645 research outputs found

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    A review of compensation topologies and control techniques of bidirectional wireless power transfer systems for electric vehicle applications

    Get PDF
    Owing to the constantly rising energy demand, Internal Combustion Engine (ICE)-equipped vehicles are being replaced by Electric Vehicles (EVs). The other advantage of using EVs is that the batteries can be utilised as an energy storage device to increase the penetration of renewable energy sources. Integrating EVs with the grid is one of the recent advancements in EVs using Vehicle-to-Grid (V2G) technology. A bidirectional technique enables power transfer between the grid and the EV batteries. Moreover, the Bidirectional Wireless Power Transfer (BWPT) method can support consumers in automating the power transfer process without human intervention. However, an effective BWPT requires a proper vehicle and grid coordination with reasonable control and compensation networks. Various compensation techniques have been proposed in the literature, both on the transmitter and receiver sides. Selecting suitable compensation techniques is a critical task affecting the various design parameters. In this study, the basic compensation topologies of the Series-Series (SS), Series-Parallel (SP), Parallel-Parallel (PP), Parallel-Series (SP), and hybrid compensation topology design requirements are investigated. In addition, the typical control techniques for bidirectional converters, such as Proportional-Integral-Derivative (PID), sliding mode, fuzzy logic control, model predictive, and digital control, are discussed. In addition, different switching modulation schemes, including Pulse-Width Modulation (PWM) control, PWM + Phase Shift control, Single-Phase Shift, Dual-Phase Shift, and Triple-Phase Shift methods, are discussed. The characteristics and control strategies of each are presented, concerning the typical applications. Based on the review analysis, the low-power (Level 1/Level 2) charging applications demand a simple SS compensation topology with a PID controller and a Single-Phase Shift switching method. However, for the medium- or high-power applications (Level 3/Level 4), the dual-side LCC compensation with an advanced controller and a Dual-Side Phase-Shift switching pattern is recommended.Web of Science1520art. no. 781

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Cross-Layer Optimization and Dynamic Spectrum Access for Distributed Wireless Networks

    Get PDF
    We proposed a novel spectrum allocation approach for distributed cognitive radio networks. Cognitive radio systems are capable of sensing the prevailing environmental conditions and automatically adapting its operating parameters in order to enhance system and network performance. Using this technology, our proposed approach optimizes each individual wireless device and its single-hop communication links using the partial operating parameter and environmental information from adjacent devices within the wireless network. Assuming stationary wireless nodes, all wireless communication links employ non-contiguous orthogonal frequency division multiplexing (NC-OFDM) in order to enable dynamic spectrum access (DSA). The proposed approach will attempt to simultaneously minimize the bit error rate, minimize out-of-band (OOB) interference, and maximize overall throughput using a multi-objective fitness function. Without loss in generality, genetic algorithms are employed to perform the actual optimization. Two generic optimization approaches, subcarrier-wise approach and block-wise approach, were proposed to access spectrum. We also proposed and analyzed several approaches implemented via genetic algorithms (GA), such as quantizing variables, using adaptive variable ranges, and Multi-Objective Genetic Algorithms, for increasing the speed and improving the results of combined spectrum utilization/cross-layer optimization approaches proposed, together with several assisting processes and modifications devised to make the optimization to improve efficiency and execution time

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Applications of Power Electronics:Volume 2

    Get PDF

    AI and IoT Meet Mobile Machines: Towards a Smart Working Site

    Get PDF
    Infrastructure construction is society's cornerstone and economics' catalyst. Therefore, improving mobile machinery's efficiency and reducing their cost of use have enormous economic benefits in the vast and growing construction market. In this thesis, I envision a novel concept smart working site to increase productivity through fleet management from multiple aspects and with Artificial Intelligence (AI) and Internet of Things (IoT)

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Advances in Bioengineering

    Get PDF
    The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques
    • …
    corecore