1,027 research outputs found

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Advanced Algorithms for Automatic Wind Turbine Condition Monitoring

    Get PDF
    Reliable and efficient condition monitoring (CM) techniques play a crucial role in minimising wind turbine (WT) operations and maintenance (O&M) costs for a competitive development of wind energy, especially offshore. Although all new turbines are now fitted with some form of condition monitoring system (CMS), very few operators make use of the available monitoring information for maintenance purposes because of the volume and the complexity of the data. This Thesis is concerned with the development of advanced automatic fault detection techniques so that high on-line diagnostic accuracy for important WT drive train mechanical and electrical CM signals is achieved. Experimental work on small scale WT test rigs is described. Seeded fault tests were performed to investigate gear tooth damage, rotor electrical asymmetry and generator bearing failures. Test rig data were processed by using commercial WT CMSs. Based on the experimental evidence, three algorithms were proposed to aid in the automatic damage detection and diagnosis during WT non-stationary load and speed operating conditions. Uncertainty involved in analysing CM signals with field fitted equipment was reduced, and enhanced detection sensitivity was achieved, by identifying and collating characteristic fault frequencies in CM signals which could be tracked as the WT speed varies. The performance of the gearbox algorithm was validated against datasets of a full-size WT gearbox, that had sustained gear damage, from the National Renewable Energy Laboratory (NREL) WT Gearbox Condition Monitoring Round Robin project. The fault detection sensitivity of the proposed algorithms was assessed and quantified leading to conclusions about their applicability to operating WTs

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Condition Monitoring of Helical Gear Transmissions Based on Vibration Modelling and Signal Processing

    Get PDF
    Condition monitoring (CM) of gear transmission has attracted extensive research in recent years. In particular, the detection and diagnosis of its faults in their early stages to minimise cost by maximising time available for planned maintenance and giving greater opportunity for avoiding a system breakdown. However, the diagnostic results obtained from monitored signals are often unsatisfactory because mainstream technologies using vibration response do not sufficiently account for the effect of friction and lubrication. To develop a more advanced and accurate diagnosis, this research has focused on investigating the nonlinearities of vibration generation and transmission with the viscoelastic properties of lubrication, to provide an in-depth understanding of vibration generating mechanisms and hence develop more effective signal processing methods for early detection and accurate diagnosis of gear incipient faults. A comprehensive dynamic model has been developed to study the dynamic responses of a multistage helical gear transmission system. It includes not only time-varying stiffness but also tooth friction forces based on an elastohydrodynamic lubrication (EHL) model. In addition, the progression of a light wear process is modelled by reducing stiffness function profile, in which the 2nd and 3rd harmonics of the meshing frequency (and their sidebands) show significant alteration that support fault diagnostic at early stages. Numerical and experimental results show that the friction and progressive wear induced vibration excitations will change slightly the amplitudes of the spectral peaks at both the mesh frequency and its sideband components at different orders, which provides theoretical supports for extracting reliable diagnostic signatures. As such changes in vibrations are extremely small and submerged in noise, it is clear that effective techniques for enhancing the signal-to-noise ratio, such as time synchronous averaging (TSA) and modulation signal bispectrum (MSB) are required to reveal such changes. MSB is preferred as it allows small amplitude sidebands to be accurately characterised in a nonlinear way without information loss and does not impose any addition demands regarding angular displacement measurement as does TSA. With the successful diagnosis of slight wear in helical gears, the research progressed to validate the capability of MSB based methods to diagnose four common gear faults relating to gear tribological conditions; lubrication shortfall, changes in lubrication viscosity, water in oil, and increased bearing clearances. The results show that MSB signatures allows accurate differentiation between these small changes, confirming the model and signal processing proposed in this thesi

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems
    • …
    corecore