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Abstract

In this paper, an improved Interior-Point Method (IPM) for solving symmetric optimization 

problems is presented. Symmetric optimization (SO) problems are linear optimization problems 

over symmetric cones. In particular, the method can be efficiently applied to an important instance 

of SO, a Controlled Tabular Adjustment (CTA) problem which is a method used for Statistical 

Disclosure Limitation (SDL) of tabular data. The presented method is a full Nesterov-Todd step 

infeasible IPM for SO. The algorithm converges to ε-approximate solution from any starting point 

whether feasible or infeasible. Each iteration consists of the feasibility step and several centering 

steps, however, the iterates are obtained in the wider neighborhood of the central path in 

comparison to the similar algorithms of this type which is the main improvement of the method. 

However, the currently best known iteration bound known for infeasible short-step methods is still 

achieved.
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1. Introduction

Interior-Point Methods (IPMs) are theoretically powerful and numerically efficient iterative 

methods that are based on Newton’s method. However, unlike Newton’s method, IPMs 

guarantee convergence to the ε-approximate solution of a problem in a polynomial number 
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of iterations. It would be ambitious to claim such a result for any optimization problem, 

however, this is the case for quite a large class of optimization problems that include well 

known and important optimization problems such as linear optimization (LO), quadratic 

optimization (QO), semidefinite optimization (SDO), conic optimization problems and many 

others. There is extensive literature on IPMs, the following reference [21, 26] and the 

references therein may serve as a good start.

IPMs have shown to be a good alternative to the classic simplex method and they can solve 

efficiently LO problems of large size. Moreover, they can be applied to important 

optimization problems not previously accessible by simplex-type methods such as conic 

optimization problems. The development of IPM presented in this paper was motivated by 

the desire to provide a theoretical foundation for the efficient solution of the conic 

formulation of the Controlled Tabular Adjustment (CTA) problem [13].

The CTA is a method of Statistical Disclosure Limitation (SDL) that was first introduced in 

[2, 6]. SDL is an increasingly important area of research and practice for the statistical 

agencies that collect data from individuals or enterprises and then release it to the public, 

researchers, and policymakers for statistical analysis and research. Prior to such a release, 

the collected data have to undergo some SDL procedure in order to guarantee the privacy 

and confidentiality of data providers. The goals of such procedures are two-fold: minimize 

the risk of disclosure of confidential information about data providers and, at the same time, 

maximize the amount of released information, that is, maximize the utility of the data for the 

legitimate data users. These are conflicting goals and therefore SDL practice as a whole can 

be thought of as a search for the solution of complex and multifaceted optimization problem: 

maximize the utility of the released data subject to some upper bound on disclosure risk. The 

way how utility and risk are formulated depends on the scenario of data release and on the 

data format.

Data can be released in two basic formats: microdata - a collection of individual records, and 

tabular data - a table of cumulative data that is obtained from cross-tabulations of attributes 

from microdata. CTA is a perturbative method of protecting tabular data when a specified 

subset of its cells, called sensitive cells, must be modified to avoid re-identification of an 

individual respondent. The goal of CTA is to guarantee that the modified value of a sensitive 

cell is outside of the disclosure- an interval that is determined by the data protector (usually 

a statistical agency). The remaining cells are minimally adjusted to satisfy table equations 

which usually represent the requirement that the sum of elements in each row and column 

should be constant and remain unchanged. Hence, the goal of the CTA is to find the closest 

safe table to the original table with respect to the constraints outlined above. The closeness 

of the original and modified table is measured by the weighted distance between the tables 

with respect to a certain norm. Most commonly used norms are ℓ1 and ℓ2 norms. Thus, the 

problem can be formulated as a minimization problem with the objective function being a 

particular weighted distance function and constraints being table equations and lower and 

upper bounds on the cell values.

ℓ2-CTA reduces to a QO problem while ℓ1-CTA is a convex but nonsmooth problem that can 

be reformulated as LO problem, however, the number of variables and inequality constraints 
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doubles. Alternatively, in [13] a novel second-order cone (SOC) reformulation of ℓ1-CTA is 

proposed that does not increase the dimension of the problem as much. As it is shown in 

[13], conic reformulation of ℓ1-CTA is a viable alternative to LO reformulation of the 

problem.

Our motivation was to design an IPM to solve conic ℓ1-CTA that has good theoretical 

convergence properties and it is practical to implement which includes the fact that the 

method can start with any starting point, feasible or infeasible. However, the method is more 

general, that is, it is designed to solve a more general class of problems, a class of LO 

problems over symmetric cones of which conic ℓ1-CTA is just one instance. Nevertheless, the 

general formulations of CTA and conic reformulation will be listed in the next section as 

examples of problems to which the proposed method can be applied. These problems are 

called symmetric optimization (SO) problems. The paper is entirely devoted to the design 

and analysis of the method, including convergence and complexity analysis because these 

results are important in their own right. Implementation, numerical testing, and application 

to conic ℓ1-CTA and other conic problems will be the subject of a separate paper.

Symmetric cones (SC) is an important class of cones that has been known for quite some 

time, however, more in the field of algebraic geometry than in the field of optimization. 

They can be defined in different ways but the one that has shown to be useful in optimization 

is that symmetric cones are cones consisting of squares of elements of the related Euclidean 

Jordan Algebras (EJAs). The basic definitions and concepts related to EJAs and 

corresponding SC that are pertinent to the development of the method in the paper are listed 

in the next section. Additionally, the classical monograph of Faraut and Koràny [7] provides 

a wealth of information on Jordan algebras, SCs, and related topics.

Güler [12] was first to realize that symmetric cones, serve as a unifying framework to which 

the important types of cones used in optimization, such as non-negative orthant, second-

order cone, and cone of positive semidefinite matrices belong. That opened a whole new 

field of research of designing and analyzing optimization algorithms for the SO problems 

which is still very active today. Faybusovich [8] was the first to generalize IPMs from LO to 

SO by using EJAs, and associated SC. Subsequently, different versions of IPMs for SO and 

related optimization problems on SC have been developed (see, e.g., [11, 16, 19, 22, 24]). 

For an overview of the relevant results, we refer to the monograph on this subject [1] and the 

references therein.

A full Newton-step infeasible IPM for LO was first analyzed by Roos [20]. The method was 

generalized by Gu et al. [11] to SO by using the full Nesterov-Todd (NT) direction as a 

search direction. The obtained iteration bound coincides with the one derived for LO, where 

n is replaced by r, the rank of EJAs, and matches currently best-known iteration bounds for 

infeasible IPMs for SO.

In this paper, we present an infeasible full NT-step IPM for SO that is a generalization of the 

feasible IPM discussed in [25]. In particular, Lemma 2.3 and Lemma 2.5 from [25] were 

used to obtained convergence of the method in the wider neighborhood of the central path 

while still maintaining the best iteration bound known for these types of methods.
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The outline of the paper is as follows. In Section 2 we briefly recall some important 

definitions and results on EJAs and symmetric cones that are needed in the paper. In 

addition, we give a brief description and formulation of CTA problem. In Section 3, we 

briefly recall the framework of the full-NT step feasible IPM for SO with its improved 

convergence and complexity analysis. The full-NT step infeasible IPM for SO with its 

convergence and complexity analysis is presented in Section 4. Finally, some concluding 

remarks follow in Section 5.

2. Preliminaries

2.1. Euclidean Jordan Algebras and Symmetric Cones

In this section, we recall some important definitions and results on EJAs and associated 

symmetric cones that will be used in the rest of the paper.

A comprehensive treatment of EJAs and SCs can be found in the monograph [7] and in [1, 8, 

9, 11, 22, 24] as it relates to optimization.

Definition 1—Let (V, ⋅ , ⋅ ) be an n-dimensional inner product space over R and ○ : (x, 
y) → x ○ y be a bilinear map from V × V to V. Then (V, ○ , ⋅ , ⋅ ) (denoted by V) is an 

EJA, if it satisfies the following conditions:

i. x ○ y = y ○ x for all x, y ∈ V (Commutativity)

ii. x ○ (x2○ y) = x2○ (x ○ y) for all x, y ∈ V, where x = x2 ○ x (Jordan’s Axiom).

iii. 〈x ○ y, z〉 = 〈x, y ○ z〉 for all x, y, z ∈ V.

The operation, x ○ y is called the Jordan product of x and y. Moreover, we always assume 

that there exists an identity element e ∈ V such that e ○ x = x ○ e = x for all x ∈ V.

For any element x ∈ V, the Lyapunov transformation L(x):V V is given by

L(x)y: = x ○ y, ∀y ∈ V . (1)

Furthermore, we define the quadratic representation of x in V as follows

P (x): = 2L(x)2 − L x2 , (2)

where L(x)2 = L(x)L(x).

In what follows we list some basic facts about symmetric cones.

Let V be a finite dimensional real Euclidean space. A nonempty subset K of V is a cone if 

x ∈ K and λ ≥ 0 a imply λx ∈ K. Cone K is a convex cone iff it is a cone and a convex set. 

The dual cone of a cone K is defined as a set K* = y ∈ v: ∀x ∈ K, x, y ≥ 0 . It is 

straightforward to see that K* is a closed convex cone. If K = K*, then K self-dual cone. 

Cone K is pointed cone if K ∩ − K = 0 . In what follows we consider, convex, pointed 

cone K. The interior of K is denoted as intK.
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A cone K is a SC if it is homogeneous and self-dual. A cone K is homogeneous if an 

automorphism group Aut K  of K acts transitively on interior intK of a cone K, that is, for 

all x, y ∈ intK there exists g ∈ Aut(K) such that g(x) = y. Automorphism group is defined as 

Aut(K) = g ∈ GL(V ):g(K) = K  where GL(V) is a set of all invertible linear maps g : V → 
V

Let’s consider EJA V, and a corresponding set of squares

K(V): = x2:x ∈ V (3)

It can be shown that K V  is a SC (see, e.g., [7, 23]). This is the form of SC that will be 

used throughout the rest of the paper.

The importance of SC for optimization lays in the fact that common and frequently used 

cones used in optimization, such as non-negative orthant, SOC (ice cream cone), and 

semidefinite cone, the definitions of which are listed below, are all instances of SC.

1. The linear cone or non-negative orthant:

K = R+n : = x ∈ Rn:xi ≥ 0, i = 1, …, n .

2. The positive semidefinite cone:

K = S+n : = X ∈ Sn:X ⪰ 0 ,

where ⪰ means that X is positive semidefinite matrix and Sn is a set of 

symmetric n-dimensional matrices.

3. The quadratic or SOC:

K = ℒn = x ∈ Rn:xi ≥ x1
2 + ⋯ + xi−1

2 + xi+1
2 + ⋯ + xn2 .

In what follows we define an important concept of a rank of EJA and describe two important 

decompositions of EJA, a spectral decomposition of an element in EJA and a Peirce 

decomposition of an EJA.

For any x ∈ V, let r be the smallest integer such that the set {e, x, … , xr} is linearly 

dependent. Then r is the degree of x which is denoted as deg(x). Clearly, this degree of x is 

bounded by the dimension of the vector space V. Furthermore, there exist a polynomial p ≠ 

0 such that p(x) = 0. If this polynomial has a leading coefficient one (monic polynomial) and 

the polynomial is of the minimal degree, then it is called minimal polynomial of element x. 

The rank of V, denoted by rank V , is the largest deg(x) of any element x ∈ V. An element 

x ∈ V is called regular if its degree equals the rank of V. In the sequel, V denotes an EJA 

with rank V = r, unless stated otherwise.
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For a regular element x ∈ V, since {e, x, x2, … , xr} is linearly dependent, there are real 

numbers a1(x), ⋯ , ar(x) such that the minimal polynomial of x is given by

f(λ; x) = λr − a1(x)λr − 1 + ⋯ + ( − 1)rar(x) . (4)

Hence f(x; x) = 0. The polynomial f(λ; x) is called a characteristic polynomial of a regular 

element x. Hence, for regular elements, the minimal and characteristic polynomial coincide, 

however, for elements that are not regular, that may not be the case. Additionally, it can be 

proved that if regular element x vary, then a1(x), ⋯ , ar(x) are polynomials in x (Proposition 

II.2.1 in [7]). The coefficient a1(x) is called the trace of x, denoted as tr(x). And the 

coefficient ar(x) is called the determinant of x, denoted as det(x).

An element c ∈ V is said to be an idempotent if c2 = c. Two idempotents c1 and c2 are said 

to be orthogonal if c1 ○ c2 = 0. Moreover, an idempotent is primitive if it is non-zero and 

cannot be written as the sum of two (necessarily orthogonal) non-zero idempotents. We say 

that {c1, … , cr} is a complete system of orthogonal primitive idempotents, or Jordan frame, 

if each ci is a primitive idempotent, ci ○ cj = 0, i ≠ j, and ∑i = 1
r ci = e. The Löwner partial 

ordering “⪰K” of V defined by a cone K is defined by x ⪰K s if x − s ∈ K. Likewise, x ≻K
s if x − s ∈ intK.

The following theorem describes a spectral decomposition of elements of EJA V, which 

plays an important role in the analysis of the IPMs for SO and other optimization problems.

Theorem 1—(Theorem III.1.2 in [7]) Let x ∈ V. Then there exist a Jordan frame {c1, … , 

cr} and real numbers λ1(x), … , λr(x) such that

x = ∑
i = 1

r
λi(x)ci . (5)

The numbers λi(x) (with their multiplicities) are the eigenvalues of x. Furthermore, the trace 

and the determinant of x are given by

tr(x) = ∑
i = 1

r
λi(x)and det(x) = ∏

i = 1

r
λi(x), (6)

respectively.

For a fixed Jordan frame {c1 ,c2, … , cr} in a EJA V and for i, j ∈ {1, 2, … , r}, we define 

the following eigenspaces

Vii: = x ∈ V:x ○ ci = x = Rci, Vij: = x ∈ V:x ○ ci = 1
2x = x ○ cj , i ≠ j .

The theorem below provides another important decomposition, the Peirce decomposition, of 

the space V.
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Theorem 2—(Theorem IV.2.1 in [7]) The space V is the orthogonal direct sum of the 

spaces Vij(i ≤ j), i.e.,

V = ⊕
i ≤ j

Vij .

Furthermore,

Vij ○ Vij ⊂ Vii + Vjj, Vij ○ Vjk ⊂ Vik, if i ≠ k, Vij ○ Vkl = 0 , if i, j ∩ k, l = 0 .

Thus, the Peirce decomposition of x ∈ V with respect to the Jordan frame {c1, … , cr} is 

given by

x = ∑
i = 1

r
xici + ∑

i < j
xij (7)

with xi ∈ R, i = 1, … , r and xij ∈ Vij, 1 ≤ i < j ≤ r.

As a consequence of Theorem 2, we have the following corollary.

Corollary 1—(Lemma 12 in [22]) Let x ∈ V and its spectral decomposition with respect to 

the Jordan frame {c1, … , cr} is given by (5). Then the following statements hold.

i. The matrices, L(x) and P(x) commute and thus share a common system of 

eigenvectors; in fact the ci, 1 ≤ i ≤ r are among their common eigenvectors.

ii. The eigenvalues of L(x) have the form 
λi + λj

2 , 1 ≤ i ≤ j ≤ r.

iii. The eigenvalues of P(x) have the form λiλj, 1 ≤ i ≤ j ≤ r.

As already indicated, for any x, s ∈ V, the trace inner product is given by

x, s : = tr(x ○ s) . (8)

Thus, tr(x) = 〈x, e〉. Hence, it is easy to verify that

tr(x + s) = tr(x) + tr(s)andx ≺K s tr(x) ≤ tr(s) . (9)

The Frobenius norm induced by this trace inner product is then defined by

x F : = x, x . (10)

It follows from Theorem 1 that

x
F

= tr x2 = ∑
i = 1

r
λi

2(x) . (11)

One can easily verify that
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λmin(x) ≤ x F and λmax(x) ≤ x F . (12)

Furthermore, we have

x2 F ≤ x F
2 . (13)

In the following lemmas, we recall several important inequalities used later in the paper.

Lemma 1—(Lemma 2.13 in [11]) Let x, s ∈ V and 〈x, s〉 = 0. Then

− 1
4 x + s F

2
e ≺K x ○ s ≺K

1
4 x + s F

2
e .

Lemma 2—(Lemma 2.16 in [11]) Let x, s ∈ V. Then

x ○ s F ≤ 1
2 x2 + s2 F .

Next lemma provides an important inequality connecting eigenvalues of x ○ s with the sum 

of Frobenius norms of x and s.

Lemma 3—(Lemma 2.3 in [25]) Let x, s ∈ V. Then

∑
i = 1

r
λi(x ○ s) ≤ 1

2 x F
2 + s F

2 .

If 〈x, s〉 = 0, then x + s F
2 = x F

2 + s F
2 . Thus, the following corollary follows 

immediately from Lemma 3.

Corollary 2—Let x, s ∈ V and 〈x, s〉 = 0. Then

∑
i = 1

r
λi(x ○ s) ≤ 1

2 x + s
F

2
.

Lemma 4—(Lemma 2.5 in [25]) Let u, v ∈ V and 〈u, v〉 = 0, and suppose ‖u + v‖F = 2a 
with a < 1. Then

e, (e + u ○ v)−1 − e ≤ 2a4
1 − a4 .

Lemmas 3 and 4 are crucial in developing the improved complexity analysis of the algorithm 

presented in the next Section 3.
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2.2. Continuous Tabular Adjustment Problem

In this subsection we provide the formulation of CTA problem as an important example of 

the conic problem to which the IPM developed in this paper can be efficiently applied.

The following CTA formulation is given in [13] and several other papers: Given the 

following set of parameters:

i. A set of cells ai, i ∈ N = 1, …, n . The vector a = (a1, … , an)T satisfies certain 

linear system Aa = b where A ∈ Rm×n is an m × n matrix and and b ∈ Rm is m-

vector. The system usually decribes the fact that sum of elements in each row and 

column should remain unchanged, i.e. constant.

ii. A lower, and upper bound for each cell, lai ≤ ai ≤ uai for i ∈ N, which are 

considered known by any attacker.

iii. A set of indices of sensitive cells, S = i1, i2, …, is ⊆ N.

iv. A lower and upper protection level for each sensitive cell i ∈ S respectively, lpli 
and upli, such that the released values must be outside of the interval (ai − lpli, ai 

+ upli).

v. A set of weights, wi, i ∈ N used in measuring the deviation of the released data 

values from the original data values.

A CTA problem is a problem of finding values zi, i ∈ N, such that zi, i ∈ S are safe values 

and the weighted distance between released values zi and original values ai, denoted as ‖z – 

a‖l(w), is minimized, which leads to solving the following optimization problem

min
z

z − a l(w)

s . t . Az = b,
lai ≤ zi ≤ uai, i ∈ N,
zi, i ∈ Saresafevalues .

(14)

As indicated in the assumption (iv) above, safe values are the values that satisfy

zi ≤ ai − lpliorzi ≥ ai + upli, i ∈ S . (15)

By introducing a vector of binary variables y ∈ {0, 1}s the constraint (15) can be written as

zi ≥ − M 1 − yi + ai + upli yi, i ∈ S,
zi ≤ Myi + ai − lpli 1 − yi , i ∈ S, (16)

where M ≫ 0 is a large positive number. Constraints (16) enforce the upper safe value if yi = 

1 or the lower safe value if yi = 0.

Replacing the last constraint in the CTA model (14) with (16) leads to a mixed integer 

convex optimization problem (MIOP) which is, in general, a difficult problem to solve; 
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however, it provides solutions with high data utility [3]. The alternative approach is to fix 

binary variables up front, which leads to a CTA that is a continuous convex optimization 

problem because all binary variables are replaced with values 0 or 1. The continuous CTA is 

easier to solve; however, the obtained solution may have a lower data utility because the 

optimal solution of the continuous CTA is either feasible or infeasible solution of the 

corresponding MIOP depending on the values that were assigned to the binary variables. 

The strategies on how to avoid a wrong assignment of binary variables that may result in the 

MIOP being infeasible are discussed in [4, 5].

In what follows, we consider a continuous CTA where binary variables in MIOP are fixed 

with certain values of 0 or 1, and vector z is replaced by the vector of cell deviations x = z − 

a. Then, the CTA (14) reduces to the following convex optimization problem:

min
x

x l(w)

s . t . Ax = 0,
l ≤ x ≤ u,

(17)

where upper and lover bounds for xi, i ∈ N are defined as follows:

li =
upli  if i ∈ S and yi = 1
lai − ai  if (i ∈ N\S) or  i ∈ S and yi = 0 (18)

ui =
−lpli  if i ∈ S and yi = 0
uai − ai  if (i ∈ N\S) or  i ∈ S and yi = 1 . (19)

The two most commonly used norms in problem (17) are the ℓ1 and ℓ2 norms. For the ℓ2-norm 

the problem, (17) reduces to the following ℓ2-CTA model:

min
x

∑
i = 1

n
wixi2

s.t. Ax = 0,
l ≤ x ≤ u .

(20)

The above problem is a standard QO problem that can be efficiently solved using IPM or 

other methods.

For the ℓ1-norm the problem, (17) reduces to the following ℓ1-CTA model:

min
x

∑
i = 1

n
wi xi

s.t. Ax = 0,
l ≤ x ≤ u .

(21)
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The above ℓ1-CTA model (21) is a convex optimization problem; however, the objective 

function is not differentiable at x = 0. Since most of the algorithms, including IPMs, require 

differentiability of the objective function, problem (21) needs to be reformulated.

The standard reformulation is the transformation of a model (21) to the following LO model:

min
x−, x+

∑
i = 1

n
wi xi

+ + xi−

s . t . A xi
+ − xi− = 0,

l+ ≤ x+ ≤ u+,
l− ≤ x− ≤ u−,

(22)

where

x+ = x  if x ≥ 0
0  if x < 0, x− = 0  if x > 0

−x  if x ≤ 0, (23)

The drawback of the above LO reformulation is that number of variables and inequality 

constraints doubles. In [13] an alternative SOC reformulation of ℓ1-CTA is proposed where 

the dimension of the problem does not increases as much. It is based on the fact that 

absolute value has an obvious SOC representation since the epigraph of the absolute value 

function is exactly SOC, that is,

ti = xi Ki = xi, ti ∈ R2: ti ≥ xi
2 .

A SOC formulation of the l1-CTA (21) is given below

min
x

∑
i = 1

n
witi

s . t . Ax = 0,
xi, ti ∈ Ki; i = 1, …, n,

l ≤ x ≤ u .

(24)

The above conic formulation of continuous CTA problem is an important example of the 

conic problem to which the IPM developed and analyzed in the rest this paper can be 

efficiently applied.

3. A Brief Outline of the Full NT-Step Feasible IPM

In this section, a brief outline of the feasible algorithm presented in [25] is given.

Let (V, ○ ) be an n-dimensional EJA with rank r equipped with the standard inner product 

〈x, s〉 = tr(x ○ s) and K be the corresponding symmetric cone. Moreover, we always assume 

that there exists an identity element e ∈ V such that e ○ x = x for all x ∈ V. Additional facts 
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regarding EJAs and SCs are listed in the previous Section 2 and references cited in that 

section.

We consider the LO problem over symmetric cones, or shortly, the SO problem given in the 

standard form

(SOP ) min c, x
s.t. Ax = b, x ∈ K,

and its dual problem

(SOD) max bTy

s.t. ATy + s = c, s ∈ K,

where A is a linear operator from V toRm, c and the rows of A lie in V, b ∈ Rm, and AT is 

the adjoint of A. Let ai ∈ V be the ith row of A, then Ax = b means that 〈ai, x〉 = bi, for each 

i = 1, … , m, while ATy + s = c means that ∑i = 1
m yiai + s = c. Without loss of generality, we 

assume that the rows of A are linearly independent.

Additionally, without loss of generality we can assume that both (SOP) and (SOD) satisfy 

the interior-point condition (IPC) [22], i.e., there exists (x0, y0, s0) such that

Ax0 = b, x0 ∈ intK, ATy0 + s0 = c, s0 ∈ intK .

The perturbed Karush-Kuhn-Tucker (KKT) conditions for (SOP) and (SOD) are given by

Ax = b, x ∈ K,
ATy + s = c, s ∈ K,

x ○ s = μe .
(25)

The parameterized system (25) has a unique solution (x(μ), y(μ), s(μ)) for each μ > 0. The set 

of μ-centers forms a homotopy path with μ running through all positive real numbers, which 

is called the central path. If μ → 0, then the limit of the central path exists and since the limit 

points satisfy the complementarity condition, i.e., x ○ s = 0, it naturally yields an optimal 

solution for (SOP) and (SOD) (see, e.g., [8, 22]).

IPMs follow the central path approximately and find an approximate solution of the 

underlying problems (P) and (D) as μ gradually decreases to zero. Just like the case of a 

linear SDO, linearizing the third equation in (25) may not lead to an unique element in V. 

Thus it is necessary to symmetrize that equation before linearizing it. To overcome this 

difficulty, the third equation of the system (25) is replaced by the following equivalent scaled 

equation (Lemma 28 in [22])

P (u)x ○ P u−1 s = μe,
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where u is a scaling point from the interior of the cone K (i.e., intK).

Applying Newton’s method, we have

AΔx = 0,
ATΔy + Δs = 0,

P (u)x ○ P u−1 Δs + P u−1 s ○ P (u)Δx = μe − P (u)x ○ P u−1 s .
(26)

The appropriate choices of u that lead to obtaining the unique search directions from the 

above system are called commutative class of search directions (see, e.g., [22]). In this 

paper, we consider the so-called NT-scaling scheme, the resulting direction is called NT 

search direction. This scaling scheme was first proposed by Nesterov and Todd [17, 18] for 

self-scaled cones and then adapted by Faybusovich [8, 9] for symmetric cones.

Lemma 5 (Lemma 3.2 in [9])

Let x, s ∈ intK. Then there exists a unique w ∈ intK such that

x = P (w)s .

Moreover,

w = P (x)
1
2 P x

1
2 s

− 1
2 = P s− 1

2 P s
1
2 x

1
2 .

The point w is called the scaling point of x and s (in this order). Let u = w− 1
2 , where w is the 

NT-scaling point of x and s. Introducing the variance vector

v: = P (w)− 1
2x

μ = P (w)
1
2s

μ , (27)

and the scaled search directions

dx: = P (w)− 1
2Δx

μ andds: = P (w)
1
2Δs

μ , (28)

the system (26) is further simplified

Adx = 0,

ATΔy + ds = 0,
dx + ds = v−1 − v,

(29)
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where A: = 1
μAP (w)

1
2 . This system has a unique solution (dx, Δy, ds). The original search 

directions can then be obtained through (28). If (x, y, s) ≠ (x(μ), y(μ), s(μ)), then (Δx, Δy, Δs) 

is nonzero. The new iterate is obtained by taking full NT-steps

x+: = x + Δx, y+: = y + Δy, ands+: = s + Δs . (30)

From the first two equations of the system (29), one can easily verify that the scaled search 

directions dx and ds are orthogonal with respect to the trace inner product, i.e., 〈dx, ds〉=0. 

This implies that Δx and Δs also are orthogonal, i.e., 〈Δx, Δs〉=0. As a consequence, we have 

the important property that, after a full NT-step, the duality gap assumes the same value as at 

the μ-centers, namely rμ.

Lemma 6 (Lemma 3.4 in [11])

After a full NT-step, the duality gap is given by

x+, s+ = rμ .

To measure the distance of an iterate to the corresponding μ-center, a norm-based proximity 

measure δ(x, s; μ) is introduced

δ(v): = δ(x, s; μ): = 1
2 v−1 − v F . (31)

One can easily verify that

δ(v) = 0 v = e dx = ds = 0 x ○ s = μe, (32)

which implies that the value of δ(v) can indeed be considered as a measure of the distance 

between the given iterate and the corresponding μ-center.

It is crucial for us to investigate the effect on the proximity measure δ(x, s; μ) of a full NT-

step to the target point (x(μ), y(μ), s(μ)). For this purpose, Wang et al. [25] established a 

sharper quadratic convergence result than the one mentioned in [11]. Their derivation is 

based on the generalization of Theorem II.52 in [21] for LO. This leads to a wider quadratic 

convergence neighborhood of the central path for the algorithm than the one used in [11].

Theorem 3 (Theorem 3.2 in [25])

Let δ := δ(x, s; μ) < 1. Then, the full NT-step is strictly feasible and

δ x+, s+; μ ≤ δ2

2 1 − δ4 .

The following corollary shows the quadratic convergence of the full NT-step to the target μ-

center (x(μ), y(μ), s(μ)) in the wider neighborhood determined by 1/ 24  as opposed to 1/ 2 in 

[11].
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Corollary 3

Let δ: = δ(x, s; μ) ≤ 1
24 . Then the full NT-step is strictly feasible and

δ x+, s+; μ ≤ δ2 .

The following theorem investigates the effect on the proximity measure when (x, y, s) is kept 

fixed and μ is updated to μ+ = (1 − θ)μ.

Theorem 4 (Theorem 3.3 in [25])

Let δ := δ(x, s; μ) < 1 and μ+ = (1 − θ)μ with 0 < θ < 1. Then

δ x, s; μ+ 2 = (1 − θ)δ2 + rθ2
4(1 − θ) .

As a consequence of Theorem 3 and Theorem 4, the following corollary readily follows.

Corollary 4

Let δ: = δ(x, s; μ) ≤ 1
24  and θ = 1

2r  with r ≥ 2. Then

δ x+, s+; μ+ ≤ 1
24 .

The following theorem provides an upper bound for the total number of the iterations 

produced by the full-NT step feasible IPM.

Theorem 5 (Theorem 3.4 in [25])

Let τ = 1
24  and θ = 1

2r  with r ≥ 2. Then the feasible algorithm requires

O rlog
x0, s0

ε

iterations to obtain an iterate (x, y, s) satisfying 〈x, s〉 ≤ ε which is an ε-approximate optimal 

solution of (SOP) and (SOD).

Thus, the feasible algorithm is well defined, globally convergent, and achieves quadratic 

convergence of full NT-steps in the wider neighborhood while still maintaining the best 

known iteration bound known for these types of methods, namely

O rlog
rμ0
ε .
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4. Full NT-Step Infeasible IPM

It is well known fact that finding strictly feasible starting point may be difficult. Thus, an 

infeasible IPM that does not require feasible starting point may be a good alternative. First, a 

brief outline of the infeasible algorithm is presented. Next, we concentrate on the 

convergence and complexity analysis of the algorithm. The method is similar to IPM 

presented in [11], however, with wider neighborhood and larger steps which impacts the 

convergence and complexity analysis. Allowing larger steps at each iteration while still 

maintaining the best known iteration bound for these types of methods and having a 

quadratic local convergence of the proximity measure at each iteration are another 

advantages of the method presented in this paper.

4.1. An Outline of the Full NT-Step Infeasible IPM

In what follows, we assume that the SO problem has an optimal solution (x*, s*) with 

vanishing duality gap, i.e., 〈x*, s*〉 = 0. Furthermore, we choose arbitrarily x0, s0 ∈ intK
and μ0 > 0 such that

x0 = ζe, y0 = 0, s0 = ζe, andμ0 = ζ2, (33)

as the starting point of the algorithm, where ζ is a (positive) number such that

x* + s* ≺K ζe . (34)

The initial values of the primal and dual residual vectors are denoted as

rp0 = b − Ax0andrd
0 = c − ATy0 − s0, (35)

respectively. In general, we have rp0 ≠ 0 and rd
0 ≠ 0, i.e., the initial iterate is not feasible for 

SO. However, a sequence of perturbed problems is constructed below in a such a way that 

the initial iterate is strictly feasible for the first perturbed problem in the sequence.

For any ν with 0 < ν ≤ 1, the perturbed problems of SO given in the standard form

(SOPv) min c − νrd
0, x

s.t. b − Ax = νrp0, x ∈ K,

and its dual problem

(SODv) min b − νrp0
Ty

s.t. c − ATy − s = νrd
0, s ∈ K .

It is obvious that x = x0 is a strictly feasible solution of (SOPν), and (y, s) = (y0, s0) is a 

strictly feasible solution of (SODν) when ν = 1, that is, (SOPν) and (SODν) satisfy the IPC 

for ν = 1 which then straightforwardly leads to the following lemma.
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Lemma 7 (Lemma 4.1 in [11])—Let (SOP) and (SOD) be feasible and 0 < ν ≤ 1. Then, 

the perturbed problems (SOPν) and (SODν) satisfy the IPC.

Let (SOP) and (SOD) be feasible and 0 < ν ≤ 1. Then Lemma 7 implies that the perturbed 

problems (SOPν) and (SODν) satisfy the IPC, and therefore the following system

b − Ax = νrp0, x ∈ K,

c − ATy − s = νrd
0, s ∈ K,

x ○ s = μe,
(36)

has a unique solution (x(μ, ν), y(μ, ν), s(μ, ν)), for every μ > 0 that is called a μ-center of the 

perturbed problems (SOPν) and (SODν). Hence, the central paths of (SOPν) and (SODν) 

exist.

The main idea of the infeasible algorithm is to simultaneously improve feasibility by 

reducing ν and optimality by reducing μ while keeping the iterates in the certain 

neighborhood of the central paths of (SOPν) and (SODν).

Thus, it make sense to link the parameters μ and ν according to the following formula μ = 

νμ0 = νζ2. It is also worth noting that, according to (33) , x0 ○ s0 = μ0e; hence, x0 is the μ0-

center of the perturbed problem (SOPν), and (y0, s0) is the μ0-center of the perturbed 

problem (SODν) for ν = 1. In other words,

x μ0, 1 , y μ0, 1 , s μ0, 1 = x0, y0, s0

and the algorithm can easily be started since we have initial starting point that is by 

construction exactly on the central path of (SOPν) and (SODν) for ν = 1.

The outline of one iteration of the infeasible algorithm is as follows. Suppose that for some 

ν ∈ (0, 1] we have an iterate (x, y, s) satisfying the feasibility condition, i.e., the first two 

equations of the system (36) for μ = νμ0, and such that tr(x ○ s) = rμ and δ(x, s; μ) ≤ τ. 

Thus, we start with the iterate in the τ-neighborhood of the central path of (SOPν) and 

(SODν) that targets the μ-center on that central path . The goal is to obtain a new iterate (x+, 

y+, s+) in the τ-neighborhood of the central path of the new pair of problems SOPv
+  and 

SODv
+  where both ν and μ are reduced by a barrier parameter θ ∈ (0, 1), i.e., ν+ = (1 − θ)ν 

and μ+ = (1 − θ)μ = ν+μ0. Hence, (x+, y+, s+) should satisfy the first two equations of the 

system (36), with ν replaced by ν+ and μ by μ+, and such that tr(x+, s+) = rμ+ and δ(x+, s+; μ
+) ≤ τ.

The calculation of the new iterate is achieved in two phases, a feasibility phase where one 

feasibility step is taken and a centering phase where a few centering steps are performed. 

The feasibility step serves to get an iterate (xf, yf, sf) that is strictly feasible for SOPv+  and 

SODv+ , and belongs to the quadratic convergence neighborhood with respect to the μ+-

center of SOPv+  and SODv+ . However, (xf, yf, sf) may not be in the τ-neighborhood of 
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the μ+-center; therefore, several centering steps may need to be performed to get inside the 

τ-neighborhood.

Note that after each iteration the residuals and the duality gap are reduced by the factor (1 − 

θ). The algorithm stops when we obtain an iterate for which the norm of the residuals and 

the duality gap do not exceed the accuracy parameter ε. This iterate is called an ε-

approximate optimal solution for (SOP) and (SOD).

The feasibility step is obtained by taking full steps

xf : = x + Δfx, yf : = y + Δfy, andsf : = s + Δfs, (37)

with NT-search directions (Δfx, Δfy, Δfs) that are calculated from the following Newton 

system

AΔfx = θνrp0,

ATΔfy + Δfs = θνrd
0,

P (w)− 1
2x ○ P (w)

1
2Δfs + P (w)

1
2s ○ P (w)− 1

2Δfx = (1 − θ)μe − P (w)− 1
2x ○ P (w)

1
2s .

(38)

One may easily verify that (xf, yf, sf) satisfies the first two equations of the system (36), with 

ν replaced by ν+ and μ by μ+. The third equation indicates that the μ+-center of SOPv
+  and 

SODv
+  is targeted. Targeting μ+center rather than μ-center contributes to the efficiency of 

the algorithm. The system (38) defines the feasibility step uniquely since the coefficient 

matrix of the resulting system is exactly the same as in the feasible case.

Similarly to the feasible case, given the variance vector v defined by (27) and scaled search 

directions

dx
f : = P (w)− 1

2Δfx
μ andds

f : = P (w)
1
2Δfs
μ , (39)

the system (38) is reduced to the following form

Adx
f = 1

μθνrp0,

ATΔfy + ds
f = 1

μθνP (w)
1
2rd

0,

dx
f + ds

f = (1 − θ)v−1 − v .

(40)

Hence,

xf = x + Δfx = μP (w)
1
2 v + dx

f andsf = s + Δfs = μP (w)− 1
2 v + ds

f . (41)
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Since it will be shown that (xf, yf, sf) is strictly feasible and moreover in the quadratic 

convergence neighborhood of the μ+-center of SOPv+  and SODv+ , it is possible to take 

few centering steps to get the new iteration in the desired τ-neighborhood of the μ+-center. 

The centering steps are obtained by taking full steps with NT-search directions calculated 

from the Newton system that is the same as in the feasible case, (26), or in the scaled form, 

(29).

The above outline is summarized in the Fig. 1, that describes a generic full NT-step 

infeasible IPM.

4.2. Analysis of the Full-NT Step Infeasible IPM

The analysis of the infeasible algorithm is more complicated and more involved than in the 

feasible case. The main reason for this is that the scaled search directions dx
f and ds

f are not 

(necessarily) orthogonal with respect to the trace inner product. We omit most parts of the 

analysis that are unchanged from the one presented in [11] and emphasize the parts where 

there are differences. It is shown that the feasibility steps can be taken in the wider quadratic 

convergence neighborhood of the central path developed in the feasible case.

Feasibility Step.—The lemma below provides the sufficient condition for the strict 

feasibility of the feasibility step (xf, yf, sf).

Lemma 8 (Lemma 4.2 in [11])—The feasibility step (xf, yf, sf) is strictly feasible if 

(1 − θ)e + dx
f ○ ds

f ∈ intK.

Thus, the feasibility of the (xf, yf, sf) highly depends on the eigenvalues of the vector 

dx
f ○ ds

f. More specifically, (xf, yf, sf) is strictly feasible if λ dx
f ○ ds

f
∞ < 1 − θ.

In order to measure the distance from the (xf, yf, sf) to the. μ+-center we need an upper 

bound on the proximity measure δ(xf,sf;μ+) which is for simplicity denoted also as δ(vf), 

where vf is a variance vector defined by (27).

The following lemma provides an upper bound for δ(vf).

Lemma 9 (Lemma 4.4 in [11])—Let λ dx
f ○ ds

f
∞ < 1 − θ. Then

4δ vf 2 ≤

dx
f ○ dsf

1 − θ F

2

1 −
λ dx

f ○ dsf

1 − θ ∞

.

The following lemma gives an important relationship between the infinite norm of the vector 

of eigenvalues of dx ○ ds and the Frobenius norms of dx and ds.

Lemma 10—One has
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λ dx
f ○ dsf ∞ ≤ dx

f ○ dsf F ≤ 1
2 dx

f
F
2 + dsf F

2 .

Proof—We have the following derivation:

λ dx
f ○ dsf ∞ ≤ dx

f ○ dsf F ≤ 1
2 dx

f 2 + dsf
2

F

≤ 1
2 dx

f 2
F + 1

2 dsf
2

F ≤ 1
2 dx

f
F
2 + dsf F

2 .

The first inequality follows from the definitions of the infinite norm for vectors and the 

Frobenius norm for the element of V. The second inequality follows from Lemma 2.16 in 

[11], the third inequality follows from the triangle inequality for the Frobenius norm, and the 

last inequality follows from Lemma 2.12 in [11]. This completes the proof of the lemma. □

Substitution of the two inequalities in Lemma 10 into the inequality in Lemma 9 yields the 

following upper bound

4δ vf 2 ≤
dx

f ○ dsf

1 − θ F

2

1 −
λ dx

f ○ dsf

1 − θ ∞

≤

1
4

dx
f

F
2 + dsf F

2

1 − θ

2

1 − 1
2

dx
f

F
2 + dsf F

2

1 − θ

. (42)

Thus, a task of finding an upper bound of δ(vf) reduces to finding an upper bound of 

dx
f

F
2 + ds

f
F
2

.

After careful and somewhat involved analysis, details of which are omitted and can be found 

in [11], the following upper bound is derived:

dx
f

F
2 + ds

f
F
2 ≤ 2 4(1 − θ)2δ2 + θ2r + 12θ2r2ρ(δ)2, (43)

where δ := δ(v) and ρ(δ): = δ + 1 + δ2. Thus, the upper bound essentially depends on the 

barrier parameter θ and the proximity measure δ of the old iterate (x, y, s), which is a 

desired result since we want to connect new proximity measure with the old one.

In what follows, we want to choose θ, 0 < θ < 1, as large as possible, and such that (xf, yf, 
sf) lies in the quadratic convergence neighborhood with respect to the μ+-center of the 

perturbed problems SOPv+  and SODv+ . As it was shown in the feasible case, this 

neighborhood can be extended to δ vf ≤ 1/ 24  as opposed to δ vf ≤ 1/ 2 in [11].

From (42), we know that δ vf ≤ 1/ 24  holds if

Lesaja et al. Page 20

Stat Optim Inf Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1
4

dx
f

F
2 + dsf F

2

1 − θ

2

1 − 1
2

dx
f

F
2 + dsf F

2

1 − θ

≤ 2 2, (44)

which leads to the following inequality

dx
f

F
2 + ds

f
F
2

1 − θ ≤ 2 2( 1 + 2 − 1) ≈ 1.566. (45)

Substituting (43) into the above inequality (45) we obtain

2 4(1 − θ)2δ2 + θ2r + 12θ2r2ρ(δ)2 ≤ 2 2( 1 + 2 − 1)(1 − θ) . (46)

One can easily verify that the largest values of θ and τ for which inequality (45) holds are

τ = 1
16 andθ = 1

4r . (47)

Furthermore, from Lemma 10 and (45) we obtain

λ dx
f ○ ds

f
∞

≤ 1
2 dx

f
F
2 + ds

f
F
2 ≤ 2( 1 + 2 − 1)(1 − θ) < 1 − θ . (48)

Lemma 8 then implies that with the above choice of parameters θ and τ, (xf, yf, sf) is indeed 

strictly feasible.

Centering Steps.—After the feasibility step we perform centering steps in order to get an 

iterate (x+, y+, s+) that is in the τ-neighborhood of the μ+-center, i.e. satisfies tr(x+ ○ s+) = rμ
+ and δ(x+, s+; μ+) ≤ τ. Using Corollary 3, the required number of centering steps can easily 

be obtained. Indeed, since (xf, yf, sf) is in the quadratic convergence neighborhood of the μ+-

center, i.e. δ = δ xf, sf; μ+ ≤ 1/ 24 , after k centering steps we will have an iterate (x+, y+, s+) 

that is still feasible for SOPv+  and SODv+  and satisfies

δ x+, s+; μ+ ≤ 1
24

2k
.

Hence, δ(x+, y+, s+) ≤ τ is satisfied if k satisfies

1
24

2k
≤ τ .

Thus, δ(x+, s+; μ+) ≤ τ will be obtained after at most
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2 + log2 log2
1
τ (49)

centering steps.

Substituting τ = 1/16 into the above expression leads to

2 + log2 log2
1
τ = 2 + log2 log216 = 4.

Hence, at most four centering steps are needed to get the iterate (x+, y+, s+) that satisfies δ(x
+, s+; μ+) ≤ τ, i.e., the iterate that is in the τ-neighborhood of the μ+-center again.

Iteration Bound.—To summarize, each main iteration consists of at most five inner 

iterations, one feasibility step, and at most four centering steps. In each main iteration both 

the duality gap and the norms of the residual vectors are reduced by the factor (1 − θ). 

Hence, using tr(x0 ○ s0) = rζ2, the total number of main iterations is bounded above by

1
θ log

max rζ2, rp0 F , rd
0

F
ε

Since θ = 1
4r  and at most five inner iterations per the main iteration are needed, the main 

result can be stated in the following theorem.

Theorem 6—Suppose (SOP) has an optimal solution x* and (SOD) has an optimal solution 

(y*, s*), which satisfy tr(x* ○ s*) = 0 and x* + s* ≺K ζe for some ζ > 0. If the values of 

parameters τ and θ are chosen as τ = 1
16  and θ = 1

4r , then at most

20rlog
max rζ2, rp0 F , rd

0
F

ε

inner iterations of the algorithm in Fig. 1, are needed to find an ε-approximate optimal 

solution of (SOP) and (SOD).

In conclusion, the infeasible algorithm in Fig 1 is well defined, globally convergent, and 

achieves quadratic convergence of full NT-feasibility steps in the wider neighborhood of the 

central path while still maintaining the best-known iteration bound known for these types of 

methods, namely

O rlog
max rζ2, rp0 F , rd

0
F

ε .
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Remark 1—Similarly to LO, the iteration bound in Theorem 6 is derived under the 

assumption that there exists an optimal solution pair (x*, y*, s*) of (SOP) and (SOD) with 

vanishing duality gap and satisfying x* + s* ≺K ζe. During the course of the algorithm, if at 

some main iteration, the proximity measure δ after the feasibility step exceeds 1/ 24 , then it 

tells us that the above assumption does not hold. It may happen that the value of ζ has been 

chosen too small. In this case, one might run the algorithm once more with a larger value of 

ζ. If this does not help, then eventually one should realize that (SOP) and/or (SOD) do not 

have optimal solutions at all, or they have optimal solutions with a positive duality gap.

Remark 2—In [11] the number of centering steps per the main iteration is three. In our 

paper, the ‘price to pay for expanding the quadratic convergence neighborhood of the central 

path is a possible additional centering step which slightly increases the constant in the upper 

bound on the total number of inner iterations from 16 to 20; however, that does not change 

the order of magnitude of the required number of iterations, it still matches the best-known 

iteration bound for the infeasible algorithms mentioned above. It is also worth mentioning 

that in practice all four centering steps may not always be needed, very often only one or 

two suffice.

5. Concluding remarks

In this paper, an infeasible version of the full NT-step IPM for SO in a wider neighborhood 

of the central path than the one in [11] is presented and convergence analysis is given. Wider 

quadratic convergence neighborhood of the central path characterized by 1/ 24  is carried over 

from the feasible case and applied to the feasibility steps of the infeasible algorithm 

resulting in larger steps. However, despite full NT-steps in the wider neighborhood of the 

central path, the best complexity known for the infeasible algorithm is still maintained.

Future research is planned in two directions. The first direction is implementation and 

numerical testing of the method on a set of conic CTA problems as well as other conic 

problems. The second direction is theoretical and involves the generalization of this IPM to 

other optimization problems such as Linear Complementarity Problems over symmetric 

cones.
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Figure 1. 
Algorithm I
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