16 research outputs found

    Multi-Temporal Analysis of Land Subsidence in Toluca Valley (Mexico) through a Combination of Persistent Scatterer Interferometry (PSI) and Historical Piezometric Data

    Get PDF
    The Toluca Valley Aquifer (TVA) is considered one of the most overexploited aquifers in Mexico because of the high rate of groundwater extraction for supplying urban and industrial water to Mexico City and Toluca City, which causes land subsidence in urban and suburban areas. In this paper, we propose a multi-temporal analysis that uses persistent scatterer interferometry (PSI) method to evaluate the subsidence processes in Toluca Valley. The PSI results revealed differentialn movements of the ground of as much as 83 mm/year. A spatial variation of PSI results was identified with respect to previous studies using the conventional Din SAR methodology. The spatial distribution and density suggested the possibility of an expanding trend of subsidence process at north, northeast and east of the TVA, which corresponds to the region with the highest density of pumping wells for industrial and agricultural usePRODEP, CONACY

    Automated parameterisation for multi-scale image segmentation on multiple layers

    Get PDF
    AbstractWe introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis

    Geosciences / Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography

    Get PDF
    Accurate mapping of landslides and the reliable identification of areas most affected by landslides are essential for advancing the understanding of landslide erosion processes. Remote sensing data provides a valuable source of information on the spatial distribution and location of landslides. In this paper we present an approach for identifying landslide-prone “hotspots” and their spatio-temporal variability by analyzing historical and recent aerial photography from five different dates, ranging from 1944 to 2011, for a study site near the town of Pahiatua, southeastern North Island, New Zealand. Landslide hotspots are identified from the distribution of semi-automatically detected landslides using object-based image analysis (OBIA), and compared to hotspots derived from manually mapped landslides. When comparing the overlapping areas of the semi-automatically and manually mapped landslides the accuracy values of the OBIA results range between 46% and 61% for the producers accuracy and between 44% and 77% for the users accuracy. When evaluating whether a manually digitized landslide polygon is only intersected to some extent by any semi-automatically mapped landslide, we observe that for the natural-color images the landslide detection rate is 83% for 2011 and 93% for 2005; for the panchromatic images the values are slightly lower (67% for 1997, 74% for 1979, and 72% for 1944). A comparison of the derived landslide hotspot maps shows that the distribution of the manually identified landslides and those mapped with OBIA is very similar for all periods; though the results also reveal that mapping landslide tails generally requires visual interpretation. Information on the spatio-temporal evolution of landslide hotspots can be useful for the development of location-specific, beneficial intervention measures and for assessing landscape dynamics.FFG-ASAP-847970(VLID)165265

    A semi-automated object-based approach for landslide detection validated by Persistent Scatterer Interferometry measures and landslide inventories

    Get PDF
    Geoinformation derived from Earth observation (EO) plays a key role for detecting, analyzing and monitoring landslides to assist hazard and risk analysis. Within the framework of the EC-GMES-FP7 project SAFER (Services and Applications For Emergency Response) a semi-automated object-based approach for landslide detection and classification has been developed. The method was applied to a case study in North-Western Italy using SPOT-5 imagery and a digital elevation model (DEM), including its derivatives slope, aspect, curvature and plan curvature. For the classification in the object-based environment spectral, spatial and morphological properties as well as context information were used. In a first step, landslides were classified on a coarse segmentation level to separate them from other features with similar spectral characteristics. Thereafter, the classification was refined on a finer segmentation level, where two categories of mass movements were differentiated: flow-like landslides and other landslide types. In total, an area of 3.77 km² was detected as landslide-affected area, 1.68 km² were classified as flow-like landslides and 2.09 km² as other landslide types. The outcomes were compared to and validated by pre-existing landslide inventory data (IFFI and PAI) and an interpretation of PSI (Persistent Scatterer Interferometry) measures derived from ERS1/2, ENVISAT ASAR and RADARSAT-1 data. The spatial overlap of the detected landslides and existing landslide inventories revealed 44.8% (IFFI) and 50.4% (PAI), respectively. About 32% of the polygons identified through OBIA are covered by persistent scatterers data

    Mapping seagrass meadows, using low altitude aerial images

    Get PDF
    Tese de mestrado, Ecologia Marinha, Universidade de Lisboa, Faculdade de Ciências, 2015As pradarias de ervas marinhas, assim como muitos outros ecossistemas marinhos, estão a sofrer uma degradação sem precedentes em todo o planeta. Devido à rápida perda destes habitats, são necessárias técnicas de monitorização que permitam de forma precisa caracterizar o estado das pradarias de ervas marinhas ao longo do tempo. Adicionalmente é importante considerar o custo e logística na monitorização, assim como a sua flexibilidade em diferentes condições de amostragem e de forma não intrusiva, para um trabalho de campo periódico. Varias metodologias tem sido propostas ao longo do tempo para o estudo de ecossistemas marinhos como as pradarias de ervas marinhas. O objectivo do presente trabalho é o desenvolvimento e teste (análise comparativa) de uma nova abordagem de baixo custo, ao mapeamento dos limites e densidade de pradarias de ervas marinhas, com recurso a imagens aéreas a baixa altitude e alta definição (0.1 m ), obtidas autonomamente. Pretendeu-se assim vencer várias das limitações propostas por metodologias anteriores. Foram abrangidos 3 níveis na análise comparativa: as fases de aquisição (metodologia), a avaliação da influência das condições de aquisição das mesmas e a classificação das imagens. A análise comparativa dos diferentes resultados foi dirigida, não só à avaliação da expressão territorial das manchas – extensão e delimitação – mas também à avaliação comparativa, em termos de resultados e exequibilidade, das metodologias empregues. O trabalho de campo foi desenvolvido na península de Tróia, tendo como alvo duas áreas principais: uma no extremo NO da península de Tróia e outra entre as instalações da Marinha e o novo cais dos ferries. Para a análise comparativa ao nível da aquisição das imagens, a pradaria situada no extremo NO da península de Tróia, foi monitorizada com uma metodologia já testada e avaliada em prévios estudos, a partir de imagens oblíquas em cor verdadeira, obtidas a partir de um ponto fixo elevado na proximidade (o topo de um dos hotéis existentes). Por outro lado na pradaria situada na localização do novo cais dos ferries, foi aplicada a nova metodologia proposta, com fotografia a partir de um balão cativo, a uma altitude de aproximadamente 50 m, que foi guiado ao longo da linha de costa por um operador. Vários fatores ambientais foram inicialmente considerados para o teste das metodologias: vento, ondas, maré, etc. Sendo que o nível de maré foi o fator finalmente usado para a análise comparativa consoante as condições de aquisição. Os levantamentos fotográficos de ambas as manchas foram realizadas com uma periodicidade de base mensal, sempre em condições de baixa-mar de águas vivas. O nível de maré abrange um amplo intervalo de possibilidades, contudo, as imagens foram diferenciadas em dois grupos no contexto das condições de aquisição: emerso e submerso. Emerso refere-se a imagens em que a pradaria apresenta alguma porção emersa e submerso, refere-se às imagens com a totalidade da pradaria submersa. Assim, estes dois grupos permitiram uma clara diferenciação entre diferentes condições ambientais flutuantes e típicas dos ambientes estudados. Estas condições foram também condicionantes para a aquisição de imagens aéreas com ambas as metodologias, o que permitia avaliar a flexibilidade da aplicação da nova metodologia proposta. Em ambos as metodologias de aquisição, as imagens originais em cor verdadeira foram ortorrectificadas (georreferenciadas), com base em levantamentos de campo levados a cabo com recurso a um sistema de GPS com correcção diferencial RTK, para obter os pontos de controlo de referencia para o processo. No caso das imagens obtidas com a nova metodologia proposta, a partir do balão, foram agrupadas 2 ou 3 imagens, em mosaicos representativos de uma secção significativa da área alvo. Finalmente, estas imagens rectificadas e em cor verdadeira, foram processadas para permitir avaliar a distribuição e densidade das manchas de ervas marinhas. Para a análise comparativa ao nível de classificação da imagem, foram utilizados e comparados diferentes algoritmos de classificação, nomeadamente classificação de base pixel e classificação baseada em objectos. Todas as imagens classificadas foram reclassificadas até obter mapas binários representando as classes: Ervas marinhas; Não-ervas marinhas. A partir dos mapas binários para cada uma das imagens processadas, foram obtidos: área da classe Ervas marinhas; precisão de classificação da imagem (a través da comparação com pontos controlo na imagem em cor verdadeira); e o coeficiente kappa (comparando mapas binários). Estes parâmetros foram usados no contexto da análise comparativa para os 3 níveis propostos: • As áreas da classe Ervas marinhas foram comparadas para testar a semelhança/diferença entre a área de cobertura em cada uma das condições de amostragem (emerso/submerso) para cada uma das metodologias usadas (imagens obliquas/imagens com o balão). Assim, foi possível comparar se a situação de maré, influía nos resultados de estudos de densidade e distribuição a través das imagens aéreas. • A precisão na classificação das imagens foi comparado para cada um dos 3 níveis, por forma a avaliar semelhanças/diferenças entre o processo de aquisição das imagens (metodologias), entre condições de amostragem e entre abordagens nas classificações das imagens. • O coeficiente kappa foi obtido a partir da comparação entre mapas binários, comparando condições de amostragem (emerso/submerso) e classificação da imagem (pixel/objecto). Os resultados mostraram que as imagens obtidas com o balão apresentavam menos erros e distorções no processo de rectificação, devido a sua maior verticalidade. Contudo, tinham a limitação decorrente de uma distribuição mais limitante dos pontos de controlo de referencia obtidos com o GPS-RTK. As imagens obtidas a partir do balão a 50 m de altitude permitiram abranger a largura toda da pradaria. Por outro lado, os resultados obtidos através da análise das imagens classificadas (mapas binários), mostraram diferencias significativas (p=3.221×10-05) só ao nível de comparação entre abordagens de classificação das imagens, sendo que a classificação baseada em objectos, ofereceu resultados mais precisos que a classificação de base pixel. Este estudo demonstrou que a metodologia proposta, com o balão cativo, oferece a possibilidade de mapeamento de pradarias de ervas marinhas a baixo custo, com imagens de alta resolução e com elevada precisão. Os resultados a nível de precisão na nova metodologia usada foram semelhantes aos obtidos com a metodologia comparada de imagens obliquas, já demonstrada em estudos anteriores como uma metodologia que vencia limitações de outras abordagens. As maiores limitações para à aplicação da nova metodologia com o balão cativo foram devido as condições meteorológicas, nomeadamente o vento. Contudo, a nova metodologia com o balão ofereceu outras vantagens relativamente às fotografias obliquas além do menor error na rectificação: nomeadamente, a independência de aplicação e o maior detalhe das imagens para representar a complexidade dos ecossistemas. No contexto das condições de amostragem, foi demonstrado que o nível de maré não é um fator que influencie resultados e interpretações, desde que dentro de um limite de visibilidade mínima e para uma cota de maré máxima de 0.8 m, para permitir obter imagens desejáveis. Finalmente, a maior precisão obtida com a classificação baseada em objectos indica que este abordagem oferece uma maior capacidade para classificar as imagens destes sistemas aquáticos superando possíveis limitações p. ex., de visibilidade devida à turbidez o à presença de objectos não desejados na classificação. Este estudo demonstrou a possibilidade e interesse do mapeamento não intrusivo, de baixo custo e com elevada precisão de pradarias de ervas marinhas, mas que também pode ser aplicado noutros ecossistemas intertidais, oferecendo uma nova ferramenta para à necessária monitorização periódica de sistemas complexos.Seagrass meadows, together with other coastal marine habitats, are facing unprecedented declines, which requires low cost methodologies for its highly frequent periodic monitoring, able to represent accurately the complexity of those ecosystems. In this context, the aim of the present study was to develop a new approach using nadir aerial photographies from low altitude – high resolution (0.1 m), with a helium balloon system. The methodology was tested (comparative analysis) at 3 levels. First, at methodology level agains an oblique terrestrial photography methodology used in previous studies at the same location. Second, at sampling conditions level for typical changing environment situations – emerged and submerged. Third, at image classification level comparing pixel- and object-based classification. Testing for each of the levels, was through the analysis of processed images taken, which include: georeferencing and, for nadir aerial photographies, a mosaicking process, and image classification. Final images data, were obtained from the binary (seagrass / non-seagrass) classified maps of each treated image, from which it was obtained: area of seagrass class for each image; classification accuracy; and kappa coefficients values from comparison between classified maps. Hence, area results were used to test for sampling conditions comparative analysis; classification accuracies were used to test for 3 levels (methodology, sampling conditions and image classification) comparative analysis; and kappa analysis to compare binary maps between pairs of images for sampling conditions and image classification comparative analysis. Results showed significance differences only at image classification level comparison (p=3.221×10-05), scoring higher accuracy values for object-based classification. The study demonstrated that highly accurate results can be obtained through the proposed low cost methodology, for different sampling conditions, overcoming some classification issues with the object-based approach. Thus, allowing to reliably represent the seagrass meadows structural complexity through low altitude-high resolution images in a nonintrusive low-cost approach

    UAV-based slope failure detection using deep-learning convolutional neural networks

    Get PDF
    Slope failures occur when parts of a slope collapse abruptly under the influence of gravity, often triggered by a rainfall event or earthquake. The resulting slope failures often cause problems in mountainous or hilly regions, and the detection of slope failure is therefore an important topic for research. Most of the methods currently used for mapping and modelling slope failures rely on classification algorithms or feature extraction, but the spatial complexity of slope failures, the uncertainties inherent in expert knowledge, and problems in transferability, all combine to inhibit slope failure detection. In an attempt to overcome some of these problems we have analyzed the potential of deep learning convolutional neural networks (CNNs) for slope failure detection, in an area along a road section in the northern Himalayas, India. We used optical data from unmanned aerial vehicles (UAVs) over two separate study areas. Different CNN designs were used to produce eight different slope failure distribution maps, which were then compared with manually extracted slope failure polygons using different accuracy assessment metrics such as the precision, F-score, and mean intersection-over-union (mIOU). A slope failure inventory data set was produced for each of the study areas using a frequency-area distribution (FAD). The CNN approach that was found to perform best (precision accuracy assessment of almost 90% precision, F-score 85%, mIOU 74%) was one that used a window size of 64 × 64 pixels for the sample patches, and included slope data as an additional input layer. The additional information from the slope data helped to discriminate between slope failure areas and roads, which had similar spectral characteristics in the optical imagery. We concluded that the effectiveness of CNNs for slope failure detection was strongly dependent on their design (i.e., the window size selected for the sample patch, the data used, and the training strategies), but that CNNs are currently only designed by trial and error. While CNNs can be powerful tools, such trial and error strategies make it difficult to explain why a particular pooling or layer numbering works better than any other
    corecore