227 research outputs found

    Open World Assistive Grasping Using Laser Selection

    Full text link
    Many people with motor disabilities are unable to complete activities of daily living (ADLs) without assistance. This paper describes a complete robotic system developed to provide mobile grasping assistance for ADLs. The system is comprised of a robot arm from a Rethink Robotics Baxter robot mounted to an assistive mobility device, a control system for that arm, and a user interface with a variety of access methods for selecting desired objects. The system uses grasp detection to allow previously unseen objects to be picked up by the system. The grasp detection algorithms also allow for objects to be grasped in cluttered environments. We evaluate our system in a number of experiments on a large variety of objects. Overall, we achieve an object selection success rate of 88% and a grasp detection success rate of 90% in a non-mobile scenario, and success rates of 89% and 72% in a mobile scenario

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Design And Construction Of A Robotic Vehicle To Assist During Planetary Surface Operations

    Get PDF
    In the near future, astronauts will explore new planetary surfaces in the Solar System. To enable peak performance, these astronauts will need to utilize all of the tools at their disposal. It is proposed that one such tool is a planetary surface rover designed specifically to assist the astronauts during their Extra-Vehicular-Activities (EVA’s). This rover is designed and built to operate in concert with existing analog planetary surface infrastructure at the University of North Dakota (UND). This rover will be remotely controlled by an astronaut located on the planetary surface, enabling real-time operation and obstacle avoidance. The rover will act primarily as a relay for audio and video communications between the astronauts in the field and the Inflatable Lunar Habitat (ILH), or another planetary outpost. This rover will be designed to enable storage for tools and samples, freeing the astronauts from the tedious and physically demanding task of carrying items for long distances encumbered by an EVA suit. This thesis will describe the design of the rover and the rationale for each design decision. Upon completion of the rover, this thesis will report on the real-world performance of the rover, the effectiveness of the subsystems, and the lessons learned as a result of initial testing. Using the rover and the information obtained from this thesis, future astronaut-rover interaction studies will be conducted that will be important to the future of human planetary exploration

    CES-514 Market Evaluation for Colchester Catalyst on the use of Robotic Wheelchairs

    Get PDF
    1.2 What is a Robotic Wheelchair?........................... 1 1.3 Type of Marketing Research used and sources of data...............

    PRELIMINARY DESIGN AND EVALUATION OF AN OVERHEAD KITCHEN ROBOT APPLIANCE

    Get PDF
    Many older adults and individuals with disabilities have difficulty with reaching, grasping, and carrying items that are a necessity to perform independent activities of daily living, including meal preparation in the kitchen. Assistive robotic manipulators are starting to show potential for independent assistance through their use on wheelchairs or mobile bases, but continue to lack many of the autonomous features readily available with fixed environment manipulators. The KitchenBot design described here provides the details and approach to providing an assistive robotic manipulator access to an entire kitchen workspace by utilizing a multi-degree track. Numerous focus groups were conducted in conjunction with the design and major features like heavy payload ability, tablet control interface, and user feedback was extracted. With further development, the KitchenBot could perform an even longer list of routine autonomous tasks in a product viable for everyone to use

    Virtual Prototyping and Validation for Autonomous Assistive Mobility

    Get PDF
    Physical disability in humans is something that no one has control over. It is catastrophic for people to experience it, and sometimes hinders them from enjoying the essence of life. Though disability is something people have no control over, they do have control on how they can go forward and make life beautiful and meaningful. Wheelchairs have helped people with disabilities in mobility, allowing them to move around with the help of others or sometimes on their own. This research will focus on development of an autonomous assistive mobility robot to help the disabled using virtual prototyping tools for development and validation. The developed virtual model will also be developed in real world and validated to navigate autonomously. The virtual and real-world autonomous model developed will take a systems engineering approach. The key features of this system are mapping, localisation, and navigating towards a goal autonomously. The virtual model is validated in different virtual environments for its functionality. The real-world model is developed similar to its virtual counterpart and is tested and validated for its functionality. The local path planner implemented is analyzed quantitatively for both the real-world and virtual models. The differences in design and development are analyzed and identified. To conclude, the research has lead to the development of a virtual and real-world model of an autonomous wheelchair that has been tested and validated in both the environments

    Powered Human Gait Assistance

    Get PDF

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Contributions to the 10th International Cycling Safety Conference 2022 (ICSC2022)

    Get PDF
    This publication contains all contributions (extended abstracts) to the 10th International Cycling Safety Conference, which was held in Dresden, Germany, Nov. 08-10, 2022
    corecore