1,363 research outputs found

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ā€elder monitoring and emergency detectionā€ solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    An Advanced Home ElderCare Service

    Get PDF
    With the increase of welfare cost all over the developed world, there is a need to resort to new technologies that could help reduce this enormous cost and provide some quality eldercare services. This paper presents a middleware-level solution that integrates monitoring and emergency detection solutions with networking solutions. The proposed system enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and provides a framework for creating and managing rescue teams willing to assist elders in case of emergency situations. A prototype of the proposed system was designed and implemented. Results were obtained from both computer simulations and a real-network testbed. These results show that the proposed system can help overcome some of the current problems and help reduce the enormous cost of eldercare service

    A trust supportive framework for pervasive computing systems

    Get PDF
    Recent years have witnessed the emergence and rapid growth of pervasive comput- ing technologies such as mobile ad hoc networks, radio frequency identification (RFID), Wi-Fi etc. Many researches are proposed to provide services while hiding the comput- ing systems into the background environment. Trust is of critical importance to protect service integrity & availability as well as user privacies. In our research, we design a trust- supportive framework for heterogeneous pervasive devices to collaborate with high security confidence while vanishing the details to the background. We design the overall system ar- chitecture and investigate its components and their relations, then we jump into details of the critical components such as authentication and/or identification and trust management. With our trust-supportive framework, the pervasive computing system can have low-cost, privacy-friendly and secure environment for its vast amount of services

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    Towards Adaptable and Adaptive Policy-Free Middleware

    Get PDF
    We believe that to fully support adaptive distributed applications, middleware must itself be adaptable, adaptive and policy-free. In this paper we present a new language-independent adaptable and adaptive policy framework suitable for integration in a wide variety of middleware systems. This framework facilitates the construction of adaptive distributed applications. The framework addresses adaptability through its ability to represent a wide range of specific middleware policies. Adaptiveness is supported by a rich contextual model, through which an application programmer may control precisely how policies should be selected for any particular interaction with the middleware. A contextual pattern mechanism facilitates the succinct expression of both coarse- and fine-grain policy contexts. Policies may be specified and altered dynamically, and may themselves take account of dynamic conditions. The framework contains no hard-wired policies; instead, all policies can be configured.Comment: Submitted to Dependable and Adaptive Distributed Systems Track, ACM SAC 200

    Opening the Home. A Web Service Approach to Domotics

    Get PDF

    Opening the Home. A Web Service Approach to Domotics

    Get PDF

    Pervasive computing reference architecture from a software engineering perspective (PervCompRA-SE)

    Get PDF
    Pervasive computing (PervComp) is one of the most challenging research topics nowadays. Its complexity exceeds the outdated main frame and client-server computation models. Its systems are highly volatile, mobile, and resource-limited ones that stream a lot of data from different sensors. In spite of these challenges, it entails, by default, a lengthy list of desired quality features like context sensitivity, adaptable behavior, concurrency, service omnipresence, and invisibility. Fortunately, the device manufacturers improved the enabling technology, such as sensors, network bandwidth, and batteries to pave the road for pervasive systems with high capabilities. On the other hand, this domain area has gained an enormous amount of attention from researchers ever since it was first introduced in the early 90s of the last century. Yet, they are still classified as visionary systems that are expected to be woven into peopleĆ¢ā‚¬ā„¢s daily lives. At present, PervComp systems still have no unified architecture, have limited scope of context-sensitivity and adaptability, and many essential quality features are insufficiently addressed in PervComp architectures. The reference architecture (RA) that we called (PervCompRA-SE) in this research, provides solutions for these problems by providing a comprehensive and innovative pair of business and technical architectural reference models. Both models were based on deep analytical activities and were evaluated using different qualitative and quantitative methods. In this thesis we surveyed a wide range of research projects in PervComp in various subdomain areas to specify our methodological approach and identify the quality features in the PervComp domain that are most commonly found in these areas. It presented a novice approach that utilizes theories from sociology, psychology, and process engineering. The thesis analyzed the business and architectural problems in two separate chapters covering the business reference architecture (BRA) and the technical reference architecture (TRA). The solutions for these problems were introduced also in the BRA and TRA chapters. We devised an associated comprehensive ontology with semantic meanings and measurement scales. Both the BRA and TRA were validated throughout the course of research work and evaluated as whole using traceability, benchmark, survey, and simulation methods. The thesis introduces a new reference architecture in the PervComp domain which was developed using a novel requirements engineering method. It also introduces a novel statistical method for tradeoff analysis and conflict resolution between the requirements. The adaptation of the activity theory, human perception theory and process re-engineering methods to develop the BRA and the TRA proved to be very successful. Our approach to reuse the ontological dictionary to monitor the system performance was also innovative. Finally, the thesis evaluation methods represent a role model for researchers on how to use both qualitative and quantitative methods to evaluate a reference architecture. Our results show that the requirements engineering process along with the trade-off analysis were very important to deliver the PervCompRA-SE. We discovered that the invisibility feature, which was one of the envisioned quality features for the PervComp, is demolished and that the qualitative evaluation methods were just as important as the quantitative evaluation methods in order to recognize the overall quality of the RA by machines as well as by human beings

    Intelligibility and user control of context-aware application behaviours

    Get PDF
    Context-aware applications adapt their behaviours according to changes in user context and user requirements. Research and experience have shown that such applications will not always behave the way as users expect. This may lead to loss of users' trust and acceptance of these systems. Hence, context-aware applications should (1) be intelligible (e.g., able to explain to users why it decided to behave in a certain way), and (2) allow users to exploit the revealed information and apply appropriate feedback to control the application behaviours according to their individual preferences to achieve a more desirable outcome. Without appropriate mechanisms for explanations and control of application adaptations, the usability of the applications is limited. This paper describes our on going research and development of a conceptual framework that supports intelligibility of model based context-aware applications and user control of their adaptive behaviours. The goal is to improve usability of context-aware applications
    • ā€¦
    corecore