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Abstract

In this paper, we consider a Controlled Tabular Adjustment (CTA) model for statistical disclosure 

limitation of tabular data. The goal of the CTA model is to find the closest safe (masked) table to 

the original table that contains sensitive information. The measure of closeness is usually 

measured using ℓ1 or ℓ2 norm. However, in the norm-based CTA model, there is no control of how 

well the statistical properties of the data in the original table are preserved in the masked table. 

Hence, we propose a different criterion of “closeness” between the masked and original table 

which attempts to minimally change certain statistics used in the analysis of the table. The Chi-

square statistic is among the most utilized measures for the analysis of data in two-dimensional 

tables. Hence, we propose a Chi-square CTA model which minimizes the objective function that 

depends on the difference of the Chi-square statistics of the original and masked table. The model 

is non-linear and non-convex and therefore harder to solve which prompted us to also consider a 

modification of this model which can be transformed into a linear programming model that can be 

solved more efficiently. We present numerical results for the two-dimensional table illustrating our 

novel approach and providing a comparison with norm-based CTA models.
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1 Introduction

Minimum-distance controlled tabular adjustment (CTA) methodology for tabular data was 

first introduced in [7, 14]. It is one of the effective statistical disclosure limitation (SDL) 

methods for the protection of sensitive information in tabular data. An overview of SDL 

theory and methods can be found in the monograph [16], and for tabular data only, in the 

survey [8].

CTA problem can be formulated as follows: given a table with sensitive cells, compute the 

“closest” additive safe (masked) table to the original table ensuring that adjusted (masked) 
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values of all sensitive cells are safely away from their original value and that adjusted values 

are within a certain range of the real values. The additivity of the masked table means in 

most cases the requirement that the sum of cell values in each row and column of the table 

remains the same in the original and masked table, [16, 18].

In the standard formulation of the CTA model, the closeness of the original and masked 

table is measured by the weighted distance between the tables with respect to a certain norm. 

Most commonly used norms are ℓ1 and ℓ2 norms. Thus, the problem can be formulated as a 

minimization problem with the objective function being a particular weighted distance 

function and constraints being derived from the requirements stated above.

In general, the CTA problem is a Mixed Integer Optimization Problem (MICOP) which is a 

difficult problem to solve especially for large dimension tables. The MICOP CTA problem 

involves binary variables that characterize sensitive cells and their values indicate whether 

the value of the sensitive cell is adjusted upward or downward. Apriori fixing the values of 

binary variables reduces the problem to the continuous optimization problem which is easier 

to solve, however, the quality of the solution may be reduced since we are no longer 

searching for the global optimal solution but its approximation. In addition, the values of the 

binary variables have to be assigned carefully otherwise the problem may become infeasible. 

Some strategies to fix the binary variables while preserving the feasibility of the problem 

were discussed in [11, 12]. In the paper we assume that the binary variables are fixed upfront 

according to one of the strategies presented in these papers, hence we consider continuous 

CTA models.

As indicated above, the objective function in the continuous CTA model is based on either 

the ℓ1-norm or ℓ2-norm. The formulation of ℓ2-CTA model leads to the Quadratic 

Programming (QP) problem, while ℓ1-CTA model can be formulated as the Linear 

Programming (LP) problem and, as a Second-Order Cone (SOC) problem, which has 

recently been proposed in [18].

However, in the standard norm-based CTA model, there is no control of how well the 

statistical properties of the data in the table are preserved. The numerical experiments 

summarized in Table 1 in Section 2.2 suggest that there is no pattern which would indicate 

that one CTA model consistently produces the values of the Chi-square statistic, or other 

statistics, of the masked and original table that are closer to each other than for any other 

model.

This observation motivated us to consider different criteria of “closeness” between masked 

and original table which attempts to minimally change certain statistical properties of the 

table. For example, the Chi-square statistic is an important statistical measure often used to 

analyze tabular data [10]. Hence, we propose, what we call Chi-square CTA model, which 

minimizes the objective function that depends on the difference of Chi-square statistics of 

the original and masked table. The Chi-square CTA model is smooth, non-linear, and non-

convex which makes it harder to solve the problem. This motivated us to also consider a 

modification of this model, called Chi-linear CTA which can be transformed into a LP 

problem that can be solved more efficiently.
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The Chi-square and Chi-linear CTA models are applied to the two-dimensional table used 

previously in the literature [18, 5] as a two-dimensional test table to compare solutions of 

different CTA models. Chi-square and Chi-linear CTA models for this table are solved using 

interior-point methods (IPMs) and compared with results obtained in [18] when norm-based 

CTAs models were applied to the same table. The Chi-square statistic, Cramer V, and Chi-

linear measures were calculated for the original table and for masked tables and compared to 

illustrate the validity of our approach.

The paper is organized as follows. In Section 2 the norm-based CTA models are outlined. In 

Section 3 a novel continuous Chi-square CTA model is presented, as well as its 

modification, Chi-linear CTA model, and the transformation to LP problem is derived. 

Section 4 contains numerical results of applying Chi-square, Chi-linear, and norm-based 

CTA models to the two-dimensional table. The concluding remarks and possible directions 

for future research are given in Section 5.

2 Preliminaries

2.1 Norm-based CTA models

In this section, we review the standard norm-based CTA model as it is presented in [18]. 

Given the following set of parameters:

i. A set of cells ai, i ∈ N = 1, …, n . The vector a = (a1, …, an)T satisfies certain 

linear system Aa = b where A ∈ ℝm × n is an m × n matrix and and b ∈ ℝm is m-

vector.

ii. A lower, and upper bound for each cell, lai ≤ ai ≤ uai for i ∈ N, which are 

considered known by any attacker.

iii. A set of indices of sensitive cells, S = i1, i2, …, is ⊆ N

iv. A lower and upper protection level for each sensitive cell i ∈ S respectively, lpli 
and upli, such that the released values must be outside of the interval (ai − lpli, ai 

+ upli).

v. A set of weights, wi, i ∈ N used in measuring the deviation of the released data 

values from the original data values.

A standard CTA problem is a problem of finding values zi, i ∈ N, to be released, such that 

zi, i ∈ S are safe values and the weighted distance between released values zi and original 

values ai, denoted as ‖z − a‖l(w) is minimized, which leads to solving the following 

optimization problem

min
z

z − a l w

s . t . Az = b,
lai ≤ zi ≤ uai, i ∈ N,
zi, i ∈ S are safe values .

(1)

As indicated in the assumption (iv) above, safe values are the values that satisfy
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zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ S . (2)

By introducing a vector of binary variables y ∈ {0, 1}s the constraint (2) can be written as

zi ≥ − M 1 − yi + ai + upli yi, i ∈ S,
zi ≤ Myi + ai − lpli 1 − yi , i ∈ S, (3)

where M ≫ 0 is a large positive number. Constraints (3) enforce the upper safe value if yi = 

1 or the lower safe value if yi = 0.

Replacing the last constraint in the CTA model (1) with (3) leads to a mixed-integer convex 

optimization problem (MICOP) which is, in general, a difficult problem to solve; however, it 

provides a globally optimal solution [6]. The alternative approach is to fix binary variables 

upfront which leads to a CTA model which is a continuous convex optimization problem 

that is easier to solve. It is worth noting that the obtained solution is optimal for the fixed 

combination of binary variables which is different from the global optimum obtained when 

solving MICOP CTA problem, however, in most cases, it is quite a good approximation that 

serves the purpose of protecting sensitive values in the table quite well. It is also important 

to mention that a wrong assignment of binary variables may result in the problem being 

infeasible. Strategies on how to avoid this difficulty are discussed in [11, 12].

In this paper, we consider a continuous CTA model where binary variables are fixed 

according to one of the strategies suggested in these papers. Furthermore, vector z is 

replaced by the vector of cell deviations, x = z − a.

The CTA (1) model with constraints (3) reduces to the following convex optimization 

problem:

min
x

x l w

s . t . Ax = 0,
l ≤ x ≤ u,

(4)

where upper and lover bounds for xi, i ∈ N are defined as follows:

li =
upli if i ∈ S and yi = 1
lai − ai if i ∈ N\S or i ∈ S and yi = 0 (5)

ui =
−lpli if i ∈ S and yi = 0
uai − ai if i ∈ N\S or i ∈ S and yi = 1 (6)

The two most commonly used norms in problem (4) are the ℓ1 and ℓ2 norms. For the ℓ2-norm 

the problem, (4) reduces to the following ℓ2-CTA model which is a QP problem:
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min
x i = 1

n
wixi2

s . t . Ax = 0
l ≤ x ≤ u .

(7)

For the ℓ1-norm the problem, (4) reduces to the following ℓ1-CTA model:

min
x i = 1

n
wi xi

s . t . Ax = 0,
l ≤ x ≤ u .

(8)

The above ℓ1-CTA model (8) is a convex optimization problem; however, the objective 

function is not differentiable at x = 0. Since most of the algorithms require differentiability 

of the objective function, problem (8) needs to be reformulated. The standard reformulation 

is the transformation of the model (8) to the following LP model:

min
x−, x+i = 1

n
wi xi

+ + xi−

s . t . A xi
+ − xi− = 0,

l ≤ x+ − x− ≤ u,

(9)

where

x+ = x if x ≥ 0
0 if x < 0, x− = 0 if x > 0

−x if x ≤ 0, (10)

The inequality constraints can further be split into lower and upper bounds constraints for x+ 

and x− separately (see [18]).

Recently, another reformulation of ℓ1-CTA has been proposed. In [18] it was observed that 

the absolute value has an obvious second-order cone (SOC) representation

ti = xi Ki = xi, ti ∈ ℝ2: ti ≥ xi2

which leads to the following SOC formulation of the ℓ1-CTA (8)

min
x i = 1

n
witi

s . t . Ax = 0,
xi, ti ∈ Ki; i = 1, …, n,

l ≤ x ≤ u .

(11)

The three CTA models outlined above can be solved using interior-point methods (IPMs). 

IPMs have been developed in the past three decades and have proven to be very efficient in 
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solving large linear and non-linear optimization problems that were previously hard to solve. 

Nowadays almost every relevant optimization software, whether commercial or open-source, 

contains an IPM solver. For more information on IPMs see [19–21, 23, 22] and references 

therein. Specifically, for conic optimization problems and methods see [3, 4, 15].

We conclude this section by listing several references where numerical experiments and 

comparisons of different methods for norm-based CTA models were presented [5, 9, 13, 18].

2.2 Motivation to consider different CTA models

In traditional, norm-based continuous CTA models we are finding the closest safe table to 

the original table with respect to a certain norm, usually l2 or l1 norm. However, in norm-

based CTA models, there is no control of how well the statistical properties of the data in the 

table are preserved. The analysis of the data in the masked table with respect to the original 

table is usually done after the masked table is produced using a CTA model. One of the most 

utilized measures of analysis is the Chi-square statistic. For example, in [10] Chi-square and 

Cramer V statistical measures were used in assessing information loss of the masked table 

produced by the LP CTA model (9). See also references therein.

The definitions of Chi-square statistic and Cramer V measure are well known, however, we 

list them below for the sake of completeness.

Chi-square statistic of a table is

χ2 =
i = 1

n 0i − ei
2

ei
, (12)

where oi is an observed cell value and ei is an expected cell value.

Cramer’s V statistical measure is derived from Chi-square statistic

V = χ2

n r − 1 c − 1 (13)

where r is a number of rows and c is a number of columns and n is a number of cells in the 

table, i.e. n = rc.

An absolute value of the differences instead of a square of the differences as in (12) can also 

be considered. We call this measure a Chi-linear measures.

χabs =
i = 1

n 0i − ei
ei

, (14)

We performed numerical experiments on a set of randomly generated tables of different 

dimensions and different numbers of sensitive cells and applied the QP, the LP, and SOC 

(Conic) CTA models listed above to obtain the masked tables. We used different weights, wi 

= 1/ai and wi = 1/ei for QP and the square root of these weights for LP-CTA models. We 
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calculated the Chi-square statistic, and Cramer V and Chi-linear measures for each masked 

table and for the original table. The summary of the results is presented in Table 1 below

The review of the results in Table 1 leads to the following observations:

• There is no pattern that would indicate that the masked table produced by one of 

the CTA models consistently exhibits values of the Chi-square, or other statistics, 

closer to the values of these statistics for the original table than for other models.

• This is consistent with the findings in [10]. The authors compared the original 

and masked tables generated using only LP CTA model. They observed that Chi-

square and Cramer’s V measures are affected by the size of the table, the way the 

cell values are generated, the number of sensitive cells, upper and lower safe 

values for sensitive cells, etc.

• The conclusion is that standard norm-based CTA models do not guarantee that 

Chi-square value, or values of other statistics, computed on the masked table will 

be as close as possible to the corresponding values of the original table given the 

constraints.

Given these observations, we propose to consider a different measure of “closeness” 

between masked and original table which attempts to minimize an objective function that 

depends on the difference between values of statistics of the original and masked table. In 

the sequel, we specifically focus on designing a CTA model for Chi-square statistic.

3 Chi-square CTA model and a modification

3.1 Chi-square CTA model

In this section, we propose a CTA model that we call Chi-Square CTA where the 

minimization of the norm-based objective function in (4) is replaced with the minimization 

of the absolute value of the differences of values of Chi-square statistic of the masked and 

original table.

The model is as follows:

min
i = 1

n zi − ei
2

ei
−

i = 1

n ai − ei
2

ei
s . t . Ax = 0,
l ≤ x ≤ u .

(15)

Below, the objective function is transformed in terms of cell deviations, x = z − a rather than 

the original masked values z.
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f x =
i = 1

n zi − ei
2

ei
−

i = 1

n ai − ei
2

ei

=
i = 1

n xi + ai − ei
2

ei
−

i = 1

n ai − ei
2

ei
di: = ai − ei

=
i = 1

n xi + di
2

ei
−

i = 1

n di
2

ei

=
i = 1

n xi + 2di xi
ei

=
i = 1

n xi2 + 2dixi
ei

(16)

The difficulty with the Chi-square CTA model (15) is that it is non-linear, non-convex, and 

non-smooth. The non-smoothness that is caused by absolute value can be removed by 

replacing the absolute value with a square of the differences.

min
i = 1

n zi − ei
2

ei
−

i = 1

n ai − ei
2

ei

2

s . t . Ax = 0,
l ≤ x ≤ u .

(17)

Using the same substitutions as in (16) we obtain the following nonlinear and non-convex 

but smooth problem with linear constraints that we call Chi-square CTA model.

min
i = 1

n xi + 2di xi
ei

2

s . t . Ax = 0,
l ≤ x ≤ u .

(18)

3.2 Chi-linear CTA Model

The Chi-square CTA model (18) which is a smooth non-linear and non-convex problem can 

be solved using an appropriate IPM for non-linear problems. However, the non-linearity and 

non-convexity of the problem make it harder to solve the problem. In other words, the IPM 

will be able to handle problems of the smaller size and will perform slower than if it is 

applied to the LP or QP CTA model. At this point, it is still an open question ofwhether 

model (18) can be transformed into a more tractable problem that can be efficiently solved 

by IPMs. One option is to consider the modification of the Chi-square CTA formulation (18) 

by minimizing the absolute value of the sum of absolute values of differences (errors) rather 

than squares of differences as in (18).

The model is as follows:
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minz
i = 1

n zi − ei
ei

−
i = 1

n ai − ei
ei

s . t . Ax = 0
l ≤ x ≤ u,

(19)

We call this model Chi-linear CTA model. In what follows we will show that this model can 

be transformed into the LP problem which then can be solved efficiently using IPMs or 

simplex based algorithms.

The objective function in (19) can be transformed in a similar way as in (16) for Chi-square 

CTA model (18).

f x =
i = 1

n zi − ei
ei

−
i = 1

n ai − ei
ei

xi: = zi − ai

=
i = 1

n xi + ai − ei
ei

−
i = 1

n ai − ei
ei

di: = ai − ei

=
i = 1

n xi + di
ei

−
i = 1

n di
ei

G: =
i = 1

n di
ei

=
i = 1

n xi + di
ei

− G g x =
i = 1

n xi + di
ei

= g x − G

(20)

The Chi-linear CTA model (19) can now be written in the form

minx g x − G
s . t . Ax = 0,
l ≤ x ≤ u,

(21)

The transformation of (21) to the LP model is derived below. The objective function 

transformation:

f x =
i = 1

n xi + di
ei

− G yi = xi + di; i = 1, ⋯, n

=
i = 1

n yi
ei

− G yi = yi
+ + yi−; yi

+, yi− ≥ 0; i = 1, ⋯, n

=
i = 1

n yi
+ + yi−

ei
− G t =

i = 1

n yi
+ + yi−

ei
− G

= t t = t+ − t−, t+, t− ≥ 0
= t+ + t−

(22)

Equality constraints transformations:
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Ax = 0 A y − d = 0
A y+ − y− = Ad
Ay+ − Ay− = Ad

(23)

It is not hard to show that

Ad = 0, (24)

hence, we have

Ax = 0 Ay+ − Ay− = 0. (25)

Inequality constraints transformations:

l ≤ x ≤ u l ≤ y − d ≤ u
l + d ≤ y ≤ u + d
l + d ≤ y+ − y− ≤ u + d

(26)

The Chi-linear CTA model (21) transforms now to the following LP problem.

min t+ + t−

s . t . Ay+ − Ay− = 0,

t− − t− =
i = 1

n yi
+ + yi−

ei
− G

l + d ≤ y+ − y− ≤ u + d
t+, t− ≥ 0
y+, y− ≥ 0,

(27)

4 Numerical results

In this section a two-dimensional table stated in Figure 1 in [18] is considered. The table is 

listed in Figure 1 below as Table (a).

In order to make the paper more self-contained we give the description of the parameters 

used to formulate constraints of continuous CTA models that are based on table (a), as it was 

given in [18]:

• The linear constraints are obtained from the requirement that the sum of the 

elements in each row (or column) remains constant and is equal to the 

corresponding component in the last column (or row) of the table (a).

• The sensitive cells are cells a1 and a12. For both of them the upper safe values are 

enforced, which are listed in the parentheses in the lower right corners of the 

cells, upl1 = 3 and upl12 = 5 respectively. Hence, in the transformed tables the 

upper safe value of the cell a1 should be 13 or above and for a12 the upper safe 

value should be 18 or above.
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• For the nonsensitive cells the lower and upper bounds are set to be zero and 

positive infinity respectively, that is, lai = 0 and uai = inf for i = 2, …, 11.

• We take the weights in the objective function to be wi = 1; i = 1, …, 12.

This table is used to build five different CTA models, ℓ1-CTA LP formulation (9), ℓ1-CTA 

SOC formulation (11), ℓ2-CTA QP formulation (7), Chi-linear CTA LP formulation (27), and 

Chi-square CTA formulation (18). These CTA models are solved using appropriate interior-

point methods (IPMs). The first four models were solved using MOSEK solver [1] while the 

last one is solved using IPOPT solver [2]. The results are listed in Figure 1.

In the next Table 2 the values of Chi-square, Cramer V, and Chi-linear statistical measures 

are listed for the original table and related masked tables produced by five CTA models.

From Table 2 we observe that the value of the Chi-square statistic of the masked table 

produced by the Chi-square CTA model indeed differs the least from the value of the Chi-

square statistic of the original table. Similarly, the Chi-linear measure of the masked table 

produced by the Chi-linear CTA model is the closest to the Chi-linear measure of the 

original table.

The second observation is about p-values of the Chi-square statistic for the tables listed in 

Table 2. The p-values for the tables are as follows: original: 0.82, ℓ2-QP: 0.15, ℓ1-LP: 0.11, ℓ1-

SOC: 0.08, Chi-square: 0.34, Chi-linear: 0.29. As expected, the p-value of the Chi-square 

table is the closest to the p-value of the original table. However, the discrepancy between the 

p-values of the original and masked tables is significant and deserves comment.

The Chi-square statistic is very sensitive to the number of sensitive cells in the table and the 

level of perturbation needed to get the safe values for these cells [6, 10]. The larger the 

number of sensitive cells and the level of perturbation, in general, the larger the discrepancy 

between Chi-square statistic values and, consequently, p-values. Therefore, the discrepancy 

is more due to the requirements for the protection of tabular data and less due to the CTA 

model used to obtain the masked table which satisfies these requirements. Nevertheless, the 

new Chi-square CTA model proposed in this paper achieves the p-value of the masked table 

that is the closest to the p-value of the original table among all other CTA models. On the 

more general note, this is an illustration of the interplay between maximizing the utility of 

the masked data while keeping disclosure risk under control which is at the heart of the 

theory and methods of SDL.

5 Concluding remarks and future work

In this paper, a novel approach to building Continuous CTA models for statistical disclosure 

limitation of tabular data is discussed. The standard norm-based CTA model finds the closest 

safe (masked) table to the original table while satisfying additivity equations and safe value 

inequality constraints, as described in Section 2.1. The measure of closeness is usually 

measured using an ℓ1 or ℓ2 norm.

The numerical experiments summarized in Table 1 in Section 2.2 suggest that there is no 

pattern which would indicate that one CTA model consistently produces the values of the 
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Chi-square statistic, or other statistics, of the masked and original table that are closer to 

each other than for any other model. Hence, we propose a CTA model, which we call Chi-
square CTA model (18), that produces a masked table with Chi-square statistic closest to 

Chi-square statistic of the original table.

Given the non-linearity and non-convexity of the Chi-square CTA model, we also consider a 

modification of this model, a Chi-linear CTA model (27) that can be transformed to LP 

problem, hence allowing IPMs to solve high dimensional tables efficiently. The price to pay 

is that the closeness between Chi-square statistics of an original and masked table may be 

affected. Further examination of this topic is the subject of future research.

The goal of the paper is mainly theoretical, that is, to present a novel Chi-square CTA model 

and its modification, Chi-linear CTA model, as an illustration of a possible new approach in 

building CTA models which produce masked tables that are the closest to the original table 

in terms of a certain statistic, rather than in terms of a distance between tables.

The rationale behind the new approach is to consider Analysis Specific CTA models. On one 

hand, they may be more narrow in scope, however, they produce the optimal result for the 

specific analysis. On the other hand, norm-based CTA models may be wider in scope and 

produce tables that may have ‘‘relatively good” results for multiple different statistical 

measures, but ‘really good” (optimal) for none. In addition, we have no explicit control of 

the quality of results in the norm-based CTA approach.

Directions for future research include more extensive numerical experiments on a larger set 

of randomly generated two-dimensional tables of different sizes and different numbers of 

sensitive cells. A more theoretical direction for future research is to examine whether the 

Chi-square CTA model (18) can be transformed into a more tractable problem that can be 

efficiently solved by IPMs.
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Fig. 1. 
Masked tables produced by different CTA models for table (a)
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Table 1.

Values of statistical measures

Percentage of sensitive cells
Tables

Statistical measures

Chi-square Chi-linear Cramer V

Original 1790.69 506.40 0.228821

10

LP 2039.68 536.77 0.244212

W(ai) – LP 2034.97 518.96 0.243930

W(ei) – LP 2111.99 540.48 0.248504

QP 1971.56 519.52 0.240100

W(ai) – QP 1940.21 512.82 0.238183

W(ei) – QP 1976.04 519.89 0.240372

Conic 1954.00 520.86 0.239028

15

LP 2008.59 532.59 0.242344

W(ai) – LP 1960.27 520.67 0.239411

W(ei) – LP 2046.51 539.46 0.244621

QP 2012.38 534.54 0.242573

W(ai) – QP 1952.36 526.04 0.238928

W(ei) – QP 2019.59 535.99 0.243007

Conic 1968.98 525.72 0.239942

20

LP 1950.37 513.28 0.238806

W(ai) – LP 1922.12 511.77 0.237070

W(ei) – LP 1993.11 522.35 0.241408

QP 1949.98 516.88 0.238782

W(ai) – QP 1881.74 505.13 0.234566

W(ei) – QP 1947.82 516.88 0.238650

Conic 1957.35 520.91 0.239233
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Table 2.

Values of the three statistical measures

Statistical measures

Tables Chi-square Chi-linear Cramer V

original 2.89 4.70 0.20

ℓ2-QP 9.49 8.74 0.36

ℓ1-LP 10.44 8.49 0.32

ℓ1-SOC 11.30 9.26 0.39

Chi-Square 6.81 7.17 0.31

Chi-Linear 7.38 6.55 0.32
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