3,936 research outputs found

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Application of RFID in the Prefabricated Timber Industry

    Full text link
    RFID (Radio Frequency Identification) has recently gained significant attention in various industries, whereby a common application of the technology is to gather and transmit real-time information related to inventory control and logistics. This paper develops the case for the use of RFID in the prefabricated timber industry by first examining its application in other industries. From there, the paper presents a framework for the adoption and testing of RFID within the prefabricated timber industry as a method to automate inventory control, logistics, and document control, while optimizing construction duration. The paper presents the methodology for field trials designed to determine potential for RFID applications in the prefabricated timber structure supply chain from raw material production to panel fabrication to shipping and onsite logistics and finally through to construction installation. The methodology will be tested in collaboration with industry partners and Forest and Wood Products Australia

    Development of traceability solution for furniture components

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáIn the contemporary context, characterized by intensified global competition and the constant evolution of the globalization landscape, it becomes imperative for industries, including Small and Medium Enterprises (SMEs), to undertake efforts to enhance their operational processes, often through digital technological adaptation. The present study falls within the scope of the project named “Wood Work 4.0,” which aims to infuse innovation into the wood furniture manufacturing industry through process optimization and the adoption of digital technologies. This project received funding from the European Union Development Fund, in collaboration with the North 2020 Regional Program, and was carried out at the Carpintaria Mofreita company, located in Macedo de Cavaleiros, Portugal. In this regard, this study introduces a software architecture that supports the traceability of projects in the wood furniture industry and simultaneously employs a system to identify and manage material leftovers, aiming for more efficient waste management. For the development of this software architecture, an approach that integrates the Fiware platform, specialized in systems for the Internet of Things (IoT), with an Application Programming Interface (API) specifically created to manage information about users, projects, and associated media files, was adopted. The material leftovers identification system employs image processing techniques to extract geometric characteristics of the materials. Additionally, these data are integrated into the company’s database. In this way, it was possible to develop an architecture that allows not only the capturing of project information but also its effective management. In the case of material leftovers identification, the system was able to establish, with a satisfactory degree of accuracy, the dimensions of the materials, enabling the insertion of these data into the company’s database for resource management and optimization.No contexto contemporâneo, marcado por uma competição global intensificada e pela constante evolução do cenário de globalização, torna-se imperativo para as indústrias, incluindo as Pequenas e Médias Empresas (PMEs), empreender esforços para aprimorar seus processos operacionais, frequentemente pela via da adaptação tecnológica digital. O presente estudo insere-se dentro do escopo do projeto denominado “Wood Work 4.0”, cujo propósito é infundir inovação na indústria de fabricação de móveis de madeira por meio da otimização de processos e da adoção de tecnologias digitais. Este projeto obteve financiamento do Fundo de Desenvolvimento da União Europeia, em colaboração com o programa Regional do Norte 2020 e foi realizado na empresa Carpintaria Mofreita, localizada em Macedo de Cavaleiros, Portugal. Nesse sentido, este estudo introduz uma arquitetura de software que oferece suporte à rastreabilidade de projetos na indústria de móveis de madeira, e simultaneamente emprega um sistema para identificar e gerenciar sobras de material, objetivando uma gestão de resíduos mais eficiente. Para o desenvolvimento dessa arquitetura de software, adotou-se uma abordagem que integra a plataforma Fiware, especializada em sistemas para a Internet das Coisas (IoT), com uma Interface de Programação de Aplicações (API) criada especificamente para gerenciar informações de usuários, projetos, e arquivos de mídia associados. O sistema de identificação de sobras de material emprega técnicas de processamento de imagem para extrair características geométricas dos materiais. Adicionalmente, esses dados são integrados ao banco de dados da empresa. Desta forma, foi possível desenvolver uma arquitetura que permite não só capturar informações de projetos, mas também gerenciá-las de forma eficaz. No caso da identificação de sobras de material, o sistema foi capaz de estabelecer, com um grau de precisão satisfatório, as dimensões dos materiais, possibilitando a inserção desses dados no banco de dados da empresa para gestão e otimização do uso de recursos

    Performance assessment of urban precinct design: a scoping study

    Get PDF
    Executive Summary: Significant advances have been made over the past decade in the development of scientifically and industry accepted tools for the performance assessment of buildings in terms of energy, carbon, water, indoor environment quality etc. For resilient, sustainable low carbon urban development to be realised in the 21st century, however, will require several radical transitions in design performance beyond the scale of individual buildings. One of these involves the creation and application of leading edge tools (not widely available to built environment professions and practitioners) capable of being applied to an assessment of performance across all stages of development at a precinct scale (neighbourhood, community and district) in either greenfield, brownfield or greyfield settings. A core aspect here is the development of a new way of modelling precincts, referred to as Precinct Information Modelling (PIM) that provides for transparent sharing and linking of precinct object information across the development life cycle together with consistent, accurate and reliable access to reference data, including that associated with the urban context of the precinct. Neighbourhoods are the ‘building blocks’ of our cities and represent the scale at which urban design needs to make its contribution to city performance: as productive, liveable, environmentally sustainable and socially inclusive places (COAG 2009). Neighbourhood design constitutes a major area for innovation as part of an urban design protocol established by the federal government (Department of Infrastructure and Transport 2011, see Figure 1). The ability to efficiently and effectively assess urban design performance at a neighbourhood level is in its infancy. This study was undertaken by Swinburne University of Technology, University of New South Wales, CSIRO and buildingSMART Australasia on behalf of the CRC for Low Carbon Living

    An integrated modelling framework for the forest-based bioeconomy

    Get PDF
    This paper describes the conceptual design of a modelling framework to assess scenarios for the forest-based bioeconomy. The framework consists of a core set of tools: a partial equilibrium model for the forest sector, a forestry dynamics model for forest growth and harvest and a wood resources balance sheet. The framework can be expanded to include an energy model, a land use model, cost-supply curves and a forest ownership decision model. This partially integrated, multi-disciplinary modelling framework is described, with particular emphasis on the structure of the variables to be exchanged between the framework tools. The data exchange is subject to a series of integrity checks to ensure that the model is computing the correct information in the correct format and order of elements.JRC.H.3-Forest Resources and Climat

    Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities

    Get PDF
    The continuous developments of Building Information Modelling (BIM) in Architecture, Engineering and Construction (AEC) industry supported by the advancements in material resourcing and construction processes could offer engineers the essential decision-making procedures to leverage the raising demands for sustainable structural designs. This article brings together the theory of Life Cycle Assessment (LCA) and the capabilities of BIM to survey the current developments in the energy efficiency of structural systems. In addition, the article explores the engineering dimensions of common decision-making procedures within BIM systems including optimisation methods, buildability and safety constraints and code compliance limitations. The research presents critical expositions in both engineering and sustainable energy domains. The article then argues that future innovations in the sustainable decision-making of buildings’ structures would require BIM-integrated workflows in order to facilitate the conflicting nature of both energy efficient and engineering performance indexes. Finally, the study puts forward a series of research guidelines for a consolidated decision paradigm that utilises the capabilities of BIM within the engineering and sustainable energy domains in a synergistic manner

    Leveraging Structural Health Monitoring Data Through Avatars to Extend the Service Life of Mass Timber Buildings

    Get PDF
    Mass timber construction systems, incorporating engineered wood products as structural elements, are gaining acceptance as a sustainable alternative to multi-story concrete or steel-frame structures. The relative novelty of these systems brings uncertainties on whether these buildings perform long-term as expected. Consequently, several structural health monitoring (SHM) projects have recently emerged to document their behavior. A wide and systematic use of this data by the mass timber industry is currently hindered by limitations of SHM programs. These limitations include scalability, difficulty of data integration, diverse strategies for data collection, scarcity of relevant data, complexity of data analysis, and limited usability of predictive tools. This perspective paper envisions the use of avatars as a Web-based layer on top of sensing devices to support SHM data and protocol interoperability, analysis, and reasoning capability and to improve life cycle management of mass timber buildings. The proposed approach supports robustness, high level and large-scale interoperability and data processing by leveraging the Web protocol stack, overcoming many limitations of conventional centralized SHM systems. The design of avatars is applied in an exemplary scenario of hygrothermal data reconstruction, and use of this data to compare different mold growth prediction models. The proposed approach demonstrates the ability of avatars to efficiently filter and enrich data from heterogeneous sensors, thus overcoming problems due to data gaps or insufficient spatial distribution of sensors. In addition, the designed avatars can provide prediction or reasoning capability about the building, thus acting as a digital twin solution to support building lifecycle management

    BIM-based Generative Modular Housing Design and Implications for Post-Disaster Housing Recovery

    Get PDF
    The adverse social and financial impacts of catastrophic disasters are increasing as population centers grow. After disastrous events, the government agencies must respond to post-disaster housing issues quickly and efficiently and provide sufficient resources for the reconstruction of destroyed and damaged houses for full rehabilitation. However, post-disaster housing reconstruction is a highly complex process because of the large number of projects, shortage of resources, and heavy pressure for delivery of the projects after a disastrous event. This complexity and lack of an inconsistent, systematic approach for planning lead to an ad-hoc decision-making process and inefficient recovery. This research explored modular construction as a highly time-efficient approach to tackle the abovementioned challenges and facilitate the housing reconstruction process. Firstly, this research investigated the feasibility of using the modular construction method for rapid post-disaster housing reconstruction through a targeted literature review and survey of subject matter experts to broaden the understanding of modular construction-based post-disaster housing reconstruction, benefits, and barriers. Second, this research focused on improving the design and pre-planning phase of modular construction that can facilitate the successful implementation of modular construction in a post-disaster situation. To this end, a BIM-based generative modular housing design system was developed by using Generative Adversarial Networks (GANs) to automate the entire design process by incorporating manufacturing and construction constraints to fit the needs of the modular construction method. The framework was further extended by developing an optimization model to optimize the modularization strategy in the early design phase which was capable of reflecting the entire multi-stage process of modular construction (production, transportation, and assembly), and considering both individual project’s requirements and post-disaster housing reconstruction portfolio’s requirements. The outcomes of this study fit the MC industry that may be used by designers and modular housing companies looking to automate their design process. It is also expected to provide critical benchmarks for planners, decision-makers, and community developers to facilitate their decision-making process on considering modular construction as an efficient way for mass post-disaster housing reconstruction and addressing communities’ housing needs following a disastrous event

    Digital twin and its implementations in the civil engineering sector

    Get PDF
    Digital Twin (DT) concept has recently emerged in civil engineering; however, some problems still need to be addressed. First, DT can be easily confused with Building Information Modelling (BIM) and Cyber-Physical Systems (CPS). Second, the constituents of DT applications in this sector are not well-defined. Also, what the DT can bring to the civil engineering industry is still ambiguous. To address these problems, we reviewed 468 articles related to DT, BIM and CPS, proposed a DT definition and its constituents in civil engineering and compared DT with BIM and CPS. Then we reviewed 134 papers related to DT in the civil engineering sector out of 468 papers in detail. We extracted DT research clusters based on the co-occurrence analysis of paper keywords' and the relevant DT constituents. This research helps establish the state-of-the-art of DT in the civil engineering sector and suggests future DT development
    corecore