41 research outputs found

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Sequential emitter identification method based on D-S evidence theory

    Get PDF
    This paper proposes a novel sequential identification method for enhancing the anti-jamming performance and for accurate recognition rate of the emitters’ individual identification in the complicated environment. The proposed method integrates the D-S evidence theory and features extraction that can get the utmost out of features of information systems and decrease the influence of uncertain factors in the signal processing. Firstly, selected features are extracted from intercepted signals. Then, the proposed self-adaptive fusing rule based on the decision vector is utilized to fuse the evidences that are transformed by features and the previous fusing information. Finally, recognition results can be obtained by judgment rules. The simulation analysis demonstrates that self-adaptive fusing rule can achieve a great balance between computational efficiency and accurate identifying rate. While comparing with other identifying methods, the proposed sequential identifying method can provide more accurate and stable recognition results, which makes the utmost care and use of existing information

    Evidential Evolving Gustafson-Kessel Algorithm For Online Data Streams Partitioning Using Belief Function Theory.

    Get PDF
    International audienceA new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel) is introduced. This partitional clustering algorithm is based on the concept of credal partition defined in the theoretical framework of belief functions. A credal partition is derived online by applying an algorithm resulting from the adaptation of the Evolving Gustafson-Kessel (EGK) algorithm. Online partitioning of data streams is then possible with a meaningful interpretation of the data structure. A comparative study with the original online procedure shows that E2GK outperforms EGK on different entry data sets. To show the performance of E2GK, several experiments have been conducted on synthetic data sets as well as on data collected from a real application problem. A study of parameters' sensitivity is also carried out and solutions are proposed to limit complexity issues

    Advances and Applications of Dezert-Smarandache Theory (DSmT), Vol. 1

    Get PDF
    The Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning is a natural extension of the classical Dempster-Shafer Theory (DST) but includes fundamental differences with the DST. DSmT allows to formally combine any types of independent sources of information represented in term of belief functions, but is mainly focused on the fusion of uncertain, highly conflicting and imprecise quantitative or qualitative sources of evidence. DSmT is able to solve complex, static or dynamic fusion problems beyond the limits of the DST framework, especially when conflicts between sources become large and when the refinement of the frame of the problem under consideration becomes inaccessible because of vague, relative and imprecise nature of elements of it. DSmT is used in cybernetics, robotics, medicine, military, and other engineering applications where the fusion of sensors\u27 information is required

    Advances and Applications of DSmT for Information Fusion

    Get PDF
    This book is devoted to an emerging branch of Information Fusion based on new approach for modelling the fusion problematic when the information provided by the sources is both uncertain and (highly) conflicting. This approach, known in literature as DSmT (standing for Dezert-Smarandache Theory), proposes new useful rules of combinations

    Fuzzy decision-making fuser (FDMF) for integrating human-machine autonomous (HMA) systems with adaptive evidence sources

    Full text link
    © 2017 Liu, Pal, Marathe, Wang and Lin. A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected works), Vol. 2

    Get PDF
    This second volume dedicated to Dezert-Smarandache Theory (DSmT) in Information Fusion brings in new fusion quantitative rules (such as the PCR1-6, where PCR5 for two sources does the most mathematically exact redistribution of conflicting masses to the non-empty sets in the fusion literature), qualitative fusion rules, and the Belief Conditioning Rule (BCR) which is different from the classical conditioning rule used by the fusion community working with the Mathematical Theory of Evidence. Other fusion rules are constructed based on T-norm and T-conorm (hence using fuzzy logic and fuzzy set in information fusion), or more general fusion rules based on N-norm and N-conorm (hence using neutrosophic logic and neutrosophic set in information fusion), and an attempt to unify the fusion rules and fusion theories. The known fusion rules are extended from the power set to the hyper-power set and comparison between rules are made on many examples. One defines the degree of intersection of two sets, degree of union of two sets, and degree of inclusion of two sets which all help in improving the all existing fusion rules as well as the credibility, plausibility, and communality functions. The book chapters are written by Frederic Dambreville, Milan Daniel, Jean Dezert, Pascal Djiknavorian, Dominic Grenier, Xinhan Huang, Pavlina Dimitrova Konstantinova, Xinde Li, Arnaud Martin, Christophe Osswald, Andrew Schumann, Tzvetan Atanasov Semerdjiev, Florentin Smarandache, Albena Tchamova, and Min Wang

    Georeferencing text using social media

    Get PDF

    Combining multiple types of intelligence to generate probability maps of moving targets

    Get PDF
    Drug addiction in the United States generates significant health, economic, and social costs. One of the prominent ways in which traffickers smuggle drugs into the United States is by maritime shipments from South America. In 1989 Joint Interagency Task Force South (JIATF-S) was established to fight these traffickers. JIATF-S collects information from multiple sources, which can be broadly classified into two categories. The first category is sensor-based sources that produce observations about possible targets (e.g., radar, sonar). These observations provide precise location and time but are susceptible to false positive and false negative errors regarding their content. The second category is human-based sources, including tips, messages and intercepted communications among humans. In addition to possible misinformation regarding the content of an event, such inputs are also susceptible to errors regarding the location and time of the event. In this thesis we develop a data fusion model that can assist JIATF-S in estimating the likelihood that a certain target (i.e., drug-smuggling vessel) is present at a certain location at a certain time and evaluate the reliability of the information source. The novelty of this thesis is manifested in a new probabilistic approach for utilizing human-generated intelligence, and in the way it is combined with sensor-generated intelligence.http://archive.org/details/combiningmultipl1094537751Captain, Israel Defense ForcesApproved for public release; distribution is unlimited
    corecore