1,830 research outputs found

    A second order cone formulation of continuous CTA model

    Get PDF
    The final publication is available at link.springer.comIn this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the l1 -CTA using Pseudo-Huber func- tion was introduced in an attempt to combine positive characteristics of both l1 -CTA and l2 -CTA. All three models can be solved using appro- priate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic op- timization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and l1 -CTA as Second-Order Cone (SOC) op- timization problems and test the validity of the approach on the small example of two-dimensional tabular data set.Peer ReviewedPostprint (author's final draft

    Optimization Methods for Tabular Data Protection

    Get PDF
    In this thesis we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. According to the given norm CTA can be formulated as an optimization problem: Liner Programing (LP) for l1, Quadratic Programing (QP) for l2. In this thesis we present an alternative reformulation of l1-CTA as Second-Order Cone (SOC) optimization problems. All three models can be solved using appropriate versions of Interior-Point Methods (IPM). The validity of the new approach was tested on the randomly generated two-dimensional tabular data sets. It was shown numerically, that SOC formulation compares favorably to QP and LP formulations

    Priv Stat Databases

    Get PDF
    In this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using \u2113| or \u2113| norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the \u2113|-CTA using Pseudo-Huber function was introduced in an attempt to combine positive characteristics of both \u2113|-CTA and \u2113|-CTA. All three models can be solved using appropriate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic optimization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and \u2113|-CTA as Second-Order Cone (SOC) optimization problems and test the validity of the approach on the small example of two-dimensional tabular data set.CC999999/ImCDC/Intramural CDC HHS/United States2019-11-19T00:00:00Z31745540PMC6863437693

    Priv Stat Databases

    Get PDF
    In this paper, we consider a Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation of tabular data. The goal of the CTA model is to find the closest safe (masked) table to the original table that contains sensitive information. The measure of closeness is usually measured using | | or | | norm. However, in the norm-based CTA model, there is no control of how well the statistical properties of the data in the original table are preserved in the masked table. Hence, we propose a different criterion of "closeness" between the masked and original table which attempts to minimally change certain statistics used in the analysis of the table. The Chi-square statistic is among the most utilized measures for the analysis of data in two-dimensional tables. Hence, we propose a | CTA model which minimizes the objective function that depends on the difference of the Chi-square statistics of the original and masked table. The model is non-linear and non-convex and therefore harder to solve which prompted us to also consider a modification of this model which can be transformed into a linear programming model that can be solved more efficiently. We present numerical results for the two-dimensional table illustrating our novel approach and providing a comparison with norm-based CTA models.CC999999/ImCDC/Intramural CDC HHSUnited States/2021-01-01T00:00:00Z33889869PMC80573071023

    Stat Optim Inf Comput

    Get PDF
    In this paper, an improved Interior-Point Method (IPM) for solving symmetric optimization problems is presented. Symmetric optimization (SO) problems are linear optimization problems over symmetric cones. In particular, the method can be efficiently applied to an important instance of SO, a Controlled Tabular Adjustment (CTA) problem which is a method used for Statistical Disclosure Limitation (SDL) of tabular data. The presented method is a full Nesterov-Todd step infeasible IPM for SO. The algorithm converges to |-approximate solution from any starting point whether feasible or infeasible. Each iteration consists of the feasibility step and several centering steps, however, the iterates are obtained in the wider neighborhood of the central path in comparison to the similar algorithms of this type which is the main improvement of the method. However, the currently best known iteration bound known for infeasible short-step methods is still achieved.CC999999/ImCDC/Intramural CDC HHSUnited States/2022-01-01T00:00:00Z34141814PMC820532010747vault:3716

    Smooth finite strain plasticity with non-local pressure support

    Get PDF
    The aim of this work is to introduce an alternative framework to solve problems of finite strain elastoplasticity including anisotropy and kinematic hardening coupled with any isotropic hyperelastic law. After deriving the constitutive equations and inequalities without any of the customary simplifications, we arrive at a new general elasto-plastic system. We integrate the elasto-plastic algebraico-differential system and replace the loading–unloading condition by a Chen–Mangasarian smooth function to obtain a non-linear system solved by a trust region method. Despite being non-standard, this approach is advantageous, since quadratic convergence is always obtained by the non-linear solver and very large steps can be used with negligible effect in the results. Discretized equilibrium is, in contrast with traditional approaches, smooth and well behaved. In addition, since no return mapping algorithm is used, there is no need to use a predictor. The work follows our previous studies of element technology and highly non-linear visco-elasticity. From a general framework, with exact linearization, systematic particularization is made to prototype constitutive models shown as examples. Our element with non-local pressure support is used. Examples illustrating the generality of the method are presented with excellent results
    • …
    corecore