

Intelligibility and User Control of Context-aware
Application Behaviours

Johnson Fong1, 2
1

School of Information Technology and Electrical Engineering,
The University of Queensland

2

Queensland Research Laboratory
National ICT Australia (NICTA)

jfong@itee.uq.edu.au

ABSTRACT
Context-aware applications adapt their behaviours according to
changes in user context and user requirements. Research and
experience have shown that such applications will not always
behave the way as users expect. This may lead to loss of users'
trust and acceptance of these systems. Hence, context-aware
applications should (1) be intelligible (e.g., able to explain to users
why it decided to behave in a certain way), and (2) allow users to
exploit the revealed information and apply appropriate feedback to
control the application behaviours according to their individual
preferences to achieve a more desirable outcome. Without
appropriate mechanisms for explanations and control of
application adaptations, the usability of the applications is limited.
This paper describes our on going research and development of a
conceptual framework that supports intelligibility of model based
context-aware applications and user control of their adaptive
behaviours. The goal is to improve usability of context-aware
applications.

Keywords
context-aware, intelligibility, user preferences, user control, user
feedback, personalisation.

1. INTRODUCTION
Context-aware applications use contextual information about users
to evaluate whether there is any change to their situation and
environment that requires the applications to adapt their behaviour
automatically on behalf of users [1]. They have the potential to
greatly reduce human interactions with computing devices, thus
giving users the impression that computing services have faded
into the background. However, one of the main problems with
context-aware applications is that the adaptations they
automatically performed will not always result in the application
behaviours that users expect due to various reasons, such as
imperfect sensing and reasoning of/on context information and
inaccurately captured user preferences, etc.

Hence, users may feel loss of control over the behaviours of their

applications, become dissatisfied and abandon the most useful
context-aware applications eventually. To mitigate these problems,
(1) context-aware applications should be intelligible: being able to
"represent to their users what they know, how they know it, and
what they are doing about it" [4]. The users need to understand
how the applications operate and how adaptation decisions are
made (such as which context information and logic are used, and
what rules and models are employed to arrive at certain automated
actions). Based on this information, (2) the users may decide to
alter the adaptive behaviour and personalise it according to their
preferences, to achieve a more desirable outcome. Without
appropriate mechanisms for explanations and control of
application behaviours, the usability of the applications is limited.

Most of the current middleware solutions for context-aware
applications support gathering and management of context
information, and evaluation of situations and user preferences,
while some are more technology specific focusing on specific
problems (e.g., fault-tolerance, user privacy, etc.). However, few
middleware solutions address the issue of intelligibility and user
control of application behaviours. This paper describes the most
relevant work in this area, as well as our ongoing research and
development of a conceptual framework that improves user
experiences by supporting intelligibility of model based context-
aware applications to facilitate user understanding of application
actions, and user control of their adaptive behaviours.

More specifically, the research focuses on (1) a model for explicit
exposure and explanation of the internal adaptation decision
making process of context-aware applications, and (2) a method
that allows users with various skill levels in technology to
customize the context-aware behaviour dynamically at run time
(without the need for reimplementation) according to their
individual needs and requirements. The structure of the paper is as
follows. Section 2 present related works in the area of
intelligibility and user control of application behaviours, Section 3
discusses the research goal and methodology of our work Finally,
Section 4 summarises the paper with the results to date, outlines
any future work to be completed and potential challenges to the
work.

2. RELATED WORK
This section briefly reviews relevant approaches in the area
of intelligibility and user control of context-aware
application behaviours.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPS2010, July 13-15, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0249-4 10/07…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15110467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 User Studies
Lim et al. carried out extensive user studies in [5] and [6], and
discovered that explanations describing why an application
behaved a certain way resulted in better understanding and
stronger feelings of trust from users. Contrastingly,

In addition, separate user studies conducted in [16] found that
context-aware applications providing intelligibility types such as
why, certainty and control (as described in Table 1) are helpful in
improving users' satisfaction, and should be made available for all
context-aware applications, while some are more useful for
specific contexts (e.g., why not for goal-supportive tasks).

 the users' trust
decreases when the explanations of the behaviour have low
accuracy.

Table 1. Description of Intelligibility Types
Intelligibility
Types

Description

Why Why did the application do X?

Why Not Why did it not do Y?

What Else What (else) is it doing?

How How (under what condition) does
it do Y?

What If What if there is a change in
conditions, what would happen?

Certainty Application confidence of its
action / decisions

Control How to change settings /
thresholds

Although, these experiments and user studies are useful in
understanding the impact of explanations in context-aware
applications, formal models and solutions to achieve intelligibility
in applications are yet to be designed and developed.

2.2 Middleware and Infrastructures
There are several existing middleware solutions that support the
development of context-aware applications. For example,
Henricksen provided a generic solution with formal and well
defined models capturing of context information, and reasoning on
situations and user preferences. While some others are more
technology specific focusing on specific problems such as, fault-
tolerance, resource discovery, user privacy and security, etc.
Examples include, CoBrA [7], Context Toolkit [10], JCAF [8],
Cooltown [9], and the PACE middleware [15]. However, they do
not offer higher level abstractions that explain application
adaptations and the decision making process involved in those
adaptations (i.e., what the context and logic were employed) in an
accessible manner.

The exceptions to the infrastructures above are extensions to the
Context Toolkit [10] and the PACE middleware [15]. Their
extension addressed aspects of intelligibility and control in
context-aware applications. Newberger and Dey [13] extended the
Context Toolkit, to include a new component, the Situation [13]
(or Enactor in earlier publications [12]). It provides external
access to application logic at the toolkit level through a standard
API, and facilitates such access through interface design tools. The
Situation allows context-aware application developers to
implement specific application logic and expose the design-time
and run-time characteristics of that logic. Situation ties together
context input and application output in a way that inherently
supports external access to internal application logic. It has three

subcomponents: references, parameters, and listeners. References
acquire context data from widgets, listeners monitor all changes,
and parameters allow control. Although this solution is primarily
intended for use by application designers, it is easy to see that a
similar solution could be developed to allow users to personalise
and control context-aware behaviour.

While Dey et al. focused the research on supporting developers for
building intelligible context-aware applications, Hardian et al [14]
focused on a generic approach for supporting users in scrutinising
contextual information in applications that are based on models
(i.e., context models, situation models and preference models).
They extended the PACE middleware for exposing adaptation
decisions on user requests. Their work identified three elements
within PACE that influence behaviour of context-aware
applications. They are (1) context facts that can be abstracted
using situation abstraction to describe the condition or scenarios to
which context-aware application should adapt, (2) preference
information that accommodates explicit user preferences and (3)
choices that link adaptation logic to the preferences for it to be
executed by the applications under a particular situation.

These elements are being maintained by various models in the
PACE middleware. Hardian et al's approach [14] is able to reveal
these internal elements to users, their aim is to provide users with
better understanding to the inner workings and inputs of
applications. Although their work is able to provide transparency
to the internal adaptation decisions by revealing elements that
influence application behaviours, these elements are not necessary
intelligible (i.e., they are exposed in a low-level form that is
currently being maintained in the system). Without appropriate
mechanisms for explanations, they cannot easily be understood by
ordinary users (i.e. users do not have expertise in information
technology), because the models that maintain these elements are
primarily designed for application developers to interpret and
input preferences on behalf of the users. In addition, Hardian et
al's approach does not accommodate sufficient feedback
mechanism for users to control application behaviours.

3. RESEARCH GOALS AND METHODS
Our research has three components: (1) investigation of the
architecture of the PACE middleware, and analysis of various
models and elements that influence the adaptive behaviour of
context-aware applications; (2) utilisation of results from the
investigation to design and develop a model for explicit exposure
and explanation of the adaptation decision making process in the
applications, and methods that allow users to customize, at run
time, the context-aware behaviour according to their individual
preferences; (3) implementation of a proof-of-concept prototype as
an extension of PACE, and evaluation the effectiveness of the
model for improving usability of context-aware applications by
performing a user study.

3.1 Analysis of PACE models
In order for users to correct inappropriate application behaviours,
the internal states of the applications such as the current context
and preference information need to be captured in formal and well
defined models at the first place, so that the information can be
revealed in a structured manner. Thus, our work needs to be
supported by a context-aware infrastructure that offers formal
context and preference modelling abstractions, so as to provide a
generic solution to context-aware applications (independent of
their application types or domains) for improving their
intelligibility and control.

We evaluated several infrastructures for their context and
preference modelling and reasoning approaches in our critical
literature survey. The results show that the PACE infrastructure,
proposed by Henricksen et al [15], is one of the few solutions that
provide a rich and comprehensive set of middleware models, and
therefore, we employ it as the basis of our research. As the starting
point of our research, we analysed the middleware models from
Henricksen et al’s framework aimed to find out (1) which models
or elements influence the application behaviours and (2) where the
difficulties and challenges lie in exposing them in a way that is
acceptable and understandable for users.

Preliminary analysis of the PACE infrastructure discovered four
middleware models that are of relevance to application adaptation.
The first model is the CML based context model for capturing
context information (context facts) used in a context-aware
application. The Context Modelling Language [2], or CML as it is
known, provides a graphical notation that assists designers with
the tasks of exploring and specifying the context requirements of
applications (i.e., modelling context information fact types that are
of interest to applications). Figure 1 depicts a modified version of
a CML context model for a smart home application presented in
[11].

The second model is the situation abstractions for describing
high-level context information derived by context reasoning on
context facts in the context model. Context facts are used to create
another level of context abstractions known as situations, as
context-aware applications adapt to particular situations, not to
changes in single context information fact. We base our research
on situation models that express situations using a variant of
predicate logic (a combination of context facts supported by
universal quantifiers and/or existential quantifiers) as defined in
Henricksen et al’s framework. An example of a situation
definition PersonHasFallen(person) required by the smart
home application is shown in Figure 2.

Person
(name)

Movement (id)

Velocity
(float)

Acceleration
(float)

Relationship Type
(name)

Position
(name)

has movement

has
acceleration

has
velocity

Vector
(direction)

has vector

has position
has relationship type

Figure 1. Portion of a CML context model of a smart home

application [11].

The third model is the preference model for representing user
preferences. The preference model builds on the situation
abstraction. Preferences work based on a scoring mechanism -
users can assign a score in a particular context situation. The
scores assigned by user’s preferences can be dynamically
combined with system’s preferences, to support decision making
on how a context-aware application should adapt.

PersonHasFallen(person):

 Movement
 • HasAcceleration [movement, acceleration]
 • acceleration > 5.8 ms2

 • PersonHasMovement

 [Person, movement, t1, t2

 • (t
]

1

 • MovementHasVector[movement, vector]
 ≥ (timenow() - 5 sec))

 • vector = "Downward"

Figure 2. An example situation required by the smart home
application

The scope describes the context in which the preference applies in
terms of situations. A preference is considered applicable within a
given context only if the scope expression is true. The scoring
expression assigns a score to a preference and increasing scores
represent increasing desirability. Each preference is linked to
several possible adaptations with a set of candidate choices.
Depending on what context the preference is evaluated against, an
appropriate adaptation will be executed. The candidate choice is
the fourth middleware model that is of relevance to application
adaptations. Choices are for linking preferences with adaptation
logics through a set of valuations and their binding as shown in
Figure 3. Figure 3 illustrates a simplified version (ignoring details
such as triggers and selectbest() function call, etc.) of the
procedures that the smart home application is required to take, in
order to decide which action is to be executed when the occupant
Mary has fallen. Initially, step (1) from Figure 3 shows each
binding in the candidate choice 1 (i.e., Dr Joe and Mary) is
substituted into the each situation variable (i.e., Occupant and
ContactPerson) of preference P1. Using the choice bindings,
step (2) shows all the situations in that preference P1 is then
evaluated against the current context held in the context model. (3)
When all the situations in P1 return true, choice 1 scores a rating
of one. Above procedures are then repeated for all preferences P1
to P5, averaging all the ratings that choice 1 has scored. Finally,
the last procedure is repeated for all choices 1 to 3, the choices are
then compared to determine which one has the highest rating and
the adaptation associated with that choice is executed.

From the analysis, it is evident that the current middleware models
are not easy to understand even when they are fully exposed
(depicted in Figure 1 to 3) and explained accordingly. It is not
obvious for users to see what the final adaptation will be given the
current context, situations and user preferences. In this smart home
example, assuming Mary is unconscious after the fall and it is
currently outside working hours, the final action the application
takes in this case is to contact Mary's next of kin, Ms Helen
(i.e., choice 2) rather than one of the doctors. However, it is
not entirely clear for users as to how or why this has happened.
The underlying reason is that choice 2 has been given the highest
rating with an average score of 1, where choice 1 and 3 have both
scored an average rating of 0.9.

While the middleware models have high transparency (i.e., able to
expose their internal states to users), the lack of intelligibility in
the revealed information is still causing difficulties for users when
they attempt to exploit the exposed information (i.e., trace
inappropriate behaviours back to incorrect context or preference
information, and correct this information). One of the fundamental
reasons for the lack of intelligibility in the models is caused by the
cumbersome procedures in order to evaluate a set of preferences
by substituting choice bindings into each of the situations and
calculate an overall rating for a particular choice.

Figure 3. Choices and Preference model

For example, when all preferences have evaluated against one
particular choice and given it a set of ratings, a utility function
(e.g., average (P), wgtaverage (<Pa,...,Pn>,
<W1,...,Wn>), override (P1,P2), and as (P),
etc.) has to be executed on the combination of ratings for the
choice[15]. The application can decide which adaptation to
perform only when all existing choices have been evaluated and
the final set of ratings are calculated by whatever the function is
associated with the preferences.

3.2 Design of models for intelligibility and user
control
Toward the second objective, we hypothesize that the lack of
intelligibility in context-aware applications can be addressed by
the following proposals. Firstly, in this research (1) we advocate
for an intelligible preference model in terms of "if-then-else"
decision rules derived from Henricksen et al’s middleware models
[15]. It is expected to have a higher intelligibility than the existing
preference model, as it represents a closer mapping to users'
cognition of preference representations. And secondly, (2) based
on Hardian et al's approach [14], we design and implement a user
feedback system for (i) user scrutiny of the middleware models
with explanations for users with various expertises in I.T., and (ii)
user feedback on application behaviours by changing their
preferences, and/or introducing new context fact types and
situations.

As discussed in the analysis, explanations of preference
information are very challenging with the existing middleware
models. Untrained users have significant difficulties
understanding the complicated procedures for preferences and
choices evaluation, as the models were originally designed by
application developers and their main goal was to externalise
context and preference evaluation from the application to
middleware. Therefore, adaptations performed by the applications

often represent the perspective of the developers, causing usability
issues in applications. Hence, we propose an intelligible
preference model that is designed with the users in mind, by
removing unintelligible aspects of the existing Henricksen et al’s
models such as the utility function in the preference model
(wgtaverage and override, etc.), and extending the
choices to enhance their expressiveness. An example of the
proposed model and its set of choices are shown in Figure 4 and 5,
The model extends Henricksen et al’s middleware models (in
particular the preferences model and candidate choices) for it to be
automatically mapped and expressed in terms of "if-then-else"
decision rules, as shown in Figure 6.

It is expected to be more intelligible than the existing Henricksen
et al's preference model, as "if-then-else" expression speaks the
language of most users (i.e., understandable by users). We will
evaluate to which extent the model meets requirements such as
expressiveness, support for conflict resolution, externalisation of
context/situation evaluation, simple and user friendly composition
of preferences, etc. There may be some losses with regard to these
requirements compared with the existing Henricksen et al's model.
We will evaluate the extent of the losses created by a tradeoff
between meeting all the requirements and intelligibility of context-
aware applications.

Figure 6 shows an "if-then-else" mapping of the proposed
preference model with preferences set
PersonHasFallenPref (Figure 4) and Choice Set 1
(Figure 5). The preferences being expressed are similar to the user
preferences shown in Figure 3; both lead to the same adaptation
under the same situations and assumptions from the pervious
smart home example. One of the differences between the two
preference models is that, preferences represented using the
proposed model, users can immediately see the why Mary's
daughter is being contacted (i.e., preference P2 is selected) rather

than her doctors when she has fallen. This is simply because
Mary's fall occurred outside the working hours, and a lower
weighting is assigned to P3 probably because Mary initially felt it
may not be appropriate to contact the doctor outside working
hours. Hence, P1 and P3 are not selected, and thus the less
desirable adaptation associated with P2 is performed. By
employing the intelligible preference model, Mary can now
understand the adaptation decision process, and together with a
user feedback system that is being proposed and discussed below,
Mary can also modify the preferences according to her own needs
and requirements, thereby effectively bringing the application
behaviours under her control. This would be very difficult to
achieve with the existing preference model and choices.

Figure 4. Preference set PersonHasFallenPref containing
a set of preferences for the proposed intelligible preference
model.

Figure 5. Choice Set 1 containing a set of choices for the
proposed intelligible preference model.

Figure 6. "if-then-else" expression derived from the
preferences and choices in Figure 4 and 5.

Regarding our second proposal, we are designing and developing
a user feedback system that enables users to modify or add new
context, situation and preference information of context-aware
applications to control their behaviour. In order for users to make
changes to the information, users must first be presented with the
information, and be able to understand and interpret it correctly.
Thus, the research methods for the user feedback system will

initially involve an investigation of how the middleware
information can be displayed to the users in an intelligible manner.
For example, textual explanations may be used for revealing
situations, perceptual cues (i.e., visualisation) for exposing the
current context model and its context facts, and a combination of
both textual and graphical explanations can be used for
representing preferences. Techniques for retrieving the
information from middleware, generating explanations and
presenting it to users are designed based on Hardian et al's
approach [14].

After the investigation when users have access to the middleware
information and capable of interpreting it accurately, we will then
research how users can provide feedback and make changes to the
information (i.e., modifying a particular preference, context fact or
situation, and linking them with various existing adaptive actions
using choice candidates) to control the application's adaptation.
The research methods will involve designing a user friendly
graphical tool that is intuitive for users to add/modify context facts
and formulate situations with the context information displayed
using the representation techniques derived from the initial
investigation. We will also research a method for providing
guidance to users, guiding them through the process of modifying
or formulating new context facts and situations, and showing what
the resulted adaptation will be after the modification they have
made, so they can be assured that the final adapted application
behaviour will meet their expectations. Furthermore, we will
research a user model for the feedback system to take into account
the user's level of technology expertises (e.g., amateur and
experienced). Experienced users possess higher computer literacy
than amateurs, and to an extend they are able to understand the
languages used in working with the middleware models. They do
not require detailed explanations and guidance, and should be
allowed greater flexibility and options when modifying
middleware information to control application behaviour.

3.3 Usability Study and Evaluation
Towards the final objective, we will evaluate the effectiveness of
the proposed intelligible preference model and user feedback
system by carrying out a user study to investigate whether the
framework improves usability of context-aware applications. The
first step is to develop two applications with similar functionalities,
one will adopt the proposed preference model during the
development, and the other one will adopt the classical model.
Both applications will be placed under the same scenario where
they do not behave as users expected and require overriding of
adaptations. The user of the application that adopts the proposed
intelligible model should experience fewer difficulties with
minimal frustration in changing the application behaviours
compare to the other application.

4. RESULTS AND CONCLUSION
Adaptivity in context-aware computing applications is a double-
edged sword. Application adaptations will not always behave as
users expected due to variability in human preferences and
imperfect sensing of context information, etc. causing annoyance
and hinder user objectives. Our research tackles this challenge by
proposing an intelligible preference model and a user feedback
system that enable users to understand the internal decision
process for application adaptation, including explanations for
context, preference and choice evaluations. The works also allow
untrained users to modify situation and preference information

PersonHasFallen(room): Weight Choice

P1 = WHEN IsDoctorFor
(ContactPerson, Occupant) AND
WorkingHr() AND
~Isconscious(Occupant)

1 Set 1

P2 = WHEN IsNextOfKinr
(ContactPerson, Occupant) 1 Set 1

P3 = WHEN IsDoctorFor
(ContactPerson, Occupant) AND
~WorkingHr()

0.9 Set 1

Choice
Name

Valuation-Binding Adaptation Weight

C1 ContactPerson-Dr
Joe

Occupant-Mary

Contact Dr
Joe

1

C2 ContactPerson-Dr
Ken

Occupant-Mary

Contact Dr
Ken

0.9

C3 ContactPerson-Ms
Helen

Occupant-Mary

Contact Ms
Helen

1

As PersonHasFallen(room),

IF IsDoctorFor (Dr Joe, Mary) AND WorkingHr()
 AND Not Isconscious (Mary) THEN contact
 Dr Joe

IF IsNextOfKin (Ms Helen, Mary) THEN contact
 Ms Helen

ELSE IF IsDoctorFor (Dr Joe, Mary) AND
 Not WorkingHr()THEN contact Dr Joe

according to their individual requirements to gain control of
application behaviour.

Results to date include a full analysis of Henricksen et al's
middleware models [15], and a preliminary investigation and
design of the intelligible preference model. Future work will
involve carrying out proofs on any requirement discrepancies (i.e.
expressiveness, conflict resolutions, etc., as mention in section 3.2)
between the two models, designing and developing a user
feedback system, and a usability evaluation of applications which
will require users to override unwanted application behaviour
using our proposed. We also aim to uncover some answers for the
following questions. Will the attempt to ask users to modify
preferences place an undue burden on users (i.e., will it hurt
usability and performance unacceptably)? When does the cost
outweigh the benefit, and how to strike such balance? Can user
preferences be inferred or does it have to be explicitly provided,
and what are the tradeoffs for both occasions?

5. ACKNOWLEDGMENTS
NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program; and the Queensland Government.

6. REFERENCES
[1] Bettini,C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas,

D., Ranganathan, A. and Riboni, D., "A Survey of Context
Modelling and Reasoning Techniques", Pervasive and Mobile
Computing, Volume 6, 2010

[2] Indulska, J. and Robinson, R., "Modelling Weiser’s “Sal”
Scenario with CML", the Sixth Workshop on Context
Modelling and Reasoning (CoMoRea'09) affiliated with the
IEEE PerCom’09 conference, Galveston, US, March 2009,
IEEE Press.

[3] Hu, P., Indulska, J. and Robinson, R., "An Autonomic Context
Management System for Pervasive Computing", Proc. of the
IEEE International Conference on Pervasive Computing and
Communications (PerCom'08), Hong Kong, March 2008.

[4] Bellotti, V. and Edwards, K., "Intelligibility and accountability:
Human considerations in context-aware systems", Human-
Computer Interaction, 16 (2-4), 2001, pp.193-212.

[5] Lim, B. and Dey, A.,

[6] Lim, B. Y., Dey, A. and Avrahami, D. "Why and why not
explanations improve the intelligibility of context-aware
intelligent systems", CHI 09: Proceedings of the 27th
international conference on Human factors in computing
systems, 2119-2128, Boston, USA, 2009

“Assessing the impact of provision types
and accuracy on intelligibility for context-aware applications”,
CHI 2010, ACM, Atlanta, Georgia, USA, 2010

[7] Chen, H., Finin, T. and Joshi, A. “Semantic Web in the
Context Broker Architecture”, In Proceedings of the Second
IEEE International Conference on Pervasive Computing and
Communications (PerCom 2004), IEEE Computer Society,
2004

[8] Bardram, J., "The Java Context-Awareness Framework (JCAF)
- A service infrastructure and programming framework for
context-aware applications". Pervasive 2004, 98-115

[9] Caswell, D., and Debaty, P. "Creating Web representations for
places". HUC'00, 114-126

[10] Dey, A.K., Abowd, G.D. and Salber, D., "A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications", Human-Computer Interaction,
16(2-4): 97-166, 2001.

[11] Indulska, J., Henricksen, K., Mcfadden, T. and Mascaro, P.,
“Towards a Common Context Model for Virtual Community
Applications”, Proc. of 2nd Int. Conference on Smart Homes
and Health Telematics (ICOST), Volume 14 of Assistive
Technology Research Series. IOS Press, pp. 154-161, 2004

[12] Newberger, A. and Dey, A., "Designer support for context
monitoring and control". Technical Report IRB-TR-03-017,
Intel Research, June 15 2003

[13] Dey, Anind K. and Newberger, Alan, "Support for context-
aware intelligibility and control", CHI '09: Proceedings of the
27th international conference on Human factors in computing
systems, pp.859--868, Boston, USA, 2009.

[14] Hardian, B., Indulska, J. and Henricksen, K. "Exposing
Contextual Information for Balancing Software Autonomy
and User Control in Context-Aware Systems", in Proc. of the
Workshop on Context-Aware Pervasive Communities:
Infrastructures, Services and Applications, affiliated with the
Pervasive'2008 conference, Sydney, May 2008.

[15]

[16]

 Henricksen, K. and Indulska, J. "Developing Context-Aware
Pervasive Computing Applications: Models and Approach",
Pervasive and Mobile Computing, Volume 2, 2005.
Lim, B., Dey. A, "Assessing Demand for Intelligibility in

Context-Aware Applications",

Ubicomp'09: the 11th
international Conference on Ubiquitous Computing, New
York, pp. 195-204, 2009

	Intelligibility and User Control of Context-aware Application Behaviours
	jfong@itee.uq.edu.au
	ABSTRACT
	Keywords

	1. INTRODUCTION
	2. Related Work
	2.1 User Studies
	2.2 Middleware and Infrastructures

	3. Research Goals and Methods
	3.1 Analysis of PACE models
	3.2 Design of models for intelligibility and user control
	3.3 Usability Study and Evaluation

	4. Results and conclusion
	5. ACKNOWLEDGMENTS
	6. References

