16,288 research outputs found

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    A Distributed Sensor Data Search Platform for Internet of Things Environments

    Get PDF
    Recently, the number of devices has grown increasingly and it is hoped that, between 2015 and 2016, 20 billion devices will be connected to the Internet and this market will move around 91.5 billion dollars. The Internet of Things (IoT) is composed of small sensors and actuators embedded in objects with Internet access and will play a key role in solving many challenges faced in today's society. However, the real capacity of IoT concepts is constrained as the current sensor networks usually do not exchange information with other sources. In this paper, we propose the Visual Search for Internet of Things (ViSIoT) platform to help technical and non-technical users to discover and use sensors as a service for different application purposes. As a proof of concept, a real case study is used to generate weather condition reports to support rheumatism patients. This case study was executed in a working prototype and a performance evaluation is presented.Comment: International Journal of Services Computing (ISSN 2330-4472) Vol. 4, No.1, January - March, 201

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks

    Full text link
    Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connect to the Internet which is called Internet of things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL.We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
    • …
    corecore