
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2017

Optimization Methods for Tabular Data Protection
Iryna Petrenko

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Other Mathematics Commons

Recommended Citation
Petrenko, Iryna, "Optimization Methods for Tabular Data Protection" (2017). Electronic
Theses and Dissertations. 1630.
https://digitalcommons.georgiasouthern.edu/etd/1630

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229059191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1630?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

OPTIMIZATION METHODS FOR TABULAR DATA PROTECTION

by

IRYNA PETRENKO

(Under the Direction of Goran Lesaja)

ABSTRACT

In this thesis we consider a minimum distance Controlled Tabular Adjustment (CTA)

model for statistical disclosure limitation (control) of tabular data. The goal of the

CTA model is to find the closest safe table to some original tabular data set that

contains sensitive information. The measure of closeness is usually measured using `1

or `2 norm; with each measure having its advantages and disadvantages. According

to the given norm CTA can be formulated as an optimization problem: Liner Pro-

graming (LP) for `1, Quadratic Programing (QP) for `2. In this thesis we present

an alternative reformulation of `1-CTA as Second-Order Cone (SOC) optimization

problems. All three models can be solved using appropriate versions of Interior-

Point Methods (IPM). The validity of the new approach was tested on the randomly

generated two-dimensional tabular data sets. It was shown numerically, that SOC

formulation compares favorably to QP and LP formulations.

INDEX WORDS: Statistical disclosure limitation, Controlled tabular adjustment,
Liner programing optimization problem, Quadratic programing optimization
problem, Symetric cone, Conic optimization problem, Interior point method

2009 Mathematics Subject Classification: Computational Science

OPTIMIZATION METHODS FOR TABULAR DATA PROTECTION

by

IRYNA PETRENKO

B.S., Odesa National Academy of Telecommunication, Ukraine, 2007

M.S., Odesa National Academy of Telecommunication, Ukraine, 2008

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

c©2017

IRYNA PETRENKO

All Rights Reserved

1

OPTIMIZATION METHODS FOR TABULAR DATA PROTECTION

by

IRYNA PETRENKO

Major Professor: Goran Lesaja
Committee: Emil Iacob

Scott Kersey

Electronic Version Approved:
July 2017

2

TABLE OF CONTENTS

Page

LIST OF TABLES . 4

LIST OF FIGURES . 5

LIST OF SYMBOLS . 6

CHAPTER

1 Introduction . 7

2 SDL Methods overview: Microdata 11

2.1 Disclosure risk . 11

2.2 The SDL methods for Microdata 12

2.2.1 Non-perturbative microdata masking 13

2.2.2 Perturbative microdata masking 15

3 SDL methods overview: Tabular data 18

3.1 Disclosure risk . 18

3.2 SDL methods for Magnitude tabular data 21

3.3 SDL methods for Frequency tables 25

4 Overview of cones and interior point method 28

4.1 Linear Programing . 28

4.1.1 Interior Point Method for Linear Programing 28

4.1.2 Extension to Quadratic Programing 31

4.2 Overview of conic optimization 32

5 Controlled Tabular Adjustment model for SDL 36

3

5.1 Formulation of the General CTA Model 36

5.2 LP and Pseudo-Huber Formulation of `1-CTA 39

5.3 SOC Formulation of Pseudo-Huber and `1 CTA 42

6 Numerical Results . 44

6.1 Introductory Example . 44

6.2 Implementation . 47

6.2.1 Generating Tables of Data 47

6.2.2 Solution Methods . 47

6.2.3 User interface description 48

6.3 Numerical Results . 48

7 Concluding Remarks . 51

REFERENCES . 52

A Code . 57

A.1 Main program . 57

A.2 LP function . 63

A.3 QP function . 65

A.4 SOC function . 66

A.5 SOC for Pseudo-Huber function 68

B User Interface . 71

4

LIST OF TABLES

Table Page

2.1 Non-preturbative methods vs data types. 13

2.2 Perturbative methods vs. data types. !- denotes applicable and
(!) - denotes applicable to ordinal categories only. 15

3.1 Sensitivity rules. 19

3.2 Upper protection levels. 21

3.3 Classification of protection methods for tabular data. 23

6.1 Results for CTA Models . 46

6.2 Testing initial table with dimension 100×120 using different numbers
of sensitive cells . 49

6.3 Testing random initial table with different dimensions using fixed
numbers of sensitive cells, with random position of sensitive cells
and random value of sensitive cells 50

5

LIST OF FIGURES

Figure Page

6.1 Results of the small example (rounded to two decimal places). . . 45

B.1 User Interface . 71

6

LIST OF SYMBOLS

R Real Numbers

C Real Numbers

Z Integers

N Natural Numbers

N0 Natural Numbers including 0

Lp(R) p-integrable functions over R

L(X, Y) Linear maps from X to Y

rank(T) Rank of a linear map

7

CHAPTER 1

INTRODUCTION

Today people are faced with task of processing huge volume of information. The data

can come from any spheres of human life beginning from some personal information

and ending by different branches of industry and business. There is often a need

to protect the confidentiality of the informations provided by the respondents before

realizing data to the public .

To describe the term ’protecting confidentiality’ means, we need to provide some

definitions. This usually involves the notion of a hypothetical intruder who might

break this confidentiality. There are three key parties: (i) the respondent who provides

the data, (ii) the agency (such that U.S. Census Bureau,The Federal Committeeon

Statistical Methodology, The American Statistical Association, The European Union

SDC group, etc.) which collects the data, releases statistical outputs and designs

the Statistical Disclosure Control strategy, and (iii) the hypothetical intruder who

has access to these outputs and seeks to use them to disclose information about the

respondent.

Statistical Disclosure Control (SDC) or Statistical Disclosure Limitation (SDL)

seeks to protect statistical data in such a way that they can be released without giving

away confidential information that can be linked to specific individuals or entities.

SDL techniques can be defined as the set of methods to reduce the risk of disclos-

ing information on individuals, businesses or other organizations. SDL methods min-

imize the risk of disclosure to an acceptable level while releasing as much information

as possible. There are two types of SDL methods: perturbative and non-perturbative

methods. Perturbative methods falsify the data before publication by introducing

an element of error purposely for confidentiality reasons. Non-perturbative methods

reduce the amount of information released by suppression or aggregation of data.

8

The methodology of SDL corresponds to the type of initial data:

• Tabular Data.

There are two types of tabular output:

1. Magnitude tables. In a magnitude table, each cell value represents the sum

of a particular response, across all respondents that belong to that cell.

2. Frequency tables. In a frequency table, each cell value represents the num-

ber of respondents that fall into that cell.

• Microdata

A microdata set V can be viewed as a file with n records, where each record

contains m variables (also called attributes) on an individual respondent, who

can be a person or an organization (e.g. a company). Microdata are the form

from which all other data outputs are derived and they are the primary form

that data are stored in.

Depending on their sensitivity, the variables in an original unprotected micro-

data set can be classified into four categories which are not necessarily disjoint:

1. Identifiers. These are variables that unambiguously identify the respon-

dent.

2. Quasi-identifiers or key variables. This is a set of variables in V that, in

combination, can be linked with external information to re-identify (some

of) the respondents to whom (some of) the records in V refer.

3. Confidential outcome variables. These are variables which contain sensitive

information on the respondent.

4. Non-confidential outcome variables. Those variables which contain non-

sensitive information on the respondent.

9

Depending on their data type, the variables in a microdata set can be classified

as:

– Continuous. A variable is considered continuous if numerical and arith-

metical operations can be performed on it.

– Categorical. A variable is considered categorical when it takes values over

a finite set and standard arithmetical operations do not make sense. Two

main types of categorical variables can be distinguished:

∗ Ordinal. An ordinal variable takes values in an ordered range of cat-

egories. Thus, the ≤, max and min operators are meaningful with

ordinal data.

∗ Nominal. A nominal variable takes values in an unordered range of

categories. The only possible operator is comparison for equality.

Since we defined SDL as a set of methods that reduce the disclosure risk, we

defined disclosure risk as probability of disclosure with respect to specified sources

of uncertainty. Or the term might be used loosely to emphasize not only the uncer-

tainty about potential disclosure but also the potential harm that might arise from

disclosure.

The SDL method will lead to some loss of information for the user of the statis-

tical output. The term utility may be used to cover both the information provided by

the statistical outputs and the quality of this information. Utility generally needs to

be considered from the perspective of a user of the statistical outputs, who represents

a key fourth party to add to the three parties referred to earlier: the respondent, the

agency and the intruder.

The main challenge in SDL is how to deal with the trade-off between disclosure

risk and utility. In general, the more the disclosure risk is reduced by an SDL method,

10

the lower will be the expected utility of the output. This trade-off may be formulated

as an optimization problem.

Let D - be the data that been provided by responder, f(D) - be the statistical

output, resulting from the use of an SDL method, R[f(D)] - be a measure of the

disclosure risk of the output, U [f(D)] - be a measure of the utility of the output

and ε - be a maximum tolerable risk that mentions by the agency. Then the basic

challenge of SDL might be represented as the constrained optimization problem :

for given D and ε, find an SDL method f(·), which:

maximize U [f(D)], subject to R[f(D)] < ε.

Monograph [1] provides the detailed description of all SDL methods and tech-

niques.

11

CHAPTER 2

SDL METHODS OVERVIEW: MICRODATA

The main aim of SDL for microdata is to prevent confidential information from being

linked to specific respondents when releasing a microdata file. We can describe that

as, for given an original microdata set V, the goal of SDL is to release a protected

microdata set V′ in such a way that: (i) disclosure risk (i.e. the risk that a user or an

intruder can use V′ to determine confidential variables on a specific individual among

those in V) is low; (ii) user analyses (regressions, means, etc.) on V′ and V yield the

same or at least similar results.

In terms of microdata the SDL process may be divided into the following steps:

(i) determination of the needs of confidentiality protection;

(ii) determination of the key characteristics and use of the data;

(iii) definition of the disclosure risk and assessment;

(iv) determination of the disclosure control methods;

(v) implementation.

2.1 Disclosure risk

Once the characteristics and use of the survey data have been clarified, it is time to

start the proper analysis of the disclosure risk.

Intuitively, a unit is at risk of disclosure when it cannot be confused with several

other units, i.e. if it can be singled out from the rest. Record-level definitions of risk,

called individual risk, may be useful for two purposes. On the one hand, they can be

exploited to protect data selectively, i.e. apply SDL procedures only to those records

being at risk. On the other hand, they can be used to built an overall definition of

12

risk for the whole microdata file to be released, i.e. a global risk measure [2]. As

the process to single a unit out of the others depends on the type of quasi-identifiers,

also the definition of risk depends heavily on the type of the quasi-identifiers. We

distinguish three cases:

1. All the quasi-identifiers are categorical.

2. The quasi-identifiers are continuous.

3. Some quasi-identifier are categorical and some are continuous.

The first case is the common situation found when microdata stem from social

surveys, the other two cases are mainly present when dealing with business surveys.

For the details see [1]

2.2 The SDL methods for Microdata

Choice of the most suitable SDL method is based on previous analyses regarding

the type of users and the statistical methods applied to analyse the microdata, the

objectives to be investigated, the constraints imposed by the production process and

the policy of the agency.

Microdata protection methods can generate the protected microdata set V′:

• either by masking original data, i.e. generating a modified version V′of the

original microdata set V;

• or by generating synthetic data V′ that preserve some statistical properties of

the original data V.

The masking methods divides in two categories depending on their effect on the

original data: (i) non-perturbative masking and (ii) perturbative masking.

13

2.2.1 Non-perturbative microdata masking

Non-perturbative masking does not rely on distortion of the original data but on par-

tial suppressions or reductions of detail. Some of the methods in this class are usable

on both categorical and continuous data, but others are not suitable for continuous

data.

Table 2.1 lists the non-perturbative methods described as follows. For each

method, the table indicates whether it is suitable for continuous and/or categorical

data.

Methods Continuous data Categorical data

Sampling !

Global recording ! !

Top and bottom coding ! !

Local suppression !

Table 2.1: Non-preturbative methods vs data types.

Sampling

Instead of publishing the original microdata file, what is published is a sample S

of the original set of records.

Sampling methods are suitable for categorical microdata, but their adequacy for

continuous microdata is less clear in a general disclosure scenario. The reason is that

such methods leave a continuous variable Vi unperturbed for all records in S. Thus,

if variable Vi is present in an external administrative public file, unique matches with

the published sample are very likely: indeed, given a continuous variable Vi and two

respondents o1 and o2, it is highly unlikely that Vi will take the same value for both

o1 and o2 unless o1 = o2 (this is true even if Vi has been truncated to represent it

14

digitally).

If, for a continuous identifying variable, the score of a respondent is only ap-

proximately known by an attacker (as assumed in [19]), it might make sense to use

sampling methods to protect that variable. However, assumptions on restricted at-

tacker resources are perilous and may prove definitely too optimistic if good-quality

external administrative files are at hand.

Global recoding

For a categorical variable Vi, global recoding, a.k.a. generalization, combines

several categories to form new (more general) categories, thus resulting in a new V ′i

with |D(V ′i)| < |D(Vi)|, where | · | is the cardinality operator. For a continuous vari-

able, global recoding means replacing Vi by another variable V ′i which is a discretised

version of Vi. In other words, a potentially infinite range D(Vi) is mapped onto a finite

range D(Vi”). This is the technique used in the -argus SDL package [20]. This tech-

nique is more appropriate for categorical microdata, where it helps disguise records

with strange combinations of categorical variables. Global recoding is used heavily

by statistical offices.

Top and bottom coding

Top and bottom coding is a special case of global recoding which can be used

on variables that can be ranked, that is, variables that are continuous or categorical

ordinal. The idea is that top values (those above a certain threshold) are lumped

together to form a new category. The same is done for bottom values (those below a

certain threshold) (see [20] or [21]).

Local suppression

If a combination of key variable values (quasi-identifier values) is shared by too

few records, it is called an unsafe combination, because it may lead to re-identification.

Certain values of individual variables are suppressed, that is, replaced with missing

15

values, with the aim of eliminating unsafe combinations by increasing the set of

records agreeing on each combination of key values.

2.2.2 Perturbative microdata masking

Perturbative microdata masking methods allow for the release of the entire micro-

data set, although perturbed values rather than exact values are released. Not all

perturbative methods are designed for continuous data; this distinction is addressed

further below for each method.

Methods Continuous data Categorical data

Noise masking !

Micro-aggregation ! (!)

Rank swapping ! (!)

Data shuffling ! (!)

Rounding !

Re-sampling !

PRAM !

MASSC !

Table 2.2: Perturbative methods vs. data types. !- denotes applicable and (!) -

denotes applicable to ordinal categories only.

Most perturbative methods reviewed below (including noise masking (additive

and multiplicative), rank swapping, microaggregation and post-randomisation) are

special cases of matrix masking. If the original microdata set is X, then the masked

microdata set Z is computed as

Z = AXB + C,

16

where A is a record-transforming mask, B is a variable-transforming mask and C is

a displacing mask or noise [22].

Table 2.2 lists the perturbative methods described as follows. For each method,

the table indicates whether it is suitable for continuous and/or categorical data.

Additive noise masking

The main noise addition algorithms in the literature are:

• Masking by uncorrelated noise addition.

• Masking by correlated noise addition.

• Masking by noise addition and linear transformation.

• Masking by noise addition and non-linear transformation [23]

As argued in [24], in practice only simple noise addition (two first variants) or

noise addition with linear transformation are used. When using linear transforma-

tions, a decision has to be made whether to reveal to the data user the parameter

c determining the transformations to allow for bias adjustment in the case of sub-

populations.

With the exception of the not very practical method of [23], noise addition is not

suitable to protect categorical data. On the other hand, it is well suited for continuous

data for the following reasons:

(i) It makes no assumptions on the range of possible values for Vi (which may be

infinite).

(ii) The noise being added is typically continuous and with mean zero, which suits

well continuous original data.

(iii) No exact matching is possible with external files. Depending on the amount of

noise added, approximate (interval) matching might be possible.

17

Multiplicative noise masking

One main challenge regarding additive noise with constant variance is that on

the one hand small values are strongly perturbed and on the other large values are

weakly perturbed. For instance, in a business microdata set the large enterprises

- which are much easier to re-identify than the smaller ones - remain still high at

risk. A possible way out is given by the multiplicative noise approaches explained as

follows.

Let X be the matrix of original numerical data and W the matrix of continuous

perturbation variables with expectation 1 and variance σ2
W > 0. The corresponding

anonymised data Xa is then obtained by

Xa = W �X,

where � is so-called Hadamard product (element-wise matrix multiplication). That

is

(Xa)ij = ωijXij

for each pair (i, j).

Micro-aggregation

This method [25] is relevant for continuous variables, such as in business survey

microdata, and in its basic form consists of ordering the values of each variable and

forming groups of a specified size k (the first group contains the k smallest values, the

second group the next k smallest values and so on). The method replaces the values

by their group means, separately for each variable. An advantage of the method is

that the modification to the data will usually be greatest for outlying values, which

might also be deemed the most risky. It is difficult, however, for the user to assess

the biasing impact of the method on analyses.

For overview of others SDL methods and their details see [1].

18

CHAPTER 3

SDL METHODS OVERVIEW: TABULAR DATA

As we mentioned before, the tabular data is one of the main type of data that is

needed to be protected and that’s SDC is dealing with. There are two types of

tabular data: (i) magnitude tabular data, and (ii) frequency tables. Let provide the

basic SDC methods corresponding to those types of data.

3.1 Disclosure risk

The statistical agencies usually define the disclosure risk for tabular data through two

assessment: (i) primary sensitive cells and (ii) secondary risk assessment.

Disclosure risk assessment I: Primary sensitive cells

Considering the different type of intruder scenarios, statistical agencies have

developed some safety rules as measures to assess disclosure risks. In table 3.1 we

provide the main definition for sensitivity rule.

Disclosure risk assessment II: Secondary risk assessment

When some small, primary confidential cells within detailed tables have to be

protected, it may still be possible to publish sums for larger groups, i.e., the margins

of those detailed tables. However, we must make sure that protection of the primary

sensitive cells cannot be undone, by some differencing.

Modelling secondary disclosure risks requires that apart from its inner cells mar-

gins and overall totals are considered to be part of a table. From this assumption,

it follows that there is always a linear relationship between cells of a table. Other

cells (so-called complementary or secondary cells) must be suppressed, or be other-

wise manipulated in order to prevent the value of the protected sensitive cell being

recalculated through, e.g. differencing.

When a table is protected by cell suppression, it is always possible for any par-

19

Rule: Definition:

A cell is considered unsafe, when...

Minimum frequency rule the number of contributors to the cell is less than a

pre-specified minimum frequency n (the common

choice is n = 3).

(n, k)-dominance rule the sum of the n largest contributions exceeds k% of

the cell total, i.e., x1 + . . .+ xn > k/100X.

p% rule the cell total minus the two largest contributions x1 and

x2 is less than p% of the largest contribution, i.e.,

Xxn . . . x2x1 < p/100x1.

Table 3.1: Sensitivity rules.

ticular suppressed cell of a table to derive upper and lower bounds for its true value,

by making use of the linear relations between published and suppressed cell values.

This holds for tables with non-negative values. In case of tables containing negative

values as well, it holds when some (possibly tight) lower bound other than zero is

available to data users in advance of publication for all cells in the table. The interval

given by these bounds is called the feasibility interval.

A general mathematical statement for the linear programming problem to com-

pute upper and lower bounds for the suppressed entries of a table is given in [26].

Within a disclosure control process, computing the bounds of the feasibility intervals

subject to a set of table relations is referred to as an audit of a protected table.

Note that feasibility intervals can in principle also be computed using this ap-

20

proach, when cell perturbation (as opposed to cell suppression) is used to protect the

table. To be able to do this, the user should know something about the perturbation

method. In general, the user should be given information such that she can deduce

meaningful (i.e. rather narrow) a priory intervals of each perturbed cell. Those in-

tervals are referred to as implicit intervals in the following. The table relations can

then be used to derive tighter a posteriori bounds of the perturbed cells.

The protection provided by a set of suppressions (the suppression pattern), or by

a perturbation technique that supplies users with implicit intervals, should only be

considered valid if the bounds for the feasibility interval of any sensitive cell cannot

be used to deduce bounds on an individual respondents contribution to that cell

that are too close according to the sensitivity rule employed. For a mathematical

statement of that condition, we determine safety bounds for primary suppressions.

We call the deviation between those safety bounds and the true cell value upper and

lower protection levels. The formulas of Table 3.2 can be used to compute upper

protection levels in case of concentration rules. Out of symmetry considerations, the

lower protection level is often set identical to the upper protection level. The bounds

of the protection interval are computed by subtracting the lower protection from and

adding the upper protection level to the cell value. the minimum frequency rules

should only be used instead of concentration rules if it is enough to prevent exact

disclosure only. In such a case, the protection levels should also be chosen such that

exact disclosure is prevented. That is, a minimal protection level is sufficient.

If the distance between the upper bound of the feasibility interval and the true

value of a sensitive cell is below the upper protection level computed according to

the formulas of Table 3.2, then this upper bound could be used to derive an estimate

for individual contributions of the sensitive cell that is too close according to the

safety rule employed, which can easily be proven along the lines of [27]. We say

21

Sensitivity Rule Upper protection level

(1, k) rule (100/k)x1 −X

(n, k) rule (100/k)(x1 + x2 + . . .+ xn)−X

p% rule (p/100)x1 − (X − x1 − x2)

(p, q) rule r(p/q)x1 − (X − x1 − x2)

Table 3.2: Upper protection levels.

then that this cell is subject to upper inferential disclosure. More generally, if the

feasibility interval for a cell does not cover its protection interval, we say that the cell

is underprotected, not sufficiently protected or subject to inferential disclosure. If the

feasibility interval consists of only the true value of the sensitive cell, we say that the

cell is subject to exact disclosure.

The distance between the upper bound of the feasibility interval and the true

value of a sensitive cell must exceed the upper protection level; otherwise the sensitive

cell is not properly protected. This safety criterion is a necessary, but not always

sufficient criterion for proper protection. It is a sufficient criterion when the largest

respondent makes the same contribution also within the combination of suppressed

cells within the same aggregation (a row or column relation of the table, for instance),

and when no individual contribution of any respondent (or coalition of respondents)

to such a combination of suppressed cells is larger than the second largest respondents

(or coalitions) contribution.

3.2 SDL methods for Magnitude tabular data

Statistical magnitude tables display sums of observations of a quantitative variable

where each sum relates to a group of observations defined by categorical variables

observed for a set of respondents.

22

Respondents are typically companies but can also be individuals or households,

etc. The categorical grouping variables typically give information on geography or

economic activity or size, etc. of the respondents. The cells of a table are defined by

cross-combinations of the grouping variables.

Each table cell presents a sum of a quantitative response variable such as in-

come, turnover, expenditure, sales, number of employees, number of animals owned

by farms, etc. These sums are the cell values of a magnitude table. The individual

observations of the variable (for each individual respondent) are the contributions to

the cell value.

The dimension of a table is given by the number of grouping variables used to

specify the table.We say that a table contains margins or marginal cells, if not all

cells of a table are specified by the same number of grouping variables. The smaller

the number of grouping variables, the higher the level of a marginal cell.

Basically, there are two different classes of protection methods for tabular data:

(1) pre-tabular and (2) post-tabular methods. Pre-tabular methods manipulate the

microdata before they are summed up for tabulation and hence do not depend on

any particular tabulation. Post-tabular methods are applied after tabulation.

Basically, any of the microdata protection methods of Chapter 2 could be con-

sidered as a pre-tabular protection method for tables.

As pointed out in [36], information loss concepts for tabular data are different

from those for microdata. This is due to the fact that tables are often seen as final

products, and not so much as a starting point for further analysis. This conception

is probably even more prominent in case of magnitude tables.

In order to find a good balance between protection of individual response data

and provision of information, it is necessary to somehow rate the information loss

connected to a cell that is suppressed or perturbed. By doing so, we can try to control

23

the protection process in order to achieve optimal behaviour of the algorithms. The

main SDC method that is used for magnitude tabular data are presented in Table

3.3.

Type of method Perturbative Non-perturbative

Pre-tabular Multiplicative noise Global recoding

Post-tabular Controlled tabular adjustment Cell suppression

Table 3.3: Classification of protection methods for tabular data.

Global recoding

In the context of tabular data protection, global recoding means that several

categories of a categorical variable are collapsed into a single one. This will reduce

the amount of detail of any table using this variable as spanning variable. Usually,

as a result the number of unsafe cells in the tables will be reduced.

Using only global recoding to protect all sensitive cells in a table often results in

huge loss of data utility. While it is certainly not an uncommon strategy in official

statistics, it is hence usually applied in combination with other protection methods

like cell suppression. Another reason to combine this method with other protection

methods is that often publication requirements on the table design do not allow for

global recoding. Moreover, it is usually in contrast with the aim of many statistical

agencies to squeeze out the maximum amount of information of the data in the tables

they release.

Cell suppression

For business statistics, the most popular method for tabular data protection is

cell suppression. In tables protected by cell suppression, all values of cells for which a

disclosure risk has been established are eliminated from the publication. In practice,

this means that those values will be replaced by a some special symbol.

24

A cell suppression procedure involves two steps. Firstly, in the primary riskassess-

ment step, all primary sensitive cells are determined. In the second step, some non-

sensitive cells are selected as secondary suppressions to protect the primary sensitive

cells from disclosure by differencing. The joint set of primary and secondary suppres-

sions is called a suppression pattern. Cell suppression is a protection technique that

requires a very careful evaluation of secondary disclosure risks.For a mathematical

statement of the secondary cell suppression problem, see, e.g.,[26].

Multiplicative noise

[29] proposed pre-tabular multiplicative noise for the protection of enterprise

tabular data. [30] notes that such a methodology is used at the US Census Bureau

for tabular magnitude data protection for several data products. A research report

[31] examines statistical properties of two variants. According to the simple variant,

multiplicative noise with a mean of one and constant variance is assigned to the

microdata. In this case, the conditional (unit level) coefficient of variance of the noisy

(micro)data is a constant, defined by the noise variance. For the second variant, a

balanced noise method (see [32]), the research report proves that for any set of units,

the perturbed total is an unbiased estimate of the original total. Moreover, it states

that the balancing mechanism works indeed, i.e., it reduces the noise variance of the

cell totals in a reference table.

Controlled tabular adjustment

Controlled tabular adjustment or CTA is a relatively new protection method for

magnitude tabular data, suggested for instance in [33], [34], and [35].

CTA methodology aims at finding the closest additive table to the original table

ensuring that adjusted values of all confidential cells are safely away from their original

value (considering the protection intervals) and that the adjusted values are within a

certain range of the real values.

25

Thus the learning of CTA for tabular data was the goal of this thesis the more

detailed description of this method will be presented in Chapter 5.

3.3 SDL methods for Frequency tables

Traditionally, frequency tables have been the main method of dissemination for cen-

sus and social data by National Statistical Institutes (NSIs). These tables contain

counts of people or households with certain social characteristics. Frequency tables

are also used for business data where characteristics are counted, such as the number

of businesses. Because of their longer history, there has been relatively more research

on protecting frequency tables, as compared with newer output methods such as

microdata.

There are a variety of disclosure control methods which can be applied to tabular

data to provide confidentiality protection. The choice of which method to use needs

to balance how the data are used, the operational feasibility of the method and

the disclosure control protection it offers. SDC methods can be divided into three

categories which will be discussed in turn further: (1) those that adjust the data

before tables are designed (pre-tabular), (2) those that determine the design of the

table (table redesign) and (3) those that modify the values in the table (post-tabular).

Further information on SDC methods for frequency tables can also be found in [36]

and [37].

Pre-tabular methods

Pre-tabular disclosure control methods are applied to microdata before they are

aggregated and output in frequency tables. These methods include: record swapping,

overimputation, data switching, PRAM and sampling. A key advantage of pre-tabular

methods is that the output tables are consistent and additive since all outputs are

created from protected microdata. Pretabular methods by definition only need to be

26

applied once to the microdata and after they are implemented for a microdata set

(often in conjunction with threshold or sparsity rules) they can be used to allow flex-

ible table generation. This is because pre-tabular methods provide some protection

against disclosure by differencing and any uncovered slivers will have already had

SDC protection applied.

Disadvantages of pre-tabular techniques are that one must have access to the

original microdata. Also, a high level of perturbation may be required in order to dis-

guise all unsafe cells. Pre-tabular methods have the potential to distort distributions

in the data, but the actual impact of this will depend on which method is used and

how it is applied. It may be possible to target pre-tabular methods towards particular

areas or sensitive variables. Generally pre-tabular methods are not as transparent to

users of the frequency tables and there is no clear guidance that can be given in order

to make adjustments in their statistical analysis for this type of perturbation.

Table re-design methods

Table redesign is recommended as a simple method that can minimize the number

of unsafe cells in a table and preserve original counts. It can be applied alongside

post-tabular or pre-tabular disclosure control methods, as well as being applied on its

own. As an additional method of protection, it has been used in many NSIs including

the UK and New Zealand. As table redesign alone provides relatively less disclosure

control protection than other methods, it is often used to protect sample data, which

already contains some protection from the sampling process.

The advantages of table redesign methods are that original counts in the data

are not damaged and the tables are additive with consistent totals. In addition, the

method is simple to implement and easy to explain to users. However, the detail in

the table will be greatly reduced, and if many tables do not pass the release criteria

it may lead to user discontent.

27

Post-tabular methods

Statistical disclosure control methods that modify cell values within tabular out-

puts are referred to as post-tabular methods. Such methods are generally clear and

transparent to users, and are easier to understand and account for in analyses, than

pre-tabular methods. However, post-tabular methods suffer the problem that each

table must be individually protected, and it is necessary to ensure that the new

protected table cannot be compared against any other existing outputs in such a

way which may undo the protection that has been applied. In addition, post-tabular

methods can be cumbersome to apply to large tables. The main post-tabular methods

include cell suppression, cell perturbation and rounding.

28

CHAPTER 4

OVERVIEW OF CONES AND INTERIOR POINT METHOD

In this thesis we are going to present the results of controlled tabular adjustment

(CTA) as SDL method for tabular data. Since formulation of CTA leads to solve

optimization problem such as Liner Programing, Quadratic Programing or Conic

Programing Problems, we first give a brief overview of these optimization problems

and models.

4.1 Linear Programing

4.1.1 Interior Point Method for Linear Programing

Linear Programing (LP) problem in the standard form can be formulated as: Given

the data, vectors b ∈ Rm, c ∈ Rn, and matrix A ∈ Rm×n, find a vector x ∈ Rn that

solves the problem:

min cTx

s.t. Ax = b,

x ≥ 0.

(4.1)

The vector x ∈ Rn is called a vector of primal variables and the set Fp =

{x : Ax = b, x ≥ 0} is called a primal feasible region.

The corresponding dual problem is then given by:

max bTy

s.t. ATy + s = c,

s ≥ 0.

(4.2)

The vector y ∈ Rm is called a vector of dual variables and the vector s ∈ Rn is

called a vector of dual slack variables. The set Fd =
{

(y, s) : ATy + s = c, s ≥ 0
}

is

called a dual feasible region.

29

For years the basic method for solving the Linear Programing (LP) problems

was the Dantzigs Simplex Method [38], but nowadays an effective alternative is the

Interior Point Method as a basic solver for LP problems. Let introduce the main

concepts of this approach.

The Karuch-Kuhn-Tucker (KKT) conditions for LP are:

ATy + s− c = 0, s ≥ 0, ←− Dual feasibility

b− Ax = 0, x ≥ 0, ←− Primal feasibility

Xs = 0. ←− Complementarity

(4.3)

The standard method of choice for finding an approximate solution of the sys-

tem (4.3) is the Modified (damped) Newtons Method (MNM), that is, the Newtons

Method with line search. However in order for MNM to work it is necessary to per-

turb Complementarity condition as Xs = µe, where µ = xT s
n

and e ∈ Rn is a vector

of ones. One way to justify this perturbation is based on theory of Barrier Methods

[43]

The system (4.3) can be viewed as the system parameterized in µ > 0. This

parameterized system has a unique solution for each µ > 0 if rank(A) = m. The set

of µ -centers gives a homotopy path, which is called the central path of (4.1) and (4.2)

respectively. The limiting property (µ → 0) of the central path mentioned by [39],

[40],[41] leads naturally to the main idea of the iterative methods for solving (4.1)

and (4.2): trace the central path while reducing µ at each iteration.

It is known that NM may not converge in general. The main achievement of

IPMs is that NM is used in a such way that guarantees global convergence.

The choice of a step size αk of MNM is the key to proving good global conver-

gence of the method. The statement that approximate solutions of (4.3), or iterates

should not be ”too far” from the central path is formalized by introducing the horn

neighborhood of the central path. The horn neighborhoods of the central path can

30

be defined using different norms

N2(β) = {(x, s) : ‖Xs− µe‖2 ≤ βµ} , (4.4)

N∞(β) = {(x, s) : ‖Xs− µe‖∞ ≤ βµ} , (4.5)

The infeasible IPM for LP can now be summarized as follows.

Algorithm (IPM)

Initialization

1. Choose β, γ ∈ (0, 1) and (εP , εD, εG) > 0. Choose (x0, y0, s0) such that (x0, s0) >

0 and ‖X0s0 − µ0e‖ ≤ βµ0, where µ0 = (x0)T s0

n
.

2. Set k = 0.

Step

3. Set rkP = b− Axk, rkD = c− ATyk − sk, µk = (xk)T sk

n
.

4. Check termination. If ‖rkP‖ ≤ εP , ‖rkD‖ ≤ εD, (xk)T sk ≤ εG, then terminate.

5. Compute the direction by solving the system
A 0 0

0 AT I

Sk 0 Xk

dx

dy

ds

 =

rkP

rkD

−Xksk + γµke

.

6. Compute the step size

αk = max {α′ : ‖X(α)s(α)− µ(α)e‖ ≤ βµ(α), ∀α ∈ [0, α′]}

, where

x(α) = xk + αdx, s(α) = sk + αds, µ(α) =
xT (α)s(α)

n
.

.

31

7. Update xk+1 = xk + αkdx, y
k+1 = yk + αkdy, s

k+1 = sk + αkds.

8. Set k = k + 1 and go to step 3.

More details and a simplified version of this IPM is described in [42]. Important

fact is that the system in step 5 can be significantly reduced. This reduction is known

as ’normal equations’.

4.1.2 Extension to Quadratic Programing

The algorithm of the previous subsection can be extend to the convex quadratic

programing (QP) problems.

Consider a QP problem in the standard form:

min
1

2
xTQx+ cTx

s.t. Ax ≥ b,

x ≥ 0,

(4.6)

where Q ∈ Rn×n is a symmetric positive semidefinite matrix, vectors b ∈ Rm, c ∈ Rn,

x ∈ Rn and matrix A ∈ Rm×n.

Then the KKT condition for (4.6) are:

0 ≤ x ⊥ Qx− ATu+ c ≥ 0

0 ≤ u ⊥ Ax− b ≥ 0.

(4.7)

By introducing slack variables v and s and by defining diagonal matricesX,S, U, V

from components of x, s, u, v we can rewrite the KKT condition in a form similar to

32

(4.3):

Qx− ATu− s = −c,

Ax− v = b,

XSe = 0,

UV e = 0,

x ≥ 0, s ≥ 0, u ≥ 0, v ≥ 0.

(4.8)

As for LP algorithm providing above, we design IPM by applying MNM to the

linear system (4.8). The difference between LP and QP cases is how we define pertur-

bation µ = 1
m+n

(xT s+ uTv) and the system in Step 5 of IPM’s Algorithm is defined

as:

Q −I −AT 0

A 0 0 −I

Sk Xk 0 0

0 0 V k Uk

dx

ds

du

dv

= −

Qxk − ATk − sk + c

Axk − vk − b

XkSke− γkµke

UkV ke− γkµke

.

Similarly as in LP case this system can be reduced.

4.2 Overview of conic optimization

In both LP and QP the variables are required to be non-negative, that is they belong

to the non-negative orthant. Non-negative orthant is the basic example of symmetric

cone. Thus, LP and QP are examples of a more general optimization problem called

Conic Optimization (CO) Problem.

The conic optimization model can be written in standard form as

min
x
cTx : Ax = b, x ∈ K, (4.9)

where K is a symmetric cone. Conic optimization problems can be solved using

appropriate forms of IPM.

33

In sequel we give a definition of a symmetric cone and list several examples of

symmetric cones that appear frequently in CO.

Lets mention some basic definition of cones.

Definition 4.1 (Convex set). A set K is convex if for any x, y ∈ K and any α with

0 ≤ α ≤ 1, we have αx+ (1− α)y ∈ K.

Definition 4.2 (Cone). A set K is called a cone if for every x ∈ K and α ≥ 0, we

have αx ∈ K.

Therefore, a set K is called a convex cone if it is convex and a cone, which means

that for any x, y ∈ K and α, β ≥ 0, we have αx+ βy ∈ K.

Definition 4.3 (Dual cone). Let K be a cone. The set

K∗ := {y : 〈x, y〉 ≥ 0, for all x ∈ K}

is called a dual cone of K.

As the name suggests, K∗ is a cone, and it is always convex, even when the

original cone is not. If cone K and its dual K∗ coincide, we say that K is self-dual.

In particular, this implies that K has a nonempty interior and does not contain any

straight line (i.e., it is pointed).

Definition 4.4 (Homogeneity). The convex cone K is said to be homogeneous if for

every pair x, y ∈ intK, there exists an invertible linear operator g for which gK = K

and gx = y.

In fact, the above linear operator g is an automorphism of the cone K.

Definition 4.5. The convex cone K is said to be symmetric if it is self-dual and

homogeneous.

34

Below, we list the important examples of symmetric cones:

1. The linear cone or non-negative orthant:

K = Rn
+ := {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} .

CO with this cone leads to the standard LP problem.

2. The positive semidefinite cone:

K = Sn+ :=
{
X ∈ Sn+ : X � 0

}
,

where � means that X is positive semidefinite matrix and S\ is a set of sym-

metric n-dimensional matrices.

CO with this cone leads to the semidefinite programing problem.

3. The quadratic or second-order cone:

K = Qn :=
{

(x, t) ∈ Rn
+ : t ≥ ‖x‖2

}
.

CO with this cone leads to the second order cone programing problem.

We can also provide the definition of the symmetric cone in terms of Euclidean

Jordan Algebra.

Definition 4.6 (Bilinear map). Let J be a finite-dimensional vector space over R.

A map ◦ : J × J 7→ J is called bilinear if for all x, y, z ∈ J and α, β ∈ R:

(i) (αx+ βy) ◦ z = α(x ◦ z) + β(y ◦ z);

(ii) x ◦ (αy + βz) = α(x ◦ y) + β(x ◦ z).

Definition 4.7 (R-algebra). A finite-dimensional vector space J over R is called an

algebra over R if a bilinear map from J × J into J is defined.

35

Definition 4.8 (Jordan algebra). Let J be a finite-dimensional R-algebra along with

a bilinear map ◦ : J × J 7→ J . Then (J , ◦) is called a Jordan algebra if for all

x, y ∈ J the following holds:

(i) x ◦ y = y ◦ x (Commutativity);

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x (Jordan’s Axiom).

Here we assume that (J , ◦) is a Jordan algebra, which we simply denote as J .

Definition 4.9 (Euclidean Jordan algebra). We consider a finite-dimensional Jordan

algebra J over R and assume the existence of the identity element e. The Jordan

algebra J is said to be Euclidean if there exists a positive definite symmetric bilinear

form on J which is associative; in other words, there exists an inner product denoted

by 〈·, ·〉, such that 〈x ◦ y, z〉 = 〈x, y ◦ z〉, for all x, y, z ∈ J .

Definition 4.10 (Symmetric cone). Cone is symmetric if it is a cone of squares of

a certain Euclidean Jordan algebra J :

{x2 = x ◦ x|x ∈ J }

.

It can be shown that definitions 4.5 and 4.10 are equivalent. The definitions of

Euclidean Jordan algebra and symmetric cones, their properties and their applications

in conic optimization can be found in [44].

36

CHAPTER 5

CONTROLLED TABULAR ADJUSTMENT MODEL FOR SDL

Minimum-distance controlled tabular adjustment (CTA) methodology was first in-

troduced in [49, 52]. As indicated in [48], CTA can be formulated as the following

problem: Given a table with sensitive cells, compute the closest safe table in which

sensitive cells are modified to avoid re-computation, and the remaining cells are min-

imally adjusted to satisfy the table equations. The closeness of the original and

modified table is measured by the weighted distance between the tables with respect

to a certain norm. Most commonly used norms are `1 and `2 norms. Thus, the prob-

lem can be formulated as a minimization problem with the objective function being a

particular weighted distance function and constraints being table equations and lower

and upper bounds on the cell values.

In general, CTA is Mixed Integer Optimization Problem (MIOP) which is a

difficult problem to solve especially for the large dimension problems. A priori fixing

the values of binary variables reduces the problem to the continuous optimization

problem which is easier to solve, however, the quality of the solution may be reduced.

In addition, the values of the binary variables have to be assigned carefully otherwise

the problem may become infeasible [50, 51].

5.1 Formulation of the General CTA Model

The following CTA formulation is given in [48]: Given the following set of parameters:

(i) A set of cells ai, i ∈ N = {1, . . . , n}. The vector a = (a1, . . . , an)T satisfies

certain linear system Aa = b where A ∈ Rm×n is an m × n matrix and and

b ∈ Rm is m-vector.

(ii) A lower, and upper bound for each cell, lai ≤ ai ≤ uai for i ∈ N , which are

37

considered known by any attacker.

(iii) A set of indices of sensitive cells, S = {i1, i2, . . . , is} ⊆ N .

(iv) A lower and upper protection level for each sensitive cell i ∈ S respectively,

lpli and upli, such that the released values must be outside of the interval

(ai − lpli, ai + upli).

(v) A set of weights, wi, i ∈ N used in measuring the deviation of the released data

values from the original data values.

A CTA problem is a problem of finding values zi, i ∈ N , to be released, such

that zi, i ∈ S are safe values and the weighted distance between released values zi

and original values ai, denoted as ‖z − a‖l(w), is minimized, which leads to solving

the following optimization problem

min
z
‖z − a‖l(w)

s.t. Az = b,

lai ≤ zi ≤ uai , i ∈ N ,

zi, i ∈ S are safe values.

(5.1)

As indicated in the assumption (iv) above, safe values are the values that satisfy

zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ S. (5.2)

By introducing a vector of binary variables y ∈ {0, 1}s the constraint (5.2) can

be written as

zi ≥ −M (1− yi) + (ai + upli) yi, i ∈ S,

zi ≤ Myi + (ai − lpli) (1− yi) , i ∈ S,
(5.3)

where M � 0 is a large positive number. Constraints (5.3) enforce the upper safe

value if yi = 1 or the lower safe value if yi = 0.

38

Replacing the last constraint in the CTA model (5.1) with (5.3) leads to a mixed

integer convex optimization problem (MIOP) which is in general a difficult problem to

solve; however, it provides solutions with high data utility. The alternative approach

is to fix binary variables up front which leads to a CTA that is acontinuous convex

optimization problem. The continuous CTA may be easier to solve; however, the

obtained solution may have a lower data utility. Furthermore, a wrong assignment

of binary variables may result in the problem being infeasible. Strategies on how to

avoid this difficulty are discussed in [50, 51].

In this thesis we consider a continuous CTA where binary variables are fixed and

vector z is replaced by the vector of cell deviations

x = z − a. (5.4)

The CTA (5.1) with constraints (5.3) reduces to the following convex optimiza-

tion problem:

min
x
‖x‖l(w)

s.t. Ax = 0,

l ≤ x ≤ u ,

(5.5)

where upper and lover bounds for xi, i ∈ N are defined as follows:

li =

upli if i ∈ S and yi = 1

lai − ai if (i ∈ N \ S) or (i ∈ S and yi = 0)

(5.6)

ui =

−lpli if i ∈ S and yi = 0

uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1) .

(5.7)

The two most commonly used norms in problem (5.5) are the `1 and `2 norms.

For the `2-norm the problem, (5.5) reduces to the following `2-CTA model which is a

39

QP problem:

min
x

n∑
i=1

wix
2
i

s.t. Ax = 0,

l ≤ x ≤ u .

(5.8)

For the `1-norm the problem, (5.5) reduces to the following `1-CTA model:

min
x

n∑
i=1

wi |xi|

s.t. Ax = 0,

l ≤ x ≤ u .

(5.9)

The above `1-CTA model (5.9) is a convex optimization problem; however, the

objective function is not differentiable at x = 0. Since most of the algorithms, includ-

ing IPMs, require differentiability of the objective function, problem (5.9) needs to

be reformulated. The reformulations that have been considered in [48] are reviewed

in the next section.

5.2 LP and Pseudo-Huber Formulation of `1-CTA

The `2-CTA model (5.8) is a standard QP problem that can be efficiently solved using

IPM or other methods. However, as noted at the end of the previous section, the

`1-CTA model (5.9) needs reformulation in order to be efficiently solved by IPM or

some other method. The standard reformulation is the transformation of model (5.9)

to the following LP model:

40

min
x−,x+

n∑
i=1

wi
(
x+i + x−i

)
s.t. A

(
x+i − x−i

)
= 0,

l+ ≤ x+ ≤ u+,

l− ≤ x− ≤ u−,

(5.10)

where

x+ =

x if x ≥ 0

0 if x < 0,

x− =

0 if x > 0

−x if x ≤ 0,

(5.11)

and lower and upper bounds for x−i and x+i , i ∈ N are as follows:

l+i =

 upli if i ∈ S and yi = 1

0 if (i ∈ N \ S) or (i ∈ S and yi = 0)

u+i =

 0 if i ∈ S and yi = 0

uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1)

l−i =

 lpli if i ∈ S and yi = 0

0 if (i ∈ N \ S) or (i ∈ S and yi = 1)

u−i =

 0 if i ∈ S and yi = 1

ai − lai if (i ∈ N \ S) or (i ∈ S and yi = 0).

(5.12)

Problem `1-CTA (5.10) is an LP problem; however, it has twice the number

of variables as the QP problem (5.8) and twice the number of box constraints. As

indicated in [48], the splitting of the variables x = x+−x− and the increased dimension

of the model may cause problems. In order to overcome these difficulties in [48] it was

suggested to use a regularization of problem (5.9) by approximating absolute value

41

with the Pseudo-Huber function that has the same number of variables as in the QP

formulation (5.8).

The original Huber function ϕδ : R −→ R+ is defined as

ϕδ(xi) =

x2i
2δ

|xi| ≤ δ

|xi| − δ
2
|xi| ≥ δ.

(5.13)

It approximates |xi| for small values of δ > 0; the smaller the δ, the better the

approximation.The Huber function is continuously differentiable; however, the second

derivative is not continuous at |xi| = δ which may cause problems when this function

is used in second order optimization algorithms, such as IPMs. Hence, it is better to

consider the Pseudo-Huber function φδ : R −→ R+

φδ(xi) =
√
δ2 + x2i − δ (5.14)

whose first and second derivatives are bounded and Lipschitz continuous [?]. Again,

the smaller the δ the better the approximation.

Now, the `1-CTA problem (5.9) can be approximated by the following convex

optimization problem

min
x

∑n
i=1wiφδ(xi)

s.t. Ax = 0,

l ≤ x ≤ u .

(5.15)

The advantage of the Pseudo-Huber-CTA model (5.15) is that it has the same

number of variables as `2 - CTA and the same feasible region, the only difference is

that the quadratic objective function is replaced by a strictly convex function.

Optimization problems (5.8), (5.10) and (5.15) can be solved with appropriate

versions of the Interior-Point Methods (IPM), that was described in previous chapter.

42

5.3 SOC Formulation of Pseudo-Huber and `1 CTA

In this section we investigate how Pseudo-Huber and `1 CTA can be formulated as

SOC models.

We define CO problem as (4.9). In what follows, we present a reformulation

of Pseudo-Huber-CTA problem (5.15) as a SOC problem. Consider Pseudo-Huber

Function (5.14)

φδ(xi) =
√
δ2 + x2i − δ.

Let’s define

ti :=
√
δ2 + x2i and yi := δ, i = 1, . . . , n . (5.16)

Hence, we have

ti =
√
x2i + y2i

which is the boundary of the second-order (quadratic) cone

Ki =

{
(xi, yi, ti) ∈ R3 : ti ≥

√
x2i + y2i

}
.

Now, the reformulation of the Pseudo-Huber-CTA (5.15) as a SOC problem

follows

min
x

∑n
i=1wi (ti − yi)

s.t. Ax = 0,

yi = δ; i = 1, . . . , n ,

(xi, yi, ti) ∈ Ki; i = 1, . . . , n ,

l ≤ x ≤ u .

(5.17)

This model is valid even for δ = 0. In that case we obtain a SOC formulation of

43

the l1-CTA (5.9)

min
x

∑n
i=1witi

s.t. Ax = 0,

(xi, ti) ∈ Ki; i = 1, . . . , n ,

l ≤ x ≤ u .

(5.18)

This model could have been obtained directly from l1-CTA (5.9) because the abso-

lute value has an obvious second-order cone representation since the epigraph of the

absolute value function is exactly second-order cone, that is,

ti = |xi| −→ Ki =

{
(xi, ti) ∈ R2 : ti ≥

√
x2i

}
.

It is well known that the solutions of SOC problems (5.17) and (5.18) achieve

solutions at the boundary of the cones, hence, equations (5.16) will hold at the solution

[46, 47]. Thus, it is not necessary to enforce these equations in SOC models; in fact,

their inclusion would lead to noncovex problems that would be difficult to solve.

An IPM for SOC can now be used to find an ε-approximate solutions to SOC

Pseudo-Huber and `1 CTA models. We have used MOSEK SOC solver [45] that is

considered one of the best, if not the best, SOC solver available on the market today.

Since we can solve `1 CTA directly with SOC formulation, for practical purposes

it is not necessary to consider SOC of Pseudo-Huber CTA. We included it here for

theoretical purposes. However, most numerical results in next chapter do not inclide

SOC of Pseudo-Huber.

44

CHAPTER 6

NUMERICAL RESULTS

In this chapter we are going to introduce the numerical results of implementation of

CTA model. All results were obtained using MatLab and integrated optimizer tool

MOSEK. All codes were executed on DEL OptiPlex 7040 computer with Intel(R)

CORE i7-3740QM 2.70GHz processor.

6.1 Introductory Example

In this section we provide an example of the small two-dimensional table, that is

listed in Figure 1 below as the table (a).

The continuous CTA model based on the table (a) is formulated in the following

way:

• The linear constraints are obtained from the requirement that the sum of the

elements in each row (or column) remains constant and is equal to the corre-

sponding component in the last column (or row) of table (a).

• The sensitive cells are cells a1 and a12. For both of them the upper safe values

are enforced, which are listed in the parentheses in the lower right corners of

the cells, upl1 = 3 and upl12 = 5 respectively. Hence, in the transformed tables

the upper safe value of the cell a1 should be 13 or above and for a12 the upper

safe value should be 18 or above.

• For the nonsensitive cells the lower and upper bounds are set to be zero and

positive infinity respectively, that is, lai = 0 and uai = inf for i = 2, . . . , 11.

• The weights in the objective function are set to have the value one, that is,

wi = 1 for i = 1, . . . , 12.

45

From this basic CTA model different CTA models discussed in the paper were

formulated and then these models were solved using appropriate IPM solvers. The

results are listed in Figure 6.1.

a

10(3) 15 11 9 45

8 10 12 15 45

10 12 11 13(5) 46

28 37 34 37 136

(a)

LP `1

13 15 11 6 45

10 10 12 13 45

5 12 11 18 46

28 37 34 37 136

(b)

`2

13 15.03 11.03 5.94 45

7.66 11.14 13.14 13.06 45

7.34 10.83 9.83 18 46

28 37 34 37 136

(c)

SOC `1

13.47 15.26 11.22 5.05 45

8.19 10.43 12.43 13.95 45

6.34 11.31 10.35 18 46

28 37 34 37 136

(d)

SOC φδ=0.001

13.03 15.39 11.39 5.19 45

8.37 10.41 12.41 13.81 45

6.60 11.20 10.20 18 46

28 37 34 37 136

(e)

Figure 6.1: Results of the small example (rounded to two decimal places).

Below is the summary of the IPM solvers used.

1. The LP-`1-CTA (5.10) was solved using MOSEK LP solver. The IPM solver

46

with crossover option was used. Table (b).

2. The `2-CTA (5.8) was solved using IPM based MOSEK QP solver. Table (c).

3. The SOC `1-CTA (5.18) was solved using IPM based MOSEK SOC solver.

Table (d).

4. The SOC Pseudo-Huber-CTA (5.17) was solved using IPM based MOSEK SOC

solver. Table (e).

From Table 6.1 we can observe that SOC versions are comparable to the `2

version both in number of iterations and CPU time; SOC `1 was slightly faster than

`2 while SOC Pseudo-Huber was slightly slower, which is the expected result. Hence,

the SOC models are more effective than the LP `1 and Pseudo-Huber-CTA models

for this example.

CTA Model Obj. Funct. It. No. CPU

LP-`1 20 6 0.08

`2 20.69 6 0.05

SOC-`1 20 7 0.03

SOC Pseudo-Huber 20 9 0.06

Table 6.1: Results for CTA Models

Furthermore, for LP `1, Pseudo-Huber φ0.001, SOC `1, and SOC Pseudo-Huber

φ0.001 CTA instances the optimal values of their respective objective functions are

the same, namely, the value is 20, while for `2-CTA instance it is 20.69. Thus, the

objective values for SOC Pseudo Huber and `1-CTA instances are the same as for the

original non-SOC instances, namely 20, which was expected.

47

These results are in line with plenty of other evidence that it is advantageous

to solve the SOC formulation of the problem by IPM, rather than using IPM to the

original formulation of the problem (see for example [46, 47]). We are confident that

the advantages of the SOC models will be even more visible when applied to larger

tabular data sets, that will be provided in the next sections.

6.2 Implementation

In this section we provide the description of implementation of different models of

CTA. As we mentioned before implementation was realized using MatLab. All codes

are presented in the Appendix A. Below we provide a brief explanation of those codes.

6.2.1 Generating Tables of Data

For testing models we randomly generated 2D tables of different dimensions.The

integrated function ’randi’ is used to generate random value for each cell in the table.

Upper and lower bounds for the safe values in sensitive cells were also randomly

generated.

6.2.2 Solution Methods

Having the initial data we can test our models. All this models were realized using

MOSEK optimizer.

For realization of `1-LP model MOSEK’s function ’msklpopt’ was used, that is

constructed currently for solving LP problems that was formulated as 4.1.

For realization of `2 model QP MOSEK’s function ’mskqpopt’ was used, that’s

provided realization of QP problem was listed in 4.6.

For SOC for `1 and Pseudo-Huber we used MOSEK’s function ’mosekopt(’symbcon’)’.

For more detailed information how to use those function see MOSEK Guide [45].

48

6.2.3 User interface description

To make the work with different models and visualization of the CTA process User

Interface is developed and is presented in Appendix B. A brief description of the

interface is given below.

1. We start work by cleaning memory by using ”Clear All” button.

2. Next, generate initial table. We have two options: first we can pick the al-

ready saved tables from the list menu, or generate new table from the interface

providing minimal and maximal value of data, dimension of table and pushing

”Generate Table” button.

3. Next, we decide how many Sensitive Cells we want to have and at what position.

We also need to decide the safe values for the sensitive cells. For doing this we

also have two options: to type the values manually or to generate random

vectors of integers with given restrictions.

4. Finally, User Interface provides four options for solving corresponding problems:

LP, QP, SOC for `2 and SOC for Pseudo-Huber.

By choosing the one of four options a log window of solution appears.

The tables with numerical results of execution of this code for numerous test

problem are presented in next section.

6.3 Numerical Results

We have tested all CTA models using User Interface described above. The results

of applying different CTA models to 2D initial table with dimension 100x120 and

different numbers of sensitive cells are presented in Table 6.2

49

100× 120

of SC Linear programing Quadratic Programing SOC for `1

of Iter. CPU Time # of Iter. CPU Time # of Iter. CPU Time

2 9 1.51 15 0.53 12 0.49

3 8 1.28 15 0.64 12 0.61

4 8 1.69 15 0.39 12 0.37

5 8 1.66 14 0.41 12 0.40

10 7 1.56 14 0.42 12 0.39

20 8 1.22 13 0.38 11 0.39

50 8 0.42 13 0.3 11 0.31

100 7 0.39 13 0.25 10 0.21

Table 6.2: Testing initial table with dimension 100 × 120 using different numbers of

sensitive cells

We can see from the Table 6.2 that QP has faster execution then LP. Furthermore,

we see that SOC for `1 is comparative to QP.

In table 6.3 we provide the results of implementation of different CTA models

on the randomly generated tables of different (increasing) dimensions.

The analysis of the results basically confirms what we observed on the small

introductory example in Section 6.1; SOC works faster then LP and competitively

with QP. Note that we couldn’t apply QP for tables with dimension greater then

120x150. This is issue with implementation of the problem, since in the formulation

of the QP problem we need generation of identity matrix with dimension m× n, and

MatLab software cannot handle dimension large then 30,000. Removing this difficulty

is a topic for the future research. Also, we can see that increasing dimension of table

50

results in increased CPU time, which was expected. However, the increase is not

significant.

20 sensitive cells

Dimension Linear programing Quadratic Programing SOC for `1

of Iter. CPU Time # of Iter. CPU Time # of Iter. CPU Time

10x15 7 0.03 9 0.03 12 0.03

20x30 7 0.05 13 0.03 12 0.05

100 sensitive cells

50x75 7 0.17 13 0.11 10 0.14

70x100 7 0.3 13 0.17 10 0.15

100x120 7 0.39 13 0.25 10 0.21

120x150 7 0.55 13 0.52 11 0.51

150x180 8 0.84 - - 11 0.69

200x220 8 1.34 - - 11 0.98

250x300 9 2.56 - - 11 1.34

300x350 8 2.78 - - 11 2.47

Table 6.3: Testing random initial table with different dimensions using fixed numbers

of sensitive cells, with random position of sensitive cells and random value of sensitive

cells

Initial numerical testing is encouraging and shows that SOC for `1 formulation

is a viable alternative to LP and QP formulations.

More numerical testing on tables of even bigger dimensions is needed and is

forthcoming and will be the topic of further research.

51

CHAPTER 7

CONCLUDING REMARKS

In this thesis we consider methods of protection sensitive information in the tabular

data sets. In particular, we consider Controlled Tabular Adjustment (CTA) model.

In CTA model we are trying to find a safe table that is minimally distanced

from the original table according to the certain measure, and that is usually achieved

using `1 or `2 norm. According to the given norm, CTA can be formulated as an

optimization problem: Linear Programing (LP) for `1-CTA, or Quadratic Programing

(QP) for `2-CTA.

In this thesis an alternative reformulation of `1-CTA as a Second Order Cone

(SOC) optimization problem was presented and numerical validity of the new ap-

proach was tested. Each model was solved using appropriate IPM. In recent years it

has been shown that IPMs work well on conic optimization problems which was the

motivation for the approach considered in this thesis.

The new approach was tested on the randomly generated two-dimensional tabular

data sets and compared with LP and QP formulations. It was shown numerically,

that SOC formulation compares favorably to QP and LP formulations.

-

52

REFERENCES

[1] A. Hundepool, J. Domingo-Ferrer and others, Statistical Disclosure Control, John
Wiley & Sons,Ltd (2012).

[2] Lambert D., Measures of disclosure risk and harm, Journal of Official Statistics
9(3), 313-331,(1993).

[3] Duncan G. and Lambert D., Disclosure-limited data dissemination, Journal of
the American Statistical Association 81(3), 10-27, (1986)

[4] Fienberg S.E. and Makov U.E., Confidentiality, uniqueness and disclosure limi-
tation for categorical data, Journal of Official Statistics 14(4), 385-397,(1998)

[5] Skinner C.J. and Holmes D.J., Estimating the re-identification risk per record in
microdata, Journal of Official Statistics 14, 361-372, (1998)

[6] Benedetti R. and Franconi L. Statistical and technological solutions for controlled
data dissemination., Pre-proceedings of New Techniques and Technologies for
Statistics, vol. 1,pp. 225-232. Eurostat, Luxemburg, (1998)

[7] Elamir E.A.H. and Skinner C.J. Record level measures of disclosure risk for survey
microdata., Journal of Official Statistics 22(3), 525-539, (2006)

[8] Rinott Y. and Shlomo N. A generalized negative binomial smoothing model for
sample disclosure risk estimation., In Privacy in Statistical Databases, PSD 2006
(eds. DomingoFerrer J. and Franconi L.), vol. 4302 of Lecture Notes in Computer
Science, pp. 82-93. Springer, Berlin/Heidelberg, (2006)

[9] Elliot M.J., Manning A.M., Mayes K., Gurd J. and Bane M. SUDA: a program
for detecting special uniques., Work session on Statistical Data Confidentiality,
Geneva, 9-11 November 2005, pp. 353-362. Monographs in Official Statistics.
Eurostat, Luxembourg, (2006)

[10] Mateo-Sanz J.M., Seb’e F. and Domingo-Ferrer J. Outlier protection in con-
tinuous microdata masking. In Privacy in Statistical Databases, PSD 2004 (eds.
Domingo-Ferrer J. and Torra V.), vol. 3050 of Lecture Notes in Computer Science,
pp. 201215. Springer, Berlin/Heidelberg, (2004)

53

[11] Truta T., Fotouhi F. and Barth-Jones D. Global disclosure risk for microdata with
continuous attributes. In Privacy and Technologies of Identity (eds. Strandburg
K. and Raicu D.S.), pp. 350363. Springer, US, (2006)

[12] Templ M. and Meindl B. Robust statistics meets SDC: new disclosure risk mea-
sures for continuous microdata masking. In Privacy in Statistical Databases, PSD
2008 (eds. Domingo-Ferrer J. and Saygn Y.), vol. 5262 of Lecture Notes in Com-
puter Science, pp. 177189. Springer, Berlin/Heidelberg, (2008)

[13] Foschi F. Risk for high dimensional business microdata. Paper presented at the
Joint UNECE/Eurostat work session on Statistical Data Condentiality, Tarrag-
ona, 2628 October (2011)

[14] Bacher J., Brand R. and Bender S. Re-identifying register data by survey data
using cluster analysis: an empirical study. International Journal of Uncertainty,
Fuzziness and Knowledge Based Systems 10(5), 589607, (2002)

[15] Ichim D. Disclosure control of business microdata: a density based approach.
International Statistical Review 77, 196211, (2009)

[16] WinklerW.E. Re-identication methods for masked microdata. In Privacy in Sta-
tistical Databases, PSD 2004 (eds. Domingo-Ferrer J. and Torra V.), vol. 3050
of Lecture Notes in Computer Science, pp. 216230. Springer, Berlin/Heidelberg,
(2004)

[17] Domingo-Ferrer J. and Torra V. Disclosure risk assessment in statistical mi-
crodata protection via advanced record linkage. Statistics and Computing 13(4),
343354, (2003)

[18] Skinner C. Assessing disclosure risk for record linkage. In Privacy in Statistical
Databases, PSD 2008 (eds. Domingo-Ferrer J. and Saygn Y.), vol. 5262 of Lecture
Notes in Computer Science, pp. 166176. Springer, Berlin/Heidelberg, (2008)

[19] Willenborg L.C.R.J. and de Waal A.G. Statistical Disclosure Control in Practice.
Springer-Verlag, New York, (1996)

[20] Hundepool A., van de Wetering A., Ramaswamy R., de Wolf P.P., Franconi L.,
Brand R. and Domingo-Ferrer J. -argus version 4.2 Software and Users Manual.
Statistics Netherlands, Voorburg NL. http://neon.vb.cbs.nl/casc/mu.htm.

54

[21] Templ M. Statistical disclosure control for microdata using the R-package sdcMi-
cro. Transactions on Data Privacy 1(2), 6785, (2008)

[22] Duncan G.T. and Pearson R.W. Enhancing access to microdata while protecting
condentiality: prospects for the future. Statistical Science 6, 219239, (1991)

[23] Sullivan G.R. The Use of Added Error to Avoid Disclosure in Microdata Releases.
PhD thesis Iowa State University, (1989)

[24] Brand R. Microdata protection through noise addition. In Inference Control in
Statistical Databases (ed. Domingo-Ferrer J.), vol. 2316 of Lecture Notes in Com-
puter Science, pp. 97116. Springer, Berlin/Heidelberg, (2002)

[25] Defays, D. and Anwar, M.N. Masking microdata using micro-aggregation., J. Off.
Statist. 14, 449-461, (1998)

[26] Fischetti M. and Salazar-Gonz’alez J.J. Models and algorithms for optimizing
cell suppression problem in tabular data with linear constraints. Journal of the
American Statistical Association 95, 916928, (2000)

[27] CoxL.H. Linear sensitivity measure sin statistical disclosure control. Journal of
Planning and Inference 5, 153164, (1981)

[28] Willenborg L.C.R.J. and de Waal A.G. Elements of Statistical Disclosure Con-
trol. Springer-Verlag, New York, (2001)

[29] Evans B.T.,Zayatz L. and Slanta J. Using noise for disclosure limitation for
establishment tabular data. Journal of Official Statistics 14, 537552, (1998)

[30] Zayatz L. New implementations of noise for tabular magnitude data, synthetic
tabular frequency and microdata, and a remote microdata analysis system. Work
session on Statistical Condentiality, Manchester, 1719 December 2007, pp. 147157
Methodologies and Working papers. Eurostat, Luxembourg, (2007)

[31] Nayak T.K., Sinha B. and Zayatz L. Statistical propertie sofmultiplicative noise
masking for confidentiality protection. Technical report, Statistical Research Di-
vision Research Report Series (Statistics 2010-05). U.S. Census Bureau, (2010)

[32] Massell P. and Funk J. Recent developments in the use of noise for protect-
ing magnitude data tables: balancing to improve data quality and rounding that

55

preserves protection. Proceedings of the Research Conference of the Federal Com-
mittee on Statistical Methodology. Arlington, Virginia, (2007)

[33] Cox L.H. and Dandekar R.H. Synthetic tabular data an alternative to com-
plementary cell suppression. Manuscript available on
http://mysite.verizon.net/vze7w8vk/syn tab.pdf, (2002)

[34] Castro J. and Giessing S. Quality issues of minimum distance controlled tabular
adjustment. Paper presented at the European Conference on Quality in Survey
Statistics, Cardiff, 2426 April, (2006)

[35] Castro J. and Giessing S. Testing variants of minimum distance controlled tabular
adjustment. Work sessionon Statistical Data Condentiality,Geneva,911 November
2005, pp. 333343 Monographs in Ofcial Statistics. Eurostat, Luxembourg, (2006)

[36] Willenborg L.C.R.J. and de Waal A.G. Elements of Statistical Disclosure Con-
trol. Springer-Verlag, New York, (2001)

[37] Doyle P., Lane J.I., Theeuwes J.M.M. and Zayatz L. Confidentiality, Disclo-
sure and Data Access: Theory and Practical Application for Statistical Agencies.
Elsevier Science BV, North-Holland, Amsterdam, (2001)

[38] Dantzig GB. Linear programming and extensions. Princeton NJ: Princeton Uni-
versity Press (1963)

[39] Meggido N. Pathways to the optimal set in linear programming. In: Meggido
N, Ed. Progress in mathematical programming: interior- point algorithms and
related methods. Berlin: Springer-Verlag (1989); pp. 131-158.

[40] Goldman AJ, Tucker AW. Theory of linear programming. In: Kuhn HW, Tucker
AW, Eds. Linear equalities and related systems. Princeton NJ: Princeton Univer-
sity Press (1956); pp. 53-97.

[41] Guler O, Ye Y. Convergence behavior of interior-point algorithms. Math Program
(1993); 60: 215-28.

[42] Lesaja G. Introducing Interior-Point Methods for Introductory Operations Re-
search Courses and/or Linear Programming Courses The Open Operational Re-
search Journal, (2009), 3, 1-12.

56

[43] Philip E . Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Mar-
garet H. Wright. On projected newton barrier methods for linear programming
and an equivalence to karmarkars projective method. Mathematical Programming,
36(2):183209, November (1986).

[44] Guoyong Gu Interior-PointMethodsfor SymmetricOptimization Thomas Stieltjes
Institute for Mathematics, (2009).

[45] E. D. Andersen, MOSEK solver. https://mosek.com/resources/doc, 2016.

[46] F. Alizadeh, and D. Goldfarb, Second-order cone programming. Math. Program-
ming, 95(1):3–51, (2003).

[47] E. D. Andersen, C. Roos and T. Terlaky, On implementing a primal-dual
interior-point method for conic quadratic optimization. Math. Programming,
95(2):249–277, (2003).

[48] J. Castro, A CTA Model Based on the Huber Function. Privacy in Statistical
Databases 2014, LNCS, 8744:79–88, (2014).

[49] J. Castro, Minimum-distance controlled perturbation methods for large-scale
tabular data protection. European Journal of Operational Research, 171:39–52,
(2006).

[50] J. Castro and J. A. Gonzalez, A fast CTA method without complicating binary
decisions. Documents of the Joint UNECE / Eurostat Work Session on Statistical
Data Confidentiality, Statistics Canada, Ottawa, 1–7, (2013).

[51] J. Castro and J. A. Gonzalez, A multiobjective LP approach for controlled tab-
ular adjustment in statistical disclosure control. Working paper, Department of
Statistics and Operations Research, Universitat Politecnica de Catalunya, (2014).

[52] R. A. Dandekar and L. H. Cox, Synthetic tabular Data: an alternative to comple-
mentary cell suppression. Manuscript, Energy Information Administration, U.S.
(2002).

57

Appendix A

CODE

A.1 Main program

function varargout = models(varargin)

gui Singleton = 1;

gui State = struct(’gui Name’, mfilename, ...

’gui Singleton’, gui Singleton, ...

’gui OpeningFcn’, @models OpeningFcn, ...

’gui OutputFcn’, @models OutputFcn, ...

’gui LayoutFcn’, [] , ...

’gui Callback’, []);

if nargin && ischar(varargin1)

gui State.gui Callback = str2func(varargin1);

end

if nargout

[varargout1:nargout] = gui mainfcn(gui State, varargin:);

else

gui mainfcn(gui State, varargin:);

end

function models OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = models OutputFcn(hObject, eventdata, handles)

varargout1 = handles.output;

function pushbutton2 Callback(hObject, eventdata, handles)

clc;

58

set(handles.edit1,’String’,”)

set(handles.edit2,’String’,”)

set(handles.edit3,’String’,”)

set(handles.edit4,’String’,”)

set(handles.edit5,’String’,”)

set(handles.edit6,’String’,”)

set(handles.edit7,’String’,”)

set(handles.edit8,’String’,”)

set(handles.edit9,’String’,”)

set(handles.edit10,’String’,”)

clear all;

function edit5 Callback(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit6 Callback(hObject, eventdata, handles)

function edit6 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit7 Callback(hObject, eventdata, handles)

function edit7 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

59

function pushbutton3 Callback(hObject, eventdata, handles)

PSC=[str2num(get(handles.edit6,’String’))];

VSC=[str2num(get(handles.edit7,’String’))];

dlmwrite(’PSC.txt’, PSC)

dlmwrite(’VSC.txt’, VSC)

function edit8 Callback(hObject, eventdata, handles)

function edit8 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’); end

function edit9 Callback(hObject, eventdata, handles)

function edit9 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function pushbutton4 Callback(hObject, eventdata, handles)

nsc=[str2num(get(handles.edit5,’String’))];

A=importdata(’A.txt’);

[m,n]=size(A);

SC=sort(RandSampNR(1,m*n,nsc));

dlmwrite(’PSC.txt’,SC)

minSC=[str2num(get(handles.edit8,’String’))];

maxSC=[str2num(get(handles.edit9,’String’))];

VSC=randi ([minSC maxSC],1 ,nsc);

dlmwrite(’VSC.txt’, VSC)

60

function popupmenu1 Callback(hObject, eventdata, handles)

val = get(handles.popupmenu1,’Value’);

if val==1

handles.current data = importdata(’A3x4.txt’);

elseif val==2

handles.current data = importdata(’A10x15.txt’);

elseif val==3

handles.current data = importdata(’A20x30.txt’);

elseif val==4

handles.current data = importdata(’A50x75.txt’);

elseif val==5

handles.current data = importdata(’A100x120.txt’);

end;

dlmwrite(’A.txt’, handles.current data)

function popupmenu1 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit1 Callback(hObject, eventdata, handles)

function edit1 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit2 Callback(hObject, eventdata, handles)

function edit2 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

61

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit3 Callback(hObject, eventdata, handles)

function edit3 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function edit4 Callback(hObject, eventdata, handles)

function edit4 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function pushbutton1 Callback(hObject, eventdata, handles)

a=[str2num(get(handles.edit1,’String’))];

b=[str2num(get(handles.edit2,’String’))];

m=[str2num(get(handles.edit3,’String’))];

n=[str2num(get(handles.edit4,’String’))];

A=randi ([a b], m ,n);

dlmwrite(’A.txt’, A)

function pushbutton5 Callback(hObject, eventdata, handles)

A=importdata(’A.txt’);

NSC=[str2num(get(handles.edit5,’String’))];

PSC=importdata(’PSC.txt’);

62

VSC=importdata(’VSC.txt’);

fprintf(2,’LINEAR PROGRAMIG MODEL/ n’)

LP(A,NSC,PSC,VSC);

function pushbutton6 Callback(hObject, eventdata, handles)

A=importdata(’A.txt’);

NSC=[str2num(get(handles.edit5,’String’))];

PSC=importdata(’PSC.txt’);

VSC=importdata(’VSC.txt’);

fprintf(2,’QUADRATIC PROGRAMIG MODEL/n’) QP(A,NSC,PSC,VSC);

function pushbutton9 Callback(hObject, eventdata, handles)

A=importdata(’A.txt’);

NSC=[str2num(get(handles.edit5,’String’))];

PSC=importdata(’PSC.txt’);

VSC=importdata(’VSC.txt’);

fprintf(2,’CONIC MODEL/n’)

Conic 1(A,NSC,PSC,VSC);

function pushbutton10 Callback(hObject, eventdata, handles)

A=importdata(’A.txt’);

NSC=[str2num(get(handles.edit5,’String’))];

PSC=importdata(’PSC.txt’);

VSC=importdata(’VSC.txt’);

delta=[str2num(get(handles.edit10,’String’))];

fprintf(2,’CONIC FOR PSEUDO-HUBER WITH DELTA/n’)

Conic delta(A,NSC,PSC,VSC,delta);

function edit10 Callback(hObject, eventdata, handles)

function edit10 CreateFcn(hObject, eventdata, handles)

63

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

A.2 LP function

function y=LP(A,NSC,PSC,VSC)

[m n]=size(A);

N=n*m;

AA=reshape(A’,m*n,1)’;

addpath ’c:/Program Files/mosek/7/toolbox/r2013a’

c = ones(1,2*N)’;

a1=[ones(1,n),zeros(1,N-n),(-1)*ones(1,n),zeros(1,N-n)];

a2=[];

for i=1:m-1;

a2=[a2;zeros(1,i*n),ones(1,n),zeros(1,(N-(i+1)*n)),zeros(1,i*n),(-1)*ones(1,n),

zeros(1,(N-(i+1)*n))];

end;

a31=[];

for j=1:m

a31=[a31,[1,zeros(1,(n-1))]];

end

a32=[];

for j=1:m

a32=[a32,[-1,zeros(1,(n-1))]];

end

a3=[a31,a32];

64

a4=[];

for j=1:n-1

a4=[a4;zeros(1,j),a31(1:(end-j)),zeros(1,j),a32(1:(end-j))];

end;

a=[a1;a2;a3;a4];

blc=zeros(1,m+n)’;

buc=zeros(1,m+n)’;

blx1=zeros(1,N);

bux1=AA;

for k=1:length(PSC);

for i=1:N;

if i==PSC(k)

blx1(i)=VSC(k);

bux1(i)=0;

end;

end;

end;

blx=[blx1,zeros(1,N)];

bux=[inf*ones(1,N),bux1];

[res] = msklpopt(c,a,blc,buc,blx,bux);

sol = res.sol;

sol.itr.xx’;

sol.itr.sux’ ;

sol.itr.slx’ ;

x=sol.bas.xx’;

xplus=x(:,1:N);

65

xminus=x(:,N+1:end);

xx=xplus+xminus;

z=xx+AA;

A.3 QP function

function y=QP(A,NSC,PSC,VSC)

[m n]=size(A);

N=n*m;

addpath ’c:/Program Files/mosek/7/toolbox/r2013a’

q = 2*eye(N);

c = [zeros(1,N)]’;

a1=[ones(1,n),zeros(1,N-n)];

a2=[];

for i=1:m-1;

a2=[a2;zeros(1,i*n),ones(1,n),zeros(1,(N-(i+1)*n))];

end;

a3=[];

for j=1:m

a3=[a3,[1,zeros(1,(n-1))]];

end

a4=[];

for j=1:n-1

a4=[a4;zeros(1,j),a3(1:(end-j))];

end;

a=[a1;a2;a3;a4];

blc=zeros(1,m+n);

66

buc=zeros(1,m+n);

AA=reshape(A’,m*n,1)’;

blx=(-1)*AA;

for k=1:length(PSC);

for i=1:N;

if i==PSC(k)

blx(i)=VSC(k);

end;

end;

end;

bux = inf*ones(1,N);

[res] = mskqpopt(q,c,a,blc,buc,blx,bux);

x=res.sol.itr.xx’;

z=x+AA;

s=sum(z);

A.4 SOC function

function y=Conic 1(A,NSC,PSC,VSC)

addpath ’c:/Program Files/mosek/7/toolbox/r2013a’

clear prob;

[r, res] = mosekopt(’symbcon’);

[m n]=size(A);

N=n*m;

a=zeros(1,N);

b=ones(1,N);

prob.c = [zeros(1,N),ones(1,N)];

67

a1=[ones(1,n),zeros(1,2*N-n)];

a2=[];

for i=1:m-1;

a2=[a2;zeros(1,i*n),ones(1,n),zeros(1,(2*N-(i+1)*n))];

end;

a3=[];

for j=1:m

a3=[a3,[1,zeros(1,(n-1))]];

end;

a4=[a3,zeros(1,N)];

a5=[];

for j=1:n-1

a5=[a5;zeros(1,j),a4(1:(end-j)),];

end;

prob.a = sparse([a1;a2;a4;a5]);

[d q]=size(prob.a);

prob.blc=[zeros(1,n+m)];

prob.buc = [zeros(1,n+m)];

AA=reshape(A’,m*n,1)’;

B1=(-1)*AA;

for k=1:length(PSC);

for i=1:N;

if i==PSC(k)

B1(i)=VSC(k);

end;

end;

68

end;

prob.blx=[B1,zeros(1,N)];

prob.bux = inf*ones(1,2*N);

probconessub=[];

for k=1:N

probconessub=[probconessub, 2*N-(N-k),N-(N-k)];

end;

probconessubptr=[1];

for s=1:N-1

probconessubptr=[probconessubptr,2*(s)+1];

end;

prob.cones.type=[res.symbcon.MSK CT QUAD*b]

prob.cones.sub = [probconessub];

prob.cones.subptr = [probconessubptr];

[r,res]=mosekopt(’minimize’,prob);

xvalue=res.sol.itr.xx’;

avalue=[AA, zeros(1,N)];

zvalue=xvalue+avalue;

A.5 SOC for Pseudo-Huber function

function y=Conic delta(A,NSC,PSC,VSC,delta)

addpath ’c:/Program Files/mosek/7/toolbox/r2013a’

clear prob;

[r, res] = mosekopt(’symbcon’);

[n m]=size(A);

N=n*m;

69

a=zeros(1,N);

b=ones(1,N);

prob.c = [a,-b,b];

proba1=[ones(1,m), zeros(1,(3*N-m))];

proba2=[];

for i=1:n-1;

proba2=[proba2;zeros(1,i*m),ones(1,m),zeros(1,(3*N-(i+1)*m))];

end;

proba3=[];

for j=1:n

proba3=[proba3,[1,zeros(1,(m-1))]];

end

proba3=[proba3,zeros(1,2*N)];

proba4=[];

for j=1:m-1

proba4=[proba4;zeros(1,j),proba3(1:(end-j))];

end;

proba5= [zeros(N), eye(N),zeros(N)];

prob.a = sparse([proba1; proba2; proba3;proba4;proba5]);

[d q]=size(prob.a);

prob.blc=[zeros(1,n+m),delta*ones(1,N)];

prob.buc = [zeros(1,n+m),delta*ones(1,N)];

AA=reshape(A’,m*n,1)’;

B1=(-1)*AA;

for k=1:length(PSC);

for i=1:N;

70

if i==PSC(k)

B1(i)=VSC(k);

end;

end;

end;

prob.blx=[B1,zeros(1,2*N)];

prob.bux = inf*ones(1,3*N);

probconessub=[];

for k=1:N

probconessub=[probconessub, 3*N-(N-k),2*N-(N-k),N-(N-k)];

end;

probconessubptr=[1];

for s=1:N-1

probconessubptr=[probconessubptr,3*(s)+1];

end;

prob.cones.type=[res.symbcon.MSK CT QUAD*b];

prob.cones.sub = [probconessub];

prob.cones.subptr = [probconessubptr];

[r,res]=mosekopt(’minimize’,prob);

xvalue=res.sol.itr.xx’;

avalue=[AA, zeros(2*N,1)’];

zvalue=xvalue+avalue;

71

Appendix B

USER INTERFACE

Figure B.1: User Interface

	Optimization Methods for Tabular Data Protection
	Recommended Citation

	tmp.1499482924.pdf.bWAQV

