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Abstract

In this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for 

statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the 

closest safe table to some original tabular data set that contains sensitive information. The measure 

of closeness is usually measured using ℓ1 or ℓ2 norm; with each measure having its advantages and 

disadvantages. Recently, in [4] a regularization of the ℓ1-CTA using Pseudo-Huber function was 

introduced in an attempt to combine positive characteristics of both ℓ1-CTA and ℓ2-CTA. All three 

models can be solved using appropriate versions of Interior-Point Methods (IPM). It is known that 

IPM in general works better on well structured problems such as conic optimization problems, 

thus, reformulation of these CTA models as conic optimization problem may be advantageous. We 

present reformulation of Pseudo-Huber-CTA, and ℓ1-CTA as Second-Order Cone (SOC) 

optimization problems and test the validity of the approach on the small example of two-

dimensional tabular data set.
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1 Introduction

The statistical disclosure limitation (control) is the term that describes the theory and 

methods of protecting sensitive information when releasing statistical microdata or tabular 

data. An up-to-date overview of theory and methods of this field can be found in the 

monograph [19] and, for tabular data only, in the survey [8]. An excellent reference is also 

[27].

Minimum-distance controlled tabular adjustment (CTA) methodology was first introduced in 

[7,15]. As indicated in [4] CTA can be formulated as the following problem: Given a table 

with sensitive cells, compute the closest safe table in which sensitive cells are modified to 

avoid recomputation, and the remaining cells are minimally adjusted to satisfy the table 

equations. The closeness of the original and modified table is measured by the weighted 
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distance between the tables with respect to a certain norm. Most commonly used norms are 

ℓ1 and ℓ2 norms. Thus, the problem can be formulated as a minimization problem with the 

objective function being a particular weighted distance function and constraints being table 

equations and lower and upper bounds on the cell values.

In general, CTA is Mixed Integer Optimization Problem (MIOP) which is a difficult problem 

to solve especially for the large dimension problems. A priori fixing the values of binary 

variables reduces the problem to the continuous optimization problem which is easier to 

solve, however, the quality of the solution may be reduced. In addition, the values of the 

binary variables have to be assigned carefully otherwise the problem may become infeasible 

[12, 13].

The objective function in continuous CTA is based on either the ℓ1-norm or ℓ2-norm. The 

formulation of ℓ2 -CTA leads to the Quadratic Programing (QP) problem, while ℓ1-CTA can 

be formulated as the Linear Programming (LP) problem. However, the resulting LP has the 

number of variables that is twice the number of cells of the table as opposed to ℓ2-CTA 

where the resulting QP problem has a number of variables equal to the number of cells. In 

general, the QP of ℓ2-CTA is usually more efficiently solved than the LP of ℓ1-CTA [4,7].

In [4] the Pseudo-Huber regularization of the ℓ1-CTA is proposed. The Pseudo-Huber 

approximation of the ℓ1-norm objective function leads to the convex optimization problem. 

However, the advantage is that the number of variables in Pseudo-Huber formulation of the 

ℓ1-CTA remains the same as the number of cells. In [4] it is shown that Pseudo-Huber-CTA 

can be more efficiently solved than LP ℓ1-CTA for certain types of tables and using an 

appropriate method that takes into account the structure of the problem.

All these models are solved using appropriate versions of the Interior-Point Method (IPM). 

These methods have been developed in recent years to efficiently solve different types of, 

often large, nonlinear (convex) optimization problems. It has been shown both theoretically 

and numerically that IPMs perform better on problems that have a certain structure, such as 

Conic Optimization (CO) problems, which are LP problems where variables are elements of 

cones. Most common cones are non-negative orthant, second order (quadratic) cone and 

semidefinite cone [2, 3, 25].

Hence, motivated by the above comment, in this paper we develop a new Second Order 

(Quadratic) Cone (SOC) formulation of the ℓ1 and Pseudo-Huber-CTA. It is shown on the 

small example of a two-dimensional table that SOC CTA models are more efficiently solved 

than the original models. It is expected that the same will be the case for larger and more 

complex tables. Extensive numerical testing on various types of tables is beyond the scope 

of this paper; however, it is needed and it is forthcoming as a part of future research.

The paper is organized as follows. In Section 2 the general MIOP and then continuous CTA 

are formulated. Then the ℓ1 and ℓ2 continuous CTA are derived. The Pseudo-Huber-CTA 

formulation is considered in Section 3. The new SOC formulations of both Pseudo-Huber 

and ℓ1 CTA are developed in Section 4. In Section 5 the SOC CTA models are applied to the 

small example of two-dimensional table and these instances are solved using MOSEK SOC 

solver. The concluding remarks are given in Section 6.
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2 Formulation of the General CTA Model

The following CTA formulation is given in [4]: Given the following set of parameters:

i. A set of cells ai, i ∈ 𝒩 = 1, …, n . The vector a = (a1, . . . , an)T satisfies certain 

linear system Aa = b where A ∈ ℝm×n is an m × n matrix and and b ∈ ℝm is m-

vector.

ii. A lower, and upper bound for each cell, lai
≤ ai ≤ uai

 for i ∈ 𝒩, which are 

considered known by any attacker.

iii. A set of indices of sensitive cells, 𝒮 = i1, i2, …, is ⊆ 𝒩.

iv. A lower and upper protection level for each sensitive cell i ∈ 𝒮 respectively, lpli 
and upli, such that the released values must be outside of the interval (ai − lpli, ai 

+ upli).

v. A set of weights, wi, i ∈ 𝒩 used in measuring the deviation of the released data 

values from the original data values.

A CTA problem is a problem of finding values zi, i ∈ 𝒩, to be released, such that zi, i ∈ 𝒮
are safe values and the weighted distance between released values zi and original values ai, 

denoted as ‖z − a‖l(w), is minimized, which leads to solving the following optimization 

problem

min
z

‖z − a‖l(w)
s.t. Az = b,

lai
≤ zi ≤ uai

, i ∈ 𝒩,
zi, i ∈ 𝒮 are safe values.

(1)

As indicated in the assumption (iv) above, safe values are the values that satisfy

zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ 𝒮 . (2)

By introducing a vector of binary variables y ∈ {0,1}s the constraint (2) can be written as

zi ≥ − M 1 − yi + ai + upli yi, i ∈ 𝒮,
zi ≤ Myi + ai − lpli 1 − yi , i ∈ 𝒮, (3)

where M ≫ 0 is a large positive number. Constraints (3) enforce the upper safe value if yi = 

1 or the lower safe value if yi = 0.

Replacing the last constraint in the CTA model (1) with (3) leads to a mixed integer convex 

optimization problem (MIOP) which is in general a difficult problem to solve; however, it 

provides solutions with high data utility [11]. The alternative approach is to fix binary 

variables up front which leads to a CTA that is acontinuous convex optimization problem. 
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The continuous CTA may be easier to solve; however, the obtained solution may have a 

lower data utility. Furthermore, a wrong assignment of binary variables may result in the 

problem being infeasible. Strategies on how to avoid this difficulty are discussed in [12, 13].

In this paper we consider a continuous CTA where binary variables are fixed and vector z is 

replaced by the vector of cell deviations

x = z − a . (4)

The CTA (1) with constraints (3) reduces to the following convex optimization problem:

min
x

‖x‖l(w)
s . t . Ax = 0,

l ≤ x ≤ u,
(5)

where upper and lover bounds for xi, i ∈ 𝒩 are defined as follows:

li =
upli if i ∈ 𝒮 and yi = 1
lai

− ai if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 0 (6)

ui =
−lpli if i ∈ 𝒮 and yi = 0
uai

− ai if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 1 . (7)

The two most commonly used norms in problem (5) are the ℓ1 and ℓ2 norms. For the ℓ2-norm 

the problem, (5) reduces to the following ℓ2-CTA model which is a QP problem:

min
x

∑
i = 1

n
wixi

2

s . t . Ax = 0,

l ≤ x ≤ u .

(8)

For the ℓ1-norm the problem, (5) reduces to the following ℓ1-CTA model:
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min
x

∑
i = 1

n
wi xi

s . t . Ax = 0,

l ≤ x ≤ u .

(9)

The above ℓ1-CTA model (9) is a convex optimization problem; however, the objective 

function is not differentiable at x = 0. Since most of the algorithms, including IPMs, require 

differentiability of the objective function, problem (9) needs to be reformulated. The 

reformulations that have been considered in [4] are reviewed in the next section.

3 LP and Pseudo-Huber Formulation of ℓ1-CTA

The ℓ2-CTA model (8) is a standard QP problem that can be efficiently solved using IPM or 

other methods. However, as noted at the end of the previous section, the ℓ1-CTA model (9) 

needs reformulation in order to be efficiently solved by IPM or some other method. The 

standard reformulation is the transformation of model (9) to the following LP model:

min
x−, x+

∑
i = 1

n
wi xi

+ + xi
−

s.t. A xi
+ − xi

− = 0,

l+ ≤ x+ ≤ u+,

l− ≤ x− ≤ u−,

(10)

where

x+ = x if x ≥ 0
0 if x < 0, x− = 0 if x > 0

−x if x ≤ 0, (11)

and lower and upper bounds for xi
− and xi

+, i ∈ 𝒩 are as follows:
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li
+ =

upli if i ∈ 𝒮 and yi = 1
0 if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 0

ui
+ =

0 if i ∈ 𝒮 and yi = 0
uai − ai

if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 1

li
− =

lpli if i ∈ 𝒮 and yi = 0
0 if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 1

ui
− =

0 if i ∈ 𝒮 and yi = 1
ai − lai

if (i ∈ 𝒩\𝒮) or i ∈ 𝒮 and yi = 0 .

(12)

Problem ℓ1-CTA (10) is an LP problem; however, it has twice the number of variables as the 

QP problem (8) and twice the number of box constraints. As indicated in [4], the splitting of 

the variables x = x+−x− and the increased dimension of the model may cause problems. In 

order to overcome these difficulties in [4] it was suggested to use a regularization of problem 

(9) by approximating absolute value with the Pseudo-Huber function that has the same 

number of variables as in the QP formulation (8).

The original Huber function φδ : ℝ → ℝ+ is defined as

φδ xi =

xi
2

2δ xi ≤ δ

xi − δ
2 xi ≥ δ .

(13)

It approximates |xi| for small values of δ > 0; the smaller the δ, the better the 

approximation.The Huber function is continuously differentiable; however, the second 

derivative is not continuous at |xi| = δ which may cause problems when this function is used 

in second order optimization algorithms, such as IPMs. Hence, it is better to consider the 

Pseudo-Huber function ϕδ : ℝ → ℝ+

ϕδ xi = δ2 + xi
2 − δ (14)

whose first and second derivatives are bounded and Lipschitz continuous [17]. Again, the 

smaller the δ the better the approximation.

Now, the ℓ1-CTA problem (9) can be approximated by the following convex optimization 

problem

min
x

∑i = 1
n wiϕδ xi

s . t . Ax = 0,

l ≤ x ≤ u .

(15)
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The advantage of the Pseudo-Huber-CTA model (15) is that it has the same number of 

variables as ℓ2 - CTA and the same feasible region, the only difference is that the quadratic 

objective function is replaced by a strictly convex function.

Optimization problems (8), (10) and (15) can be solved with appropriate versions of the 

Interior-Point Methods (IPM). Since IPMs are the methods of choice to solve different CTA 

models, in the rest of the section we describe the main ideas of IPMs, only on a conceptual 

level, and then we discuss their application on given CTA models.

IPMs have in many ways revolutionized the optimization theory and practice in the past 

three decades since the appearance of the Karmarkar’s breakthrough paper [20]. Since then, 

the field of IPMs has been a very active area of research with literary thousands of papers 

published as well as numerous excellent monographs and textbooks. The general theory of 

IPMs for convex optimization problems can be found in the seminal monograph of Nesterov 

and Nemirovskii [26]. In addition to this monograph, and without any attempt to be 

complete, we mention a few other relevant references [29, 28, 22]. The reason for such an 

interest is that IPMs have proven to be very efficient in solving large linear and non-linear 

(convex) optimization problems which were previously hard to solve. Now-days almost 

every relevant optimization software, whether commercial or open source, contains an IPM 

solver which is capable of solving at least LP problems and in many cases QP problems, 

and, less frequently, conic optimization problems. In the case of LP there are plenty of 

numerical studies showing that IPMs are at least as efficient, if not more, as the classical 

Simplex Method (SM) on large scale LP problems.

The basic idea of path-following IPMs, that are most commonly used and studied, is 

centered around approximately following the parametric trajectory that is called central path 
which leads to the solution of the problem when a parameter is approaching zero. The points 

on the central path are called μ-centers and are obtained as solutions of the Karush-Kuhn-

Tucker (KKT) optimality conditions of the problem where a (the) complementarity 

equation(s) is (are) perturbed by a positive parameter μ > 0. In particular, the perturbed KKT 

system for Pseudo-Huber-CTA is explicitly listed in [4].

The solution of the problem, which is obtained when μ = 0, is found by tracing the central 

path while gradually reducing μ to zero. However, tracing the central path exactly would be 

prohibitively inefficient. The main achievement of IPMs have been to show that it is 

sufficient to trace the central path approximately; as long as the iterates are in the certain 

neighborhood of the central path, it is still possible to prove global convergence and, 

moreover, show that the -approximate solution of the problem, according to the appropriate 

proximity measure, can be obtained in polynomial number of iterations with the best 

theoretical upper bound being O nlogn
ϵ , where n represents the number of variables of the 

problem at hand.

However, practical behavior of IPM heavily depends on many factors, such as the structure 

of the problem, the starting point, the accuracy needed, etc. As reported in [4], Pseudo-

Huber-CTA (15) can be difficult to solve with a general convex optimization solver even for 

small instances if the solver is not ‘appropriately tuned’. However, for problems that exhibit 
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a special structure such as 3-D tables whose constraints have a block-angular structure, the 

specialized block-angular IPM of J. Castro [5, 9, 10] solves Pseudo-Huber-CTA more 

efficiently than ℓ1-CTA while ℓ2-CTA has by far the best CPU time. Hence, Pseudo-Huber-

CTA is a viable option for solving ℓ1-CTA; however, the IPM have to be implemented with 

care and, in addition, the specialized IPM may not work efficiently for other types of tables. 

As indicated in [4], modifications and tuning of the Block-angular IPM so it can handle 

large and complex tables of different types is a direction for future research.

Another direction in searching how to efficiently solve Pseudo-Huber-CTA and ℓ1-CTA is to 

investigate whether these models can be transformed into the conic optimization (CO) 

problems. The motivation for such investigation comes from the fact that it has been 

established both theoretically and numerically that IPMs perform better on the well 

structured problems such as CO problems than on general convex optimization problems [2, 

3, 25]. CO problems are LP problems over cones, that is, variables belong to certain types of 

cones. Most common cones are either non-negative orthant, second-order (quadratic) cone or 

semidefinite cone definitions; of which are listed in the next section. Thus, formulating 

Pseudo-Huber and ℓ1-CTA as CO problems would be advantageous. In the next section we 

develop SOC formulation of both Pseudo-Huber and ℓ1 CTA.

4 SOC Formulation of Pseudo-Huber and ℓ1 CTA

In this section we investigate how Pseudo-Huber and ℓ1 CTA can be formulated as SOC 

models. The CO problems can be formulated as

min
x

cTx

s . t . Ax = b,

x ∈ 𝒦,
(16)

where 𝒦 is a cone of the following three types:

1. The linear cone or non-negative orthant:

𝒦 = ℝ+
n : = x ∈ ℝn: xi ≥ 0, i = 1, …, n .

2. The positive semidefinite cone:

𝒦 = S+
n : = X ∈ Sn: X ⪰ 0 ,

where ⪰ means that X is positive semidefinite matrix and Sn is a set of symmetric 

n-dimensional matrices.

3. The quadratic or second-order cone:

𝒦 = ℒn = {x ∈ ℝn: xi ≥ x1
2 + ⋯ + xi − 1

2 + xi + 1
2 + ⋯ + xn

2} .
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More generally, 𝒦 can be a Cartesian product of the above mentioned cones. It is also worth 

mentioning that the cones defined above are examples of symmetric cones, thus problem 

(16) can be considered in a more general framework of Symmetric Optimization (SO) 

problems, see [16,18, 24] and references therein.

In what follows, we present a reformulation of Pseudo-Huber-CTA problem (15) as a SOC 

problem. Consider Pseudo-Huber Function (14)

ϕδ xi = δ2 + xi
2 − δ .

Let’s define

ti: = δ2 + xi
2 and yi: = δ, i = 1, …, n . (17)

Hence, we have

ti = xi
2 + yi

2

which is the boundary of the second-order (quadratic) cone

𝒦i = xi, yi, ti ∈ ℝ3 : ti ≥ xi
2 + yi

2 .

Now, the reformulation of the Pseudo-Huber-CTA (15) as a SOC problem follows

max
x

∑i = 1
n wi ti − yi

s . t . Ax = 0,

yi = δ; i = 1, …, n,

xi, yi, ti ∈ 𝒦i; i = 1, …, n,

l ≤ x ≤ u .

(18)

This model is valid even for δ = 0. In that case we obtain a SOC formulation of the l1-CTA 

(9)

min
x

∑i = 1
n witi

s . t . Ax = 0,

xi, ti ∈ 𝒦i; i = 1, …, n,

l ≤ x ≤ u .

(19)
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This model could have been obtained directly from l1-CTA (9) because the absolute value 

has an obvious second-order cone representation since the epigraph of the absolute value 

function is exactly second-order cone, that is,

ti = xi 𝒦i = xi, ti ∈ ℝ2: ti ≥ xi
2 .

It is well known that the solutions of SOC problems (18) and (19) achieve solutions at the 

boundary of the cones, hence, equations (17) will hold at the solution [2,3]. Thus, it is not 

necessary to enforce these equations in SOC models; in fact, their inclusion would lead to 

noncovex problems that would be difficult to solve.

An IPM for SOC can now be used to find an -approximate solutions to SOC Pseudo-Huber 

and ℓ1 CTA models. We have used MOSEK SOC solver [1] that is considered one of the 

best, if not the best, SOC solver available on the market today.

5 Numerical Results for the Small Example

In this section an example of the small two-dimensional table stated in Figure 3 in [4] is 

considered. The table is listed in Figure 1 below as the table (a).

The continuous CTA model based on the table (a) is formulated in the following way:

• The linear constraints are obtained from the requirement that the sum of the 

elements in each row (or column) remains constant and is equal to the 

corresponding component in the last column (or row) of table (a).

• The sensitive cells are cells a1 and a12. For both of them the upper safe values are 

enforced, which are listed in the parentheses in the lower right corners of the 

cells, upl1 = 3 and upl12 = 5 respectively. Hence, in the transformed tables the 

upper safe value of the cell a1 should be 13 or above and for a12 the upper safe 

value should be 18 or above.

• For the nonsensitive cells the lower and upper bounds are set to be zero and 

positive infinity respectively, that is, lai = 0 and uai = inf for i = 2, . . . ,11.

• The weights in the objective function are set to have the value one, that is, wi = 1 

for i = 1, . . . ,12.

From this basic CTA model different CTA models discussed in the paper were formulated 

and then these models were solved using appropriate IPM solvers. The results are listed in 

Figure 1. Below is the summary of the IPM solvers used.

1. The ℓ2-CTA (8) instance was solved in [4] using IPM based MOSEK QP solver. 

Table (d).

2. The LP-ℓ1-CTA (10) instance was solved in [4] using MOSEK LP solver. The 

IPM solver with crossover option was used. Table (b).

3. The Pseudo-Huber-CTA (15) instance was solved in [4] using Block-angular 

IPM of J. Castro [5, 9, 10]. Table (c).
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4. The SOC ℓ1-CTA (19) instance was solved for the first time in this paper using 

IPM based MOSEK SOC solver. Table (e).

5. The SOC Pseudo-Huber-CTA (18) instance was solved for the first time in this 

paper using IPM based MOSEK SOC solver. Table (f).

In [4] it was observed that ℓ2-CTA had the fastest execution. Hence, we replicated the 

solution of the ℓ2-CTA instance of the example and compared its performance with SOC 

models instances. The calculations were carried out on a Lenovo ThinkPad W530 computer 

with Intel(R) CORE i7–3740QM 2.70GHz processor. The results are given in Table 1.

From Table 1 we can observe that SOC versions are comparable to the ℓ2 version both in 

number of iterations and CPU time; SOC ℓ1 was slightly faster than ℓ2 while SOC Pseudo-

Huber was slightly slower, which is the expected result. Hence, the SOC models are more 

effective than the LP ℓ1 and Pseudo-Huber-CTA models for this example.

Furthermore, for LP ℓ1, Pseudo-Huber ϕ0.001, SOC ℓ1, and SOC Pseudo-Huber ϕ0.001 CTA 

instances the optimal values of their respective objective functions are the same, namely, the 

value is 20, while for ℓ2-CTA instance it is 20.69. Thus, the objective values for SOC Pseudo 

Huber and ℓ1-CTA instances are the same as for the original non-SOC instances, namely 20, 

which was expected.

These results are in line with plenty of other evidence that it is advantageous to solve the 

SOC formulation of the problem by IPM, rather than using IPM to the original formulation 

of the problem (see for example [2, 3, 25, 23]). We are confident that the advantages of the 

SOC models will be even more visible when applied to larger tabular data sets. Moreover, 

the SOC IPM is robust and flexible enough to handle different types of tables.

6 Concluding Remarks

The main goal of the paper is mainly theoretical, that is, to present a Second Order Cone 

(SOC) formulation of the Pseudo-Huber and the ℓ1 CTA models, (18) and (19) respectively 

as an alternative to the original Pseudo-Huber and LP ℓ1 CTA models, (15) and (10) 

respectively. The application of the SOC models to the small example in Section 5 shows 

promise to be an effective alternative to the application of the original models to the small 

example. More numerical testing is needed and is forthcoming as a future research topic 

where SOC models would be implemented and tested on the different types of tables of large 

dimensions mentioned in the Conclusion of [4].

From Figure 1, it can be observed that the resulting tables for all the models except LP ℓ1 

change most of the cells of the original table (a) that are not fixed, even the ones that are not 

sensitive cells. The reason lays in the nature of IPMs. In these methods, the iterates 

approximately follow the central path that converges to the analytic center of the optimal set 

which implies that most of the cells will be changed, while the IPM with crossover or 

alternatively the Simplex Method, for LP ℓ1 finds the basic solution which implies fewer 

cells will be changed. Hence, if there is a requirement to minimize the number of non-

sensitive cells that are changed, then the LP ℓ1 models solved with SM or IPM with 

crossover is the right approach. However, if the number of nonsensitive cells changed is not 
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an issue such as for certain types of magnitude tables, then the suggested approach is to use 

either the SOC ℓ1 model or the ℓ2 model because they are faster. Unless prior regularization 

of the ℓ1 model is necessary, which then leads to the Pseudo-Huber model and related SOC 

Pseudo-Huber model, it is more efficient to use the SOC ℓ1 model directly.

As noted in [4], it has been empirically shown that CTA in general exhibits a low disclosure 

risk [6] and, at the same time, high data utility [14, 13] (see also [21]). However, the study of 

the disclosure risk and data utility of tables protected by the Pseudo-Huber-CTA model and 

the SOC CTA models is lacking and is certainly an interesting future research topic.
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Fig. 1. 
Results of the small example (rounded to two decimal places).
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Table 1.

Results for ℓ2 and SOC CTA

CTA Model Obj. Funct. It. No. CPU

ℓ2 20.69 6  0.08

SOC-ℓ1 20 7  0.07

SOC Pseudo-Huber 20 9  0.09
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