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ABSTRACT: 

 

The increasing availability of synthetic aperture radar (SAR) data from a range of different sensors necessitates efficient methods for 

semi-automated information extraction at multiple spatial scales for different fields of application. The focus of the presented study is 

two-fold: 1) to evaluate the applicability of multi-temporal TerraSAR-X imagery for multiresolution segmentation, and 2) to identify 

suitable Scale Parameters through different weighing of different homogeneity criteria, mainly colour variance. Multiresolution 

segmentation was used for segmentation of multi-temporal TerraSAR-X imagery, and the ESP (Estimation of Scale Parameter) tool 

was used to identify suitable Scale Parameters for image segmentation. The validation of the segmentation results was performed 

using very high resolution WorldView-2 imagery and a reference map, which was created by an ecological expert. The results of 

multiresolution segmentation revealed that in the context of object-based image analysis the TerraSAR-X images are applicable for 

generating optimal image objects. Furthermore, ESP tool can be used as an indicator for estimation of Scale Parameter for 

multiresolution segmentation of TerraSAR-X imagery. Additionally, for more reliable results, this study suggests that the 

homogeneity criterion of colour, in a variance based segmentation algorithm, needs to be set to high values. Setting the shape/colour 

criteria to 0.005/0.995 or 0.00/1 led to the best results and to the creation of adequate image objects.  

 

 

1. INTRODUCTION 

1.1 Background 

The Synthetic Aperture Radar (SAR) backscatter signal, which 

depends on surface characteristics, provides valuable 

information about the surface roughness, texture, volumetric 

structure, canopy height and electrical properties of the targets 

(Baghdadi et al. 2009; Dobson et al. 1995; Gebhardt et al. 2012; 

Hess et al. 1995; Heumann 2011; Imhoff 1995; Koch 2010; 

Mahmoud et al. 2011; Wang et al. 2010). The increasing 

availability of SAR data necessitates efficient methods for 

extracting semi-automated information at multiple spatial scales 

for different fields of applications (Drăguţ and Eisank 2012; 

Hölbling et al. 2012). One approach for multi-scale 

representation is object-based image analysis (OBIA). An 

extensive review on OBIA concepts is provided by Blaschke 

(2010). The number of studies that use the concepts and 

methods of OBIA for different applications and datasets rapidly 

increase (Blaschke et al. 2014). OBIA can be applied for semi-

automated classification and feature extraction, but is mainly 

applied on optical data, e.g. in the field of habitat mapping 

where both spectral and spatial information play a critical role.  

 

Segmentation is commonly considered a the first step towards 

finding appropriate target objects (Burnett and Blaschke 2003). 

It can be divided into two main strategies, i.e. bottom-up 

approach (merge), based on starting from several single seed 

pixels and merging the neighbouring pixels to form the 

segments or primitive objects, and top-down approach (split), 

dealing the image as an initial region with internal homogenous 

sub-region (Haralick and Shapiro 1985; Zhang 1996). Among 

different available segmentation techniques, multiresolution 

segmentation gained attention because of its ability to 

partitioning the remote sensing imagery into “meaningful” 

objects at several scales(Benz et al. 2004). The multiresolution 

segmentation implemented in eCognition (Trimble Geospatial) 

software is controlled by two main criteria: the Scale Parameter 

(SP), and the homogeneity criteria or the degree of fitting of 

two adjacent image objects (Baatz and Schäpe 2000). The SP 

controls the maximum allowed variance/standard deviation of 

the resulting image objects in terms of the homogeneity 

criterion or criteria; with an increasing variance to be allowed, 

the size of the segments (image objects) grows naturally. 

Woodcock and Strahler (1987) argued that local variance can be 

used as an indicator to find the optimal size of objects in the 

remote sensing imagery. Based on this concept Drǎguţ et al. 

(2010) introduced a tool called “Estimation of Scale Parameter” 

(ESP) to identify ideal scales, where the overall pattern of local 

variance changes. Drăguţ et al. (2014) further developed the 

ESP tool to be operational on multiple image layers. This latest 

version of the ESP tool was used in this study.  

     

1.2 Objectives 

The objective of this study is two-fold: a) to evaluate the 

applicability of multi-temporal TerraSAR-X imagery for 

deriving image object primitives (meaningful objects) that are 

suitable for habitat mapping in a riparian mixed forest in 

Salzburg, Austria, and b) to assess the validity of the derived 

image objects. Within this objective we tried to identify the 

relevant representation scale(s) of SAR image objects and the 

optimal parameterization of the multi-resolution segmentation 

algorithm.  
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2. METHODOLOGY 

2.1 Study area 

The study area is the Salzach river floodplain, which is located 

at the Austrian-German border (Figure 1). The area is a 

protected site according to the European NATURA 2000 

environmental legalization (Lang et al. 2014), and characterized 

by alluvial forest (91E0) with Alnus glutinosa and Fraxinus 

excelsior (Alno-Padion, Alnion incanae, Salicion albae), and 

riparian mixed forest (91F0) with Quercus robur, Ulmus laevis 

and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, 

along the great rivers (Ulmenion minoris).  

 

 
 

Figure 1. Salzach floodplain, located at the border of Germany 

and Austria. The red polygon indicates the test area. 

  

2.2 Data Sets 

For this study, two types of remote sensing data were used: a) 

multi-temporal archive TerraSAR-X (TS-X) images from 2012, 

acquired on 07 January, 09 February, 09 June, 01 July and 30 

October, and b) a very high resolution (VHR) WorldView-2 

(WV-2) optical image with 8 bands and 0.5 m spatial resolution 

from 09 July 2011. All TerraSAR-X images were acquired in a 

single HH polarization.  

 

2.3 Segmentation of TerraSAR-X Imagery 

Data pre-processing, i.e. calibration (Laur et al. 2003), 

orthorectification (Small and Schubert 2008), and speckle 

filtering (Frost et al. 1982; Lee and Pottier 2009; Mansourpour 

et al. 2006; Robinson 1977) were done using the open source 

software SENTINEL-1 Toolbox (S1TBX), provided by 

European Space Agency (ESA). All TS-X images were 

exported in GeoTIFF format. A spatial subset of the image was 

used in order to speed up the segmentation process.  

 

The WV-2 image was used for comparison of the segmentation 

results. The WV-2 image was resampled to 3 m GSD in order to 

match the spatial resolution of TS-X imagery.  

 

The multiresolution segmentation algorithm implemented in 

eCognition software was used to create segments, also known as 

image objects primitives, based on each SAR image as well as 

on the WV-2 image. As mentioned before, two main factors 

control the multiresolution segmentation: the Scale Parameter 

(SP) and the homogeneity criteria. SP determines the maximum 

standard deviation of the homogeneity criteria and affects the 

size of image objects. Furthermore, the shape factor can be 

optimized by defining smoothness and compactness parameters.   

 

The multiresolution segmentation was supported by applying a 

statistical pre-evaluation with the ESP tool. The ESP tool 

identifies the relevant image object levels for an input layer (or 

a set of input layers) based on changes in local variance. The 

second version of the ESP tool suggests three levels of 

segmentation, whereby the first level is the most detailed one. 

 

The weighing of shape vs. colour for multiresolution 

segmentation is arbitrary, however, in literature two 

combinations of colour variance are suggested for applying 

multiresolution segmentation on SAR imagery: a) heavy 

emphasis on colour variance, i.e. setting the weight of colour 

variance to 0.995 (Evans et al. 2014; Evans et al. 2010), or to 

0.9 (Flores De Santiago et al. 2013). In addition to the value of 

colour variance suggested by Evans et al. (2014), we performed 

a segmentation with fully neglecting the shape effects and 

emphasized on the colour variance only (here the backscatter 

information) of SAR imagery, i.e. the colour variance was set 

to 1. These three different weightings of colour/shape were 

tested on all SAR images. The evaluation of the results was 

done by visual inspection and by comparison of the 

compactness values of the segments. 

 

 

2.4 Validation of the Multiresolution Segmentation Results 

Among research community, validation of the results of remote 

sensing derived thematic maps is highly important (Congalton 

1994; Foody 2002). One of the most common ways to assess 

the accuracy is using a confusion matrix (Congalton 1991), and 

the Kappa coefficient (Smits et al. 1999). However, confusion 

matrix and Kappa coefficient only address the finally classified 

map by taking into account the thematic labels. In other words, 

these statistical approaches cannot be used to evaluate the 

accuracy of intermediate results, such as the segmentation 

result. Yet, there are several approaches suggested in the 

literature for addressing the accuracy of segmentation as well as 

classification (Albrecht et al. 2010; Hernando et al. 2012; 

Hoover et al. 1996; Lang et al. 2010; Lang et al. 2009). The 

segmentation results were compared to a reference map which 

has been created by an ecological expert through visual 

interpretation of the WV-2 image (Figure 2). The reference map 

consists of five main classes, namely: forest, riparian mixed 

forest, clear cut and young forest, meadow, and water. The 

quality of the multiresolution segmentations was assessed by 

considering the percentage of overlapping areas between each 

segmentation result and the respective thematic class and the 

number of classes covered by each segment. 
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Figure 2. The study area showing the WV-2 image (above) and 

the visual interpretation of the same area, done by an ecological 

expert (below). 

 

 

3. RESULTS 

Table 1 shows the results of the multiresolution segmentation 

on the TS-X image acquired on 01 July 2012 and on the WV-2 

image. Here, the segmentation levels are not organized in a 

strictly hierarchical manner, which means, image objects are 

built independently from the previous level and thus don not 

share common boundaries. 

 

 

 
Multiresolution segmentation results (shape vs. 

colour: 0.005/0.995) 

 Level 1 Level 2 Level 3 

TS-X 

   
SP 37 81 201 

Nr. of 

segments 
66 9 1 

WV-2 

   
SP 81 171 501 

Nr. of 

segments 
237 48 5 

 

Table 1. Multiresolution segmentation results on the TS-X 

image from 01 July 2012 and on the WV-2 image. The three 

levels of segmentation suggested by the ESP tool are shown, 

whereby the weighing of colour variance has been set to 0.995 

as suggested in the literature. 

 

The visual interpretation of all the segmentation levels 

suggested by the ESP tool demonstrated that the first 

segmentation level (the most detailed one) was the most suitable 

one; thus, level 1 was further evaluated. For the validation of 

the segmentation results the visual interpretation of the area was 

used as reference. In order to assess the quality of the 

segmentation two criteria were taken into account (Figure 3): 

 

1) The overlapping area between each segment and the 

reference classes 

2) The number of the reference classes covered by each 

segment 

 

The assumption is that the segments with a higher overlapping 

area in relation to the reference classes, as well as the segments 

with a lower number of covered reference classes have a higher 

potential to be correctly assigned to their respective class in 

further analysis. Based on this assumption, the quality map of 

the segmentation results for both images was created by 

considering the above mentioned criteria (Figure 4). 
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Figure 3. The overlapping area between each segment and the 

reference classes (TS-X: top left, WV-2: top right) and the 

number of the reference classes covered by each segment (TS-

X: bottom left, WV-2: bottom right).  

 

The following criteria were used to create the image 

segmentation quality map (Figure 4): 

 

1. The class “high quality” comprises segments 

with an overlapping area of more than 75%, and the 

number of classes covered by each segment is equal 

to “1”.  

2. The class “good quality” comprises segments 

with an overlapping area between 50% and 75%, and 

the number of classes covered by each segment is 

equal to “2”.  

3. The class “average quality” comprises segments 

with an overlapping area between 25 % and 50%, and 

the number of classes covered by each segment is 

equal to “3”. 

4. The class “poor quality” comprises segments 

with an overlapping area of less than 25 %, and the 

number of classes covered by each segment is equal to 

“4”. 

 

 
 

 

Figure 4. The quality map for the segmentation results on TS-X 

(left) and on WV-2 (right) imagery. 

 

The segments of the classes “high quality” and “good quality” 

have potential to be directly assigned to their representative 

class, whereas the segments of the classes “average quality” and 

“poor quality” need more post-processing to be able to be 

labelled.  

 

In general, the segmentation results are influenced by the 

different weighting of shape vs. colour criteria. Three 

combinations of shape vs. colour were tested on all TS-X 

images (Table 2). 

 

 07 Jan 09 Feb 09 June 01 July 30 Oct 

Shape 

vs. 

colour: 

0.1/ 0.9 

     

SP 30 32 40 44 29 

Shape 

vs. 

colour: 

0.005/ 

0.995 

     

SP 27 34 41 37 34 

Shape 

vs. 

colour: 

0.00/ 1 

     

SP 27 24 35 33 33 

 
Table 2. Comparison of three different weightings of shape vs. 

colour on TS-X images acquired in five different months in 

2012. The ESP tool was used to select the SP. 

 

The visual comparison of the results and the number of derived 

segments for each dataset reveals that using shape/colour with 

0.005/0.995 or 0/1 results in more detailed segments compared 

to the shape/colour weighing of 0.1/0.9. Further comparison of 

the results was done using the compactness value of each 

segment (Table 3). Table 3 shows that setting the colour 

variance to 0.9 resulted in a more regular shape (mean 

compactness values between 2 to 3), whereas using 0.995 and 1 

resulted in a more irregular shape (compactness values between 

2 to 6). A compactness value of 1 indicates that the shape is 

close to a circle, thus higher compactness values may 

potentially indicate more complex natural objects. 

 

TS-X 

imagery  

Mean compactness value for each segment 

Jan 

2012 

 
Feb 

2012 

 
June 

2012 
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July 

2012 

 
Oct 

2012 

 
 
Table 3. Compactness values for the derived segments per TS-X 

image using different weighting of homogeneity criteria. 

 

Based on visual inspection it seems that the weightings of 

colour variance with 0.995 and 1 resulted in more detailed 

segments, thus being more suitable for image segmentation of 

TerraSAR-X imagery. The segmentation results showed that 

waterbodies (Figure 2, reference map) were well delineated on 

all TerraSAR-X scenes, whereas significant deviations in terms 

of size and shape were identified for forest types. 

 

 

4. CONCLUSIONS  

This study assessed the applicability of multi-seasonal 

TerraSAR-X images for multiresolution segmentation. Based on 

statistical measures, SPs were automatically selected to produce 

image object primitives that can be used as a fundamental unit 

for subsequent classification. However, further refinements of 

the image object boundaries are necessary. Next to the scale 

parameter, we also studied the influence of shape vs. colour 

criteria on the size and shape of the objects. Setting the colour 

variance to 0.9 resulted in less image object primitives 

compared to 0.995 and 1 for multiresolution segmentation of 

TerraSAR-X images. Liu and Xia (2010) argued that the 

potential of classifying all pixels into their true classes in over-

segmented images is higher compared to under-segmentation. 

When dealing with under-segmentation, each image object may 

consist of several objects, but it would be assigned to a single 

class. Therefore, we suggest the weighing of colour variance 

with 0.995 or 1 for multiresolution segmentation of SAR 

imagery. The visual inspection of the segmentation results on 

multi-temporal TS-X imagery revealed that water bodies were 

well delineated, however, the automated delimitation of forested 

areas just on SAR data seems to be difficult and needs further 

attentions. 
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