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Since 2012, the International Cycling Safety Conference (ICSC) has been a forum for 
scientists and experts whose scientific and practical activities are aimed at making cycling 
safer. It has offered the opportunity for exchange and discussion, for getting to meet old 
friends and new collaborators. Over the years, hundreds of contributions have 
addressed novel research questions and presented innovative practical solutions 
dedicated to the improvement of cycling safety.

The 2022 edition of ICSC was held in Dresden, Germany, hosted by TU Dresden, together 
with its co-host BASt. This book contains the extended abstracts of all contributions that 
were presented at the conference. 
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Figure 1: Mileage-based accident risk of being involved in an accident with personal injury for pedelec and bicycle 
riders of different age groups, year 2017. 
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Table 1:  Number of accidents and with the involvement of cyclists and pedelec riders. 
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Figure 1: Mean age of the pedelec riders and conventional cyclist from 2012 - 2020. 

Figure 2: Proportion of accidents per accident severity and bicycle type from 2012 - 2020. 
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1 INTRODUCTION
This study focuses on bicycle travel flow to prevent traffic accidents at non-signalized intersections. A bicycle's
behavior can be characterized by various parameters, such as travel speed, position, trajectory, acceleration, 
and deceleration. The prevention of vehicle collisions with bicycles traveling at 10–15 km/h was regulated in 
the Advanced Emergency Braking System (AEBS) for passenger cars in regulation No. 152 of the World 
Forum for Harmonization of Vehicle Regulations in the United Nations. Therefore, it is essential to analyze 
the characteristics of bicycles in a real traffic environment to prevent traffic accidents involving cyclists. Meijer 
et al. (2017) investigated bicycle behavior and characteristics using measurement devices installed on bicycles 
[1]. Ma et al. (2016) conducted a model of acceleration behavior on eleven cyclists using GPS data [2]. And it
was pointed out that there was a need for modeling research for more cyclists. Hirose et al. (2021) examined 
bicycles' both travel speed and trajectory as bicycle travel flows based on data obtained from fixed-point 
observations at a non-signalized intersection in Tokyo, Japan [3]. This used fixed-point observations to obtain
raw data of bicycle travel flows in a real traffic environment and reported various travel speed, trajectory, and 
acceleration/deceleration patterns for bicycles entering intersections. The purpose of this study was to construct 
a model of bicycle travel flows based on fixed-point observations. It could simulate actual bicycle behaviors
based on data that was obtained from measuring bicycle travel flows for 2828 cases from fixed-point 
observations. Furthermore, the data was divided into five patterns of bicycles entering intersections, and the 
accuracy of the model was evaluated for each pattern.

2 METHOD
2.1 Data for bicycle model
In this study, the proposed model was constructed based on data that was obtained from measuring bicycle 
travel flows for 2828 cases at a non-signalized intersection in Tokyo, Japan. Bicycle accidents were reported 
at this intersection due to restricted visibility by buildings at the corners of this intersection. The intersection 
had a stop line before entering the intersection, and the range of modeling was 10 m to the stop line in this 
intersection. The bicycles' traveling positions, speeds, and acceleration/deceleration were analyzed based on 
these data. Our previous study reported that most bicycles entered the intersection traveling at speeds between 
3.13 m/s and 3.76 m/s [4]. In addition, the acceleration/deceleration of bicycles was 0.08–0.34 m/s2 [4].

2.2 Classification of bicycle behavior
In this study, we focused on multiple patterns of both the speeds and acceleration/deceleration of bicycles 
traveling through the intersection. Note that the model accuracy would be decrease if all the data were targeted 
for the model. Therefore, to tackle this issue, we constructed multiple models. In the construction of driver 
models using nonlinear autoregressive exogenous (NARX), it has been confirmed that the accuracy of the 
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model decreases when the driving speed at the time of model construction differs from the driving speed 
targeted for modeling [5]. In addition, the data used in this study was classified into the following five bicycle 
behavior types. Type 1: entering the intersection at a constant speed immediately after deceleration. Type 2: 
entering the intersection after significant deceleration. Type 3: entering the intersection at a constant speed. 
Type 4: entering the intersection at a constant speed immediately after acceleration. Type 5: entering the 
intersection at a constant speed and after repeated acceleration/deceleration. The models were construct for 
each behavior type. 

2.3 NARX model 
In this study, we constructed bicycle behavior models using NARX. NARX uses machine learning to build a 
model of time-series data [5]. The inputs were the distance to the intersection’s stop line and the bicycle speed 
for the NARX, and the output was the acceleration/deceleration of the bicycle. From the analysis described in 
Section 2.1, bicycles had various accelerations/decelerations before passing through the intersection. Herein, 
we intended to construct models for acceleration/deceleration based on the natural behavior of bicycles. The 
internal parameters of NARX were as follows: the number of delays in input and output was 2; number of 
neurons in the middle layer was 2; and number of epochs was 300. The model's accuracy was evaluated based 
on the output of the trained NARX model. Evaluation was performed using the evaluation data, which were 
not used as training data. Because training data affect the model's accuracy, it is possible to build a high-
precision model efficiently even if it is constructed from a small amount of data. Therefore, this study used 
2000 data as the maximum training data. For comparison of the model's accuracy, three different models were 
constructed using 500, 100, and 50 data, respectively. The model’s accuracy was evaluated from the root mean 
squared error (RMSE) of the acceleration/deceleration. The RMSE was calculated from the measured data at 
the intersection and output of the NARX model. The smaller the RMSE value, the more accurate the model. 
Furthermore, MATLAB was used to construct the NARX model. 

3 RESULTS 
Figure 1 shows the relationship between acceleration/deceleration, calculated by the model, and distance to 
the stop line in the intersection. In Figure 1, the bicycle behavior types shown are types 1 and 3. Herein, the 
zero on the x-axis indicates the stop line of the intersection, and the acceleration/deceleration occurs 10 m 
before the stop line at the intersection. The blue line denotes the measured acceleration/deceleration of the 
cyclist at the intersection, whereas the red line denotes the output of the NARX model. Figures 1 (a) and (b) 
report an RMSE of 12.5 × 10-3, 2.84 × 10-3, respectively. Thus, it can be inferred the NARX model was able 
to simulate bicycle behavior in terms of acceleration and deceleration. Moreover, similar results were obtained 
for Figure 1 (a) where the RMSE was 12.5 × 10-3, which had a lower accuracy than that of Figure 1 (b). 

 
Figure 1: Result of NARX model for acceleration and deceleration of bicycle. 

Further, we examined the mean and standard deviation of the RMSE values, listed in Table 1, to evaluate the 
model accuracy for all data. Table 1 shows the values of both average and standard deviation of the RMSE 
values of the five bicycle behavior types; the numbers of training data were 2000, 500, 100, and 50. The results 
showed that the lowest accuracy was obtained with 50 training datasets, and similar accuracy was obtained 
with the 2000, 500, and 100 training datasets. These results indicate that the model accuracy for bicycle 
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behaviors at non-signalized intersections had less significant effects even if the NARX model was constructed 
using 100 training data. Reducing the number of training data to below 100 affected the model's accuracy. 
Regarding the characteristics of the bicycle behavior types, Type 3 had the highest accuracy; Types 2, 4, and 
5 had similar accuracy; and type 1 had lowest accuracy among all the types. 
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Here, “Types” refers to the classification of bicycle behavior; the values in the table are RMSE × 10-3) 

4 CONCLUSIONS 
This study focused on constructing a model of bicycle traffic flow that can simulate natural bicycle behavior. 
The data for constructing the model was obtained by measuring the bicycle travel flow for 2828 cases at a non-
signalized intersection in Tokyo, Japan. Models were constructed using NARX; the inputs were the distance 
to the stop line of the intersection and the bicycle speed, and the output was the acceleration/deceleration of 
the bicycle. Consequently, it was observed that the NARX model could simulate bicycle behavior in terms of 
both acceleration and deceleration. Furthermore, reducing the number of training data to below 100 affected 
the model's accuracy. The Type 3 bicycle behavior had the highest accuracy; Types 2, 4, and 5 had similar 
accuracy; and type 1 had the lowest accuracy among all the types. However, the number and types of bicycle 
behavior and intersections are limited. This study divides the bicycle behavior types into five, but it is necessary 
to investigate the model accuracy when further dividing the types. We should apply this model to other non-
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Table 1:  Class distribution of e-scooters in the dataset. 

Table 2:  Training, validation, and test set split of the dataset. 

Table 3:  Model performance on the test set, with a confidence threshold of 0.5. 

mAP

mAP
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mAP

Fig 1:  Sample frames from detections on the test set (anonymization added for privacy data protection). 
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(a) (b)

Figure 1: Top view of two types of bicycle-car interaction: (a) A bicycle-car crossing interaction with the location of 
the bicycle center, , and the car center, , in reference to the origin  of the global fixed coordinate system. The 
thick red horizontal line at the origin is the potential collision line. The initial distances from the origin are  for the 
bicycle and  for the car. The initial velocities are  for the bicycle and  for the car. (b) A bicycle following lead 
car scenarios with the location of the bicycle center, , and the car center, , in reference to the origin  of the 
global fixed coordinate system. The initial distances from the origin are  for the bicycle and  for the car. The 
initial velocities are  for the bicycle and  for the car. The constant acceleration of the car is , which is negative 
for the suddenly braking car scenario, zero for the halted car scenario and positive for the accelerating car scenario.

Table 1: Proportions of misclassifications in % between the Newtonian mechanics model and TTC or H for 
the four critical scenarios and for a flat dry road and a downhill wet road. 

crossing scenario 

bicycle following suddenly braking car scenario

bicycle following halted car scenario

bicycle following car accelerating from standstill
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Figure 2. Comparison of misclassifications between the Newtonian mechanics-based model and a TTC with a 
safety threshold of 1.2 s for the bicycle-car crossing scenario and a dry flat level road. The set of interactions 
considered are all combinations for an initial position of the bicycle ( ) between 2 to 21 m and an initial 
velocity of the bicycle ( ) between 5 to 45 km/h. All other parameters were kept constant. The green safe-safe 
area and dark red unsafe-unsafe area are combinations where the prediction of the TTC agrees with the 
outcome of the model, whereas the light red unsafe-safe area are combinations where the TTC predicts a safe 
but the model outcome is an unsafe interaction. The percentage as a fraction of the square area are: safe-safe 
66%, unsafe-unsafe 25%, unsafe-safe 9% (see Table 1). 
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Figure 1: Layout of the intersection considered 
for the simulator. 

Figure 2: Bike simulator and
VR setup for the experiment. 
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Figure 3: Cyclists' speed profile for different time to arrival (TTA) to the intersection values 
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Figure 1: Bird's eye view of the investigated situations (A), (B), and (C) and of the circuit that the participants rode 
along in the test-track study. 
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Figure 1: Observation site and interactions we are interested in.

 et al., 
Transportation Research Interdisciplinary Perspectives

Global status report on road safety 2018

Bernhaupt, Mueller et al. (Hg.) 2020 – Proceedings of the 2020 CHI

Information

 et al., 
Journal of Transportation Safety & Security

Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction

 et al., 
Transportation Research Part F: Traffic Psychology and Behaviour

Studies in Computational Intelligence, User Experience Design in the Era of 
Automated Driving

41



Fietstelweek

42



43



Preventive Medicine

European Journal of Transport and 
Infrastructure Research

Transportation Research Part F: Traffic Psychology and 
Behaviour

How safe is walking and cycling in Europe?

Safety Science
Mobiliteit in stedelijk Nederland [Mobility in Dutch urban areas]

De Staat 
van de Verkeersveiligheid 2020. Doelstellingen worden niet gehaald. [The State of Road Safety 2020. 
Objectives not achieved.]

44



45



46



Costs of physical activity 
are increasing – the societal costs of physical inactivity and poor physical fitness

The economic cost of physical inactivity in Europe

Programme for the promotion of walking and cycling

Finnish National Travel Survey 2016
Statistics on road traffic accidents

Transport Reviews

Injury
OTI annual report 2018

OTI annual report 2019

Injury Prevention

Accident Analysis & Prevention

Accident Analysis & Prevention

47



48



Figure 1: Frequency of accident type groups according to different sources 
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 Table 1:  Bicycle crash rates per insured vehicle year among Subaru vehicles with and without EyeSight. 
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Table 2:  Model results of association of EyeSight with bicycle crash risk  
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Figure 1: (left) Measurement locations: edge, node and square. (right) Pedestrian crossing at the node: TTC for 
e-scooter riders and cyclists for the selected area of interest. 
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Table 1. Reported use of protective gear the last time an e-scooter was used (%) 
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a) number of crashes 

b) number of trips 

c) crash rates
Figure 1 Bi-monthly number of e-scooter crashes, trips, and crash rates segmented by day and night 
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Table 1: Fixations distribution. 
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Figure 1: An example of cyclist's trajectory going through the considered underpass. 
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Figure 1: Visualization of all overtaking maneuvers available in the data. Panel (a) shows the overtaking speed of the 
driver. Panel (b) shows the lateral clearance drivers kept from the cyclist at the passing moment. Panel (c) shows the 
road locations of the overtaking vehicles at the passing moment, on top of the stitched background images from the 
cameras of the traffic sensors. Overtaking maneuvers in the Western direction in which the driver crossed the solid line 
(present in the red-shaded area) are marked with “x.” 

67



Saf. Sci.

Accid. Anal. Prev.

J. Wind Eng. Ind. Aerodyn.

Transp. Res. Part F Traffic Psychol. Behav.

Accid. Anal. Prev.

Accid. Anal. Prev.

et al.
Accid. Anal. Prev.

Transp. Res. Rec.

Transp. Rev.

68



69



p

70



Accident Analysis & 
Prevention

71



72



73



Washington Post

Ergonomics

Proceedings
of the National Academy of Sciences of the United States of America

74



75



Figure 1: The situation of the car driver in the questionnaire. 
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Figure 1: The four junction designs as shown in the simulation (top left: RFS, top right: RiM, bottom left: PI, bottom 
right: KV) 
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in the position of the cyclist in front of them

in the depicted traffic 
situation

Figure 1. Left: Example of one of the trial images used in study 1 (condition pictogram without chevrons, with parking, person cycling ahead in 0.8 m 
distance from parked cars). Distance between the lines 0.04 m. Right: Example of one of the trial images used in study 2 (condition sharrows, with 
parking, with tram tracks, person cycling ahead in 0.6 m distance from parked car). Distance between the lines 0.03 m. 
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Figure 1. Survey findings: prevalence and strength of barriers to riding a bike for transport 
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Table 1: ADFC Bike-Friendly Cities Rating, assessment questions of the cyling safety category 
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Table 2: Correlation of single assessment questions with the overall bicycle friendliness 
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Figure 1: Index of importance regarding cycling for different topics   

Figure 2: Accident rate vs. assessment of the perceived safety for different German cities 
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Fig 1. Mean values of perceived safety regarding different modes of transport. 
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Figure 1. Graphic summary of the investigation
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Figure 2. MCA with infrastructure and road safety categories 
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Figure 3. Categories of each variable from cluster analysis 
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Highlights 

 Determinants of wearing a helmet were examined in a cross-sectional study 
 PMT, TPB and HAPA were compared using PLS-SEM 
 PMT and TPB score well on the model criteria and applicability 
 For behavior, intention is the best predictor complemented by planning 
 Helmet wearers are also generally more cautious 

Keywords: bicycle helmet, protection motivation theory, theory of planned behavior, health action process 
approach, survey. 

1 THEORY 
Determinants of wearing a bicycle helmet were examined. Interindividual differences in helmet wearing were 
formalized with three different health psychological theories. The Protection Motivation Theory (PMT) [1], 
explains intention for a health behavior using subjective beliefs on the efficacy and costs of a specific health 
behavior, self-efficacy and risk and severity of negative consequences as well as benefits of not doing said 
behavior. The Theory of Planned Behavior (TPB) [2] uses attitude, subjective norms and behavioral control 
about a (health) behavior to predict intention to a behavior, which in turn can predict actual behavior. Lastly, 
the Health Action Process Approach (HAPA) [3] is similar to PMT, but puts more emphasis on self-efficacy 
while omitting costs of beneficial behavior. It includes both intention and behavior, as well as planning as an 
intermediate step between intention and behavior. 

2 METHOD 
The study was conducted in a cross-sectional way with 889 German-speaking cyclists. Data was acquired 
using a survey. Items were constructed on a theoretical basis with economy in mind, and responses given on a 
six-point Likert scale. Participants were recruited using a panel. All models were compared with partial least 
squares structural equation models (PLS-SEM). Furthermore, the influence of certain conditions on helmet 
wearing was inquired. The models were used in their original forms and in slightly adjusted versions to 
compensate for shortcomings identified in PLS-SEM. Criteria for adequate model fit were defined based on 
current literature. To estimate the effect of each determinant, path coefficients were calculated. 

3 FINDINGS 
Costs of beneficial behavior and benefits of maladaptive behavior were restructured into social and practical 
costs due to high cross-loadings. The two items of behavioral control did not correlate and were thus used as 
separate constructs. Perceived practical costs such as the helmet being uncomfortable, impractical and hard to 
deal with when not wearing it had the largest effect in determining intention, followed by overarching attitudes, 
the expectation of others, and risk assessment when riding a bicycle. Self-efficacy, social costs, and beliefs 
about the effect of helmets had no effect. PMT and TPB scored well on the model goodness-of-fit criteria and 
applicability, while HAPA does not provide a satisfactory explanation. All in all, PMT as well as TPB achieved 
an explained variance exceeding .50. In terms of behavior, the intention is the best predictor and can only 
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marginally be complemented by helmet-related behavior planning, while self-efficacy or behavioral control 
offer no additional explanatory value.  

 
Figure 1: PMT with path coefficients. 

 
Figure 2: TPB with path coefficients. 

Generally, the reported gap between intention and behavior can be considered small, about half of the 
respondents did not report a gap at all. Conditions, where special attention is paid to wearing a helmet, include 
long rides, slippery routes with much traffic, rides with sporting intent, or trips with children riding along. 
Most participants do not wear a helmet if the route is very short. Helmet wearers are also generally more 
cautious than non-wearers and, e.g., less likely to drive a car without a seat belt or use hard drugs. 

4 IMPLICATIONS 
Because of the cross-sectional nature of the study, no causal implications can be proposed. Nonetheless, big 
differences between helmet-wearing and non-wearing cyclists were identified. Since social costs were not 
identified as having an impact on helmet wearing, preventative campaigns focusing on the looks of helmets 
should not be funded. Instead, practical costs should be addressed by making it easier to wear a bicycle helmet 
and store it at a destination, for example by installing lockers for helmets close to bicycle parking stations, or 
making it possible to lock the helmet with an existing bike lock. Influencer campaigns on social media can 
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promote further bicycle helmet life hacks. While it is not clear that reducing costs will make people get a 
helmet, it is clear however that helmet wearers do so because they perceive fewer costs.  
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Figure 1. Lateral space required for cycling. 
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Figure 2. Lateral position of cyclists at cycle tracks with a width of 1 m, 1.5 m and 2 m.  
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Figure 1: The use of helmets among cyclist in Denmark, 2004-2021. 
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Figure 1: Proposed workflow to derive risk zones by mapping national crash statistic on interaction zones. 
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Figure 2: Enriched HD-map displaying the crash probability for the interaction zones within the two test intersections. 
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Table 1:  Summary description of the study data. 

Figure 1: Ground plane calibration for Westmoreland St./College St. (camera 6). 

Figure 2: Trajectory analysis of cyclist interactions with the inside track at Westmoreland St./College St. (camera 6).  
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Figure 1: Five clusters of riders and their related profiles, vehicles, behaviors, and equipment (selection). 
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Figure 1: Parameters 
examined in car-to-cyclist 

perpendicular conflicts 
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Figure 3: Cyclist avoidance behavior with car velocity  and cyclist velocity  when the cyclist is 
visible to drivers .

Table 1: Number of cases with and without cyclist 
and driver avoidance behavior. 

Figure 2: Relationship between  and the car velocity 
 at the time of brake onset  with/without cyclist 

avoidance behavior in near-miss incidents (the line shows 
the braking limit). Note: collisions are not included. 
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Accident Analysis & Prevention
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Figure 4: Cyclist velocity at the time when the cyclist is 
visible from the driver
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Bike-Barometer 2021-2022

M

Cycling Behavior Questionnaire
Short Big Five Inventory

Table 1:  Bivariate correlations among study variables 

Personality factors (traits) 
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Cycling behavior and safety outcomes 

Notes:

Table 2:  Hierarchical regression model predicting self-reported cycling crashes based on 
individual factors, personality traits and riding behaviors.

Model R2 F p

Personality factors (traits) 

Cycling behaviors 

Notes:
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Table 1:  Sample for all 10 focus groups in both cities. N = 37 persons. 
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Figure 1: The proposed topology of the level of smartness on bikes 
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Figure 2: A Topology of the used multibody simulation model. B Simulation results with step function 0- C
Simulation results with ramp 0- , rising slew rate of .

Figure 1: Measurement data showing strong additive oscillation noise. Taken from 
instrumented bicycle under hard threshold braking (rear wheel slowly lifting). 
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Motorcycle Dynamics

Vehicle System Dynamics Volume 51
Tyre and Vehicle Dynamics

Tire Science and Technology

Bicycle tire stiffness and damping

Figure 3: Visualization of the observed fork bending oscillation in the multibody simulation. There are two 
superimposed motions, the fork oscillates back and forth (2, 4) and the tire bounces up and down (1 ,3) 

resulting in a hopping motion. 
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Figure 1: The working prototype in “rigid” mode keeping itself upright. 
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Figure 2: The working prototype in “tilting” mode leaning against a wall. 
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Proceedings of the ASME 2020 International 
Design Engineering Technical Conferences and Computers and Information in Engineering 
Conference. Volume 4: 22nd International Conference on Advanced Vehicle Technologies (AVT)

Figure 3: How the seat trajectory changes with tilting linkage geometry. 

149



Figure 1: Procedure 
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Figure 2: Bicycle simulator in front of 10 large-format displays  
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(a)                                                                                            (b) 

Figure 1: Accident Environment Types (a) and City Environment Types (b). 
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Figure 2: Accident Environment Types in Barcelona’s accident locations. 
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Figure 1: Warning levels depending on the derived SCT until a crash scenario happens as long as there is no 
intervention from the cyclist adapted from [2]. 
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Figure 2: a) Test-setup with monitor, VR glasses and a customized handlebar; b) Editor for the scenarios; c) 3D scene 
as experienced by the user with visual warning signal presented on the smartphone interface. 
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Table 1. Numbers and means concerning several key variables, separately for all road types. The two right columns 
present the parameter estimates (and the standard error) as well as the Wald-Chi² for the main effects as compared to 
the reference category of roads with a speed limit of 30 km/h and no cycling infrastructure; and the interaction effects as 
compared to the reference category of 30 km/h * no cycling infrastructure. * = p < .05, ** = p < .01, *** = p < .001. 
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Table 1: List of the scenarios used as sections in the test ride. 
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As a <cyclist> I want to <be noticed> in order to <cross the road safely>. 
As a <cyclist>, I want to <be noticed> in order to <make other road users aware of me>. 
As a <cyclist> I want to <be seen> to <avoid a collision with other road users>. 
As a <cyclist> I want to be <protected from other road users> in order to <cross the road safely>. 
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As a <wrong-way cyclist> I want to <be noticed> in order to <cross the road safely>. 

Figure 1: Example of a technology application to protect vulnerable road users © FHH, Kontrapunkt 
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Figure 1: Trends 2010-2018 of Fatalities in crashes involving cyclists and other transport modes. Source: [2] 
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Figure 2: BeST-DAD scheme 
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A2)
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Vetyt

30 ± 3 °C
Vetyt

Vetyt

Vetyt test-rig at Politecnico di 
Milano. The frame holds the bicycle tyre on 
flat track. In this picture, tyre is mounted on 

high-stiffness laboratory rim.

Lateral force  as function of the slip 
angle . The result is obtained keeping the temperature 

of the flat track belt constant and equal to 30 ± 3 °C. 
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Lateral force (at left) and self-aligning 
moment (at right) as function of recorded 

temperature of belt, for slip angle equal to 3.3°. 

 - Lateral force (at left) and self-aligning 
moment (at right) as function of recorded 

temperature of flat track belt, for slip angle of 1°. 
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Figure 1: Comparison of the three scenarios "Manual", "Mixed traffic" and "Autonomous" 
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1 INTRODUCTION 
This research outlines the development of evaluating safety measures for bicycle traffic using state-of-the-art 
technology, which was started since 2020 as a four-year project. The project is funded by the Commission on 
Advanced Road Technology in the Ministry of Land, Infrastructure, Transport and Tourism(MLIT). 

While Japan has a high bicycle modal share of 12% (2010), bicycle-related fatalities are relatively high among 
other countries in the IRTAD database (2019). Under these circumstances, since 2007, various measures for 
bicycle traffic measures have been implemented to improve the safe bicycle traffic environment, including the 
revision of the Road Traffic Act and the formulation of a national plan to promote bicycle use.  

However, serious accidents involving bicycles are remained in some specific cases. According to the 
government's traffic accident analysis results (2019), right-hook crash at signalized intersections are one of the 
most serious types of collision involving bicycles, along with accidents at unsignalized intersections involving 
vehicles turning left, rear-end collisions, and single vehicle accidents due to off-road deviation. In particular, 
proactive safety measures are required at signalized intersections along arterial roads, where electric personal 
mobility vehicles traveling at speeds of up to 20 km/h are expected to share with bicycles in the future. 

In order to evaluate safety measures for bicycle-vehicle crashes, this project set the following goals. 

1) Identify factors influencing near-miss incidents and collisions through analysis of drive recorder data and 
accident statistical data. 

2) Detailed analysis of traffic conditions from the cyclist's perspective using a probe bicycle equipped with a 
LiDAR sensor. 
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3) Development of an experimental environment using a connected simulator for evaluation of cooperative 
driving behavior. 

4) Clarification of experimental conditions to evaluate different scenarios and conditions with and without 
intervention. 

5) Proposal of effective interventions to improve crash cases based on experiments. 

 

2 DEVELOPMENT OF TOOLS 
For this project, several engineering tools to perform simulator experiments with greater accuracy were 
prepared. 

2.1 Trajectories extracted from Faster R-CNN method 
Image analysis using deep learning techniques was conducted to understand the collision situation between le
ft-turning vehicles and bicycle traffic from the observed data. Using the extracted trajectory data, potential co
llision risks were calculated for each bicycle traffic pattern. Crash scenarios for simulator experiments were c
reated by adding the result of accident statistics data and drive recorder data of occupational drivers. 
 

   
Picture 1 A Case in Kameido   Picture 2 A Case in Oomorikita    Picture 3 A Case in Shibuya 

 

2.2 Probe bicycle with the LiDAR sensors 
A probe bicycle is a bicycle equipped with a GPS unit, video cameras, and the Velodyne Lidar VLP-16. the 
Lidar outputs three-dimensional point data that can reveal the shape and relative position of surrounding 
vehicles and other objects within 100 meters. By using this bicycle to collect data in actual conditions, it is 
possible to understand the requirements for inter-vehicle communication to prevent collisions. It can also be 
used to verify the accuracy of experiments in virtual space by obtaining data such as trajectories and relative 
distances from the actual road environment and comparing the data on the simulator. 

 

   
Picture 4 Prove bicycle.              Picture 5 Example data from Lidar on Bicycle.  
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2.3 Connected simulator system 
Two types of simulators were prepared for virtual experiments. The first one is a 180-degree cylindrical screen 
type with an additional rearview monitor, side mirror monitors, and a rear side window that can be projected 
by a projector. The second one is a head-mounted display that provides a 360-degree field of view. Driving 
simulator and cycling simulator are connected in the system allowing the user to freely drive each in the same 
virtual space, as well as generate other computer-operated vehicles. These simulator systems can be used for 
evaluation tests of cooperative behavior between subjects in situations where collisions are expected. An 
example of a virtual road space is to vary the corner components of a protected intersection to evaluate what 
combination of conditions is a reasonable measure of ensuring safety. 

 

   
Picture 6 Connected Simulator system with screen type.      Picture 7 Connected Simulator system with HMD type. 

 

3 CONCLUSIONS 
This paper provides an overview of the study and its component tools. Each progress result for this project will 
be shared at the conference. 
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Figure 1: HMI placement of the 92 concepts. 
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Figure 1: Screenshot of database. Upper part (“Auswahlbereich”) shows search template and lower part 
(“Ergebnisbereich”) shows resulting list of matching programs. 
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Table 1:  Changes in cycling activity in older adults and perception of safety during the COVID-19 pandemic by 
demographic and riding frequency.   
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1 INTRODUCTION 
E-scooters are a rather new mode of transport [1]. Nevertheless, in recent years lots of studies have been 
published. Replaced modes and consequential environmental impacts [2, 3] as well as specific injury pattern 
[4, 5] are important topics. Regarding shape, speed and usage, e-scooters are most similar to bikes. As a 
consequence, by law e-scooters use the same road space or infrastructure than bikes do. Concurrently, in recent 
years we experience a boom of cycling in cities [6] and a significant expansion of the bike infrastructure [7]. 
Requirements and frequency of usage on the bike infrastructure are growing in cities caused by increasingly 
diverse cyclists [8]. At the same time, the bike infrastructure is subject new requirements and additional 
pressure due to the implementation of e-scooters. In Germany, allowing e-scooters on bike infrastructure can 
be seen as a paradigm shift since for the first time a motorized vehicle is allowed to use the infrastructure.   
On this background, interrelation between e-scooters and active mobility (walking and cycling) are very 
important for the future use of the infrastructure and the ongoing transformation of urban mobility. Hence, we 
use a multi-method approach to investigate these potential conflicts and draw conclusions for regulation as 
well as improvement in the system.  

2 METHODS 
The multi-method approach contains three methodological components: First, we conduct an online-survey 
for users and non-users to evaluate usage behavior, motives and opinions as well as experienced conflicts 
within the system of active mobility [9]. Second, we analyze data of shared fleets to identify movement patterns 
and hotspots [10]. Third, we perform expert interviews to assess the appraisal of stakeholders involved. 

A Germany-wide online survey on the topic of e-scooters in road traffic was conducted in spring 2021. E-
scooter users and non-users participated. Participants were recruited via social media, newsletters, 
disseminators, and a cooperation with an operator of e-scooter sharing. The questionnaire covers a wide range 
of questions on e-scooter usage, including trip purposes, combination with public transport, and reasons of 
use. Furthermore, opinions on e-scooters in cities as well as experienced conflicts between e-scooter users, 
pedestrians and cyclists were provided by both, users and non-users. A total of 3,834 persons participated in 
the survey, of which 1,226 were e-scooter users. On that basis, we investigate motives to choose the e-scooter 
over other modes of transport. 
The trip data is based on repeated API-requests of e-scooter locations every two minutes for a timeframe of 
roughly one year in 2020 and 2021 in the city of Berlin, Germany. The data of each API-request includes, 
among others, geographic positions, vehicle identifiers and timestamps. By using this combination, start and 
end locations of vehicle movements can be identified. The derived date allows for spatiotemporal analyses of 
usage and identify according hotspots. In addition, information on substituted mode of transport derived from 
the online survey allows to estimate emission balance.  
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Stakeholders, such as city representatives, researchers and operators of shared e-scooters in several German 
and European cities are interviewed. We aim to collect their assessment on the topics supply, utilization, 
regulation as well as conflicts and safety. Thus, we aim to and trace different regulations and experiences in 
European case study cities. 

3 RESULTS 
Results of the online survey show that e-scooter users are rather young, male, employed and have a high 
education. Regarding trip purposes, compared with the representative German mobility study MiD [11], the 
share of trips with shared e-scooters to work and leisure activities corresponds approximately to the average 
of all modes in the MiD, while trips for private errands are much more frequent. With private e-scooters, share 
of trips for shopping and private errands match well with MiD data for all modes, whereas trips to work are 
far exceeded. The trip purpose ‘just for fun’ was not gathered in MiD survey.  

 
Figure 1. Trip purposes on the last trip with a sharing or private e-scooter and distribution of trip purposes in Germany 

from the MiD 2017. Source: own data, 2021, and [11]. 

Almost 90 percent of the participants already experienced conflicts between e-scooters and active modes and 
specified information regarding the type of the conflict, location, parties involved, and reason for the conflict. 
Thereby, most conflicts are experienced as pedestrian while 57.2 percent of cyclists specified at least one 
conflict. Figure 2 gives an overview about the type of conflicts experienced by pedestrians and cyclists. The 
fullpaper and the oral contribution will include comprehensive information about the information specified 
(type of conflict, location, parties involved, reason for conflict). 

 
Figure 2. Experienced conflicts as pedestrian and cyclist 
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The analyses of trip data reveal the spatial distribution of e-scooters in the city of Berlin. Also, we evaluate 
temporal differences. These analyses allow to identify areas of special importance for the conflicts of interest 
for further research.  
Expert interviews allow to widen the perspective and include the assessment of stakeholders involved. Similar 
to users in the online poll, the experts see parked e-scooters as bigger problem than moving e-scooters. In 
addition, improper using behavior is stated to cause problems. While the regulatory frameworks de facto differs 
between the case study cities, most experts agree on desired regulation measures. These refer to general 
organization of the service in terms of special use permissions or concessions as well as measures like 
automated speed reductions, zoning and integration into public transport.  

4 CONCLUSIONS 
This contribution provides insight into the particularities of E-scooters as a new mode of transport. We deliver 
comprehensive information on the state of knowledge regarding e-scooters from different perspectives. In 
addition, we investigate the interrelations between bicycles and e-scooters as traditional and new users of the 
bike infrastructure using mixed methods. The main findings of the research are: The utilization is divers and 
shared e-scooters are used differently than privately owned. The potential for conflicts is large. Thereby 
problems caused by parked e-scooters are much bigger than those caused by driving e-scooters. Further 
reaching regulation is desired by most stakeholders.  
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Figure 1: Accident type, Accidents with conventional bicycles (left), accidents with pedelecs (right) 
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Figure 2: Vehicle stock according to pedelec/bicycle sales figures for 7 years of use 

Table 1:  Accidents regarding stock. [3,7] 
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Figure 1: Workflow. 
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Table 1: Detection and counting technologies analysed with their main advantages and limitations. 
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Figure 1 Boxplot of the 85th centiles of the speed (top left) and acceleration (top right) of each cyclist, distance (bottom 
left) and TTC15 (bottom right) of each cyclist-pedestrian interaction per site 
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Figure 1. Panels A & B: Illustration of two intersection tiles. The blue dot indicates the participant’s approach direction 
(always at the bottom). Blue lines and arrows indicate accessible intersection arms; red dots indicate arms that were 
blocked and covered in the respective instance. Panel C: Screenshot of the top down perspective as seen by the 
participants. The small bicycle indicates the current location. The light bluish arrow reflects the current travelling 
trajectory and speed. Only a frontal field of view of 200° is visible, all other areas are covered in black (as well as areas 
where the line of sight is broken, for example by one of the cars). The stylized navigation system in the right bottom corner 
indicates that the participant should take a 90° right turn (which is not visible from the cyclist’s current position and gaze 
orientation). Panel D: The subsequent evaluation of the intersection shown in Panel C, consisting of an enlarged version 
of the navigation system, now showing all accessible intersection arms. Participants are requested to indicate the 
attention they allocated to each intersection arm on a 5-point Likert scale. 

215



Figure 2. Means (and standard deviations) of the hazard estimate for the entire intersection, separately for the different 
goal directions, the total number of intersection arms, as well as the number of arms left or right of the goal direction. 

Accid. Anal. Prev.

Accid. Anal. Prev.

Safety
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Figure 1: Scenarios simulated with PC-Crash. 
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Figure 2: Variation of chest acceleration and HIC as a function of motor vehicle speed.. 

Accident Analysis and Prevention

PLoS ONE
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Accident Analysis and Prevention 

SAE Int. J. Advances & Curr. Prac. In Mobility 
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Interactive Accident Atlas

Table 1: Regression Coefficients and Significance Levels of Entire Intersection APM 

Figure 1: Intersection Classification 
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Figure 1: Evolution of micromobility users (a) and crashes (b) in urban areas in Spain (2016-2020). 

 Figure 2: Distributions of users involved in micromobility crashes (2016-2020). 
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 Figure 3: Micromobility crashes distribution based on severity and users (2016-2020). 

Figure 4: Crash types distribution involving only one PMV in Spain (2016-2020). 

Transportation Research Part D

Sustainability
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Figure 1 Boxplots of mean user speed per category of road user for different time intervals (in min) since the shuttle 
passed (“0” means the shuttle was present when the road user passed) at the Coubertin (top) and Ontario (bottom) sites 
in Montreal (n in the table denotes the number of road users per time interval). 
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Figure 2 Boxplots of 85th and 15th centiles of acceleration (respectively top and bottom) per category of road user for 
different time intervals (in min) since the shuttle passed (“0” means the shuttle was present when the road user passed) 
at the Coubertin site. 

Transportation Research Part C: Emerging Technologies 

Traffic calming: benefits, costs and equity impacts

Health & place
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changes in cycling over time .

Figure 1 comparison of two counter sources and two survey sources for measuring cycling. 

230



Figure 2 comparison of Eco Counter and video data for measuring and micromobility (Thursday, June 2021). 

Road user behaviour analyses based on video detections: Status and best practice 
examples from the RUBA software Proceedings of the 24th ITS World Congress

App-based automatic collection of travel behaviour: 
A field study comparison with self-reported behaviour.
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Table 1:  Descriptive statistics for bicycle-LPV crashes (selected variables shown only).
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Table 2:  MXL severity model results (selected variables shown only).
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Figure 1: Three conflict scenarios between cyclist (green) and vehicle (red). 
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Environmental Health
Examining the cycle: How perceived and actual bicycling risk influence cycling 

frequency, roadway design preferences, and support for cycling among bay area residents.

Transportation Research Interdisciplinary Perspectives

Accident Analysis & Prevention

Fahrradsimulator:
Anwendungsorientierter Erfahrungsbericht zu Aufbau und Nutzung.

Transportation Research Part F: Traffic Psychology and Behaviour

Sensors

Personality and Individual Differences

International 
Journal of Human–Computer Interaction

5. Workshop Fahrerassistenzsysteme

Presence: Teleoperators and Virtual Environments

Behavior Research Methods

Nature
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Keynote speech II International Cycling Safety Conference
Skader på sykkel og elektrisk sparkesykkel i Oslo. Resultater fra en registrering i 

2019/2020
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Figure 1: An image of an early prototype at the University of Wisconsin-Milwaukee.
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Figure 2: Example stiffness raw data, smoothed line, and fit curves for a particular tyre, rim, 
vertical load, and inflation pressure. 

Figure 3: Example summary data showing how stiffness varies with inflation pressure and 
vertical load.
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Vehicle System Dynamics

Journal of Mechanical Science and 
Technology

Tyre and Vehicle Dynamics
Proceedings of the IMechE, Part C, Journal 

of Mechanical Engineering Science

Proc. R. Soc. A

Figure 4: Stability eigenvalues for Meijaard’s Benchmark Bicycle with Sharp’s motorcycle 
tyres.
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Figure 1: Time-series data in the presence of perturbation; in the left panel, the steering assist 
is activated (one random trial with the steer assist condition reported in the abstract); in the 
right panel, the steering assist is deactivated (one random trial of without the steer assist 
condition reported in the abstract). The orange vertical line is when the disturbance is applied. 
data in presence of perturbation; in left panel the steer assist is activated (one random trial of 
with the steer assist condition reported in the abstract), in the right panel the steer assist is 
deactivated (one random trial of without the steer assist condition reported in the abstract). The 
orange vertical line is when the disturbance was applied. 
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Table 1:  We present the average standard deviation (SD) and range of trajectories of two trials in the table. 

et al.
Am. J. Physiol. - Regul. Integr. Comp. Physiol.

et al.
JMIR Public 

Heal. Surveill.
et al.

Patient Saf. Surg.
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Evaluating specific competences 

Figure 1 Turning left with priority 

Figure 2 Turning left with priority 

Evaluating specific situations 
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Figure 3 Right-of-way Figure 4 Roundabouts 

Verkehrsindex Basel

Becoming Urban Cyclists: From Socialization to Skills

Environ. Plan. 
Econ. Space

Cycling and Society

Traffic Inj. Prev.
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Figure 1: Research on the choice of infrastructure and dynamic stability tests. 
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Taxonomy and Classification of Powered 
Micromobility Vehicles

Untersuchung zu Elektrokleinstfahrzeugen

Elektrokleinstfahrzeuge-Verordnung
Light motorized vehicles for the transportation of persons and goods and 

related facilities and not subject to type-approval for on-road use - Personal light electric vehicles 
(PLEV) - Requirements and test methods, 2021

Wissenschaftliche Begleitung der Teilnahme von Elektrokleinstfahrzeugen am Straßenverkehr

Unfallgeschehen von Elektrokleinstfahrzeugen (E-Scooter) 
2020

Verkehrsunfälle - Fachserie 8 Reihe 7 - 2020 
Accident

Mechanisms and Injury Patterns in E-Scooter Users: A Retrospective Analysis and Comparison With 
Cyclists

Topic Guide: Safe use of micromobility devices in urban 
areas

Safe Micromobility

Figure 2: Misuse of PLEV. 
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Figure 1: Places where the respondents felt on their bicycles (n=90) 

Figure 2: Relationship between experiments of falling on bicycles and positions of seats for children (n=152) 
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Figure 3: Typical dedicated bicycle traffic lanes in Tokyo 

255



256



Figure 1: Illustration of methodology for injury localisation based on GIDAS and AIS 2015 
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Figure 2: Frequency of soft tissue injury locations on the 
face. Absolute injury count and percentage are expressed 

as count | percentage. 

Figure 3: Frequency of soft tissue injury locations on the 
scalp/head. Absolute injury count and percentage are 

expressed as count | percentage.

International Journal of Crashworthiness

International Journal of Epidemiology
Accident Analysis & Prevention

Proceedings of International Research Council on the Biomechanics of Injury 
Conference
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Figure 1: Examples of given scenarios to the interviewee. The left photo (a) is an example of a shoulder lane, and the 
right photo(b) is a bike lane. 
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From bike to electric bike level-of-service.

Consumer acceptance of shared e-scooters for 
urban and short-distance mobility.

Electric scooters accidents: Analyses of two Swedish 
accident data sets.

Electric bike navigation comfort in pedestrian crowds.

Towards an electric scooter level of service: A review and framework.
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actual overtaking distance
the infrastructure

Figure 1: Visualization tools for distance measuring1. Figure 2: Different visualization2.

‘Are there systematic correlations between overtaking distances 
and network-side properties of the road space?’. 
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Figure 3: correlation between average cycling speed and type surface. Source: own illustration 

Proceedings of REAL CORP 2021, 26th 
International Conference on Urban Development, Regional Planning and Information Society
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Figure 1: Example of 
driver-overtaking-cyclist.

Figure 2: Passing angles and 
distance, heading difference.

 

Figure 3: Google Street View of the uniD dataset 
location
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Figure 2: inD and uniD dataset: Distributions of passing distance (left) & driver passing speed and their scatterplot. 
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Transport Reviews

Fatality Analysis Reporting System (FARS)

2020 IEEE Intelligent Vehicles 
Symposium (IV)
The inD Dataset

Accident Analysis & Prevention
Drone Dataset Tools

The uniD Dataset
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Figure 1: Average daily cycling distances covered by 
HTS respondents in various weather conditions, by 

gender and age (N=HTS respondents) 
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Figure 2: Cyclist falls per 10,000 km travelled in different weather conditions by gender and age reported in field 
survey during snow/ice (top left), field survey during other weather (top right), online survey during snow/ice 

(bottom left), and compared for the three surveys (bottom right, total only). 
(N=Respondents, *No data about falls on snow/ice) 

Active Mobility: Bringing 
Together Transport Planning, Urban Planning, and Public Health

Methodenbericht zum Forschungsprojekt 
„Mobilität in Städten – SrV 2018“

Potential of transferring car trips to bicycle during winter

Single-bicycle crashes: An 
in-depth analysis of self-reported crashes and estimation of attributable hospital cost
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Figure 1: Medians of importance of route choice factors for both studies (left). Box plot for reported number of 
alternative routes (top right). Box plot for subjective estimation on difficulty of decision (bottom right). Significance *- 

p >.05, ** - p > .01, n.s. – not significant. OD – origin-destination pair. 

272



U z
p r

273



274



Table 1: Clip snippets of the six different rule violations per condition rated by the participants. 
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