction-Blocked-at-Site-Graph(TBSG) is defined. It is an undirected

graph where T is the set of currently blocked global transactions and S is the set of sites

currently being accessed by these transactions. An edge in the graph is defined between Ti

and Sj if transaction Ti is currently blocked and accesses Sj. Tung [Tun92] proves that if a

global deadlock exists, then there must be a cycle in the TBSG; provided there are no local

deadlocks at any local site. They also prove that global deadlock cannot exist if the TBSG is

acyclic. The scheme strives to reduce the possibility of false global deadlocks, and attempts

to minimize the recovery costs by effective choice of a victim transaction by the use of a

heuristic algorithm in the case of a deadlock. This will reduce the possibility of livelock too.

The recovery scheme fully preserves local autonomy. It utilizes the original local database

recovery procedures and the servers which are located at the local databases to provide a

simulated 2PC protocol to ensure the global consistency in the event of transaction failures,

site failures and MDMS failures.

After studying the previous research into deadlock control, we can come to the following

conclusions [Nam93]:

1. If a GTM is used by the MDMS, the local DBMSs can increase their performance

by preventing local deadlocks due to direct conflicts between uncommitted global

transactions. The GTM complicates global transaction management procedures:

• There are additional costs in maintaining the GTM in the MDMS.

• The multidatabase deadlock detection procedure is fairly complicated

• The recovery procedure also becomes more complicated.

2. Without knowledge of local DBMS schedules, deadlock can be prevented if all global

transactions are executed in serial order at the MDMS level. This decreases concur­

rency drastically.

3. Higher concurrency can be obtained by using an optimistic concurrency control method

and then aborting problematic transactions. This causes a high level of aborts.

4. Without a synchronization point to synchronize executions of global transactions, it

is very difficult to maintain global consistency.

5. It would be a great advantage if all local sites could agree on some or other predefined

protocol (e.g. 2PC) to commit global transactions.

The global deadlock characteristics of the concurrency control mechanisms used by the

transaction management schemes in our core group can be summarized in Table 4.3.

Transaction Management ------------------------134

Researcher Scheme Name Deadlock control

Barker & Ozsu Basic MDB model Prevents deadlock

Pu Superdatabases Not addressed

Breitbart et al Replication model Ensure that the global site graph

is acyclic and assume that local

schedules are deadlock free

Server model Uses a global wait-for graph

and checks for cycles

Elmagarmid et al Stub approach Deadlock free

Chen et al Distributed MDMS Deadlock free

Kang & Keefe Decentralized GTMs Deadlock free

Garcia-Molina & Salem Sagas Not addressed

Yoo & Kim Client server Approach Detect and resolve

Table 4.3: Global deadlock in the core group transaction management schemes

4.6 Summary

In this chapter we have introduced the special problems encountered in transaction man­

agement, global concurrency control and global deadlock management in multidatabase

systems.

Transaction management in general and the functions of the global transaction manager

were discussed. The formal transaction model was extended to include multidatabase con­

cepts. A brief synopsis was given of work by researchers in the core group and an outline

given of the transaction management scheme and global concurrency control characteristics

of each scheme. The general problems inherent in integrating various concurrency control

methods are also addressed. An overview was also given of the research done into global

concurrency control by various researchers in the field. The global deadlock detection aspect

of multidatabase transaction management was briefly discussed and the methods used by

the core group for global concurrency control and global deadlock detection are summarized.

The next chapter will discuss the reliability aspect of transaction management in mul­

tidatabases.

Chapter 5

Reliability

Barker & Ozsu [Bar91] define reliability as comprising two parts: transaction atomicity and

crash recovery.

• Transaction atomicity means that the effects of committed transactions are re­

flected on the database, but the effects of uncommitted or aborted transactions do

not appear.

Much of the research done into transaction management in multidatabases assume

that no failure occurs during transaction processing [Alo87, Bre91a, Bre88, Elm90a,

Geo91b]. In a failure free environment, serializability of global transactions can be

guaranteed easily by the strict two-phase locking protocol of the underlying local

database systems. If, however, this is not the case, then a failure might cause the

unilateral abort of a subtransaction at a local database system. This happens because

local database systems cannot be expected to participate in a global two-phase commit

protocol [Ber87, Ozs91]. Hence a simulated global commit protocol is needed in a

multidatabase environment [Yoo95].

A global commit and recovery protocol must deal with the following events due to the

autonomy of the local database systems [Yoo95]:

- Unilateral abort of subtransactions due to site or LDBMS failures: LDBMSs

cannot distinguish local transactions from global subtransactions so when it re­

covers after a site failure, its local recovery procedure rolls back all uncommitted

subtransactions as well as uncommitted local transactions. It makes no differ­

ence that the global transaction that the subtransaction belongs to may have

committed.

- Unilateral abort of subtransactions due to commit operation failures: A subtrans­

action may fail at the commit operation in an LDBMS, even after its database

access operations are successfully executed in the LDBMS. This can cause a

globally inconsistent state to occur.

135

Reliability ----------------------------136

- Exposition of the incomplete results: From an LDBMS viewpoint, the recovery

action of the MDMS is also a transaction that has no connection with the failed

subtransaction. Thus, exposition of incomplete results to other transactions may

occur after a unilateral abort of a subtransaction occurs, but before recovery

action is started and successfully done.

• Crash recovery requires that in the event of a system failure, the database is recov­

ered to a consistent state so that transactions terminate according to the transaction

atomicity condition [Bar90].

This chapter will deal with ensuring transaction atomicity in multidatabase systems. Chap­

ter 6 deals with the recovery question.

5.1 Transaction Atomicity

In a multidatabases system, various local database systems are integrated and each may

support a different commit protocol.

The problem of how to satisfy the requirements of 2PC in a multidatabase is often

not addressed in the literature. The basic requirement which must be satisfied in order to

develop a variation of 2PC for a multidatabase environment is the availability of a visible

prepare to commit state for all subtransactions of global transactions [Geo90]. A subtrans­

action enters its prepare to commit state when it completes the execution of its operations

and leaves this state when it is committed or aborted. Only when a subtransaction is com­

mitted are its updates installed in the database. The prepared state is visible if the MDMS

can decide whether the subtransaction should commit or abort [Geo90].

Some transaction managers have an open commit protocol; which means that local trans­

action managers can participate in the commit decision and that their commit protocols are

public. However, many commercial transaction managers have a closed commit protocol, in

that transaction managers cannot participate in a decision to commit. Closed transaction

managers are systems which have private protocols and therefore cannot cooperate with

other transaction managers.

Several popular transaction processing systems are closed - among them IBM's IMS

and Tandem's TMF. On the other hand, many commercial DBMSs provide primitives

to support a visible prepare to commit state for each subtransaction. For instance, the

Remote Data Access (RDA) [Ber90] standard and many DBMSs designed using the client

server architecture (e.g. SYBASE) provide primitives that allow applications to inquire

about the status of database operations they submit. The MDMS can then determine

whether database operations of subtransactions have been completed and then also when

each subtransaction enters its commit state.

If transaction managers of the local database systems are open and can participate

in some form of two-phase commit protocol, then it is possible to integrate the various

Reliability ----------------------------137

protocols into some sort of two-phase commit protocol.

On the other hand, it is virtually impossible to implement general ACID global trans­

actions involving closed transaction processing monitors. The key problem is atomicity:

the closed transaction manager can unilaterally abort any subtransaction, even though the

others decide to commit [Gra93].

In conclusion, we cannot assume that a two-phase commit protocol is available because

the component databases may not have that facility and anyway it would violate local

autonomy so that we must assume that the databases which constitute a MDB:

• do not communicate with each other,

• do not synchronize, and

• must maintain their own autonomy (as far as possible).

The only way we can ensure atomicity is to be able to guarantee that the operations

of each subtransaction can be submitted to the underlying DBMS in a separable manner

[Sop91b]. We now have three options to ensure transaction atomicity in a multidatabase:

• One means of emulating an atomic execution is to attempt to commit a global transac­

tion by resubmitting the corresponding subtransaction at each site where it erroneously

aborts. This approach involves issues of serializability [Sop91b].

The approach of re-submitting the subtransaction requires placing restrictions on the

access patterns of the global and local transactions to preserve local autonomy and

. provide the ACID properties. One approach would be that at each site the data could

be partitioned into global and local sets (see Synopsis 4.10). Unrestricted access would

then be available to global and local transactions only with respect to their respective

sets. Access across the sets is restricted so that a resubmitted subtransaction faces

no contention for data. This is a severe restriction.

The restriction can be relaxed to a certain extent if the MDMS is allowed to abort

subtransactions at a local site. If a subtransaction is to be aborted, then active

subtransactions which need to be run serially after that transaction must also be

aborted.

Yet another option is to violate control autonomy when resubmissions are done. Any

local transaction which can interfere with the commitment of a subtransaction is

blocked until the subtransaction is either committed or aborted. This approach re­

quires the transactions to declare the data they access prior to their execution - a

major violation of local autonomy.

• An alternative is to try to approximate the effects of aborting a global transaction by

submitting a compensating subtransaction at each site that committed the subtrans­

action where it should have aborted. The problems here are that the semantics of the

Reliability ---------------------------138

transactions need to be taken into account, and it is often impossible to design such

a compensating transaction.

• Another case is where the local DBMS allows the submission of a commit or abort op­

eration separately from the body of the transaction. In this case it is simple to maintain

transaction atomicity. If the local DBMS then accepts transactions in which commit

and abort operations are separated from the body of the transaction, and violates

control autonomy, we can use typically distributed DBMS techniques to guarantee

atomicity. The well known two-phase commit can be extended to the multidatabase

environment (See Appendix C). Multidatabases do not enjoy the luxury of inter­

database system communication and synchronization which makes two-phase commit

more difficult [Bar90].

Example 5.1 : Problems with submitting commit and abort operations separately

Suppose there are two global transactions GT1 and GT2 in a multidatabase

system executing two-phase commit simultaneously. If the global transactions

have participants in common, the phase two commit messages might arrive in

different orders at the common sites. Hence at one site GT1 may commit before

GT2 and at another site GT2 will commit before GT1. This has an impact on

global serializability [Ber93]. <>

In DBMSs that do not support a prepare to commit state, the following alternative

approaches can be used to satisfy this requirement [Geo90]:

• Modify the local DBMSs to provide the necessary primitives [Pu88]. This seriously

violates local autonomy and is not acceptable.

• Use a mechanism that forces a handshake after each transaction operation [Geo91b,

Bre90a]. With this approach the MDMS will submit the operations of a global trans­

actions one at a time and wait for completion thereof before submitting the following

operation. This approach does not violate local database autonomy but forces a total

order onto the operations of a subtransaction.

• Design subtransactions in such a way as to simulate a prepared-to-commit state

[Mut91]. This requires the use of inter-process communication primitives which once

again may not be available.

• Emulate a two-phase commit process by using an agent process at each site. During

the commitment of a global transaction, the MDMS acts as coordinator and the

MDMS agents at the local databases act as participants [Tan93].

Reliability ----------------------------139

Definition 5.1 - Correctness of atomic commitment protocols

We define an atomic commitment protocol (ACP) to be correct if for each global

transaction (GTi) submitted to the GTM, the GTM:

1. uniformly commits or aborts all subtransactions of GTi in a finite amount

of failure-free time,

2. preserves database consistency. Since we assume that each transaction

(when executed in isolation and with no failures) preserves database con­

sistency, it must do so when using the ACP,

3. commits all subtransactions if no other global or local transactions are

currently executing and there are no failures.

[Mul92) 0

Conditions 1 and 2 are standard. The third condition is made to exclude protocols of the

form: "abort all transactions" or "abort all transactions except read-only transactions"

from consideration. That means that the ACP must not limit the class of transactions it

accepts. Any transaction that runs in isolation and without failures should commit.

Bearing this in mind, Mullen et al [Mul92) have proved that it is impossible to implement

an atomic commitment protocol without violating local autonomy in multidatabase systems.

This is true even in the absence of system failures. Mullen et al [Mul92) have also shown

that even if one were to assume that all local DBMSs use strict two-phase locking as their

concurrency control method, atomic commitment is impossible if even a single system failure

occurs.

We now have to devise a solution to the global commitment problem in multidatabase

systems by using various different strategies. In the following section we will take a look at

how the core group handles this problem.

5.2 Global Commit Protocols in the Core Group

The transaction management schemes in our core group use different global commit proto­

cols. In this section a brief outline is given of the method used in each scheme.

5.2.1 Barker & Ozsu's transaction atomicity scheme

Barker & Ozsu [Bar91] introduce a model which maintains that global transactions and

subtransactions have certain states and which gives a technique whereby these state tran­

sitions can be managed and whereby they emulate a two-phase commit without affecting

local autonomy.

Reliability ----------------------------140

Global transaction states : When a global transaction is submitted to the MDMS, it is

in an initial state. Once all GSTs of global transaction GTi have been submitted to

their respective DBMSs, GTi is moved to the WAIT state. If all GST's become ready

GTi is moved to the commit state. If any one of the GS Ts do not become ready GTi

moves to the abort state.

Global subtransaction states : Once a GST is submitted to a DBMS it is in the initial

state. The GST remains in this state until it decides to abort or it is ready to commit,

in which case it moves to the ready state. Once the GST is in the ready state, it waits

for the final commit decision from the MDMS. If GTi commits, a message is sent to

the local level and the GST can move to the commit state. If GTi is aborted, the GST

moves to the abort state.

The technique : The difficulty lies in maintaining the state transitions at the local level.

The MDMS needs a ready state to coordinate the termination of all the global trans­

action's subtransactions. If the component DBMSs implement a one-phase commit,

however, they do not provide a ready state. Because the local DBMSs are autonomous,

no modification of their protocols is possible, so some technique to emulate a two-phase

commit is now proposed:

GST/ does various operations and then it decides whether to abort or commit. If it

decides to commit, we modify the commit operation by making GST/ send a signal to

the MDMS and wait for a decision from the MDMS and then either commit or abort

depending on that reply. It will block till a response is received but this does not affect

local transactions at all. Barker & Ozsu [Bar91] have proved that the local DBMSs

need to guarantee a locally strict level of service so that while a GST is blocked and

waiting for a response from the MDMS, another transaction will not be allowed to

access data items altered by the GST. This will be done by the local DBMS and the

MDMS does not have to intervene to ensure this.

5.2.2 Pu's hierarchy of superdatabases

Pu [Pu88] states that any agreement (commit) protocol will do for the superdatabase sys­

tem. We could use two-phase, three-phase commit or byzantine agreement.

In the superdatabase system, at each level the parent transaction serves as the coordi­

nator. During phase one, the root sends the message "prepare to commit" to its children.

The message is propagated down the tree, until a leaf subtransaction is reached, when it

responds with its vote. At each level, the parent collects the votes; if all of its own children

voted "yes", then it sends "yes". to the grandparent. If every subtransaction voted "yes",

the root decides to commit and sends the committed message, propagated down the tree.

Between the sending of the vote and the decision by the root, each child subtransaction

remains in the prepared state, ready to undo the transaction if aborted or redo if the child

Reliability ----------------------------141

crashed and the root decided to commit.

5.2.3 Breitbart et al's work

Breitbart et al [Bre90a] use the two-phase commit protocol. When the MDMS encounters

the commit operation of global transaction GTi, it sends a prepare to commit message to

each server involved in the execution of GTi. Each server receiving the message determines

if it can commit the subtransaction belonging to transaction GTi. If it can commit, it forces

all the log records for the subtransaction to stable storage, including a ready record. It then

notifies the MDMS whether it is ready to commit or whether GTi must be aborted. The

MDMS collects all responses and if all have voted ready, the MDMS will commit GTi. If at

least one server voted to abort or fails to respond, the MDMS aborts GTi and notifies all

servers involved with GTi.

Each server, upon receiving the decision of the GTM, informs the local DBMS as to

whether to abort or commit the global subtransaction at that site. It is thus obvious that

this model expects the local databases to support the prepare-to-commit state. This is

an unreasonable assumption as many commercial database systems do not provide this

capability.

5.2.4 Elmagarmid et al's work

Elmagarmid et al [Elm90a] do not make provision for failures in their model and therefore

have no need of an atomic commit protocol.

5.2.5 Chen et al's distributed MDMS

Chen et al [Che93] use a semantic based commit method. Chen et al decompose a subtrans­

action into two steps, an execution step and an optional confirm step and an optional undo

step. These steps are determined from the semantics of the subtransaction. The following

guidelines are given for defining these steps: ·

• For a compensatable subtransaction, the execution step includes all the operations of

the subtransaction, and the undo step contains all the compensating operations for

the subtransaction. No confirm step needs to be defined.

• For a read-only subtransaction, only an execution step needs to be specified. In this

case the execution step consists of all operations in the subtransaction.

• For a noncompensatable subtransaction GSTj of global transaction GTj the situation

is more complex. Depending on the nature of GSTj, two options are available:

- If GSTj must be run on an autonomous local database system, the execution

step includes all the operations of GSTj from the beginning up to the prepare­

to-commit state of G STj. The confirm step includes all operations from the

Reliability ----------------------------142

prepare-to-commit state up to the commitment of GSTj. The undo step contains

all operations from the prepare-to-commit state up to the aborting of GSTj.

The execution step completes first. During commitment of GTj, if GSTj must

be committed, the confirm step is executed; otherwise the undo step is executed.

In this way GSTj can be executed as two separate local transactions.

- If GTj and G STj are capable of communicating, allowing GTj to control the

execution of GSTj, then the execution step is defined as GSTj itself. At the

prepare-to-commit state, GSTj will wait for a signal from GTj after reporting

its status to GTj. The confirm step in this case will simply be used to commit

GSTj, and the undo step is used to abort GSTj. In this way GSTj is executed as

a single local transaction. This is very similar to the two-phase-commit protocol.

This approach would be used for an underlying DBMS which provides a visible

prepare-to-commit state.

This commit method has the advantage that its semantic structure allows application

programmers to customize their own necessary commit decisions. They can be guided by the

semantics of the global subtransaction and the commit methods of the underlying systems,

using a uniform syntax for differing commit protocols [Che93]. This commit protocol could

be used in both nested and multi-level transaction environments [Gra93]. This method

is more flexible than those proposed in [Kor90, Lev91a, Lev91b] which are designed for

multi-level transaction environments only.

5.2.6 Kang & Keefe's decentralized GTMs

Kang & Keefe [Kan93] assume that an atomic commit protocol such as 2PC is employed.

For each global transaction there is one coordinator and several participants which all

contribute towards reaching a consensus on the commit decision for the global transaction.

When global transaction GTi finishes its operations at the coordinator site, the coordinator

sends each participant a prepare message. If the participant can commit, it force writes all

the local redo records of GTi and a prepared record is sent to the GTM's log at the local

site. The prepared record indicates that GTi is in the prepared state. It then sends a ready

message to the coordinator.

If all participants respond with ready, the coordinator issues a commit message to all

participants. If any participant responds with a veto message, or fails to respond within the

timeout time, the coordinator issues an abort message to all participants. The participant

leaves the ready state once it has either committed or aborted [Kan93].

If a prepared transaction is aborted by the LTM, it is the responsibility of the GTM to

determine the fate of the subtransaction and resubmit its redo transaction when necessary.

Because Kang & Keefe assume that the LTM does not participate directly in the protocol,

that means that the LTM can abort a prepared subtransaction either by a unilateral decision

(e.g. timeout) or due to failure at the local site. This would mean that all the resources

Reliability ----------------------------143

currently assigned to the subtransaction would be released. If the global decision was to

commit, the GTM must redo the updates done by the transaction by submitting a redo

transaction. The problems this causes have been discussed previously but Kang & Keefe

deal with it by partitioning data into globally updateable and locally updateable groups.

Kang & Keefe have designed a commit protocol which makes provision for query sub­

transactions, that is, read-only subtransactions. These transactions need not be subjected

to the strict controls applied to update transactions and Kang & Keefe's model addresses

this. Kang & Keefe's partitioning of data objects approach differs from Breitbart et al's

[Bre90a] because it allows read-only subtransactions to read locally updateable data objects.

They have also formulated a cautious presumed-commit protocol. In line with this pro­

tocol, read-only subtransactions may commit without waiting for the commit message from

the coordinator. An abort message from the coordinator is ignored because no changes

were made to the database by the read-only subtransaction. If such a transaction is locally

aborted, it sends a veto message to the coordinator.

Kang & Keefe prove the following theorem [Kan93]:

Theorem 5.1 : Global reliability of a GTM

A GTM is globally reliable if the following conditions are satisfied:

1. A global subtransaction which unilaterally aborts does not read locally updateable

objects; and

2. Every global subtransaction, including redo transactions, contain the take-a-ticket

construct and no local transaction can write the ticket.

3. The GTM only outputs conflict serializable and strict executions of global transac­

tions; and

4. The local transaction manager only outputs cascadeless one-copy serializable histories

with a reasonable version function.

5.2. 7 Garcia-Molina & Salem's sagas

The saga scheme [Gar87] doesn't use a global commit protocol because the transaction

model does not need one. The application program issues various commands to the system:

begin-saga, a series of begin-transaction, end-transaction commands and finally an end-saga

command. There is also an abort-saga command which is sent out to abort all transactions

of the saga. The transactions of a saga are aborted by means of compensation.

Reliability _____________________________ 144

INITIAL

commit command
prepare

vote-abort

MDBS_TM

prepare

h-commit

AGENT

Figure 5.1: State transition in the R2PC protocol

[Yoo95, p58]

5.2.8 Yoo & Kim's client server approach

Each stub in Yoo et al's scheme [Yoo95] controls the submission of operations issued by

global subtransactions and local transactions using stub-level locks and a stub-level locking

table. Only update operations have to obtain stub-level locks. Stub-level locks are granted

on a first in first out basis and the locks held by a global subtransaction are released

when a global transaction that includes the global subtransaction commits or aborts or the

subtransaction is aborted.

Yoo et al propose a resilient global atomic commitment technique called a reliable two­

phase commit (R2PC) protocol. The R2PC protocol consists of commit, termination and

recovery protocols. R2PC guarantees fault-tolerant global atomicity in multidatabase sys­

tems where the local DBMSs have no prepare-to-commit state. This approach does not

simulate the prepared state. State transitions in the R2PC protocol are shown in Figure

5.1.

• MDBS_TM's Commit Procedure

1. The MDBS_TM writes a prepare-record in its log and sends a prepare messages to

all agents that participate in the execution of that global transaction and waits

Reliability ----------------------------145

for participant's votes.

2. If every vote from participating agents is heuristic commit, MDBS_TM writes a

commit-record in the log, returns a success message to the user and sends a global

commit message to participating agents and waits for ack messages from them.

If even one message is vote-abort, MDBS_TM writes a record to the log, returns

an error message to the user, sends a compensate message to the agents that

voted to commit and waits for acknowledgement of the messages.

3. When ack messages are received from all the participating agents, MDBS_TM

finally writes an end-of-transaction message to the log and forgets about the

transaction.

• Agents Commit Procedure

1. After receipt of a prepare message from the MDBS_TM, each agent writes log­

records to build a compensating transaction into the log, writes a ready-record

to the log, saves stub-level locking information to the log and submits a commit

command to its LDBMS.

2. When the subtransaction commits successfully in the LDBMS, the agent replies

with a heuristic commit message to the MDBS_TM and waits for a final decision.

Otherwise, the agent releases all locks held and replies with a vote-abort message.

3. If the final decision by the MDBS_TM is to commit, the agent releases all locks

and writes a commit-record message to the log. If the final decision is to abort,

the compensating transaction will be carried out.

These protocols work hand in hand with timeout protocols (full details of timeout protocols

can be found in [Yoo95]). This occurs at a destination when a site cannot receive an

expected message from a source site within a specified timeout period.

5.2.9 Other relevant research

5.2.9.1 Georgakopoulos's simulated prepared to commit state

Georgakopoulos [Geo91a) proposes using a simulated prepared to commit state. Geor­

gakopoulos submits subtransactions an operation at a time to the local DBMS so the GTM

knows precisely when all operations have been completed. The GTM then knows whether

the subtransaction wants to commit or abort. The basic difference between the traditional

prepared to commit state and the simulated prepare to commit state is that a transaction

in the simulated state has no assurance from the DBMS that it will not be aborted unilat­

erally. However, Georgakopoulos claims that DBMSs do not unilaterally abort transactions

that have entered their prepared to commit states because by then they have completed all

their operations and acquired all their locks.

Reliability ----------------------------146

Georgakopoulos states that if all the subtransactions of a global transaction have reached

the simulated prepare to commit state, the GTM can then submit the commit operations

to the local DBMSs and the global subtransactions all commit at the local sites.

However, he fails to address the problem of transaction timeouts which could well cause

a local DBMS to abort a prepared transaction, in which case global consistency would be

violated.

5.2.9.2 Perrizo et al's atomic commitment

In the HYDRO (HeterogeneouslY Distributed Request Ordering) system, the authors use

a variation of the standard 2PC protocol [Per91]. In the HYDRO system, the transactions

have to declare all their data needs in advance and then the global transaction is parsed

into subtransactions and these subtransactions are submitted to local database systems.

The local DBMS is expected to notify the MDMS when it commits or aborts a global

subtransaction. Until this notification has been received, the MDMS keeps the state of the

global transaction as prepared. If the local DBMSs all commit the global subtransactions,

the state of the global transaction would be changed to commit. If the GTM decides

to abort a global transaction, a compensating transaction will be sent to all sites where

subtransactions of that transactions have already committed.

In order to maintain global database consistency in the face of compensating transac­

tions, HYDRO blocks all other transactions until a global transaction which has an active

subtransaction at a certain site has committed. This is a severe restriction which reduces

concurrency to almost nil.

5.3 Analysis

There are various approaches to the global atomic commitment problem in multidatabase

systems.

From the preceding discussions we can see that it is basically impossible to achieve global

atomicity in the face of failures without somehow violating local autonomy. Because of this,

most works in the literature allow certain tradeoffs, i.e. sacrifice one or more of the desired

features of an ideal MDMS [Yoo95]. The commonly used assumptions are, for example,

no subtransaction failure, no inter-subtransaction data dependency, and partitioning of

the database into two or more sets so that global and local transactions access these sets

exclusively.

Barker & Ozsu [Bar91] use; the notion of m-serializability as the correctness criterion

instead of global serializability and assume that local database systems produce only seri­

alizable and strict schedules. The authors propose a simulated two-phase commit and do

not deal with a unilateral subtransaction abort.

Kim et al [Kim93] also assume that all the LDBMSs use strict 2PL. Their approach

Reliability ----------------------------147

is similar to Barker & Ozsu's approach except for log management. Whereas in Barker &

Ozsu's scheme the LDBMS will always block after failure even if there is no subtransaction

to be resubmitted, Kim et afs approach solves that problem but in Kim et al's protocol, the

LDBMS can block if a MDMS fails during the exclusive access period. Kim et al also assume

that the LDBMS restarts after failure in exclusive mode, which prevents local transactions

from being restored until after the MDMS is :finished - which violates local autonomy.

Kim et al also do not deal with unilateral subtransaction abort due to commit operation

failure.

Pu [Pu88) uses a two-phase-commit in which all "leaf' nodes are expected to participate

- which violates local autonomy. In [Bre90a), Breitbart et al partition the data into two

separate sets and also assume that the local DBMSs support a prepare-to-commit state.

In Breitbart et al's later work [Bre92b), it is assumed that the LDBMSs use strict 2PL. A

server at each site will facilitate the 2PC required for global atomicity. This is considered

reasonable by some authors but the fact remains that it may not be available in all local

database systems of a multidatabase and the failure of only one DBMS to provide such a

state would make the whole commit protocol collapse. The partitioning required in this

case would not always be practical.

Elmagarmid and Du [Elm90a) do not deal with the failure question. Chen et al [Che93)

propose a semantics based commit method which is very attractive except that they assume

that a transaction can be broken up into portions, an execution step, an optional undo step

and an optional confirm step. The application programmer would be expected to do this

which could be quite cumbersome and failure prone.

Kang & Keefe [Kan93) also approach the problem by partitioning data into two sets and

allow read-only transactions more leeway than is done in [Bre90a). Kang & Keefe assume

that cascadeless schedules are generated at local sites and use an agent at the different

sites to implement a 2PC type of protocol which allows read-only transactions to commit

without global permission.

Garcia-Molina et al [Gar87) do not make use of a commit method. Yoo et al [Yoo95)

assume that local database systems use strict 2PL (also assumed in the scheme proposed

in [Bre92b]) and that local database systems are disjoint. They also assume that only one

subtransaction per global transaction is submitted per site. The latter two assumptions are

in line with the transaction model outlined in Chapter 4 anyway. One could also argue that

many commercial DBMSs use 2PL as a rule but certainly not all of them do.

Finally, Perrizo et al [Per91) present a scheme called HYDRO that is similar to Yoo et

afs scheme except for logging differences. The HYDRO multidatabase has been developed

at North Dakota State University. In HYDRO, all transactions are expected to declare their

data needs in advance, which is not practical. They also assume that no two subtransactions

can execute concurrently in a local database even if they access different data items. Their

approach may result in serial execution of global transactions with no global concurrency

which is a waste of resources [Yoo95].

Reliability ----------------------------148

Georgakopoulos [Geo91a] assumes that local database systems produce serializable and

strict schedules, and that the MDMS has exclusive access to the database in the case of

failure - which of course violates local autonomy. They also simulate 2PC by means of an

agent process at each site. This approach assumes that no unilateral subtransactiori abort

can take place which is an unreasonable assumption as such an event is not only possible

but probable.

In [Sop91b], the authors trade control autonomy for reliability. They simulate the pre­

pared state by means of an agent/server type process. In this protocol, an occurrence of

subtransaction failure makes the set of active transactions that potentially conflict with the

subtransaction to be forcibly aborted. This becomes a severe problem with long transac­

tions. [Yoo95]

Levy et al [Lev91a] propose an optimistic commit protocol with semantic atomicity as

its correctness criterion. The authors use compensating transactions and the scheme has

no prepared state. This protocol does not block or become delayed like protocols that use

2PC, but the persistence of a compensation assumption cannot be implemented. This is

because the MDMS has no knowledge of which local transactions access data items before

compensation can take place. [Yoo95]

Mullen et al [Mul93] propose a reservation commitment scheme whereby global transac­

tions have to pass through a reservation stage before being submitted to the local databases.

The reservation stage will determine whether the subtransaction will be able to commit suc­

cessfully at the local database. If all the subtransactions of a global transaction can commit,

then the GTM submits them, otherwise the global transaction is aborted. The big draw­

back of this scheme is that local transactions have to be modified to fit in with this protocol

which is an unacceptable violation of local autonomy.

Finally, we can conclude that in our core group Yoo et al's and Chen et afs global

commitment schemes provide for maximal local autonomy. Yoo et al make more assump­

tions than Chen et al about the LDBMSs but even the ones that Yoo et al make are not

unreasonable.

5.4 Summary

This chapter had a look at reliability in multidatabase systems. Reliability was defined

as comprising transaction atomicity and crash recovery. Transaction atomicity was then

elaborated upon while crash recovery was left for the following chapter. It was shown that

transaction atomicity can be achieved only by the use of an efficient global commit protocol.

The global commit protocols in the core group were examined and an analysis was given of

the various approaches which are to be found in the literature.

Chapter 6

Recovery and Recoverability

Recovery can be defined as:

Activities for ensuring that failures will neither infringe the atomic executions

of global transactions nor corrupt persistent data [Tun92].

Recoverability can be defined as:

The requirements that must be satisfied in order to guarantee correctness in

case of failure [Geo90].

Multidatabase recovery is responsible for maintaining the atomicity and durability of

global transactions in the presence of transaction, site and communication failures. While

recovery in centralized databases has been well researched and many effective recovery pro­

tocols already exist, the autonomy and heterogeneity of local databases in a multidatabase

make the recovery problem more complex. A serious problem in multidatabase recovery is

that recovery in a multidatabase constitutes new transactions. A multidatabase recover­

ability condition has to be determined in order to assure that MDMS recovery can preserve

global consistency [Geo90].

6.1 Failure in a Multidatabase

If a subtransaction of a global transaction fails it is automatically rolled back by the local

database recovery manager, even if the MDMS considers the global transaction it belongs to

as committed, and has allowed one or more subtransactions of the same global transaction

to commit at other local databases. The MDMS cannot prevent site failures and unilateral

subtransaction abortions by the local systems. The local autonomy of local databases does

not allow any rollback of locally committed global subtransactions. To maintain global

consistency the MDMS has to complete the failed subtransactions of global transactions

which have a committed subtransaction [Geo90].

There are various causes of failure [Bel92, Bar91]: transaction failure, site failures, media

failures, network failures, DBMS failures & system failures.

149

Recovery and Recoverability _______________________ l50

The actions required by the recovery manager following each type of failure is different

and are discussed below. We are assuming that all systems are fail-stop; when failures or

errors occur, they simply stop. We are excluding hardware and software bugs which cause

the system to behave inconsistently.

6.1.1 Transaction failure

Transactions can fail either globally (at the MDMS level) or locally (at the local DBMS

level). They fail in two ways: a value dependency test fails or a system requires the failure

of the transaction for some other reason (e.g. resolving deadlocks). Transaction failures

result in aborting the transaction and undoing its effects. The local failure of an individual

transaction can happen for various reasons [Bar90]:

1. Transaction-induced abort. No other transactions are affected.

2. Unforeseen transaction failure. Arising from bugs in the application program. In this

case, the system has to detect that the transaction has failed and inform the recovery

manager to rollback the transaction. No other transactions are affected.

3. System-induced abort. Occurs when a recovery manager aborts a transaction because

it conflicts with another transaction, or to break a deadlock. Again the recovery

manager is explicitly told to rollback the transaction and other transactions are not

affected apart from perhaps becoming blocked.

6.1.2 Site failures

This can occur as a result of the failure of a local CPU or as a power supply failure resulting

in a system crash. All transactions on the machine are affected. We assume that both the

DB itself on a persistent storage medium, and the log are undamaged. In a multidatabase

environment, since sites operate independently, it is not only possible but probable that

some sites can be operational and others failed. The main difficulty with partial failure

is that sites should be able to determine the status of other sites. In a case like this it is

possible for a site to become blocked and unable to proceed. For instance, say a site fails in

mid-transaction. Other agents of the global transaction may be uncertain as to whether to

proceed and commit or to rollback. In the context of a multidatabase it is imperative that

the failures of certain sites not affect other sites [Bar90).

To recover from a site failure, the local manager must determine the state of the local

system at the time of failure - more to the point - which transactions were active. The

objective is to restore the DB to a consistent state by undoing or redoing transactions

according to their status at the time of the failure by applying either before or after images

from the log.

Recovery and Recoverability _______________________ l51

When the site is restored, control is passed to the recovery manager to execute recovery

or restart procedures. During the recovery procedure, no new transactions are accepted

until the DB has been repaired [Bar90].

6.1.3 Media failures

This is a failure which results from some portion of the stable database being corrupted due

to something like a head crash. This type of failure will have to be handled by the local

recovery manager according to the method decided on by the local data manager.

Recovery from local media failure is a local responsibility. The loss of data at a local

database system may affect the MDMS. We can safely assume that the 1ocal DBMS can

recover from a media failure without user intervention. As the MDMS is also seen by the

local DBMS as a user, intervention from the MDMS would also not be required.

The global log must be backed up to make provision for media failure. The procedures

for this are well established in centralized databases and can be adapted for MDMS systems

[Bar90].

6.1.4 Network failures

Multidatabases depend on the ability of all sites to communicate reliably in order to operate

successfully. Most networks today are very reliable with correctness being guaranteed by

the underlying protocols. However, failures still occur and a failure can result in a network

becoming partitioned into two or more subnetworks. If agents of the same global transaction

are active in two different partitions of the network, this could cause a violation in the

atomicity of the transaction if agents in one partition decide to commit and agents in the

other partition decide to abort and rollback. In general it is not possible to design a non­

blocking atomic protocol for an arbitrarily partitioned network. Recovery methods in the

case of a network partitioning due to network failure can be either optimistic or pessimistic

[Bel92].

• Optimistic commit protocols: These choose availability at the expense of consistency

and allow updates to proceed independently in the various partitions. On recovery,

when the networks are re-connected, inconsistencies are likely. The user will have to

assist the ensuing recovery process because the recovery manager will not be able to

determine the inconsistencies on its own. On discovering that there is an inconsistency,

the system has three choices:

1. Undo one (or more) of the offending transactions - this could have a cascading

effect.

2. Apply a compensating transaction which involves undoing one of the transactions

and notifying any affected external agent that the correction has been made.

Recovery and Recoverability _______________________ l52

3. Apply a correcting transaction, which involves correcting the database to reflect

all the updates.

• Pessimistic merge protocols: These choose consistency over availability. Here the

updates are confined to a single distinguished partition. Recovery is much more

straightforward here because on reconnection the updates are simply propagated to

all other applicable sites.

6.1.5 DBMS failures

This happens when a condition occurs which stops execution of a DBMS. The failure of a

DBMS does not cause a multidatabase system failure since other DBMSs may continue to

function.

Recovery from this type of failure is based on information stored on secondary, stable

storage. The information thus stored is referred to as a log. All transaction actions are

logged when they read or write a data item, or when they begin or terminate execution

[Bar90].

Two techniques are available for DBMS recovery along with some hybrids of these

techniques [Ber87]. The first approach is to redo all operations of a committed transaction

which have not been recorded in the database at the time of failure. The other option

is to undo operations effected on the database but whose transaction has not committed.

Recovery management algorithms have been defined for both forms of recovery. Specific

details are covered in [Ber87, Ozs91].

Database system failures in a MDB can be due to software or hardware errors. Software

failures can occur in three ways [Bar90]:

• One of the local DBMSs can fail: Because the local database systems are autonomous,

they are capable of managing all submitted transactions independently. This means

that when it fails, it is capable of recovering only committed transactions. Once recov­

ered, the DBMS must be able to notify the transaction's submitter of the termination

condition of the transaction. The MDMS will have too ensure consistency of the global

transaction after a local site failure by either redoing or undoing subtransactions.

• The MDMS can fail: Failure of the MDMS is different. Recovery is required so that

the effects of committed global transactions are reflected in each DBMS. The MDMS

recovers using global subtransactions since it does not manage local data directly.

Details are given in later sections.

• The MDMS and one of the local DBMSs can fail simultaneously: Local site DBMS and

global site MDMS failures require that all failed systems be restored. Local systems

are autonomous and can be recovered independently. Afterwards, the MDMS resumes

operation and follows procedures to bring the multidatabase to a consistent state.

Recovery and Recoverability _______________________ l53

The failure of both local and global DBMSs is no more complicated than the failure

of either [Bar90].

6.1.6 System failures

This happens when the underlying operating system stops the DBMS. This is seen as a

total system failure and the entire MDMS shuts down. The system must be testored before

the DBMS can become operational again. The topic of system failures is beyond the scope

of this dissertation. This research deals with failures of the MDMS, so the reason for the

failure is independent of their management. We will therefore assume that the operating

system functions correctly.

6.1.7 Failures to be considered

To ensure atomicity and durability of global transactions, only the following types offailures

are the types of failures which need different handling in a multidatabase situation [Geo90]:

• Subtransaction failures - These occur when a subtransaction of a global transaction

is unilaterally aborted by the local DBMS. This may happen if a deadlock situation

must be resolved at the local database and the global subtransaction is chosen as the

victim by the local deadlock procedure to be aborted to break the cycle. Timestamp

concurrency control methods could also cause global subtransactions to be aborted.

Other reasons could be overflows, requests made for nonexistent resources or resource

limits exceeded.

• Site failures - In this case the contents of volatile memory are lost at the local

database or the MDB site. Stable storage will survive this type of failure.

The other failures mentioned in the previous section can be tolerated by a MDMS just as

in any other database configuration. The fact that it is a MDMS does not cause any unique

problems for these types of failures.

In this chapter we will therefore concentrate on only subtransactions and site failures

which place unique requirements on a MDMS.

In the case of subtransaction failures, recovery will be dealt with by either retrying, re­

doing or compensating, as discussed in section 6.2. Site failures, either of the multidatabase

site or the local database sites, must have a specific crash recovery procedure as discussed

in section 6.6.

6.2 Issues in Multidatabase Recovery

A multidatabase transaction becomes globally committed when it commits at the MDMS.

To complete a globally committed multidatabase transaction, the MDMS has to commit

all its subtransactions at the local database systems. A subtransaction that belongs to a

Recovery and Recoverability _______________________ l54

globally committed multidatabase transaction becomes locally committed when the MDMS

commits it at the LDBS.

Multidatabase recovery cannot rely on the local recovery procedures of the LDBs. If a

subtransaction fails it is automatically rolled back by the local recovery manager. The LDB

does not know or care that the global transaction which the subtransaction belongs to has

committed. The multidatabase system cannot prevent site failures and unilateral aborts of

subtransactions by local systems.

On the one hand, a locally committed subtransaction cannot be rolled back because of

the autonomy of the local database system. On the other hand, if one subtransaction of

a global transaction has aborted and all other subtransactions have committed, we have

to keep trying to run that subtransaction until it also commits in order to maintain global

database consistency.

The autonomy of local databases thus causes the following problems [Geo90]:

• The local DBMSs cannot distinguish local uncommitted transactions from uncom­

mitted global subtransactions. When a LDB comes up after a site failure, its local

recovery procedures roll back all locally uncommitted subtransactions, even if the

global transaction they belong to has already committed.

• Global transactions which have a subtransaction which has committed locally at some

LDB cannot be rolled back. The MDMS must complete the failed subtransactions at

each of the sites where they failed in order to have global commitment of the global

transaction.

• MDMS recovery actions at each site constitute new transactions. From the point of

view of the LDB, the new recovery transactions have nothing to do with the failed

subtransaction that was perhaps aborted or rolled back.

All the regular protocols for recovery in a homogenous distributed database require sites

to cooperate. If nodal autonomy is to be maintained then none of these recovery protocols

can be used. The problems facing the recovery manager in a multidatabase are the same

as the problems facing a recovery manager in a regular distributed database system when

partitioning occurs [Bel92].

If all participating local databases provide a prepare-to-commit operation, then the task

of ensuring atomicity is fairly simple. However, if this is not the case, then we have three

different ways of handling recovery in the case of global subtransaction failure [Bre95]:

1. Retry - the entire aborted subtransaction, and not only its write operations, is run

again. This approach is used when a global subtransaction of a globally committed

global transaction has aborted [Bar91, Kim93, Vei92].

2. Redo - the writes of the failed subtransaction are installed by executing a redo trans­

action consisting of all the write operations executed by the subtransaction. This

Recovery and Recoverability _______________________ l55

approach is also used when a global subtransaction of a globally committed global

transaction has aborted [Bre92b, Geo91a, Sop91b].

3. Compensate- at each site where a subtransaction of a global transaction did commit,

a compensating subtransaction is run to semantically undo the effects of the commit­

ted subtransaction. This approach is used when a global subtransaction of a globally

aborted global transaction has committed [Lev91a, Per91, Kor90, Nod94].

We will discuss these approaches in more detail in the following sections.

6.2.1 The retry approach

The retry approach will simply re-submit the entire subtransaction to the site at which it

failed [Mut91]. If a global subtransaction fails, it is not a trivial matter to simply re-submit

the subtransaction to the LDB. [Bar90] proposes a recovery protocol which requires that

the MDMS have exclusive access to a local database of a local site during the local recovery

procedure in the case of a site failure. However, the re-submission process could violate

multidatabase consistency, even in a case where no local transactions are executing.

Example 6.1 : Problem of recovery in a multidatabase

Consider a multidatabase with three local databases: LD B 1 , LD B2 and LD B3 .

We also have a global transaction GTi that reads and writes data items a and b

stored in LDB1 and LDB2 , respectively:

GTi: raT(a), raT(b), a= a+ b, b = b +a, WGT(a), WGT(b)

The multidatabase now generates the following subtransactions:

GSTl : TGT;(a), [wait to receive b], a= a+ b, [send a], WGT;(a) at LDB1

GSTl : raT;(b), [send b], [wait to receive a], b =a+ b, WGT;(b) at LDB2

GTi globally commits and the MDMS commits GSTl at LDB2 , but LDB1 fails

before the local commitment of GSTl- If a and b had initial values of 5 and 10

respectively, the value of b becomes 25 but the value of a remains 5. Now the

MOMS recovery re-submits GSTl- The original value of bis no longer available so

that re-submission of GSTl will produce an incorrect value of a. <>

6.2.1.l Requirements for retrying a subtransaction

We see from the example above that in order to retry a subtransaction, there should be no

data dependencies between GSTl and any other subtransaction of GI'i. Furthermore, the

Recovery and Recoverability _______________________ l56

subtransaction must be retriable, that is, if GSTl is retried a sufficient number of times

from any database state, it will eventually commit. This is important since before the

subtransaction is retried the state of the local DBMS may be changed due to the execution

of other local transactions. This should not result in the situation where the subtransaction

cannot be committed. It can easily be shown that not every transaction has this property.

For instance, if a transaction needs to debit an account and a local transaction empties the

account before the transaction is retried, then the transaction cannot succeed. Because of

this type of problem, the retry approach is limited [Geo90].

6.2.2 The redo approach

Since the re-submission of subtransactions causes inconsistency, the other approach is to
'\

redo all failed subtransactions that belong to globally committed multidatabase transac-

tions. If this approach were used in the above example, the write-ahead log would have

stored the values of a and b produced by the subtransactions GSTl and GSTl. Then when

the LDB comes up after a failure, the recovery procedure would be able to determine the

correct value of a and redo by issuing a transaction that simply writes the value of 15 onto

a.

A redo transaction thus consists of all the writes performed by the subtransaction, and

is sent to the local DBMS for execution. If we have a server at the local site, the server has

to maintain a server log in which it logs the updates of the global subtransactions. If the

redo transaction fails, it is repeatedly resubmitted by the server until it commits. Since the

redo only consists of write operations, it cannot logically fail.

In Example 4.3 in Chapter 4, we illustrated that in the presence of failures, the local

schedule, while serializable from the point of view of the local DBMS, may not be serializable

from the point of view of the GTM [Bre95].

Care must therefore be taken to ensure that in the case of a redo approach that the redo

transaction will leave the MDB in a consistent state.

To ensure global serializability, Breitbart et al [Bre95] state that we need to use addi­

tional mechanisms like restricting access to certain data items by local and global trans­

actions or employing a concurrency control scheme which is failure resilient [Bre95]. This

aspect was covered in Chapter 4.

6.2.3 The compensate approach

Consider once again the example in section 6.2.1 where transaction GTi is committed at site

LDB2 and aborted at site LDB1 , and assume that the retry approach is not applicable.

We then have to compensate for the committed subtransaction GST'l. This can be done

by issuing a compensating transaction CT1 at site LDB1 that undoes what GSTl did. For

instance, if GSTl reserved a seat for a flight, then CT1 cancels the reservation. Since the

effects of the transaction may have affected the execution of other local transactions, the

Recovery and Recoverability _______________________ l57

resulting state may not be the same as if GSTl had never executed but will be semantically

equivalent to it.

We can illustrate this with the following example: Say a transaction reserved the last

possible seat on a certain flight. Before the compensating transaction has a chance to reverse

the cancellation, another passenger tries to reserve a seat on the same flight, and is turned

away. So, while the database is semantically returned to its previous status, the resulting

state differs from the original state. Thus, executing compensating transactions does not

result in standard atomicity of transactions. The resulting notion of atomicity is referred

to as semantic atomicity.

In [Gar87], Garcia-Molina and Salem use the term saga to refer to a collection of se­

mantically atomic subtransactions. To ensure semantic atomicity, the GTM must keep a

log of all the GSTi subtransactions that have been committed.

A compensating transaction, besides performing an inverse of the function performed by

GTi, must also ensure that after it commits, the global constraints between different local

sites where GTi executes, hold. Even though the execution of a compensating transaction

CT will re-establish the consistency constraint violated due to the partial commitment of

a global transaction, it will not prevent other transactions that execute at these local sites

before CT executes from seeing inconsistent data. This problem has been studied by Levy,

Korth & Silberschatz and Mehrotra, Rastogi, Korth & Silberschatz [Lev91b, Meh92d], and

two different protocols were proposed that guarantee strong correctness in the presence of

a combination of global and compensating transactions.

The design of compensating transactions has been discussed in the literature [Gar83].

Some subtransactions may not have simple compensations. For example, if a subtransac­

tion deposits funds in an account and those funds are withdrawn before the compensating

transaction can be run, then compensation cannot take place. Some other transactions are

not compensatable; e.g. firing a missile [Bre95].

6.3 Extension of the Database Model

Barker & Ozsu [Bar91] define various concepts and terminology to reason about multi­

database recovery. In Chapter 3 we defined the concepts of: recoverable, avoids cascading

aborts and strict. We will now extend this in order to use these concepts in a multidatabase

environment. \Ve will define three levels of recoverable local histories: local recoverable,

avoids local cascading aborts, and locally strict.

Definition 6.1 - Local recoverable (LRC)

A local history LHk is local recoverable (LRC) if, every transaction that commits

reads only from committed transactions .

[Bar91] 0

Recovery and Recoverability ______________________ l58

Definition 6.2 - Avoids local cascading aborts (ALGA}

A local history LHk avoids local cascading aborts (ALCA) if all transactions

read from committed transactions .

[Bar91] 0

Definition 6.3 - Locally strict (LST)

A local history LHk is locally strict (LST) if :

1. it avoids cascading aborts, and

2. whenever wj(X)--< Oi(X)(i f; j) then N; --< Oi(X) where N; E {a;,c;}

and Oi(X) is ri(X) or Wi(X) .

[Bar91] 0

These concepts are best illustrated by means of an example:

Example 6.2 : Different levels of recoverability

Different levels of recoverability at the local DBMSs are illustrated by a sequence

of increasingly restrictive histories. Assume the following history is produced by a

local DBMS scheduler:

LH1 : ri(d); ri(e); wl(d); rl(e); r~(d); wl(e); w}(d); wHd); c}; c~; c} (Hl)

H 1 is not local recoverable because c~ precedes c}. This is a problem because

according to the definition if a transaction commits and it reads from the results

of another transaction, then that transaction must commit first. This problem is

corrected as follows:

LH1 : r}(d); r}(e); w}(d); r}(e); rHd); wl(e); w}(d); wHd); c}; c}; c~ (H2)

The history H2 is not ALCA because wl(d) --< r~(d) --< c} so CST:} reads from

CST[before CST:} commits. The following history is ALCA:

LH1 : r}(d); rl(e); wl(d); r}(e); c}; d(d); wi(e); w}(d); w~(d); cl; c~ (H3)

H3 is not locally strict since w}(d) --< w~ --< c}. The local history:

LH1 : ri(d); ri(e); wl(d); rl(e); c}; rHd); wi(e); wl(d); cl; wHd); c~ (H4)

Recovery and Recoverability _______________________ l59

is LST since LT/ commits before GSTi updates the value of d.

[Bar91] <>

Hadzilacos [Had88) has proved that LST C ALC A C LRC holds between these histo­

ries. These concepts can be extended to the multidatabase environment by applying them

to global histories as shown in the following section [Bar91].

6.4 Recoverability in Multidatabases

We need to determine the conditions under which multidatabase consistency can be pre­

served in the event of a failure. In chapter 3 we showed that to ensure correctness of a local

database in case of failures, schedules must at least be recoverable.

We also defined the recoverability concept with respect to centralized databases in Chap­

ter 3. [Geo90] states that recoverability is the weakest possible requirement that guarantees

correctness in a DBMS in the presence of failures.

6.4.1 The problem of multidatabase recoverability

Global recoverability requires that two conditions be met [Bar91]:

1. All local histories are local recoverable.

2. All global subtransactions submitted on behalf of a global transaction have the same

termination condition.

We can formalize this requirement:

Definition 6.4 - Global recoverability

A global history is globally recoverable (GRC) if,

1. all LHi are at least LRC, and

2. all global transactions terminate uniformly .

[Bar91]

0

The first condition requires that local histories be at least locally recoverable. For the

purpose of GRC, we are interested in the set of GSHs which comprise the global history. If an

arbitrary local history LHk is locally recoverable it follows that any subset of LHk exhibits

the same property. This is the only way that we can guarantee that global subtransaction

histories are recoverable given the autonomy of the LDBs. Since GSHk ~ LHk it follows

that GS Hk is also LRC. This could mean that more restrictive histories could occur in a

Recovery and Recoverability ______________________ l60

GRC history. For example, a MDMS which guarantees LRC at LDB1 , ALCA at LDB2

and LST at LDB3 could provide GRC histories.

The second condition provides consistency across DBMS boundaries and is summarized

by the following definition:

Definition 6.5 - Global transaction termination uniformity

A global transaction (GTi) terminates uniformly if either one of the following

conditions hold:

1. if 3GSTf E 9ST1 where a! E GSH1, then 'VGSTik where the write set of

GSTik is not empty, l-lc7 E GSHk.

2. if 3GSTf E 9ST1 where ci E GSH1, then 'VGSTik where the write set of

GSTik is not empty, 1-Jaf E GS Hk .

[Bar91)

0

This definition means that if any global subtransaction has aborted at any DBMS, then

all other global subtransactions belonging to that global transaction have either aborted

or they have not yet terminated. On the other hand, if any global subtransaction has

committed at any DBMS, then all other global subtransactions have either committed or

are still active. The restriction to the write-set is imposed because read-only transactions

do not affect databases and we therefore ignore them when considering reliability.

Since avoidance of cascading aborts and strictness are subsets of recoverable histories

they also need to be defined: '

Definition 6.6 - Avoids global cascading aborts {AGCA}

A global history avoids global cascading aborts (AGCA) if,

1. all LHi are at least ALC A, and

2. all global transactions terminate uniformly .

[Bar91) 0

Definition 6.7 - Globally strict (GlST)

A global history is globally strict (GIST) if,

1. all LHi are at least LST, and

2. all global transactions terminate uniformly .

[Bar91) 0

Recovery and Recoverability _______________________ l61

The major difference between global recoverable histories and local recoverable histories

is that all global subtransactions, for any global transaction, terminate the same way. This

is best illustrated by an example:

Example 6.3 : Global recoverability

Consider the following histories:

LH1 • r1(d)· r 1(e)· w1(d)· f 1(e)· r1(d)· w· 1(e) .. w1(d)· w1(d)· cl. cl. cl. . 1 ' 1 ' 1 ' 1 ' 2 ' 1 ' 1 ' 2 ' }l 2l ll

LH2 • r2(u)· w2(s)· w2(s)· f 2 (u)· w2(u)· c2 • c2 • a2• . 2 ' 2 ' 1 ' 1 ' 1 ' l l l l 2,

Both LH1 and LH2 are LRC but the global history 1s not GRC. Consider the

following projection of these histories:

GSH1 · r1(d)· r 1(e)· w1(d)· r1(d)· w1(d)· cl. cl. . 1 ' 1 ' 1 ' 2 ' 2 ' 2l 1,

GSH 2 • r2(u)· w2(s)· w2(s)· c2 • a2• . 2 ' 2 ' 1 ' l l 2l

Since GST} commits in GSH1 but GSTi aborts in GSH2 it is evident that GH

= GSH1 U GSH2 is not GRC. If LH2 was executed as follows:

GSH 2 • r2(u)· w2(s)· w2(s)· c2• c2• . 2 ' 2 ' 1 ' } ! 2!

the G H would be GRC. Similar arguments could be made for AGCA and GIST

[Bar91]. 0

We can now conclude that GZST C AGCA C GRC which follows from the previous

definitions and the established relationship between local histories [Bre95, Bar91].

In a multidatabase system, for each subtransaction interrupted by failure, a correspond­

ing recovery operation must be issued. From the point of view of the LDB, recovery trans­

actions have no connection to the transaction that they are intended to complete. Because

of this, if multidatabase recovery and local transactions interleave, consistency is difficult

to preserve. To illustrate this problem, consider the following example:

Example 6.4 : Recovery transactions

We have two local systems LDB1 and LDB2 • Data item a is stored at LDB1 and

data item b is stored at LD B 2 • Consider the global transaction that accesses data

items at these two databases:

GTi: raT;(a), WGT;(a), raT;(b), WGT;(b)

Recovery and Recoverability _______________________ l62

Suppose that GTi is globally committed but a site failure occurs before local commit­

ment of the subtransaction GSTl of GTi at LDB1 • As far as LDB1 is concerned,

CST/ is not locally committed. Therefore, during recovery when it comes up again;

it rolls back G STl. Next, the MD MS realizes that GTi was globally committed and

issues a recovery transaction R to redo GSTl. But, just after LDB1 comes up,

the following local transaction is executed before the recovery transaction R.

T : rT(a), WT(a)

This results in the following local schedule at LDB1 :

raT;(a), [GTi is aborted by local recovery here], rT(a), WT(a), CT, WR(a), CR

The above schedule is serializable and strict and it is allowed by the rigorous LDB1 .

However, R uses the value of a which is read by GTi and is recorded in the mul­

tidatabase log. So in the view of the MOMS, WR(a) is logically performed by

GTi. Therefore the execution is logically equivalent to the following globally non­

serializable schedule:

TGT; (a), TT(a), WT(a), CT, WGT; (a), CGT;

[Geo9la] <>

6.5 Global Logging

Critical stages in a global subtransaction's execution must be logged to ensure consistency

in the presence of failures. The global scheduler transmits three types of information to the

global recovery manager [Bar91]:

1. A global transaction initiation message that identifies the global transaction and pro­

vides a list of global subtransactions to be processed.

2. The global subtransactions are sent to the recovery manager where they are logged

before being sent out to the appropriate LDB.

3. Each global transaction's termination condition is recorded to ensure that only com­

mitted global transaction affect the MDMS. The global recovery manager informs the

global scheduler of the termination condition, at which time the GT is committed.

Four critical points must be logged on stable storage [Bar91]:

1. Termination conditions of all global transactions.

Recovery and Recoverability _______________________ l63

2. Each GST which has completed must be recorded and its termination condition must

be logged.

3. When a GST has been submitted to a LDB, it is recorded on an active list in_ the log

so that the global restart operation knows which GSTs may be outstanding.

4. When a GST completes, information may be returned in the form of a result.

This information must be saved so that if a failure occurs it is available and recovery

can be done.

6.6 Multidatabase Recovery Approaches

In this section we will take a look at how the core group handles the recovery question.

As recovery and global commitment go hand in hand one will often find the recovery issue

merging with the global commitment issue.

6.6.1 Barker & Ozsu's basic MDB model

Barker & Ozsu's transaction model is described in synopsis 4.22. Barker & Ozsu (Bar91]

propose a recovery protocol which does not require modification of DBMS code, but as­

sumes that all LDBs are willing to cooperate with the MDMS in the recovery process. By

cooperation is meant that each LDB recovers in conjunction with the MDMS. This model

assumes that all local database systems provide strict schedules.

• Multidatabase recovery from a LDB site failure:

When a local database system comes up after a failure, it typically is started, recovery

is performed and the users are permitted to access the database once more. Barker

& Ozsu propose a modified restart process (Bar91]:

1. Restart the DBMS.

2. Recover the database using information in the local log.

3. Open the database so that the MDMS has exclusive access.

4. Establish a handshake with the MDMS to notify it that the local site has recov­

ered. W'ait for a response. This type of facility is already provided by ORACLE1 ,

Sybase and INGRES2 •

5. The MDMS submits all GS Ts that were ready to commit at the time of failure.

This can be done because of the strictness requirement.

10RACLE is a registered trademark of Oracle Corporation
2 INGRES is a registered trademark of Relational Technology

Recovery and Recoverability _______________________ l64

Global
Transaction
Manager

Global
Restart

Figure 6.1: Barker & Ozsu's global recovery manager architecture

[Bar90, p98]

6. The MDMS notifies the database administrator that exclusive access is no longer

required.

7. The DBA opens the database to normal user access.

8. Terminate the local restart process.

During the restart process only the database administrator is permitted to access the

database until after the recovery has completed in step 2. The opening of the database

in step 3 does not require the database administrator to allow access to all possible

users.

• Multidatabase recovery from a MOMS site failure:

Figure 6.1 illustrates the architecture of the global recovery manager.

The global recovery manager requires a global stable storage. In the event of a sys­

tem failure, all the necessary information must be available to facilitate the recovery

Recovery and Recoverability _______________________ l65

process. If the MDMS fails, a global restart operation is issued which re-establishes

the status of outstanding global transactions and global subtransactions. Since the

MDMS does not manipulate data, it only has to ensure that all global transactions

and global subtransactions complete correctly [Bar90).

The following steps are performed in the case of a MDMS site failure:

1. The DBA restarts the MDMS, it continues to accept responses from active global

subtransactions but accepts no new global transactions.

2. The MDMS determines what happened during the failure. This involves the

submission of requests to each DBMS to determine the current status of global

subtransactions active at the time of failure. The active global subtransactions

can be in several states:

- the local site could also have failed in which case it must first be restarted

and then the status of all subtransactions at that site must be checked.

- the global subtransaction is still active at a site in which case it is allowed

to continue.

- the global subtransaction could have committed while the MDMS was down.

In this case, the completion is recorded in the global log.

- the global subtransaction could have aborted while the MDMS was down in

which case this fact must be recorded in the global log.

The subtransactions of committed global transactions are at least ready to com­

mit and are therefore handled as follows:

- if the global subtransaction was aborted at the local site it is resubmitted to

the local DBMS.

- if the global subtransaction committed, nothing is done.

- if the global subtransaction does not appear in the log the transaction is still

active so it is allowed to complete.

The subtransactions of aborted global transactions are handled as follows:

- if the global subtransaction was ready, communicate the abort.

- if the global subtransaction is active, when it becomes ready, abort it.

- if the global subtransaction is aborted, do nothing.

Barker [Bar90] proves that a failed MDMS can recover using the global restart process

as described above. Tung [Tun92) also presents a protocol which requires exclusive

access during recovery and also assumes that local sites use 2PL.

6.6.2 Pu's hierarchy of superdatabases

Pu [Pu88] states that since the local database systems are heterogeneous, it is necessary

that each element database maintains the undo/redo information locally. Since the super-

Recovery and Recoverability _______________________ l66

database stores only the global information, it relies on the element databases for local

recovery.

The superdatabase is the coordinator for the element databases during the commit

process so it must record the transaction on stable storage. Otherwise, a crash during the

uncertain period would hold resources in the element databases indefinitely.

Pu states that the best method for superdatabase recovery is logging. No before or after

images have to be saved so versions are not viable. The superdatabase log is separate from

the element database logs. For each transaction, the superdatabase log should have the

following information:

• Participant subtransactions.

• Parent superdatabase.

• Transaction state (prepared, committed, or aborted).

The superdatabase has to remember subtransactions because if the superdatabase crashes

the transaction does not necessarily abort. If the superdatabase restarts quickly enough, it

may still be able to allow the subtransactions of a transaction to commit. If a transaction

was in the active state when the superdatabase crashed, the superdatabase simply waits

for retransmission of the two-phase commit from the parent. If it is the root, it restarts

the two-phase commit. If a transaction was in the prepare state when the superdatabase

crashed, the superdatabase inquires from the parent about the outcome of the transaction.

If the transaction committed, the results are retransmitted to all the subtransactions.

6.6.3 Breitbart et aPs work

Breitbart et al's [Bre90a] approach to recovery prevents anomalies caused by global trans­

actions after failure by maintaining global locks at the multidatabase level in order to

coordinate execution of global transactions. An operation of a global transaction must first

obtain a lock on a data item before it can be submitted to the local database system.

Breitbart et al's model partitions the data into locally and globally updateable data. In

order to be able to recover from failures and leave the database in a consistent state, they

impose further restrictions. They require all transactions modifying globally updateable

transactions should not be allowed to read locally updateable data items. This restriction

is called the global consistency requirement. If a global transaction is read-only, then it may

read both sets of data. The algorithm also uses a commit graph to control the commit order

of global transactions.

6.6.4 Elmagarmid et ars work

The recovery aspect is not addressed il'l, Elmagarmid et al's model [Elm87].

Recovery and Recoverability _______________________ l67

6.6.5 Chen et al's distributed MDMS

Bukhres et al [Buk93) describe the implementation of the transaction management scheme

set out in [Che93). The implementation, InterBase, has five components that can fa_il: the

GTMs, the interfaces, the servers, local systems and the local site. Among them, only the

interfaces run continuously. An interface failure affects the local site on which it runs while

GTM and server failure affects only a single global transaction or global subtransaction

respectively. A local system crash may affect various global transactions but its autonomy

limits our ability to restore it to its precrash state. yve outline the crash recovery protocol

as follows:

• GTM crash-recovery protocol: If an interface detects that a GTM has failed and it has

not yet created a server for the global transaction which is coincident with that GTM,

it simply arranges the relative execution order by removing the transaction from the

order. If the server has already been created, it is informed by the interface of the

crash and it then aborts itself.

• Interface crash-recovery protocol: A GTM or a interface server detects failure of an

interface first and attempts to reactivate it. Each interface maintains a write-ahead

log that allows it to recover to a precrash state after being reactivated. If dupli­

cate interfaces have been started by various servers, one of them will terminate after

negotiation.

• Service crash-recovery protocol: If a GTM detects that a server has crashed, it requests

the interface to create a replacement. The interface complies if doing so does not

violate the execution order and if the crash is not due to the crash of the local system.

If the replacement cannot be created, the GTM may abort itself and other servers.

• Local system crash-recovery protocol: If a server detects the crash of its associated

local system, it attempts to reactivate it, otherwise it aborts the subtransaction for

which it was created and reports the problem to the interface and the GTM. The

GTM then tries to reactivate the local system and if that also fails it aborts the

global transaction and itself.

Chen et al do not address the issue of total site failure.

6.6.6 Kang & Keefe's decentralized GTMs

Kang & Keefe's [Kan93) GTMs are distributed so there is no MDMS site per se. In this

model we therefore only have to consider a local site failure. If the local site fails, the

procedure to recover a subtransaction at a participant site will be:

• if the subtransaction was active, do nothing because when the coordinator sends the

prepare message out it will get no response and the global transaction will be aborted.

Recovery and Recoverability _______________________ l68

• if the subtransaction was in the prepared to commit state, the local GTM must

redo the subtransaction from the information in the log. This could, of course cause

serializability problems.

The situation if the coordinator site fails is not addressed, but presumably the participants

would wait for the prepare message from the coordinator site and timeout after a while and

abort their subtransaction.

6.6. 7 Garcia-Molina et al's sagas

Garcia-Molina et al [Gar87] propose two options for dealing with failure - backward re­

covery (compensate for executed transactions) or forward recovery (execute the missing

transactions).

• Backward recovery: For this type of recovery the system needs compensating trans­

actions. If the GTM receives an abort-saga command, it initiates backward recovery.

The GTM will record the instruction to the log and then orders compensating trans­

actions to undo what the saga did.

It would also be able to recover from crashes. After a crash, the GTM would determine

the status of all sagas. If a saga has begin-saga and end-saga entries in the log, then

the saga completed and no further action is necessary. If there is a missing end-saga,

then the saga did not complete and will be aborted. The GTM will then attempt to

determine which transaction the saga belonged to and compensate all other sagas of

that global transaction in order to maintain consistency [Gar87].

• Forward recovery: For this type of recovery the system needs save-points as well

as a reliable copy of the code for all missing transactions. A save point is a place in a

saga where the system is forced to save the state of the running application program.

The save point to be used may be specified by the system or the application depending

on which aborted the saga. The save-points reduce the amount of work after a crash:

instead of trying to recover all outstanding transactions, the system only needs to

recover for transactions executed after the last save-point. In the case of a system

crash, the most recent save-point can be identified for each active saga.

After every crash, the recovery manager will abort the last executing transaction, and

start the saga at the point where this transaction had started.

6.6.8 Yoo & Kim's client server approach

Yoo and Kim [Yoo95] make use of a commit protocol with state changes as shown in the

state diagram in Figure 5.1. The actions that the MDBS_TM and the agent can take in

case of failure can be considered:

Recovery and Recoverability _______________________ l69

• Recovery from MDBS_TM site failures: The following cases are possible:

1. MDBS_TM site fails while in the initial state. This is before the MDBS_TM has

initiated the commit procedure. Therefore, it will write an abort-record in the log

upon recovery and send an global-abort message to all the participating LDBs.

2. MDBS_TM site fails while in the wait state. In this case, the MDBS_TM has

sent the prepare command. Upon recovery, it will restart the commit procedure

for this transaction from the beginning by sending the prepare message one more

time.

3. MDBS_TM site fails while in the commit or abort states. In this case, the

MDBS_TM will have informed the agents of its decision and terminated the

transaction. Thus, upon recovery, it does not need to do anything if all ac­

knowledgements have been received. Otherwise, the termination protocol for

MDBS_TM is started.

• Recovery from agent site failures: There are three alternatives:

1. An agent site fails while in the initial state. Upon recovery, the LDBMS rolls back

the effects of all the uncommitted transactions. Therefore, the subtransaction

has also aborted. At this time, the agent has no information about the subtrans­

action, and thus no action is required (in the case of a LDBMS failure, the agent

releases all the sub-level locks held in memory). This causes the MDBS_TM to

timeout, and eventually to invoke MDBS_TM's terminating procedures.

2. An agent site fails while in the local commit state. In this case, the LDBMS has

committed the subtransaction. Upon recovery, the agent at first initializes the

in-memory stub level locking table and then treats this failure as a timeout in

the local commit state.

3. An agent site fails while in the global commit or abort states. These states rep­

resent the termination conditions. So, upon recovery, the agent does not need to

take any special action.

There is no recovery required in this protocol for subtransaction failures since this pro­

tocol has no prepared state. Even one failure in local commit operation will assure that the

transaction is globally aborted, which results in a globally consistent state.

6.6.9 Other relevant research

6.6.9.1 Georgakopoulos's work

Full details of Georgakopoulos's recovery method can be found in [Geo90]. His approach

has the following distinguishing features:

• The LDBs only have to guarantee serializability and strictness.

Recovery and Recoverability _______________________ l 70

• Local and global transactions are allowed to read and update the same data items.

• The proposed MDMS recovery scheme takes advantage of the local DBMSs by mini­

mizing replication of recovery tasks.

• It is assumed that a transaction cannot be aborted by the local DBMS after all its

operations have been completed.

• The recovery process has exclusive use of the local DBMS during recovery from a site

failure.

It has been proved by Hwang & Srivastava that Georgakopoulos's algorithm, used in con­

junction with a multidatabase concurrency control algorithm, achieves global serializability

in the presence of failure [Hwa94].

6. 7 Analysis

The subject of crash recovery has not been given much attention in the literature but we

considered the various different approaches represented in our core group.

Barker & Ozsu [Bar91] assume an exclusive access period after failure, as does Geor­

gakopoulos [Geo91a]. Pu [Pu88] assumes that the root superdatabase and "leaves" coop­

erate in the recovery process. Breitbart et al [Bre90a] partition data in order to facilitate

database consistency in the face of failures. Chen et al [Che93] exploit the recovery pro­

cedures of the underlying local DBMSs without violating the local autonomy as is done in

varying degrees in Barker et al, Pu and Breitbart et al. Chen et al do not deal with the

question of a total site failure but no doubt the protocol could be extended to handle that

contingency. Kang & Keefe [Kan93] maintain global reliability by assuming cascadeless

schedules at the local sites and partitioning data as is done in Breitbart et al [Bre90a].

Garcia-Molina et al [Gar87] need either compensating transactions or a system of save­

points in the transactions in order to recover from failures. Yoo et aI's scheme [Yoo95]

also maintains maximal local autonomy and recovers by using the logs and the locking

information. It should be borne in mind that all transactions in this model are routed

via the stub so that there will be no problem after startup with local transactions seeing

inconsistent data because the stub will simply delay local transactions until the recovery

procedures have been run.

6.8 Summary

This chapter addressed two issues, recovery and recoverability. The research undertaken

has shown that efficient recovery is needed to ensure reliability of the multidatabase system

and that the recovery question is not trivial in multidatabase systems. The types of failures

which can occur in a multidatabase system have been discussed and the failures which need

Recovery and Recoverability ________________________ l 71

unique handling were identified. The various approaches to recovery were discussed and

illustrated by means of examples. The issue of recoverability was addressed by extending

the database model to include concepts relating to the recoverability of schedules in a

multidatabase. The various recovery procedures used by the core group were examined

and an analysis of how they measure up was given. Crash recovery would seem to be a

weak point in many multidatabase systems and research into better ways to effect recovery

without violating local autonomy still remains to be done.

Chapter 7

Appraisal

We can now evaluate and comment on the schemes presented in each of the core group

approaches. We identified the autonomy dimension as being the most important dimension

when we consider multidatabase architectures. In the first section of this chapter we will use

the quantification method as outlined in Section 2.1.4 to work out an autonomy violation for

each of the core group schemes. Thereafter, a multidatabase transaction processing model

will be proposed, together with the concurrency control, recovery and reliability scheme

which should be used for the transaction management scheme.

7.1 Autonomy Quantification

7.1.1 Barker & Ozsu's basic MDB model

Barker & Ozsu [Bar91] state that since their scheme emulates 2PC and forces no ordering

on the local DBMS, it affords greater autonomy, but it also states that each DBMS must

guarantee a strict level of service which according to Mullen et al [Mul92] definitely violates

local autonomy. According to Mullen et al [Mul92], the only assumption that should be

made about the local DBMSs is that they support the ACIDity properties of their trans­

actions. Although it may be unrealistic to expect a level of strictness in all local members

of multidatabase systems, we have seen that one must compromise somewhere in order

to implement concurrency transaction management and this method compromises on local

autonomy. The autonomy quantification for this scheme is:

Modification Dimension

System

Data

Design

Total value: 0.75

0.75

0

x

Reliability protocol requires strictness

Data remains uritouched

Not discussed

172

Appraisal ------------------------------173

Execution Dimension

Local Transaction 0

Global Transaction 0.5
Total value: 0.6124

Information Exchange Dimension

Execution
Data

Schema

Total value: 0.25

0.25

x
0

Execute as usual

Handshake required at commit point

Failures require MDMS to query DBMS
Not discussed

External Schema only

The overall autonomy violation is 1.0.

7.1.2 Pu's hierarchy of superdatabases

Pu [Pu88] does not make provision for failures and so is a scheme that perhaps has a lot

of scope for further research. Pu's superdatabase approach has four good characteristics

[Pu88]:

• Superdatabases guarantee the atomicity of global updates across the element databases.

This includes both reliability atomicity as well as concurrency atomicity.

• The design of superdatabases is adaptable to a variety of crash recovery methods and

concurrency control methods used in the element databases. This protocol assumes

that there must be agreement in order to commit but the protocol is independent of

local crash recovery procedures used to undo and redo local transactions at the local

databases.

• Databases built with superdatabases are extensible by construction. Element databases

can be added or removed without changing the superdatabase.

• Transactions local to element databases run independently of the superdatabase,

which intervenes only when needed for synchronization or recovery of supertrans­

actions across different element databases.

Pu 's transaction management protocol was implemented on a prototype called Harmony

at Columbia University [Pu91b]. Global deadlock detection and resolution are areas that

still have to be researched for this model and of course many multidata.base applications

may find the local autonomy violation unacceptable. The autonomy quantification for this

scheme is:

Modification Dimension

System

Data

Design

Total value: 0.75

Execution Dimension

0.75

0

x

Local Transaction 0.5

Global Transaction 0.5

Total value: 0.866

Information Exchange Dimension

Execution 0.5

Data X

Schema

Total value: 0.5

0

Inferred in discussion on reliability

Data remains untou~hed

Not discussed

Serial orderings sent to MDMS

Serial orderings sent to MDMS

MDMS queries DBMS for commit order

Not discussed

External Schema only

The overall autonomy violation is 1.25.

7.1.3 Breitbart et al's work

Breitbart et al's algorithm can be summarized as follows:

• Each local DBMS enforces use of strict 2PL.

• A global subtransaction which updates globally updateable data cannot read locally

updateable data.

• The GTM maintains locks for all globally updateable data.

• A commit graph is used to prevent cyclic commit executions.

• Breitbart et al's algorithm also achieves global serializability [Hwa94).

\iVe will consider the latest research by Breitbart et al, namely the server model discussed

by Georgakopoulos [Geo91a). This scheme ensures global database consistency and freedom

from global deadlocks. They assume that strict 2PL is used and that data items can be

partitioned. Breitbart et al claim that the restrictions imposed are administratively easy

to maintain. Breitbart et a.I feel that the payoff from the imposed restrictions is significant

enough to justify them.

This protocol guarantees global consistency in the face of failures and does not violate

local autonomy. The autonomy quantification for this scheme is:

Appraisal ----------------------------175

Modification Dimension

System

Data

Design

Total value: 0.9

Execution Dimension

0.75

0.5

x

Local Transaction 0

Global Transaction 0.5

Total value: 0.6124

Information Exchange Dimension

Execution

Data

Schema

Total value: 0

x
x
0

Inferred in discussion on reliability

Timesta.mp data item in each database

Not discussed

Execute as always

GST communicates with MOMS at commit

Not evident from literature

Not discussed

External Schema only

The overall autonomy violation is 1.0897.

7.1.4 Elmagarmid et al's work

Elmagarmid et al present a framework for designing concurrency control control protocols

using a top-down approach. This means that the global serialization order of global trans­

actions must be determined at the global level before their being submitted to the local

sites. He presents two mechanisms for ensuring global serialization at the local sites. The

first controls the submission of global subtransactions by using a stub process and the sec­

ond controls the execution of global subtransactions by modifying local schedulers [Elm87].

Elmagarmid's approach has the following advantages:

• No global deadlock.

• Simple global control.

• No inter-site communication.

• Fewer global transactions are aborted.

The autonomy quantification for the stub approach is:

Modification Dimension

System 0.75

Data 0.5

Design x
Total value: 0.9

Execution Dimension

Local Transaction 0

Global Transaction 0.5

Total value: 0.6124

Information Exchange Dimension

Execution

Data

Schema

Total value: 0.25

0.25

x
x

2PL required

Not discussed

Execute as usual

Handshake required at commit point

Failures require MOMS to query DBMS

Not discussed

Not discussed

The overall autonomy violation in the stub approach is 1.116.

Modification of local scheduler approach:

Modification Dimension

System

Data

Design

Total value: 1.118

Execution Dimension

1

0.5

x

Local Transaction 0.5

Global Transaction 0.5

Total value: 0.866

Information Exchange Dimension

Execution

Data

Schema

Total value: 1

1

x
x

Local DBMS modified

Order stamp added

Not discussed

Coordination required with MOMS

Communication with MOMS at commit time

Queries MOMS for global serialization

order

Not discussed

Not discussed

The overall autonomy violation in the modification of the

local scheduler approach is 1.73.

This model was extended by Chen et al [Che93] where the reliability and recovery aspects

of the model were addressed.

7.1.5 Chen et al's distributed MDMS

This scheme has been implemented in InterBase and has the minimum autonomy violation

of all the transaction management schemes in our core group [Che93]. The attractive aspects

of this scheme are that it makes no assumptions about the characteristics of the underlying

local database systems but rather exploits those characteristics in order to achieve global

database consistency. The autonomy quantification for this scheme is:

Modification Dimension

System

Data

Design

Total value: 0.559

Execution Dimension

0.25

0.5

x

Local Transaction 0

Global Transaction 0.5

Total value: 0.6124

Information Exchange Dimension

Execution

Data

Schema

Total value: 0

0

x
0

Software above the DBMS

Ticket added

Not discussed

Execute as always

GST communicates with MDMS at commit

No exchange

Not discussed

External Schema only

The overall autonomy violation is 0.829.

This approach will be discussed in more detail in section 7.2.

7.1.6 Kang & Keefe's distributed GTMs

Kang & Keefe's scheme implements a distributed GTM [Kan93] which is attractive because

of the fault tolerance thereof but unfortunately it partitions data items which once again

violates local autonomy. As a whole this scheme does not score badly on the autonomy

stakes which makes it an attractive alterative to Chen et aI's scheme. The autonomy

quantification for this scheme is:

Appraisal ----------------------------178

Modification Dimension

System

Data

Design

Total value: 0.9

0.75

0.5

x

Execution Dimension

Local Transaction 0

Global Transaction 0

Total value: 0

Information Exchange Dimension

Execution 0.25

Data X

Schema x
Total value: 0.25

Reliability protocol requires

cascadeless schedules

Tickets and timestamp required

Not discussed

Execute as usual

Execute as usual

Queries LTM about transaction failures

Not discussed

Not discussed

The overall autonomy violation is 0.93.

7.1.7 Garcia-Molina & Salem's sagas

Garcia Molina & Salem's approach would have limited application in multidatabase envi­

ronments because of the possible difficulty of breaking up tra11sactions into interleavable

pieces. It is also not always possible to design compensating transactions which this model

requires. The autonomy quantification for this scheme is:

Modification Dimension

System

Data

Design

Total value: 0.9

0.75

0.5

x

Execution Dimension

Local Transaction 0

Global Transaction 0

Total value: 0

Saga daemon required &
savepoint abilities required

Savepoints and log information required

to be written on the database

Not discussed

Execute as usual

Execute as usual

Information Exchange Dimension

Execution

Data

Schema

Total value: 0.25

0.25

x
x

Queries LTM about transaction failures

if the facility is available

Not discussed

Not discussed

The overall autonomy violation is 0.93.

7.1.8 Yoo & Kim's client server approach

Yoo & Kim do not discuss the global concurrency control protocol their scheme would use

but rather concentrate on a reliable global commit protocol. According to Yoo & Kim

[Yoo95), the commit protocol they propose has the following characteristics:

• It preserves execution autonomy because the local DBMS can unilaterally abort any

global subtransaction. It preserves communication autonomy because it doesn't need

to communicate its control information to the MDMS. It preserves design autonomy

because no existing DBMS code is changed.

• There is no restriction on transaction application which is assumed in previous work

[Tan93, Vei92).

• The data is not divided up into locally and globally updateable groups as is done by

Breitbart et al [Bre92b). Also, data dependency between subtransaction of a global

transaction does not incur any problem in this protocol.

• The protocol is failure resistant.

The autonomy quantification for this scheme is:

Modification Dimension

System

Data

Design

Total value: 1.118

Execution Dimension

1

0.5

x

Local Transaction 0.75

Global Transaction 0.5

Total value: 0.901

Changes are made to DBMS procedure calls

Stub-level locks

Not discussed

Update transactions submitted via the stub

Agent communicates with MDMS at commit

Appraisal ----------------------------180

Information Exchange Dimension

Execution

Data

Schema

Total value: 0

0

x
x

No exchange

Not discussed

Not discussed

The overall autonomy violation is 1.435.

7 .2 A M ultidatabase Transaction Processing Model

After due consideration of the research done in this field, we have decided on the distributed

GTM model presented in [Che93] (see section 4.2.5). The reasons for this are the following:

• The GTM is distributed.

• The model is failure resistant.

• The use of the interface allows us considerable leeway in how we handle global trans­

actions. The interface can either send transaction operations to the local DBMS an

operation at a time or send through predetermined service requests to the DBMSs at

the sites.

• A strong recommendation is that this scheme has been successfully implemented in

the InterBase system at Purdue University.

• No assumptions are made about the local sites involved in the multidatabase system.

Heterogeneity of local database systems is accommodated easily by the model.

• Local database system autonomy is maintained.

• New database systems are very easily added to and removed from the multidatabase

system.

The architectural model is illustrated in Figure 4.5. The GTM in this model does the

following [Buk93]:

1. coordinates the concurrent execution of global transactions;

2. interprets the execution of a global transaction;

3. manages the dataflow within a global transaction;

4. ensures the reliable execution of a global transaction;

5. recovers from errors.

Appraisal ----------------------------181

Each MDMS transaction is parsed into a set of subtransactions, each of which consists

of operations or a service request to an individual LDB. The scheduling order of these

subtransactions within the MDMS transaction is determined before the execution of the

transaction.

Before a transaction is executed, it requests all the interfaces at the sites which are

involved to arrange the scheduling order of its subtransactions at the local site in order to

prevent any inconsistencies its execution may cause.

The MDMS interface only communicates with GTM's of the global transactions that

have a subtransaction at its site and can run independently of other GTM's.

Within the framework of this approach, we need to make some assumptions in order to

define a boundary within which we can operate. The assumptions about the GTM and the

transaction model will be discussed in the following two sections. The correctness criterion

which we propose to use will be outlined in section 7.2.4.

7.2.1 Assumptions about the global transaction manager

The following assumptions about the GTM can be made without a loss of generality and

without affecting local site autonomy [Ras93b]:

• We assume that the GTM is located at the site at which the global transaction is

submitted, and controls the execution of all global transactions submitted at that

site. Users access data at remote sites by executing global transactions which make

calls to the GTM.

• For each global transaction executed, the GTM will decide which local site or sites

should be accessed in order to execute the transaction.

• At each such site, there is a server process (one per site) and the GTM submits the

subtransactions to the server if scheduling the subtransaction for execution will not

cause database consistency to be violated.

• The server process receives execution requests for subtransactions of global transac­

tions to be executed at site LD Bi, determines their scheduling order, creates interface

processes to execute them in the pre-determined scheduling order, and recovers them

from errors.

• The local DBMSs do not distinguish between local transactions and global subtrans­

actions executing at its site.

• No assumptions are made about the LDBs or their interfaces so that local autonomy

is retained.

• The MDMS schedules subtransactions and not operations, as the basic unit of execu­

tion. The local DBMS executes subtransactions as local transactions

AppraisaJ ____________________________ 182

' • We also assume that a mechanism exists for an interface to exist between the lo-

cal DBMS and the local server so that operations submitted by the server will be

acknowledged by the local DBMS to the server.

• Each local DBMS must also follow concurrency control protocols which ensure conflict

serializability. Conflict serializability will be referred to henceforth as serializability.

Also, local and global transactions, when executed in isolation, preserve database

consistency.

7.2.2 Assumptions about the transaction model

Implicit in this architecture and computational model are assumptions about the system

architecture and how users interact with the MDMS. The following assumptions have been

made [Bar91):

• Local autonomy-The individual DBMSs are assumed to be fully autonomous. They

therefore cannot be modified in any way nor can they communicate with each other.

[Bar91) also says that autonomy implies that each transaction will execute to termi­

nation. In the event of any failure, each DBMS is able to fully recover autonomously

and correctly without user input.

• Heterogeneity- No assumptions are made about heterogeneity. The user interfaces,

data models and transaction management policies of each DBMS may be different.

In this dissertation we are concentrating on autonomy and not on heterogeneity.

• Subtransaction decomposition - The model assumes that a number of subtransactions

execute on various databases on behalf of a global transaction. We will not address

the decomposition of global transactions into subtransactions but will assume that

some sort of mechanism exists to do these decompositions effectively.

• Data replication - Data replication across member databases is not considered in

this model.

• Multiple subtransactions - A global transaction cannot submit multiple global sub­

transactions to a single DBMS.

• Failures - Media failures that cause part or all of the local database's stable storage

to be lost are not considered because the MDMS cannot control the mechanisms

employed by the local DBMSs. Therefore, each DBMS must guarantee reliability in

the event of such problems.

• Network- This model assumes that the underlying network is reliable and that error

correction will be handled by the underlying network protocol. It also assumes that

network failures like partitioning will be handled by the network layer and that issue

was not addressed in this dissertation because it is a research field all of its own.

AppraisaJ ____________________________ 183

7.2.3 Multidatabase serializability

We feel that serializability is not appropriate in multidatabase systems as a correctness

criteria because it is intended to model transactions contained in a single history and b~cause

it limits concurrency unacceptably. A new correctness criteria should accommodate the

multiple histories in a multidatabase environment. This correctness criteria should capture

both the local histories and the history of global transactions which are not completely

contained at a single local database system. The definitions presented in this section define

such a correctness criterion.

In Chapter 3 we discussed the concept of conflicting operations and conflicting transac­

tions. We can extend this concept to conflicting global subtransactions:

Definition 7.1 - Conflicting global subtransaction

A global subtransaction GST/ directly conflicts with a distinct global subtrans­

action GSTt if GST/""" GSTt is in any local schedule. A global subtransaction

GST/ indirectly conflicts with another global subtransaction GSTi in a local

schedule if there exist transactions Li, Li, , Ln in the local schedule such that

G ST/ """ Li """ """ Ln """ G STt.

[Tan93) 0

Definition 3.11 defines a serial schedule which is at the core of serializability theory. In

order to propose a correctness criterion for multidatabases, the next definition defines the

concept of a M-Serial history:

Definition 7 .2 - M-Serial history

A multidatabase history is M-Serial iff:

1. every LH E C1i is conflict serializable, and

2. given a GH = {GSTf, ... ,GST;1' }, if 3p E GSTik,3q E GSTJ such that

p -<-aH q, then Vk, Vr E GSTik, Vs E GSTJ, r -<-aH s .

[Bar90)

0

The first condition states that local histories are conflict serializable. It is not necessary to

require that local histories be serial since we assume that e.;_ch local transaction manager

can serialize submitted transactions. The second condition states that if an operation of a

global transaction precedes an operation of another global transaction in one local history,

then all operations of the first global transaction must precede any operation of the second

in all local histories [Bar90].

Appraisal ----------------------------184

Definition 7.3 - Equivalence of histories (=.)

Two histories are conflict equivalent if they are defined over the same set of

transactions and they order conflicting operations of nonaborted transactions il!

the same way .

[Bar90] 0

The notion of M-Conflicting transactions is also necessary in order to define M-Serializa­

bility:

Definition 7.4 - M-Conflict

A global transaction GT; is said to be in multidatabase conflict (M-Conflict)

with another global transaction GTi if any global subtransaction of GT; conflicts

directly or indirectly with any global subtransaction of GTi in any local schedule

at any LDB participating in the multidatabase service. The M-Conflict relation

is denoted by: GTi ~ GT; and the transitive closure is denoted by GTi ~ GT; .

[Tan93] 0

Definition 7.5 - Locally and globally complete histories

A local history is locally complete if all transactions at the LDB have committed

or aborted.

A local history is globally complete if all transactions executing at the LDB have

either committed or aborted and if a subtransaction of a globally committed

transaction has aborted, a redo transaction for that subtransaction has commit­

ted.

[Meh92c] 0

Definition 7.6 - M-Serializable (M SR)

If GHa is a globally complete history at LDBa, and GSTi is a global subtrans­

action in GHa, the GHa is M-serializable iff for all GHi, GTi f,t GTi .

A M H is M-Serializable iff it is equivalent to a M-Serial history.

[Tan93] 0

The concepts defined above will now be illustrated by means of the following example.

Example 7.1 : Application of the transaction model to the pharmacy example

Lets go back once again to our pharmacy example in Example 4.2. We have two

global transactions as follows:

These generate the following subtransactions:

GST1 • r1(d)· r1(e)· w1(d)· c1
l'l 11 11 11

GST 2
• w2 (d) · c2

1 . 1 I 1

GST1 • r 1(d)· w1(d)· c1
2 . 2 ' 2 ' 2

GST 2 • r2(u)· w2(s)· c2
2 . 2 I 2 I 2

We also have local transactions into the DBMSs as follows:

LT1 · f 1 (e)"w1(e)· w1(d)· ct. 1 • 1 ' 1 I 1 ' 11

LT2 • f 2(u)· w2(u)· c2 • 1 . 1 I 1 I l 1

We will use the A notation, for example f, to distinguish local transactions from

global subtransactions in this discussion. A possible local history for each LDB will

be generated.

LH1 - r1(d)· r1(e)· w1(d)· f 1(e)· r1(d)· w1(e)· w1(d)· w1(d)· ct. ct. c1
- 1 I 1 ' 1 ' 1 ' 2 I 1 I 1 I 2 I 11 21 1

LH2 - r2 (u)· w2(s)· w2(s)· r2(u)· w2(u)· c2 • c2 · c2 • - 2 I 2 I 1 I 1 I 1 I 11 11 21

The following global transaction histories can be derived from these local histo­

ries:

GSH1 · r1(d)· r 1(e)· w1(d)· r1(d)· w1(d)· cl. cl. · 1 1 I 1 1 1 2 1 2 1 11 21

GSH2 • r2 (s)· w2(s)· w2(s)· c2• c2 • . 2 I 2 I 1 I 11 21

Appraisal ----------------------------186

The global history is given by GH = { GSH1 U GSH 2 }. The multidatabase

history is given by M H = ({LH1, LH2}, GH}.

We can see that both local histories are serializable. The multidatabase history

is not serializable since the global transaction order at each DBMS is inconsistent.

If we have a look at the G H tuple:

GH = {r1(d)· r1(e)· w1(d)· r1(d)· w1(d)· cl. cl.} U {r2(s)· w2(s)· w2(s)· c2 • c2·}} 1 ' 1 ' 1 ' 2 ' 2 ' 1' 2, 2 ' 2 ' 1 ' l l 2, ,

we can see that:

rf(d) -<GH wHd) at LDB1 and w~(s) -<GH wHs) at LDB2

which implies that:

GST{ -<GH GST} and GSTi -<GH GST{

These two serialization orders are contradictory - DBM S1 specifies that global

transaction GT1 precedes GT2 while DBMS2 specifies the reverse. Thus we can

see that although the local histories are serializable, the execution order specified in

G H is not, so the MD B history is not M-serializable.

[Bar90] 0

This example illustrates how difficult it is to ensure correct serialization when GT's and

local transactions are present. We will extend this model to recoverability of global histories

in Chapter 6.

According to Breitbart et al [Bre92d], global serializability requires that schedules at

each local site be m-serializable. This has been proved by Bradshaw [Bra93]. The key prob­

lem in guaranteeing m-serializability is that local schedules may generate indirect conflicts

between global transactions that otherwise would not conflict. Indirect conflicts are hidden

from the GTM and may lead to cycles in the global schedule [Tan93].

Various algorithms have been proposed to deal with indirect conflicts. Some of the

algorithms assume a failure free environment while others assume that if there were to be

a failure, there would be some form of recovery. Some of the algorithms that do not make

provision for failure are the forced conflict and ticket schemes proposed by Georgakopoulos

et al [Geo91b], and the site-locking algorithm proposed by Alonso et al [Alo87] and the site­

graph testing algorithm by Breit hart et al [Bre88] as well as the altruistic locking scheme

by Salem et al [Sal89].

These algorithms do not guarantee atomicity of distributed global transactions in the

presence of failures and will only work if the local sites support some sort of atomic commit

protocol. We cannot, however, expect the local site to provide or export its prepare-to­

commit operation in order that the GTM may participate in the two phase commit protocol

[Tan93].

The algorithm that our model will use will be outlined in the following section.

7.2.4 Global concurrency control

We have reviewed many different concurrency control schemes and many of them suffer

from one or more of the following problems:

• they expect specific conditions (e.g. rigorousness of the local database schedules) to

be satisfied in the local database systems (e.g. Barker's scheme - Synopsis 4.22),

• they are not failure resilient (e.g. Gligor et al, Georgakopoulos and Breit hart et al's

schemes - see Synopses 4.1, 4.6, 4.2),

• they violate local database autonomy (e.g. Zhang et al's scheme - Synopsis 4.14),

• they allow local transactions to only update a portion of the available data items (e.g.

Breitbart et aI's scheme - Synopsis 4.10),

• they require 2PL at the local site (e.g. Wolski et aI's scheme - Synopsis 4.4),

• they generate unacceptably high overhead (e.g. Yun et aI's scheme - Synopsis 4.13),

• they expect users to specify correct interleavings of subtransaction operations. (e.g.

Du et aI's scheme - Synopsis 4.18),

• they could result in global deadlock (e.g. Mehrotra et aI's RS-correctness scheme -

Synopsis 4.21),

• they relax the atomicity requirement of transactions (e.g. Levy et aI's scheme -

Synopsis 4.31).

We propose to use the customized global concurrency control algorithm as outlined in

[Che93]. This algorithm utilizes the semantics of global transactions and the concurrency

control strategies of the underlying LDBs to customize a global concurrency control algo­

rithm.

The algorithm combines two-phase-locking and linear ordering of resource locks to per­

mit a deadlock free, totally distributed and correct synchronization of concurrent scheduling

order of requests from global transactions.

The execution of the global transaction is performed in two phases.

• In the first phase, the relative scheduling order of a global transaction with respect to

other global transactions at each site is determined.

• In the second phase, the global transaction is executed in the relative scheduling order

as determined in the first phase.

The relative scheduling order (RSO) is determined differently on different LDBs by

accommodating and making use of their differences. For example [Che93]:

1. If a global transaction consists of only read-only applications, or MDMS consistency

is not required, the RSO is interpreted as No-Order.

2. If the underlying LDB supports two-phase commitment, the RSO can be determined

by the order of the prepare-to-commit states for subtransactions on the LDB.

3. If local conflicts can be forced in the LDB, the RSO coincides with the order of

obtaining the ticket at the local site and requires each global transaction to access the

ticket at the local site - thus creating direct conflicts.

4. If there is no value dependency among subtransactions of a global transaction, the

RSO can be determined by the commit order of subtransactions on LDBs.

5. If the underlying LDB is rigorous, the RSO can be determined by the commit order

of subtransactions at the LDB.

6. If the underlying LDB supports both two-phase-locking and two-phase-commit, and

timestamp or commit order is used as the ordering strategy, the RSO can be deter­

mined by the prepare-to-commit order.

This algorithm therefore guarantees that the RSO of global transactions on different

sites is consistent with their pre-determined relative scheduling order, ensuring that sites

have the same RSO at all sites.

It has been proved by Breitbart et al [Bre88] that when global transactions have the

same RSO at all sites, global serializability is preserved in the presence of local transactions.

Bukhres et al [Buk93] state that this algorithm preserves quasi-serializability [Du89] and

global serializability if underlying global systems are rigorous or if local conflicts can be

forced at all local systems.

Barker [Bar90] has proved that quasi-serializability is equivalent to m-serializability and

therefore the algorithm satisfies our requirements for MDMS correctness and consistency.

Example 7.2 : Application of the GCC algorithm

Lets go back once again to our pharmacy example in Example 4.2. Using the trans­

action model introduced in Chapter 3 and extended here, let us refer to the Tonic

pharmacy as LDB1 , the Medilots pharmacy as LDB2 and the Harbour pharmacy

Appraisal ----------------------------189

as LD B 3 . We will assume that LD B 1 allows users to create relations and update

data; LDB2 is rigorous; and LDB3 supports two-phase commit.

In order to maintain global serializability, the MOMS server J1 associated with

LDB3 uses the order of prepare-to-commit states of subtransactions on LDB3 as

the RSO of the subtransactions. MOMS server h associated with LDB2 uses the

commit order of subtransactions on LDB2 as the RSO of subtransactions, while

MOMS server I 1 associated with LDB1 creates a relation with some data item

as the ticket and uses the order of update operations on the ticket as the RSO of

subtransactions.

If all global transactions are read-only, the MOMS administrator can change the

strategy adopted by the servers to No-Order. In that case, all servers will allow

subtransactions to execute in random order.

[Che93]

The customization of the GCC strategy is determined by the semantics of transactions

as well as the transaction management strategy employed by the local database system

[Che93].

7.2.5 Reliability in a multidatabase environment

As discussed in Chapter 5, the crux of the matter with respect to reliability is that an

effective global commit protocol be used. If the local database systems all provide a prepare­

to-commit state, this is trivial but otherwise, a global commit protocol has to be improvised.

The commit protocols discussed in Chapter 5 employ one of the following devices:

• they violate local autonomy (eg. Barker & Ozsu, Georgakopoulos, Kim et al, Muth

& Rakow, Perrizo et al and Soparkar et al [Bar91, Geo91a, Kim93, Mut91, Per91,

Sop91b]), or

• they limit the types of transactions allowed, or the data accessed (eg. Breitbart et al,

Levy et al, Du et al and Wolski et al [Bre92b, Lev91a, Vei92, Wol90]), or

• they assume that a subtransaction abort due to commit operation failure cannot occur

(eg. Barker & Ozsu, Georgakopoulos and Kim et al [Bar91, Geo91a, Kim93]), or

• they assume that if an MDMS site fails during recovery of a local database system

then the LDBMS blocks until the MDMS site is recovered (eg. Barker & Ozsu and

Kim et al [Bar91, Kim93]), or

• they use a new transaction/ correctness model. Some models weaken transaction atom­

icity (eg. Mehrotra et al [Meh92b]).

In Chen et al's model [Che93), the server provides the necessary synchronization but

this means that Chen et al assume that transactions can be split up into separate steps1 ,

which may not always be possible. Any global commit protocol which does not allow the

local database to commit at will, essentially violates local autonomy and Chen et al's model

does this to a lesser degree than other approaches discussed in Chapter 5.

We recommend the global commitment method outlined by Chen et al [Che93] as it was

developed specifically for the architectural model we decided upon in the previous section.

7.2.6 Recovery in a multidatabase environment

In the recovery procedures cited in Chapter 6, we can note the following:

• Some assume something about the local database schedules (eg. Georgakopoulos et

al, Kang & Keefe and Hwang et al assume that the local databases use 2PL or strict

2PL [Tun92, Kan93, Hwa94]).

• Some restrict access to data by local and global transactions (eg. Breit hart et al and

Hwang et al [Bre92d, Hwa94]).

• Some expect to have exclusive access to the local database after a site failure (eg.

Barker et al and Georgakopoulos [Bar90, Geo90]).

• Some violate the autonomy of the local database systems (eg. Pu and Yoo & Kim

[Pu88, Y 0095]).

• Some need compensatir1g transactions (eg. Garcia-Molina et al [Gar87]).

• Some do not make provision for site failures (eg. Chen et al [Che93]).

Chen et al's recovery procedure will work for the transaction model proposed in the

previous chapter. It has been implemented in the InterBase system at Purdue University.

The architecture of the system has been outlined in section 7.2.

The reason that this crash recovery method has been decided upon is because it does

not violate the autonomy of the local database systems and it does not require any type

of schedule or locking protocol from the underlying database system. The exact recovery

protocol has been described in section 6.6.5.

7.2.6.1 Failure and how Chen et aI's recovery protocol succeeds

Transaction failures : Transactions will not fail globally because the serialization order

is determined in advance and therefore no problem can occur. Global transactions

will not fail locally because deadlock cannot occur with the particular concurrency

control algorithm we use and conflicts also cannot occur.

1execution step, confirm step and undo step

Failures at local sites : There are three components at the local site: the interface, one

or more servers and the local DBMS. We have outlined the crash recovery protocol

but we need to have a look at whether MDB consistency is maintained in the face of

failures.

If the interface fails and we say for argument sake that there are three servers presently

active for three subtransactions of a global transaction which is supported by a GTM

at another site. If the interface fails and the GTM manages to reactivate it, it will

restore itself to its precrash state and the global consistency will not be compromised.

If the GTM fails to reactivate the interface, it will abort the subtransactions and

itself and once again the global consistency will be maintained. So whichever way it

happens, either all subtransactions will be aborted or all will be committed.

If a server fails and the crash-recovery protocol is followed, then once again either all

subtransactions will commit or all will abort.

MDMS site failures : There is no one MDMS site in Chen's model as the GTM is

distributed. However, if one of the GTMs fail, it will be detected by the interface and

if the interface fails to reactivate it, it will abort all subtransactions at its local site

and also notify the other interfaces at the other sites so all subtransactions can be

aborted. Once again, consistency is maintained. If some of the subtransactions have

already committed, compensate transactions can be submitted to undo them.

7.2.6.2 Comment

Having evaluated these research efforts, one comes to the conclusion that any recovery

scheme will have to violate autonomy in order to be effective [Hwa94]. Chen et aI's scheme

does not seem to violate autonomy but also does not address site failures. If Chen et

al's scheme were to be extended to handle site failures I have no doubt that they would

also require some sort of exclusive period in order to recover global transactions without

interference from local transactions. Yoo et al's scheme does not require an exclusive access
• period because he expects all transactions to be routed via the local stub which is also a

violation of local autonomy. The recovery aspect of multidatabase transaction management

still needs a great deal of work as the solutions proposed in the literature are still fairly

unsophisticated.

7.3 Summary

In this chapter we evaluated the transaction management schemes in the core group and

outlined the relative strengths and weaknesses of each scheme. We then proposed a transac­

tion processing model for multidatabase systems which scores well in the autonomy violation

stakes, is reliable, and satisfies the m-serializability correctness criterion. The various as­

pects of transaction management which we studied were briefly discussed and the various

shortcomings and strengths of the work done by different researchers were also outlined.

The proposed transaction processing model was chosen on the basis of the optimal proper­

ties of transaction management identified during the course of this research. The following

chapter will summarize the work done in, and the conclusions reached as a result of, this

research.

Chapter 8

Conclusion

8.1 Method of research

I set out to study transaction management in multidatabase systems. In order to define the

scope of my research I first attempted to understand the parameters which distinguish a

multidatabase from a distributed database system. I found that there were basically three

classification methods, one which classified multidatabases according to architectural differ­

ences [Bel92], another which classified them according to degree of autonomy, heterogeneity

and distribution [Ozs90] and yet another which classified them according to how tightly

the participating local database were coupled [Bri92]. I decided to integrate the methods

in order to arrive at a single classification method which incorporates all these aspects of

multidatabase implementations which is presented in Chapter 2. In the same chapter the

autonomy dimension was also identified as the one which had the greatest relevance when

considering various multidatabase transaction management algorithms. A quantification

method was introduced in order to measure this important dimension.

I then studied the efforts of several researchers into transaction management in mul­

tidatabase systems and found that there were many totally divergent approaches each of

which had different weaknesses and strengths. This led to the decision to limit my research

to a core group of eight different research groups and to study these schemes in detail. I

have given an overview of the essential features of each of these schemes in Chapter 4. The

concurrency control mechanisms for multidatabases is a widely researched field and I de­

cided to give a fairly comprehensive overview of the work done in that area. Although the

field of global deadlock in multi databases lies on the fringe of the transaction management

research area, I decided not to discuss it in great detail but have given a summary of the

latest research for the sake of completeness.

Not as much research has been done thus far into the fields of reliability and recov­

erability in multidatabase systems. In order to achieve reliability, one has to guarantee

transaction atomicity and have an efficient crash recovery protocol. Transaction atomicity

is achieved by implementation of a global commit protocol. This is not a trivial task in

193

II Researcher I Reference I Method II
Bell & Grimson [Bel92) Architectural differences

Ozsu & Barker [Ozs90] Degree of autonomy

heterogeneity &
distribution

Bright et al [Bri92) How tightly the local

databases are coupled

Table 8.1: Classification Schemes Studied

multidatabase systems. Chapter 5 addresses the transaction atomicity aspect and examines

research into global commit protocols. The crash recovery aspect is discussed in Chapter 6

where recent research into crash recovery protocols is summarized.

Recoverability goes hand in hand with reliability because if recoverability requirements

are satisfied then the correctness of the multidatabase can be guaranteed in the case of fail­

ure. Chapter 6 takes a look at the types of failure which can be expected in a multidatabase

and then extends the transaction model which was introduced in Chapter 3 to incorporate

recoverability aspects.

8.2 Issues Studied and Achievements

In tables 8.1 & 8.2, the work in this thesis is summarized.

The classification schemes shown in table 8.1 were studied and were merged to form a

single taxonomy of multidatabase systems which was presented in Chapter 2.

The members of the transaction management core group shown in table 8.2 were chosen

as the subject of this research because they serve as a good representative sample of present

research in the field.

The table shows that there is a definite move towards utilizing the client server approach

in multidatabase systems. Most of the latest research seems to be moving in that direction.

It is also interesting to note that none of the schemes manage to maintain full autonomy

but the scheme by Chen et al violates autonomy to the least extent. We can also note

that most of the schemes use serializability as a correctness criterion in spite of the rigidity

of that approach but there is a move towards m-serializability and the equivalent quasi­

serializability in the latest research.

Each scheme in the core group has a different approach with respect to global concur­

rency control utilized with a widely divergent group of schemes being used. The global

commit protocols chosen, on the other hand mostly seem to lean towards the two-phase

commit protocol. The scheme either assumes that the local database provides support for

it, or they use their local server to emulate a two-phase commit protocol. A notable excep­

tion here is the scheme by Chen et al which uses a semantic based commit protocol. The

Researcher Reference Description Autonomy Correctness Deadlock
Violation Criterion Handling

Barker& [Barker 1990, Basic MOB 1.0 M-Serializability Prevention
Ozsu Ozsu 1991] model Semi-autonomous

Pu [Pu 1988] Hierarchy 1.25 Serializability Not
of Non-autonomous addressed
superdata-
bases

Breitbart et [Breitbart 1988, Replicated Serializability Global site
al Breitbart 1986, data graph

Breitbart 1985, model
Breitbart 1987]

[Breitbart 1995] Server 1.0897 Serializability Global wait-
model Semi-autonomous for graph

Elmagarmid [Elmagar 1988, Stub 1.116I1.73 Quasi- Deadlock
eta/ Elmagar 1987, approach Semi-autonomous serializability free

Elmagar 1986,
Du 1989,
Elmagar 1990a]

Chen eta/ [Chen 1993] Distributed 0.829 Quasi- Deadlock
MOMS Semi-autonomous serial izab iii ty free

Kang& [Kang 1993] Distributed 0.93 Serializability Deadlock
Keefe GTMs Semi-autonomous free

Garcia- [Garcia 1987] Sagas 0.93 Not applicable Not
Molina et al Semi-autonomous addressed

Yoo&Kim [Yoo 1995] Client 1.435 Serializability Detect &
server Semi-autonomous Resolve
model

Table 8.2: Transaction Management Schemes Studied

Global Global
Concurrency Commit
Control Protocol

Serializability Emulate 2PC
graphs

Violation of 2PC
local autonomy

Site Graph, 2PC
Rigorous
schedules

Optimistic 2PC between
ticket GTMand
method server

Serialization Not
events applicable

Linear ordering Semantic
of resources Based

Commit

Distributed Emulated
strict timestamp 2PC
ordering

No scheme Not
needed applicable

Not addressed Reliable 2PC

Crash
Recovery

Retry &
exclusive
access period

Redo

Done by local
server

Not applicable

Done by local
interface -
compensate

Redo

Compensate or
redo

Handled by
'local agent

g
:::s
Q.
i:::
r:n g·

1--'
co
CTI

Conclusion -----------------------------196

crash recovery protocols used by the core group mostly violate local autonomy, especially

after restart of a failed site. Some also use the compensation method to undo the effects of

committed transactions and this is less than ideal because local transactions may see data

values they are not meant to see.

In Chapter 7 of this dissertation, each of the core groups' transaction management

schemes was evaluated according to the autonomy quantification method. The scheme

which was identified as the best possible scheme from the autonomy point of view was the

scheme presented by Chen et al [Che93]. Barker & Ozsu's m-serializability was chosen as the

notion of correctness for our multidatabase system and the transaction processing model

was extended by incorporating the work of Tang [Tan93], Mehrotra et al [Meh92c] and

Barker [Bar90] in order to formalize the correctness criterion for our chosen multidatabase

system.

8.3 Future Research

During the course of my research I gained a good understanding of multidatabase systems,

various architectures, transaction management schemes and above all the unique problems

faced by the multi database system designer.

Several potential future areas for research exist in this relatively new field. The areas of

global concurrency control, multidatabase architectures, and global commitment have been

fairly well researched but the areas of fault tolerance and safety of multidatabase systems

have not been researched to that extent. Fault tolerance improves reliability of a system

by replicating service providers so that the system can continue to function and produce

correct results even if some components fail. The safety aspect would have to examine the

safety of each local database which would now be accessible to many more users which the

database system does not have the power to authorize. Mechanisms should be put into

place which provide access control to the multidatabase system as a whole and to control

access to possibly sensitive data by global users. The probability of security violations

increases when a database system joins a multidatabase structure and these issues need to

be addressed in the light of the current increase in computer crime.

In the light of technological advances which will make multidatabases more and more

common in organizations, the need for further research is indubitable.

Appendix A

Glossary

2LSR - Two-Level-Serializable : A schedule is 2LSR if each DBMS generates seri­

alizable schedules and the restriction of the schedule to only global transactions is

serializable.

2PC - Two Phase Commit : A global commitment protocol where the commit de­

cision is first sent to all participants and then after they have all replied, another

message is sent and the transactions are submitted.

2PL - Two Phase Locking : A locking protocol where all locks are obtained before

operations are carried out and relinquished after all work has been done.

ACA - A voids Cascading Aborts : A requirement for a schedule which requires trans­

actions to only read items written by committed transactions.

ACP - Atomic Commitment Protocol : A protocol which ensures that all subtrans­

actions of a global transaction either commit or abort.

AGCA - Avoids Global Cascading Aborts : A requirement which is equivalent to

the ACA but which applies to global multidatabase schedules.

ALCA - A voids Local Cascading Aborts : A requirement which is equivalent to the

ACA but which applies to local schedules in a multidatabase environment.

CAD/CAM - Computer Aided Design/ Computer Aided Manufacturing : Soft­

ware to support computer aided design and manufacturing.

CO - Commitment Ordering : Property of a local schedule which ensures global se­

rializability in a multidatabase environment.

CPU - Central Processing Unit

DBs - Databases : A collection of related data.

197

Appendix A ---------------------------198

DBA - Data Base Administrator : The person in control of the database.

DBMSs - Database Management Systems A collection of programs that enables

users to create and maintain a database.

DDB - Distributed Database - Database systems that are interconnected by a com­

munications network.

DDBMS - Distributed Database Management System Software used to imple­

ment a distributed database system.

DSTO - Distributed Strict Timestamp Ordering A global concurrency control

scheme proposed by Kang & Keefe.

ESR - Epsilon-Serializability : An alternative to global serializability in a multi­

database system.

FC2PL - Forced Conflict two Phase Locking : A combination of 2PL and forced

local conflicts in order to produce a schedule which is globally serializable.

FT - Flexible Transaction : A transaction which is provided along with various spec­

ifications about transaction states and transitions between those states.

GDD - Global Deadlock Detector : A program for detecting the presence of a global

deadlock in a multidatabase environment.

GIST - Globally Strict : A requirement which is equivalent to the strict requirement

but which applies to global multidatabase schedules.

GRC - Global Recoverable : A requirement which is equivalent to the recoverable

requirement but which applies to global multidatabase schedules.

GST - Global Subtransaction : The part of a global transaction which is sent to a

single database system for execution.

GTM - Global Transaction Manager The software which controls global transac­

tions in a multidatabase system.

IR - Isolation of Recoveries : A correctness criterion for schedules. A schedule is IR if

no transaction sees both the compensated for effects, as well as the committed effects

of other transactions.

ITM - Implicit Ticket Method A refinement of OTM that eliminates ticket con­

flicts.

LDB - Local Database system A database system which is a member of a multi­

database.

Appendix A --------------------------199

LDBS - Local Database Management System : The software which is in place in

a local database system to create and maintain the database.

LDM - Local Data Manager (also known as LRM) : The data manager in ~he lo­

cal database system.

LTM - Local Transaction Manager : The transaction manager at the local database

system.

LS - Local Scheduler : The scheduler at the local database system.

LST - Locally Strict : A requirement which is equivalent to the strictness requirement

but which applies to local schedules in a multidatabase environment.

LRC - Local Recoverable : A requirement which is equivalent to the recoverable re­

quirement but which applies to local schedules in a multidatabase environment.

LRM - Local Recovery Manager : The recovery manager at the local database sys­

tem.

MDB - Multidatabase : A database system made up of pre-existing, geographically

distributed, heterogeneous, semi-autonomous database systems.

MDBS - Multiple Database System : A system made up of multiple pre-existing,

homogenous or heterogeneous, distributed or centralized database systems.

MDMS - Multidatabase Management System : The software which controls ac­

cess to data in a multidatabase system.

MDS - Multidatabase System : The multidatabase and the multidatabase manage­

ment system.

MSR - M-Serializable : A correctness criteria for multidatabase systems which is

weaker than global serializability.

OTM - Optimistic Ticket Method : OTM is a multidatabase transaction manage­

ment mechanism that guarantees global serializability by permitting execution of

multidatabase transactions only when their relative serialization order is the same

in all participating LDBs.

PTM - Pessimistic Timestamp Method : A concurrency control algorithm proposed

by Yun and Hwang.

PWSR - Predicate-Wise Serializability : An alternative to global serializability.

QSR - Quasi-serializable : An alternative to global serializability.

Appendix A --------------------------200

RC - Recoverability : A requirement for a schedule which states that no transaction

may commit unless the transactions which wrote data items which this transaction

read have committed.

RDA - Remote Data Access : To access data at a remote site.

RSO - Relative Scheduling Order : A method introduced by Chen which combines

two-phase locking and the linear ordering of resources.
'

SG - Serialization Graph : A method of ensuring conflict serializablity of schedules.

SGT - Serialization Graph Testing : Methods whereby the serialization graph is

tested.

SQL - Structured Query Language A query language for extracting query results

from databases.

ST - Strictness : A requirement for a schedule which states that no transaction may

read or write a data item unless the transactions which wrote those data items have

committed.

TBSG - Transaction Blocked at Site Graph A global deadlock detection scheme

for multidatabase systems.

TO - Timestamp Ordering : A concurrency control scheme which assigns a times­

tamp to data items and then compares the timestamps when conflicts occur.

Appendix B

Terms used in Formal Transaction

Modelling

Ci

C(Sf)
GH
GSHk
GSTi

I

GTi

(}Ti

CV Bi

LHk
£1-l
LTi

I

£Ti

CT

MVB
MH

r

rh(X)

RSi
rts(X)

s

abort of transaction i.

Base set of transaction i.

The time at which Ti became blocked.

commit of transaction i.

Complete schedule.

Global history of a multidatabase.

Global subtransaction history at site k of a multidatabase.

Global subtransaction j of global transaction i.

Global transa.ction i.

The set of all global transactions in the multidatabase.

The set of all the data items at site i.

Local history of a site k in a multidatabase.

The set of all local histories in a multidatabase.

Local transaction i at site j of the multidatabase.

The set of all local transactions at a local database system j.

The set of all local transactions in the multidatabase.

The set of all data in the multidatabase.

Multidatabase history.

Termination condition for Ti.

Operation O; of transaction Ti.

Set of all the transactions in Ti.

Read-item.

The time at which data item X was last locked for reading.

Read set of transaction i.

Read timestamp of data item X.

Schedule; ordering of operations of transactions Ti, ... ,Tn.

201

Appendix B __________________________ 202

wli(X)

wsi
wts(X)

~i

I=

Complete schedule.

Timestamp of transaction Ti.

Transaction i.

Write-item.

The time at which data item X was last locked for writing.

Write set of transaction i.

Write timestamp of item X.

Domain of Ti.

Binary relation indicating the execution order of operations in a transaction Ti.

Equivalence.

Leads to

Conflicts.

Transitive Closure of Conflicts

Direct Conflict

Indirect Conflict

M-Conflicts

Transitive Closure of M-Conflicts

Appendix C

Commit Protocols

C.1 Two-Phase Commit

One very well known atomic commitment protocol is the two-phase commit protocol. This

protocol is initiated by a coordinator - in our case the MDMS. The coordinator sends a

message to all participants telling them to prepare to commit. Each participant replies

with a vote indicating whether or not it is ready to commit. Once a participant replies that

it is ready to commit, the decision cannot be reversed (i.e. the local concurrency control

at the participant site cannot abort the participant). If the coordinator receives messages

from all participants saying that they are ready to commit, it decides to commit and sends

a second message to each participant telling it to commit [Ber93].

C.1.1 Two Phase Commit Protocol

1. Phase One:

(a) The coordinator send a prepare message to all participants.

(b) Each participant waits until it receives the prepare message from the coordina­

tor. It then votes ready or aborting and sends the corresponding message to the

coordinator, depending on whether it is a pessimistic or optimistic control:

• Pessimistic control - If the participant has been aborted, it decides to abort

and sends an aborting message. If not, it sends a ready message and enters

a state in which it cannot be aborted by the local control.

• Optimistic control - The participant executes a validation phase. If vali­

dation fails, it decides to abort and sends an aborting message; otherwise it

sends a ready message and enters a state in which it cannot be aborted by

the local control

203

Appendix C __________________________ 204

2. Phase Two:

(a) If the coordinator receives at least one aborting vote, it decides to send an abort

message to all participants. If all votes are ready, it decides to commit and sends

a commit message to each participant. Then it terminates.

(b) The actions taken by a participant when it receives an abort or commit message

depend on whether it is an immediate-update or deferred-update control:

• Immediate-update control - If a participant receives an abort message, it

decides to abort and rolls back any changes it made to the database. If it

receives a commit message, it commits. In both cases it releases all locks,

discards its write-ahead log and terminates.

• Deferred-update control - If a participant receives an abort message, it

aborts, discards its intentions list and terminates. If it receives a commit

message, it commits, executes its write phase, discards its intentions list and

terminates. If control is pessimistic, locks must also be released [Ber93].

C.1.2 Properties of an atomic commit protocol

Failure can occur before the two-phase commit protocol is initiated or while it is being

performed. To cope with failure we need the atomic commit protocol to have the following

properties [Ber93]:

1. All sites that reach a decision must reach the same decision.

2. If there are no failures and all sites vote to commit, the decision of all sites will be to

commit.

3. If any site votes to abort, no site can decide to commit (even if failures occur)

4. Once a site has made a decision to commit or abort, it cannot reverse that decision

(even if failures occur).

It is desirable for an atomic commit protocol to be robust, which means that:

For all executions in which failures of the given type have occurred, if all failures

are repaired and no new failures occur, all sites will eventually reach a consistent

decision.

A site must depart from the normal execution of a protocol when a failure occurs. Protocols

must try to recover from failures. A timeout protocol is executed if a site times out while

waiting for a message. A restart protocol is executed if a site is recovering from a crash.

The site therefore needs to maintain a log of significant events that occur during the commit

protocol. This log makes the recovery process possible.

Appendix C __________________________ 205

C.1.3 Problems with two-phase commit

The two phase commit protocol exhibits blocking under certain circumstances. [Ber93]

shows that any atomic commit protocol that is robust for partition failures exhibits blocking.

It can also be shown that protocols which return undeliverable messages to the sender

which can deal with networks being partitioned into two partitions cannot deal with general

partitioning [Ber93].

When false timeouts occur, an even stronger negative result about blocking can be

deduced. From properties 2 and 3 of an atomic commit protocol as outlined in the previous

discussion it follows that, to reach a commit decision, the vote of every operational site must

be considered. If a particular site is slow to send its vote, other sites waiting for the decision

may not abort (property 2). Unfortunately, a slow response cannot be distinguished from

failure. Since waiting for a failed site is blocking, we can conclude that blocking can occur

when even one failure can occur [Ber93].

C.1.4 Timeout protocol for two-phase commit

During the execution of two-phase commit, in that period after a participant site has sent

its vote to commit but before it has enough information to know what the decision of the

MDMS site is, it is said to be uncertain; that period is called the uncertainty period.

To extend the two-phase commit protocol to deal with failures, we must supply a timeout

protocol for each waiting period and a restart protocol to cope with site failure.

If a participant times out while waiting at step (b) of Phase 1, it can be certain that

no decision to commit has yet been taken at any site (since it has not yet voted). Hence it

can decide to abort and thus prevent any site from reaching a commit decision since such

a decision requires ready votes from all sites.

A similar situation exists if the coordinator times out while waiting at step (a) of phase 2,

and hence the coordinator can decide to abort and send an abort message to all participants.

If a participant times out at step (b) of phase 2, the situation is far worse, since it is in its

uncertain period. If this occurs, either the coordinator has crashed or a network partition

has occurred and the participant has been separated from the coordinator. The coordinator

may have decided to commit but before it could communicate that to the participants, a

network condition occurred. The participant must block until it receives a message from

the coordinator communicating the decision of the coordinator.

We can summarize the timeout protocol as follows:

• Timeout at step (b) of phase 1: The participant decides to abort.

• Timeout at step (a) of phase 2: The coordinator decides to abort and sends an abort

message to the participants from whom it received a ready vote.

• Timeout at step (b) of phase 2: The participant must block because it is not permitted

to communicate with other participants.

Appendix C __________________________ 206

C.2 Three-Phase Commit Protocol

The three-phase commit protocol is an extension of the two-phase commit protocol that

does not block when sites fail. If a network becomes partitioned, this protocol is still not

robust enough to handle it.

C.2.1 Three-phase commit with no failures

1. The coordinator sends a prepare message to all participants.

2. Each participant waits until it receives the prepare message from the coordinator. It

then votes ready or aborting and send the corresponding message to the coordinator.

If the vote is aborting, it decides aborts.

3. The coordinator waits until it receives votes from all participants. If at least one vote

is aborting, it sends an abort message to all participants. If all votes are ready, it sends

a precommit message to each participant.

4. Each participant that voted ready waits to receive a message from the coordinator.

If that message is precommit, it sends an acknowledge message to the coordinator. If

the message is abort, it aborts.

5. If the coordinator sent a precommit message in step 3, it waits until it receives an

acknowledge message from each participant. Then it decides to commit and sends a

commit message to each participant.

6. Each participant that sent an acknowledge message waits until it receives a commit

message and then commits.

The uncertain period of a participant starts when it sends a ready message at step 2 and

ends when it receives the precommit or abort message at step 4. Thus, while a participant

is waiting at step 4, it is uncertain. The uncertain period of the coordinator starts when it

sends the first precommit message and ends when it receives the first acknowledge message.

While a participant is waiting at step 6 for the commit message, we say it is committable.

The protocol has the property of not being blockable and an operational site will always

proceed to completion. We need to specify a timeout protocol to deal with failures.

C.2.2 Timeout protocol for three-phase commit protocol

• Timeout at step 2: The participant decides to abort.

• Timeout at step 3: The coordinator decides to abort and sends an abort message to

every participant from which it received a ready vote.

• Timeout at step 4: The participant executes the termination protocol.

Appendix C __________________________ 207

• Timeout at step 5: The coordinator decides to commit and sends a commit message

to every participant from which it received an acknowledge message.

• Timeout at step 6: The participant executes the termination protocol.

The termination protocol is executed only when the coordinator has failed. The basic

idea is that the operational participants elect one of themselves to be the new coordinator.

The election process is described by Bernstein et al [Ber93]. Once a new coordinator

is elected, it polls all participants to determine where they were in the commit protocol.

The new coordinator will then carry out the termination protocol in order to resolve the

situation.

C.2.3 Termination protocol for three-phase commit

1. The operational sites elect a new coordinator.

2. The new coordinator polls the operational sites to find out where they are in the

commit period.

3. The new coordinator takes the following actions:

• If any participant has not voted or has aborted, the new coordinator decides to

abort and sends an abort message to all participants.

• If any participant has committed, the new coordinator decides to commit and

sends a commit message to all participants.

• If all operational participants are uncertain, an abort message is sent to all par­

ticipants.

• If some participant is commitable but none have committed, the new coordinator

sends pre-commit messages to all uncertain participants, waits for them to send

acknowledge messages and then sends commit messages to all participants.

The robustness of the three-phase commit protocol is based on an assumption of no parti­

tions in the network. A partition may result in one partition being uncertain and the other

having committed participants. The sites in each partition could decide on different courses

of action. Breitbart et al have designed a protocol which is robust for partitioning but loses

its non-blocking property.

C.3 Multidatabase Two-Phase Commit

Figure C.1 depicts the state diagram of the multidatabase two-phase commit protocol.

The MDMS prepares global transactions for submission to the local database systems

(initial state). Once all GST's have been submitted, the GT is moved to the wait state. If

Appendix C __________________________ 208

GTsatMDMS GSTs at DBMSs

Figure C.1: State Diagram for multidatabase two-phase commit

[Bar90, pl03]

all the GSTs become ready the GT is moved to the commit state. If any one of the GSTs

does not become ready the GT moves to the abort state [Bar90].

Once a GST is submitted to a LDB it is in the initial state. The GST remains in this

state until it decides to abort upon which it moves to the abort state, or it is ready to

commit, in which case it moves to the ready state. Once the GST is in the ready state it

waits for the final commit decision from the MDMS. If the GT commits, a message is sent

to the local level so the GST can move to the commit state. The local level acknowledges

the commit instruction by means of an ack message. If the GT is aborted, the GST moves

to the abort state [Bar90].

The difficulty lies in maintaining the state transitions at the local database systems.

The problem is that a lot of local DBMSs may not support 2PC.

C.4 Byzantine Generals Problem

The Byzantine Generals problem considers the situation where one has various distributed

processors and faulty processors are actively 'traitorous' and can send any message to an­

other process.

Appendix C __________________________ 209

A set of units of the byzantine army is preparing for action against an enemy. Each

unit is commanded by a general and these generals communicate with each other by sending

messages over telephone lines. The messages are assumed to reach the other end uncorrupted

and it is assumed that lines do not fail.

The generals must agree on a course of action. The algorithm for reaching a byzan-·

tine agreement between distributed processors assumes that one of the processors is the

commander and the others are lieutenants. The algorithm is as follows:

1. The commander sends his decision.

2. A lieutenant relays the commander's decision to every other lieutenant.

3. Upon receiving both the direct message from the commander and the relayed messages

from the lieutenants, the lieutenant decides by majority voting on the messages.

This algorithm can be applied to the global commitment problem in the multidatabase

situation where the MDMS is the commander and the member database systems are the

lieutenants. The algorithm aims to reach agreement in any network in spite of malicious

failures.

Appendix D

ANSI-SP ARC Architecture

The majority of commercial databases today are based on the ANSI-SPARC architecture

which divides a system into three levels, internal, conceptual and external, as illustrated

in Figure D.1. The goal of this architecture is to separate the user applications and the

physical database.

• The conceptual level has a conceptual schema and represents the community view of

the data in the database, referred to as a global logical view. The conceptual schema

hides the details of physical storage structures and concentrates on describing entities,

data types, relationships, user operations and constraints.

• The users view the data through the external schema defined at the external level.

The external level includes a number of external schemas or user views. Each external

schema describes the part of the database that the particular user or group of users

is interested in and hides the rest of the database from that user group.

• The internal level has an internal schema and is a low-level description of the data in

the database and provides an interface with the operating system's file system, which

is ultimately responsible for accessing database files. The internal level is concerned

with specifying what data items are to be indexed, what file organization technique

to use, how the data is to be clustered, and so on.

Most DBMSs do not separate the three levels completely, but most of them support the

three-schema architecture to some extent. The three schemas are only descriptions of data;

the only data that actually exists is at the physical level. The DBMS must transform a

request specified on an external schema into a request against the conceptual schema, and

then into a request against the internal schema for processing over the stored database. The

process of transforming requests between levels is called mapping [Meh92d].

210

Appendix D --------------------------211

Eamal
Schema

User Language

Conceptual
Schema

Internal
Schema

lXternal
Schema

User Language

Figure D.1: The ANSI-SPARC three-level architecture

[Bel92, p.17]

Bibliography __________________________ 212

References

[Alo87]

[Alo94]

[Bad92]

[Bar90]

[Bar91]

[Bar94]

[Bat92]

[Bel92]

[Ber81]

[Ber87]

[Ber93]

[Ber90]

[Bra93]

[Bre85]

[Bre86]

[Bre87]

[Bre88]

[Bre90a]

[Bre90b]

[Bre9la]

ALONSO R, GARCIA-MOLINA H & SALEM K. 1987. Concurrency control and recov­
ery for global procedures in federated database systems. Data Engineering. 10(3):5-11.

ALONSO G, VINGRALEK R, AGRAWAL D, BREITBART Y, ABBADI A E, SCHEK
H & WEIKUM G. 1994. Unifying Concurrency Control and Recovery of Transactions.
Information Systems. 19(1):101-115.

BADRINATH B R & RAMAMRITHAN K. 1992. Semantics-based concurrency con­
trol: Beyond commutativity. ACM Transactions on Database Systems. 17(1):163-199.

BARKER K. 1990. Transaction Management on Multidatabase Systems. Doctor of
Philisophy Thesis. University of Alberta.

BARKER K & OZSU M T. 1991. Reliable Transaction Execution in Multidatabase
Systems. In: Proceedings of the First International Workshop on Interoperability in
Multidatabase Systems, edited by Y Kambayashi, M Rusinkiewicz & A Sheth. Los
Alamitos: IEEE Computer Society Press. p344-347.

BARKER K. 1994. Quantification of autonomy on Multidatabase systems. Journal of
Systems Integration. 4(2):151-169.

BATRA R K, RUSINKIEWICZ M & GEORGAKOPOULOS D. 1992. A Decentral­
ized Deadlock-free Concurrency Control Method for Multidatabase Transactions. In:
Proceedings of the 12th International Conference on Distributed Computing Systems.
Los Alamitos, IEEE Computer Society Press. p72-79.

BELL D & GRIMSON J. 1992. Distributed Database Systems. Great Britain. Addison
Wesley.

BERNSTEIN P A & GOODMAN N. 1981. Concurrency Control in Distributed
Database Systems. Computing Surveys. 13(2):185-221.

BERNSTEIN PA, HADZILACOS V & GOODMAN N. 1987. Concurrency Control
and Recovery in Database Systems. Addison Wesley Puhl Company. Reading, Mas­
sachusetts.

BERNSTEIN A J & LEWIS P M. 1993. Concurrency in Programming and Database
Systems. London. Jones and Bartlett Publishers, Inc.

BERSON J S. 1990. Generic RDA Editor. Information Processing Systems - Open
Systems Interconnection - Remote Database Access - Part 1: Generic Model, Service
and Protocol {ISO/IEC JTC 1/SC 21 WG3). ISO 1990.

BRADSHAW D P, LARSON P A & SLONIM J. 1993. Concurrency Control in Multi­
database Management Systems. Research Report CS-93-34, Department of Computer
Science, University of Waterloo.

BREITBART Y & PAOLINI P. 1985. Session chairman overview - the multibase
session. In: Distributed Data Sharing Systems, edited by F A Schreiber & W Litwin.
North Holland.

BREITBART Y, OLSON P & THOMPSON G. 1986. Database integration in a dis­
tributed heterogeneous database system. In: Proceedings of the 2nd International Con­
ference on Data Engineering. Los Angeles, CA.

BREITBART Y, SILBERSCHATZ A & THOMPSON G. 1987. An update mechanism
for multidatabase systems. Q. Bull IEEE TC on Data Engineering 10(3):12-18.

BREITBART Y & SILBERSCHATZ A. 1988. Multidatabase Update Issues. SIG MOD
Record. 17(3): 135-142.

BREITBART Y, SILBERSCHATZ A & THOMPSON GR. 1990. Reliable Transaction
Management in a Multidatabase System. SIGMOD Record. 19(2):215-224.

BREITBART Y. 1990. Multidatabase Interoperability. ACM SIGMOD Record. 19(3):
53-60.

BREITBART Y, GEORGAKOPOULOS D, RUSINKIEWICZ M & SILBERSCHATZ
A. 1991. On Rigorous Transaction Scheduling. IEEE Transactions on Software Engi­
neering. 17(9):954-960.

Bibliography __________________________ 213

[Bre9lb]

[Bre92a]

[Bre92b]

[Bre92c]

[Bre92d]

[Bre95]

[Bri92]

[Buk93]

[Che93]

[Cou94]

[Cri91]

[Dat87]

[Du89]

[Du91]

[Du89]

[Elm86]

[Elm87]

[Elm88]

BREITBART Y, LITWIN W & SILBERSCHATZ A. 1991. Deadlock Problems in
a Multidatabase Environment. In: Proceedings of COMPCON Spring '91 Digest of
Papers. Los Alamitos: IEEE Computer Society Press. pl45-151.

BREITBART Y & SILBERSCHATZ A. 1992. Strong Recoverability in Multidatabase
Systems. In: Proceedings of the Second International Workshop on Research Issues on
Data Engineering: Transaction and Query Processing. Los Alamitos: IEEE Computer
Society Press. pl 70-175.

BREITBART Y, SILBERSCHATZ A & THOMPSON, GR. 1992. Transaction Man­
agement Issues in a Failure-Prone Multidatabase System Environment. VLDB Journal.
1(1):1-39.

BREITBART Y, GARCIA-MOLINA H & SILBERSCHATZ A. 1992. Overview of
Multidatabase Transaction Management Scheduling. VLDB Journal. Vol 1, Number 2.

BREITBART Y, GARCIA-MOLINA H & SILBERSCHATZ A. 1992. Overview of
Multidatabase Transaction Management. Technical Report TR-92-21, Department of
Computer Sciences, University of Texas at Austin, Austin, Texas 78712-1188.

BREITBART Y, GARCIA-MOLINA H & SILBERSCHATZ A. 1995. Transaction
Management in Multidatabase Systems. In: Modern Database Systems, edited by:
Won Kim. New York: Addison Wesley.

BRIGHT MW, HURSON AR & PAKZID S. 1992. A Taxonomy and Current Issues
in Multidatabase Systems. Computer. 25(3):50-60.

BUKHRES 0, CHEN J, DU W, ELMAGARMID A & PEZZOLI R. 1993. Interbase:
An execution environment for global applications over distributed, heterogeneous, and
autonomous software systems. IEEE Computer. August 1993. p57-69.

CHEN J, BUKHRES 0 A & SHARIF-ASKARY J. 1993. A Customized Multidatabase
Transaction Management Strategy. In: 4th International Conference, DEXA '93.
Database and Expert Systems Applications, edited by: Vladimir Mai'ik, Jii'i Laiansky,
Roland R Wagner. Prague, Czech Republic, September 1993 Proceedings.

COULOURIS G, DOLLIMORE J & KINDBERG T. 1994. Distributed Systems: Con­
cepts and Design. Second Edition. Great Britain: Addison Wesley.

CRISTIAN F. 1991. Understanding Fault-Tolerant Distributed Systems. Communica­
tions of the ACM. Vol 34, No 2.

DATE CJ. 1987. A guide to The SQL standard. Addison Wesley Publishing Company.

DU W & ELMAGARMID A K. 1989. Quasi serializability: a correctness criterion for
global concurrency control in Inter Base. In: Proceedings of the Fifteenth International
Conference on Very Large Databases, edited by P M G Apers & G Wiederhold. Palo
Alto: Morgan Kaufmann. p347-355.

DU W, ELMAGARMID A K & KIM W. 1991. Maintaining quasi serializability in
multidatabase systems. In: Proceedings of the Seventh International Conference on
Data Engineering. Kobe, Japan. p360-367.

DU W, ELMAGARMID AK, LEUY & OSTERMAN S. 1989. Effects of autonomy
on global concurrency control in heterogeneous distributed database systems. In: Pro­
ceedings of the Second International Conference on Data and Knowledge Systems for
Manufacturing and Engineering. Los Alamitos: IEEE Computer Society Press. p113-
120.

ELMAGARMID AK & HELAL A. 1986. Heterogeneous database systems. Technical
Report TR-86-004. The Pennsylvania State University, University Park, Pennsylvania
16802.

ELMAGARMID AK & LEUY. 1987. An optimistic concurrency control algorithm for
heterogeneous distributed database systems. Q. Bull IEEE .TC on Data Engineering.
10(3):26-32. .

ELMAGARMID A K & HELAL A. 1986. Supporting updates in heterogeneous dis­
tributed database systems. In: Proceedings of the fourth International Conference on
Data Engineering. p564-569.

Bibliography ___________________________ 214

[Elm90a]

[Elm90b]

[Els94]

[Gar83]

[Gar87]

[Gar94]

[Geo90]

[Geo91a]

[Geo91b]

[Geo94]

[Goy91]

[Gli84]

[Gli86]

[Gra81]

[Gra93]

[Had88]

[Her90]

[Hsa92]

[Hwa94]

[Jin93]

[Kam92]

ELMAGARMID A K & DU W. 1990. A paradigm for concurrency control in het­
erogeneous distributed database systems. In: Proceedings of the Sixth International
Conference on Data Engineering. Los Alamitos: IEEE Compter Society. p37-46.

ELMAGARMID A K , LEU Y, LITWIN W & RUSINKIEWICZ M. 1990. A multi­
database transaction model for Inter base. In: Proceedings of the Sixteenth International
Conference on Very Large Databases. Brisbane.

ELMASRI R & NAVATHE S B. 1994. Fundamentals of Database Systems. Ben­
jamin/Cummings Publishing Company. Redwood City, California.

GARCIA-MOLINA H. June 1983. Using semantic knowledge for transaction processing
in a distributed database. ACM Transactions on Databas.e Systems. 8(2):186-213.

GARCIA-MOLINA H & SALEM K. 1987. Sagas. In: Proceedings of ACM-SIGMOD.
1987 International Conference on Management of Data. San Francisco. p249-259.

GARCIA-MOLINA H & KOGAN B. 1994. Node Autonomy in Distributed Systems. In:
Multidatabase Systems: An Advanced Solution for Global Information Sharing, edited
by A R Hurson, M W Bright & A Pakzad. Los Alamitos: IEEE Computer Society
Press. Los Alamitos, California.

GEORGAKOPOULOS D. 1990. Transaction Management in Multidatabase Systems.
Dissertation. University of Houston.

GEORGAKOPOULOS D. 1991. Multidatal;>ase Recovery and Recoverability. In: Pro­
ceedings of the First International Workshop on Interoperability in Multidatabase Sys­
tems, edited by: Y. Kambayashi, M. Rusinkiewicz & A. Sheth. Kyoto, Japan. April
1991.

GEORGAKOPOULOS D, RUSINKIEWICZ M & SHETH AP. April 1991. On Serial­
izability of Multidatabase Transactions Through Forced Local Conflicts. In: Proceed­
ings of the 7th International Conference on Data Engineering. Los Alamitos: IEEE
Computer Society Press. p314-23.

GEORGAKOPOULOS D, RUSINKIEWICZ M & SHETH A P. 1994. Using Tickets
to Enforce the Serializability of Mulitdatabase Transactions. IEEE Transactions on
Knowledge and Data Engineering. 6(1):166-80.

GOYAL M L & SINGH G V. 1991. Access Control in Distributed Heterogeneous
Database Management Systems. Computers and Security. 10(7):661-669.

GLIGOR V & LUCKENBAUGH G L. 1984. Interconnecting Heterogeneous Database
Management Systems. Computer 17(1):33-43.

GLIGOR V & POPESCU-ZELETIN R. 1986. Transaction Management in Distributed
Heterogeneous Database Management Systems. Information Systems. 11(4):287-297.

GRAY JN. 1981. The transaction concept. In: Proceedings of the Seventh International
Conference on Very Large Databases. Cannes. pl44-154.

GRAY J & REUTER A. 1993. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Francisco, California.

HADZILACOS V. 1988. A Theory of Reliability in database systems. Journal of the
ACM. 35(1):121-145.

HERLIHY M. 1990. Apologizing versus asking permission: optimistic concurrency con­
trol for abstract data types. ACM Transactions on Database Systems. 15(1):96-124.

HSAIO D. 1992. Tutorial on federated databases and systems (part 1). VLDB Journal.
1(1).

HWANG S, SRIVASTAVA J & LI J. 1994. Transaction Recovery in Federated Au­
tonomous Databases. Distributed and Parallel Databases 2. 2(2).

JIN WW, RUSINKIEWICZ M, NESS L & SHETH A. 1993. Concurrency Control and
Recovery of Multidatabase Work Flows in Telecommunication Applications. SIG MOD
Record. 22(2):456-459.

KAMEL M N & KAMEL N N. 1992. Federated database management system: Re­
quirements, issues and solutions. Computer Communications. _15(4):270-277.

Bibliography ---------------------------215

[Kan93]

[Key93]

[Kim92]

[Kim93]

[Kim94]

[Kor83]

[Kor88]

[Kor90]

(Kiih94]

[Lag90]

[Lev91a]

[Lev91b]

[Lit89]

[Lyn83]

[Meh91]

[Meh92a]

[Meh92b)

[Meh92c)

KANG I E & KEEFE T F. 1993. Supporting reliable and atomic transaction man­
agement in multidatabase systems. In: Proceedings of the 13th International Confer­
ence on Distributed Computing Systems. Los Alamitos: IEEE Computer Society Press.
p457-464.

KEYSER P W. 1993, Transaction Management in Multidatabase Management Sys­
tems. In: Proceedings of the 8th National Conference for Masters and PhD students in
Computer Science. UNISA, Pretoria, South Africa.

KIM Y S. · 1992. Atomic Transaction Scheduling in Tightly Coupled Heterogeneous
Distributed Databases. Ph.D. Thesis, Department oflnformation and Communications
Engineering, Korea Advanced Institute of Science and Technology, Seoul, Korea.

KIM P C, KIM W & SILBERSCHATZ A. 1993. Concurrency Control and Recovery in
multidatabase systems. International Journal of Computer and Software Engineering.

KIM K H. 1994. Fair distribution of concerns in design and evaluation of fault-tolerant
distributed computer systems. Computer Communications. 17(10):699-707.

KORTH HF. January 1983. Locking primitives in a database system. Journal of the
ACM. 30(1):55-79.

KORTH H F, KIM W & BANCILHON F. 1988. On long duration CAD transactions.
Information Sciences. 46:73-107.

KORTH H F, LEVY E & SILBERSCHATZ A. August 1990. A formal approach to
recovery by compensating transactions. In: Proceedings of the Sixteenth International
Conference on Very Large Databases, edited by D McLeod, R Sacks-Davis & H Schek.
Palo Alto: Morgan Kaufmann. p95-106.

KUHN E. 1994. Fault-Tolerance for Communicating Multidatabase Transactions. In:
Proceeding of the 27th Hawaii International Conference on System Sciences. Vol II:
Software Technology, edited by E R Hesham & B D Shriver. Los Alamitos: IEEE
Computer Society Press. p323-332.

Database systems: Achievements and opportunities, 1990. The Lagunita Report of the
NSF Invitational Workshop on the Future of Database Systems Research. Palo Alto,
California, February 1990, edited by: Avi Silberschatz, Michael Stonebraker & Jeffrey
Ullman.

LEVY E, KORTH HF & SILBERSCHATZ A. May 1991. An optimistic commit pro­
tocol for distributed transaction management. SIGMOD Record. 20(2):88-97.

LEVY E, KORTH HF & SILBERSCHATZ A. August 1991. A theory ofrelaxed atom­
icity. In: Proceedings of the Tenth annual ACM Symposium on Principles of Distributed
Computing. New York: ACM. p95-109.

LITWIN W & TIRRI H. 1989. Flexible concurrency control using value dates. In:
Integration of Information Systems: Bridging Heterogeneous Database, edited by: A.
Gupta. New York: IEEE Press. p144-149.

LYNCH N. December 1983. Multi-level atomicity. ACM Transactions on Database
Systems. 8(4):484-502.

MEHROTRA S, RASTOGI R, KORTH H F & SILBERSCHATZ A. 1991. Non­
serializable executions in heterogeneous distributed database systems. In: Proceedings
of the First International Conference on Parallel and Distributed Systems. Los Alami­
tos: IEEE Computer Soceity Press. p245-252.

MEHROTRA S, RASTOGI R, BREITBART Y, KORTH HF & SILBERSCHATZ
A. 1992. The Concurrency Control Problem in Multidatabases: Characteristics and
Solutions. In: ACM SIGMOD. 21(2): 288-297.

MEHROTRA S, RASTOGI R, KORTH H F & SILBERSCHATZ A. 1992. A Trans­
action Model for Multidatabase Systems. In: Proceedings of the 12th International
Conference on Distributed Computing Systems. Los Alamitos: IEEE Computer Soci-
ety Press. p56-63. ·

MEHROTRA S, RASTOGI R, BREITBART Y, KORTH H F & SILBERSCHATZ A.
1992. Ensuring Transaction Atomicity in Multidatabase Systems. In: Proceedings of
the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. Baltimore: ACM Press. pl64-175.

Bibliography ___________________________ 2.16

[Meh92d]

[Meh93]

[Mul92]

[Mul93]

[Mut91]

[Nam93]

[Nod93]

[Nod94]

[Ozs90]

[Ozs91]

[Ozs94]

[Per91]

[Pu88]

[Pu91a]

[Pu91b]

[Ras92]

[Ras93a]

[Ras93b]

MEHROTRA S, RASTOGI R, KORTH HF & SILBERSCHATZ A. 1992. Relaxing Se­
rializability in Multidatabase Systems. In: Second International Workshop on Research
Issues. on Data Engineering: Transaction and Query Processing, edited by Philip S Yu.
Los Alamitos: IEEE Computer Society Press. p205-212. ·

MEHROTRA S. 1993. Failure-Resilient Transaction Management in Multidatabase
Systems. Doctor of Philosophy Dissertation. University of Texas at Austin.

MULLEN JG, ELMAGARMID AK, KIM W & SHJ\.RIF-ASKARY J. 1992. On the
Impossibility of Atomic Commitment in Multidatabase Systems. In: Proceedings of
The Second International Conference on Systems Integration. edited by: P A Ng, C V
Ramamoorthy, L C Seifert & RT Yeh. Los Alamitos: IEEE Computer Society Press.
p625-634. .

MULLEN JG, JING J & SHARIF-ASKARY J. 1993. Reservation Commitment and Its
Use in Multidatabase Systems. In: 4th International Conference, DEXA '93. Database
and Expert Systems Applications, edited by: Vladimlr Mafik, Jir1 Lafansky, Roland R
Wagner. Prague, Czech Republic.

MUTH P & RAKOW T C. 1991. Atomic Commitment for Integrated Database Sys­
tems. In: Proceedings of the 7th International Conference on Data Engineering. Los
Alamitos: IEEE Computer Society Press. p296-304.

NAM H & MOON S. 1993. Global Deadlock Detection for Concurrency Control in
Multidatabase Systems. Microprocessing and Microprogramming. 39:155-158. ·

NODINE M H. 1993. Supporting long-running tasks on an evolving multidatabase using
interactions and events. In: Proceedings of the Second International Conference on
Parallel and Distributed Information Systems. Los Alamitos: IEEE Computer Society
Press. pl25-132.

NODINE M H. 1994. Automating compensation in a multidatabase. In: Proceedings
of the Twenty-Seventh Hawaii International Conference on Systems Sciences. Vol II
Software Technology, edited by E R Hesham & B D Shriver. Los Alamitos: IEEE
Computer Society Press. p292-312.

OZSU MT & BARKER K. 1990. Architectural Classification and Transaction Execu­
tion Models of Multidatabase Systems. Lecture Notes i~0 Computer Science. 468(5):285-
294.

OZSU MT & VALDURIEZ P. 1991. Principles of Distributed Database Systems. En­
glewood Cliffs, New Jersey. Prentice Hall.

OZSU M T. Distributed Databases. In: Readings in Distributed Computer Systems,
edited by: T L Casavant & M Singhal. Los Alamitos:. IEEE Computer Society Press. ·

PERRIZO W, RAJKUMAR J & RAMP. 1991. Hydro: A heterogeneous distributed
database system. SIGMOD Record. 20(2):32-39.

PU C. 1988. Superdatabases for composition of heterogeneous databases. In: Multi­
database Systems: An Advanced Solution for Global Information Sharing, edited by A
R Hurson, M W Bright & A Pakzad. Los Alamitos: IEEE Computer Society Press.
Los Alamitos, California.

PU C & LEFF A. 1991. Replica control in distributed systems. SIGMOD Record.
20(2):377-386.

PU C, LEFF A & CHEN S F. 1991. Heterogeneous and Autonomous Transaction
Processing. Computer. Dec 1991. p64-72.

RASTOGI R, KORTH HF & SILBERSCHATZ A. 1992. Exploiting transaction seman­
tics in multidatabase systems. Technical Report TR-92-45, Department of Computer
Science, University of Texas at Austin.

RASTOGI R, KORTH H F & SILBERSCHATZ A. 1993. Strict histories in object­
based database systems. In: Proceedings of the Twelfth ACM SIGACT-SIGMOD­
SIGART Symposium on Principles of Database Systems. Washington D.C.

RASTOGI R R. 1993. Concurrency Control in Multidatabase Systems. PhD Thesis.
University of Texas. ·

Bibliography __________________________ 217

[Raz92]

[Rus90]

· [Rus92]

[Sal89]

[Sha92]

[Sil83]

[Sop91a]

[Sop91b]

[Sto94]

[Sug87]

[Tan93]

[Tun92]

[Vei89]

[Vei92]

[Ver78]

[Vid91]

[Wei88]

[Wei89]

[Wol90]

RAZ Y. 1992. The f)rinciple of atomic commitment ordering, or guaranteeing serial­
izability in a heterogeneous environment of multiple· autonomous resource managers
using atomic commitment. In: Proceedi'ligs of the Eighteenth International Comference
on Very Large Databases. Vancouver. p292-312.

RUSINKIEWICZ M, ELMAGARMID A, LEUY, & LITWIN W. 1990. Extending the
transaction model to capture more meaning. SIGMOD record. 19(1).

RUSINKIEWICZ M, KRYCHNIAK P & CICHOCKI A. December 1992. Towards a
Model for Multidatabase Transactions. International.Journal of Intelligent and Coop­
erative Information Systems. 1(3-4):579-617.

SALEM K, GARCIA-MOLINA H & ALONSO R. 1989. Altruistic Locking: A strategy
for coping with long-lived transactions. Lecture Notes in Computer Science, High Per­
formance Transaction Processing Systems, edited by: D Gawlick, M Haynie, A Reuter.
Vol 359, Springer Verlag, pl 75-199.

SHASHA D, SIMONE & VALDURIEZ P. 1992. Simple relational guidance for chop­
ping up transactiorts. In: Proceedings of ACM-SIGMOD 1992 Conference on Manage­
ment of Data. San Diego, California, p298-307.

SILBERSCHATZ A, STONEBRAKER M & ULLMAN J. 1983. Database Systems:
Achievements and Opportunities. In: Readings in Database Systems, Second Edition,
edited by Michael Stonebraker. Morgan Kaufmann Publishers, San Francisco, Califor­
nia. 1994.

SOPARKAR N R, KORTH H F & SILBERSCHATZ A. 1991. Trading control au­
tonomy for reliability in Multidatabase Transactions. Technical Report TR-91-05. The
University of Texas at Austin, Computer Sciences Department.

SOPARKAR N R, KORTH H F & SILBERSCHATZ A. 1991. Failure-Resilient Trans­
action Management in Multidatabases. Computer. Dec 1991. p28-36.

STONEBRAKER M, WONG E & KREPS P. 1994. The Design and Implementation
of Ingres. In: Readings in Database Systems, Second Edition, edited by Michael Stone­
braker. Morgan Kaufmann Publishers, San Francisco, California.

SUGIHARA K. 1987. Concurrency Control Based on Distributed Cycle Detection.
In: IEEE Prooceeding of the 3rd International Conference on Data Engineering, Los
Angeles, California. U.S.A. p 267-274.

TANG X. 1993. Multidatabase Transaction Management: A Study of the 2PC Agent
Method. MSc Thesis. University of Waterloo.

TUNG H. 1992. Deadlock Detection and Resolution in Distributed Database Systems
and Multidatabase Systems. PhD Thesis. Northwestern University.

VEIJALAINEN J. 1989. Transaction Concepts in Autonomous Database Environ­
ments. R. Olderbourg Verlag, Munich.

VEIJALAINEN J & WOLSKI A. 1992. Prepare and commit certification for decentral­
ized transaction management in rigorous heterogeneous multidatabases. In: Proceed­
ings of the Eighth International conference on Data Engineering. Los Alamitos: IEEE
Computer Society Press. p470-479.

VERHOFSTAD JS M. 1978. Recovery Techniques For Database Systems. ACM Com­
puting Surveys. 10(2):167-196.

VIDYASANKAR K. 1991. A Non~Two-Phase Locking Protocol for Global Concur­
rency Control in Distributed Heterogeneous Database Systems. IEEE Transactions on
Knowledge and Data Engineering. Vol 3, No 2. pp 256-260.

WEIHL W E. 1988. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers, 37(12):1488-1505.

WEIHL W E. 1989. The impact of recovery on concurrency control. In: Proceedings of
the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. New York: ACM. p259-269.

WOLSKI A & VEIJALAINEN J. 1990. 2PC agent method. Achieving serializability in
the presence of failures in a heterogeneous multidatabase. In: Proceedings of the Inter­
national conference on databases, parallel architectures and their applications, edited by
N Rishe, S Navathe & D Tai. Los Alamitos: IEEE Computer Society Press. p321-330.

Bibliography ----------~-----------------218

[Won92]

[Wu92]

[Ye94]

[Yoo95]

[Yun93]

[Zha93]

WONG M H & AGRAWAL D. June 1992. Tolerating bounded inconsistency for increas­
ing concurrency in database systems. In: ·Proceedings of the Eleventh ACM SIGACT­
SIGMOD-SfGART Symposium on Principles of Database Systems. Baltimore: ACM
Press". p2~6-245. ·

WU K L, YU P S, PU C. 1992. Divergenc~· control for epsilon-serialiiability. In: Pro­
ceedings.of the Eighth International Conference on Data Engineering, Tempe, Arizona.
p506-515.

YE X & KEANE J A. 1994. A Distributed Transaction Management Scheme for Mul­
tidatabase Systems. In: Proceedings of the 1994 IEEE Region JO's Ninth Annual Inter­
nati?nal Conference. Theme: Frontiers of Computer Technology, Singapore. p~97-399.

YOO H, KIM M H. 1995. A reliable Global Atomic Commitment Protocol for Dis­
tributed Multidatabase Systems. Information Sciences. 83(1-2):49-76.

YUN H & HWANG B. 1993. A Pessimistic Concurrency Control Algorithm in Multi­
datab~e Systems. In: Database Systems for Advanced Applications '93. Proceedings of
the Third International Symposium on Database Systems for Advanced Applications:
Taejoon, South Korea, edited by: S Moon & H Ikeda. Singapore: World Scientific.
p379-386.

ZHANG Y & ORLOWSKA M E. 1993. A Hybrid Concurrency Control Approach in
Heterogeneous Distributed Database Systems. In: Proceedings TENCON '93, 1993
IEEE Region 10 Conference on Computer, Communications, Control and Power En­
gineering, edited by Yuan Baozong. Vol I. New York: IEEE. p323-326.

