437 research outputs found

    A SPIN-based model checker for telecommunication protocols

    Full text link

    Comparison of two approaches for test case generations from EFSMs.

    Get PDF
    Testing is one of the vital steps in software development process. To convey testing, test cases need to be generated to check whether an implementation conforms to the design specification. Design specifications are usually expressed as Extended Finite State Machines (EFSMs) and test cases are actually a path from the initial state to a specific state on that EFSM. One of the most difficult issues of test case generation for EFSMs comes from the fact that infeasible paths exist on EFSMs. Two approaches have been developed in earlier 90s\u27 to generate feasible paths from EFSMs: one is to develop algorithm to search EFSMs directly to generate feasible paths, and the other is to expand EFSMs into Finite State Machines (FSMs), followed by applying FSM techniques to generate feasible paths. Model checking method was proposed recently as a new approach for test case generation. It has some advantages over previous methods such as efficiency on number of states explored. However, by nature, it also has some disadvantages such as time inefficiency. Here we present a comparison between the model checking method and the previous expansion method from pragmatic aspect by running experiments. To carry on this comparison, we implemented a classical expansion algorithm, defined the translation from EFSMs to Promela models, and used SPIN model checker in the model checking approach. We have run sufficient number of test case generation experiments, compared the two approaches on their time consumptions, numbers of states explored, performance changes when EFSMs\u27 sizes increase etc. By this comparison, we can see the tradeoff between time consumptions and the number of states explored in the two approaches and observe their performance changes while EFSMs change. Finally, we show the existence of the trade-off between state efficiency and time efficiency of the two approaches, the impact of domain size of variable value, the native drawbacks of the expansion algorithm and the performance improvement by tuning Premela models.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .T36. Source: Masters Abstracts International, Volume: 44-03, page: 1415. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research

    Testing in context: Efficiency and executability

    Get PDF
    Testing each software component in isolation is not always feasible. We consider testing a deterministic Implementation Under Test (IUT) together with some other correctly implemented components as its context. One of the essential issues of testing in context is test executability problem, i.e., tests generated solely from the specification of the IUT may not be executable due to the uncontrollable interaction between the IUT and its context. On the other hand, generating a test sequence from the abstract specifications of a stateful IUT and its context often suffers from the well-known state explosion problem. In this dissertation, we solve the problem of generating a minimal-length test sequence from a given specification of a stateful IUT and its embedded context. By adopting model checking techniques, we avoid the state explosion problem during test generation and avoid the test executability problem during testing in context
    corecore