34 research outputs found

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    A privacy-preserving traffic monitoring scheme via vehicular crowdsourcing

    Get PDF
    The explosive number of vehicles has given rise to a series of traffic problems, such as traffic congestion, road safety, and fuel waste. Collecting vehicles’ speed information is an effective way to monitor the traffic conditions and avoid vehicles’ congestion, however it may threaten vehicles’ location and trajectory privacy. Motivated by the fact that traffic monitoring does not need to know each individual vehicle’s speed and the average speed would be sufficient, we propose a privacy-preserving traffic monitoring (PPTM) scheme to aggregate vehicles’ speeds at different locations. In PPTM, the roadside unit (RSU) collects vehicles’ speed information at multiple road segments, and further cooperates with a service provider to calculate the average speed information for every road segment. To preserve vehicles’ privacy, both homomorphic Paillier cryptosystem and super-increasing sequence are adopted. A comprehensive security analysis indicates that the proposed PPTM can preserve vehicles’ identities, speeds, locations, and trajectories privacy from being disclosed. In addition, extensive simulations are conducted to validate the effectiveness and efficiency of the proposed PPTM scheme.This research was supported by the National Natural Science Foundation of China (Grant Nos. 61402037, 61872041, 61272512)

    A survey on security and privacy issues in IoV

    Get PDF
    As an up-and-coming branch of the internet of things, internet of vehicles (IoV) is imagined to fill in as a fundamental information detecting and processing platform for astute transportation frameworks. Today, vehicles are progressively being associated with the internet of things which empower them to give pervasive access to data to drivers and travelers while moving. Be that as it may, as the quantity of associated vehicles continues expanding, new prerequisites, (for example, consistent, secure, vigorous, versatile data trade among vehicles, people, and side of the road frameworks) of vehicular systems are developing. Right now, the unique idea of vehicular specially appointed systems is being changed into another idea called the internet of vehicles (IoV). We talk about the issues faced in implementing a secure IoV architecture. We examine the various challenges in implementing security and privacy in IoV by reviewing past papers along with pointing out research gaps and possible future work and putting forth our on inferences relating to each paper

    Effective Privacy-Preserving Mechanisms for Vehicle-to-Everything Services

    Get PDF
    Owing to the advancement of wireless communication technologies, drivers can rely on smart connected vehicles to communicate with each other, roadside units, pedestrians, and remote service providers to enjoy a large amount of vehicle-to-everything (V2X) services, including navigation, parking, ride hailing, and car sharing. These V2X services provide different functions for bettering travel experiences, which have a bunch of benefits. In the real world, even without smart connected vehicles, drivers as users can utilize their smartphones and mobile applications to access V2X services and connect their smartphones to vehicles through some interfaces, e.g., IOS Carplay and Android Auto. In this way, they can still enjoy V2X services through modern car infotainment systems installed on vehicles. Most of the V2X services are data-centric and data-intensive, i.e., users have to upload personal data to a remote service provider, and the service provider can continuously collect a user's data and offer personalized services. However, the data acquired from users may include users' sensitive information, which may expose user privacy and cause serious consequences. To protect user privacy, a basic privacy-preserving mechanism, i.e, anonymization, can be applied in V2X services. Nevertheless, a big obstacle arises as well: user anonymization may affect V2X services' availability. As users become anonymous, users may behave selfishly and maliciously to break the functions of a V2X service without being detected and the service may become unavailable. In short, there exist a conflict between privacy and availability, which is caused by different requirements of users and service providers. In this thesis, we have identified three major conflicts between privacy and availability for V2X services: privacy vs. linkability, privacy vs. accountability, privacy vs. reliability, and then have proposed and designed three privacy-preserving mechanisms to resolve these conflicts. Firstly, the thesis investigates the conflict between privacy and linkability in an automated valet parking (AVP) service, where users can reserve a parking slot for their vehicles such that vehicles can achieve automated valet parking. As an optional privacy-preserving measure, users can choose to anonymize their identities when booking a parking slot for their vehicles. In this way, although user privacy is protected by anonymization, malicious users can repeatedly send parking reservation requests to a parking service provider to make the system unavailable (i.e., "Double-Reservation Attack"). Aiming at this conflict, a security model is given in the thesis to clearly define necessary privacy requirements and potential attacks in an AVP system, and then a privacy-preserving reservation scheme has been proposed based on BBS+ signature and zero-knowledge proof. In the proposed scheme, users can keep anonymous since users only utilize a one-time unlinkable token generated from his/her anonymous credential to achieve parking reservations. In the meantime, by utilizing proxy re-signature, the scheme can also guarantee that one user can only have one token at a time to resist against "Double-Reservation Attack". Secondly, the thesis investigates the conflict between privacy and accountability in a car sharing service, where users can conveniently rent a shared car without human intervention. One basic demand for car sharing service is to check the user's identity to determine his/her validity and enable the user to be accountable if he/she did improper behavior. If the service provider allows users to hide their identities and achieve anonymization to protect user privacy, naturally the car sharing service is unavailable. Aiming at this conflict, a decentralized, privacy-preserving, and accountable car sharing architecture has been proposed in the thesis, where multiple dynamic validation servers are employed to build decentralized trust for users. Under this architecture, the thesis proposes a privacy-preserving identity management scheme to assist in managing users' identities in a dynamic manner based on a verifiable secret sharing/redistribution technique, i.e. the validation servers who manage users' identities are dynamically changed with the time advancing. Moreover, the scheme enables a majority of dynamic validation servers to recover the misbehaving users' identities and guarantees that honest users' identities are confidential to achieve privacy preservation and accountability at the same time. Thirdly, the thesis investigates the conflict between privacy and reliability in a road condition monitoring service, where users can report road conditions to a monitoring service provider to help construct a live map based on crowdsourcing. Usually, a reputation-based mechanism is applied in the service to measure a user's reliability. However, this mechanism cannot be easily integrated with a privacy-preserving mechanism based on user anonymization. When users are anonymous, they can upload arbitrary reports to destroy the service quality and make the service unavailable. Aiming at this conflict, a privacy-preserving crowdsourcing-based road condition monitoring scheme has been proposed in the thesis. By leveraging homomorphic commitments and PS signature, the scheme supports anonymous user reputation management without the assistance of any third-party authority. Furthermore, the thesis proposes several zero-knowledge proof protocols to ensure that a user can keep anonymous and unlinkable but a monitoring service provider can still judge the reliability of this user's report through his/her reputation score. To sum up, with more attention being paid to privacy issues, how to protect user privacy for V2X services becomes more significant. The thesis proposes three effective privacy-preserving mechanisms for V2X services, which resolve the conflict between privacy and availability and can be conveniently integrated into current V2X applications since no trusted third party authority is required. The proposed approaches should be valuable for achieving practical privacy preservation in V2X services

    Differential Privacy for Industrial Internet of Things: Opportunities, Applications and Challenges

    Get PDF
    The development of Internet of Things (IoT) brings new changes to various fields. Particularly, industrial Internet of Things (IIoT) is promoting a new round of industrial revolution. With more applications of IIoT, privacy protection issues are emerging. Specially, some common algorithms in IIoT technology such as deep models strongly rely on data collection, which leads to the risk of privacy disclosure. Recently, differential privacy has been used to protect user-terminal privacy in IIoT, so it is necessary to make in-depth research on this topic. In this paper, we conduct a comprehensive survey on the opportunities, applications and challenges of differential privacy in IIoT. We firstly review related papers on IIoT and privacy protection, respectively. Then we focus on the metrics of industrial data privacy, and analyze the contradiction between data utilization for deep models and individual privacy protection. Several valuable problems are summarized and new research ideas are put forward. In conclusion, this survey is dedicated to complete comprehensive summary and lay foundation for the follow-up researches on industrial differential privacy

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    corecore