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Abstract 

Testing each software component in isolation is not always feasible. We consider test

ing a deterministic Implementation Under Test (IUT) together with some other correctly 

implemented components as its context. One of the essential issues of testing in context 

is test executability problem, i.e., tests generated solely from the specification of the IUT 

may not be executable due to the uncontrollable interaction between the IUT and its con

text. On the other hand, generating a test sequence from the abstract specifications of a 

stateful IUT and its context often suffers from the well-known state explosion problem. In 

this dissertation, we solve the problem of generating a minimal-length test sequence from a 

given specification of a stateful IUT and its embedded context. By adopting model checking 

techniques, we avoid the state explosion problem during test generation and avoid the test 

executability problem during testing in context. 

Keywords: finite state machines, conformance testing, test generation, testing in context, 

test sequences. 
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J INTRODUCTION 1 

1 Introduction 

Finite State Machines (FSMs) have been widely used to model the abstract behavior of 

sequential circuits [32, 74], lexical analysis systems [51], and more recently, communications 

protocols [1, 11, 63, 85]. Furthermore, some more expressive specification languages such as 

Specification and Description Languages (SDLs) [50], Estelle [49], and Statecharts [69] are 

based on extensions of FSMs. The demand of ensuring the correctness of computer systems 

motivates the research on conformance testing in a setting where system specifications are 

given in FSMs or FSM-based languages [1, 6, 11, 32, 38, 59, 63, 77, 80, 85]. 

Given an implementation under test (IUT) for which we can only observe its input/output 

behavior, conformance testing can be conducted to improve our confidence that this im

plementation conforms to its specification. Conformance testing is often carried out by i) 

constructing from the specification of the system a test sequence, which is an input sequence 

with an expected output sequence; ii) applying the input portion of this sequence to the 

IUT, which is considered as a black box, according to the given test architecture; and iii) 

determining whether the actual output sequence is produced as expected. 

Given specification M describing the expected behavior of the IUT, we can imagine 

that the IUT behaves according to a certain abstract machine N in the same format. In 

this setting, conformance testing amounts to establishing the correspondence between M 

and N. In doing so, it is essential to understand the fault models. In the following, for 

convenience, we also use the IUT to represent the implementation FSM N. 

A faulty IUT falls into one of the following categories. 

• output faults: the IUT produces an incorrect output in response to an input in a 

state. 

• transfer faults: the IUT ends at an incorrect state after applying an input sequence. 

• hybrid faults: the IUT has both output faults and transfer faults. 

Based on these fault models, a series of fault coverage criteria and test generation methods 

have been proposed, see [53, 56] for comprehensive surveys on this topic. 



1 INTRODUCTION 2 

Testing an IUT in isolation is not always feasible in the unit testing. There are situations 

when we have to test the IUT together with some other components. As pointed out in 

[73], this can be the case when the IUT is an embedded component of a complex system, 

called a context of the IUT, only through which the IUT can be accessed. As another 

example, suppose we want to test a web-based implementation WSi, which makes use 

of web service WS^- Due to the difficulty in providing input and observing output all 

encapsulated according to certain protocol such as SOAP [91], testing WS\ invokes the 

necessity of activating WS2- Here, again, WS2 is considered as the context of WS\. In 

general, the context can be the system components, the drivers, the stubs, the test beds, 

and so on. 

Obviously, it is worthful to study how to test an IUT within its context. Petrenko et 

al. first presented a test generation framework for an embedded IUT whose communication 

with the environment has to be carried out through its context [72, 73]. In particular, 

the problems of test executability and fault propagation are addressed in the presence of 

the context. The test executability problem describes the situation where a test sequence 

generated from a given specification solely without taking into account the behavior of 

the context may not be executable when testing in context, and the fault propagation 

problem describes the situation where the faults of the IUT are masked by the context. In 

[23, 24, 57, 70], different approaches are discussed for solving the problem of translating 

internal tests derived for an embedded component into external observable tests of the 

entire system. 

Different from their application domain, our work is applicable to an IUT with an 

embedded context, i.e. it does not communicate with any component other than X. In 

our current work, we consider the problem of FSM-based deterministic testing on (2,XC) 

which is an IUT implementation X together with a correct context implementation Xc. 

The communication port between X and Xc is not controllable but observable. This means 

that the tester can neither provide input to the IUT using this port nor stop an input 

from the context to the IUT. It can, however, observe all the input from and all the 

output to the context. The specification of I is given in terms of an FSM. Xc can be 

either stateless or stateful. When Xc is stateless, its specification can be given in form 
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of a set of (request, response) pairs. When 2C is stateful, we assume that it is specified 

by a specification language or a structural modelling language. In both cases, we present 

methods to generate a minimal-length test sequence that can be used to test (2,2C) without 

encountering test executability problem during testing. 

When the context is stateful, the existing test generation techniques of testing in context 

often suffer from the state explosion problem. This is caused by requiring the computation 

of the product of several auxiliary components in addition to the model of the specification 

of 2. The ultimate goal of our work is to avoid generating the operational model of the 

given specification of 2C (if a higher level specification is provided) and constructing the 

global model of 2 and 2C. In order to do so, we employ model checking tools to retrieve 

necessary information from the context specification so that test sequences for (2",XC) can 

be generated. The idea of using a model checking tools to generate tests is not new. In the 

literature, various applications have presented. Ammann et al. combined model checking 

with mutation analysis to generate test cases [2]: after a specification model is mutated by 

applying mutation operators, a model checker generates counter-examples to distinguish 

the mutant models from the original specification model, and thus test cases are derived. 

Gargantini and Heitmeyer presented a technique to construct test sequences upon a special 

class of so-called Software Cost Reduction requirements, by using a model checker [26]. In 

order to save memory from a huge predefined test suite, Tretmans and de Vries [17] used 

model checker SPIN to generate tests during testing for non-deterministic stateful systems. 

How to generate test cases according to some data flow test selection criteria is discussed 

in [45]. In [75], Goltz et al. used a model checker to generate a shortest distinguishing 

sequence of an EFSM. 

Note that it is straightforward to extend our work to a more general case where the 

embedded context consists of a set of components, each having its own port to communicate 

with I . In terms of applying model checking tools for test generation, we have added one 

more example along this line of research, particularly for testing in context. 

We consider conformance testing of deterministic systems in this dissertation. The 

readers who are interested in conformance testing of non- deterministic systems should refer 

to [25, 35, 36, 58, 71, 82, 96J. 
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The rest of the dissertation is organized as follows. In Chapter 2, we give a brief in

troduction to FSMs and the related notations and terminologies that will be used later on, 

followed by a discussion of the fault models of FSMs. The main issues of testing in context 

are addressed in Chapter 3. Among those issues, four widely used fault coverage criteria 

together with some existing test generation and optimization techniques are discussed in 

Chapter 4. In Chapter 5, test executability problem is explained. Test generation tech

niques for an IUT with stateless and stateful embedded context are presented in Chapter 

6 and 7, respectively. In the end, we conclude our work with some final remarks. 

2 Finite state machines and related fault models 

There are various formalisms to describe the expected behavior of a stateful system. Suit

able for different levels of abstractions, they range from formal specification languages such 

as process algebras, to structural/operational modelling languages such as (input/output) 

labelled transition systems (LTSs) and Finite State Machines (FSMs). Here, we use FSMs 

to show the main issues related to testing in context. 

2.1 Finite s tate machines 

There are two types of FSMs: Mealy machines [61] and Moore machines [66]. The difference 

between them lies in how an output is determined: For the former, an output is determined 

by the current state and an input; while for the latter, an output is determined by the 

current state alone (not directly by an input). Usually, the number of states in a Moore 

machine is greater than or equal to that in an equivalent Mealy machine. We adopt Mealy 

machines since they are more natural to model software systems. As mentioned in the 

Introduction, we consider deterministic FSMs. In order to explicitly associate each input 

and output with a port (an interface to communicate with a certain component), we use 

n-port FSM to describe the abstract behavior of the systems with n ports. 

Definition 1 (Finite state machines) A deterministic n-port Finite State Machine (also 

called finite state machine for short) is defined by a tuple (S,I,0,S,X,SQ). 

• S is a finite set of states where SQ € S is its initial state. 
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• I = \Ji=i U, where Ii is the input alphabet of port i (i = 1 , . . . , n). 

Being abstract, these input symbols encapsulate the information of the communication 

channels. Thus, without loss of generality, we can assume that the input symbols at 

different ports are distinct, i.e. Ii nlj = 0 for i ^ j . 

• O = II"=10j where 0{ is the output alphabet of port i (i = 1 , . . . , n). 

Each o £ O is a vector of outputs denoted by o = (o\,... ,on) where Oi € Oi for 

i = 1 , . . . , n. We do not consider the order in which we observe output Oi and Oj at 

different ports. When there is no output at a port i, we use a distinct symbol — to 

denote it. 

• S is the transition function that maps S x I to S, and 

A is the output function that maps S x I to O. 

A "slow environment" assumption is usually used in the literature. That is, whenever 

an input reaches the system, the system will always prompt the output for it before the 

second input can reach the system. 

The inputs and the outputs are abstract symbols. The discussions on data types and 

complicate data structures in the inputs and outputs are beyond the scope of this disser

tation. 

Note that functions A and S can be partial, i.e., it is possible that there exists i 6 / for 

some s E S such that A(s, i) = null and 5(s, i) = null. We will use 5(s, x) = null to denote 

that there is no image of 6 for the given state s of S and the given input x of I. In this case, 

we also have A(s, x) = null. Furthermore, we extend the input of A and 8 from an input 

alphabet to a sequence of input alphabets with their meanings obtained straightforwardly 

from the original ones. 

For simplicity, we assume the number of states of M is n and the states of M are 

enumerated, giving S — {so,..., s„_i}. 

A transition t is defined by a tuple (si, S2, x/y) in which si is the starting state, x is the 

input, «2 = <Hsi>x) is the ending state, and y = X(si,x) is the output. The input/output 

x/y is called the label of t. Note that when an FSM has only one port or there is exactly 
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one output for each transition of an FSM, we use a single output alphabet instead of an 

output vector to denote the output for simplicity. 

Let U be a transition for 1 < i < k. A path p = t\ t<i . . . £& is a finite sequence of 

transitions such that for k > 2, the ending state of U is the starting state of U+\ for all 

1 < i < k — 1. A tour is a path whose starting state and ending state are the same. For 

convenience, we use start(p), end(p), label(p), and in{p) to denote the starting state, the 

ending state, the label, and the input portion of the label of p, respectively. 

Let pi and p2 be two paths of M. When end{p\) and start{p2) are the same, we use 

pip2 to denote the concatenation of p\ and pi- For clarity, sometimes we also use p\ o p2 

for pip2. For pi = (si, sh, Ti) and p2 = (sh, sr,T2), we have p = pi o p2 = (sx, sr, 7\ o T2). 

A state s £ S is reachable if there exists a path starting from so and ending at s. We 

consider FSMs where all states are reachable. 

An FSM is completely specified if functions A and 5 are total; otherwise, it is partially 

specified. When an FSM M is not completely specified, it is possible to make M completely 

specified. Two typical ways of doing so are named after [16]. 

• angelic completion: for any (s,x) £ domain(5), add transition (s,s,x/null). 

• demonic completion: i) add an erroneous state serr; ii) for any (s, x) ^ domain(8), add 

transition (s,serr,x/nult); and hi) for any x £ I, add transition (serr,serr,x/null). 

The completion, however, slightly changes the meaning of the FSM and is not always 

acceptable. 

Two states Si and Sj are equivalent if, for every input sequence a, A(sj,cr) = X(sj,a). If 

A(SJ, a) ^ X(SJ, a) then a distinguishes between Sj and Sj. An FSM M is minimal if every 

state can be reached from the initial state of M and no two states of M are equivalent. 

Since only deterministic FSMs are considered, we can easily obtain a minimal FSM from 

any given FSM [27, 46]. In the following, we assume that all given FSMs are minimal. 

When the specification of an IUT is given in the form of an FSM, we would like to 

automatically generate an efficient and effective test sequence from it. Here, a test sequence 

refers to an input sequence, which is typically obtained from a path of the given specification 

FSM. That is, our goal is usually to find a path in the given specification FSM such that 
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Figure 1: An example FSM M0 
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Table 1: Transitions in MQ 

the input portion of this path is the desired test sequence and the output portion of this 

path is the expected output sequence. 

Example 1 An example 1-port FSM MQ is given in Figure 1. Here, S = {so,si,S2J, 

/ = {a, b, c}, and O = {0,1}. Transitions in Mo are listed in Table 1. <> 

2.2 Fault models 

Fault models can serve as a guide to test generation and fault coverage analysis, as claimed 

in [89]. When, a specification M and its IUT have the same input alphabet and output 

alphabet, faulty IUTs can be classified into three types. 
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(A) Specification M0 

a/0> 

(£ 

c/0, 

^ 

a/1 

a/0 
-WO. 

kbAV ,b/(V 

>oL 

C/0 

iJc/0 

(B) An [UT with an output fault 

a/i( 

~Z&--~. 

* ° / W \b/o\b/o)c/0 

^^l/^aii^V IJ 
a/o( 

^ @ T - \ 
M/cJ V n T/0 

_ ! / a/1 XAJ 
fir :©""") 

(C) An 1UT with a transfer fault (D) An IUT with a hybrid fault 

Figure 2: Faulty IUTs of example FSM M0 

• An IUT has only output faults if M can be obtained from the IUT by changing the 

outputs of one or more transitions in the IUT. 

• An IUT has only transfer faults if M can be obtained from the IUT by changing the 

ending states of one or more transitions in the IUT. 

• An IUT has hybrid faults if M can be obtained from the IUT by changing the outputs 

and/or the ending states of one or more transitions in the IUT. 

Here, we do not consider the fault type of extra states, i.e., the number of states of 

the implementation FSM will not exceed that of the specification FSM. We argue that 

this assumption is reasonable. As we know, the purpose of the conformance testing is to 

ensure that the behavior of the implementation conforms to the behavior specified by the 

specification. The existence of the extra states means the existence of the extra behavior 

which is not specified by the specification, and thus will not be tested. 

Example 2 Figure 2 shows three faulty IUTs of Mo- The shaded area surrounding an IUT 

represents the black box where only inputs and outputs can be observed. When transition 

(si, S2,a/1) in MQ is concerned, IUTs shown in Figure 2(B), (C), and (D) have an output 
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(N) - ASP: abstract N-service primitive, an implementation-independent 
description of an interaction between a service-user and a service-
provider at an (N)-service boundary. 
PDU: protocol data unit. 

Figure 3: A test architecture of distributed systems [48] 

fault, a transfer fault, and a hybrid fault, respectively. • 
Based on the above fault models, we want to automatically generate an effective and 

efficient test sequence from a given specification, i.e., it is desirable to generate a test 

sequence as short as possible while detecting as many faults as possible. This is known as 

the fault coverage problem and the test optimization problem. We will discuss the existing 

solutions to these two problems in Chapter 4. 

3 Main issues in testing in context 

Ideally, an IUT can be tested in isolation, i.e., a tester can apply a desired input directly to 

the IUT and observe the actual output produced by the IUT directly. In practice, however, 

it is not always feasible: the IUT is often tested through its environment, called context. 

For example, in the distributed test architecture shown in Figure 3, the underlying network 

is the context of the IUT since it has to be used when the lower tester interacts with the 

IUT. 

According to the ways of the interactions among the tester, the IUT, and the context, 

the architectures of testing in context can be classified into three types as shown in Fig-
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Figure 4: Context-based testing: types of test architecture 

ure 4. Here, for simplicity, we demonstrate these architectures by treating the context as 

one component even though it may include multiple components instead. Petrenko et al. 

considered the situation where the IUT is an embedded component whose communication 

with the environment has to be carried out through its context, as shown in Figure 4(A). 

In [72, 73], they presented a framework of testing an embedded component in context. 

Along this direction, different approaches [23, 57, 70] are discussed for solving the problem 

of translating internal tests derived for an embedded component into external observable 

tests of the entire system. Different from their test architecture, we consider how to test 

an IUT that is associated with an embedded context as shown in Figure 4(B) [21]. 

The existence of the context may introduce additional problems for testing. In the 

previous example, when the underlying network is not transparent, in the sense that it has 

its own behavior, it is possible that both the inputs applied from the lower tester and the 

outputs produced by the IUT are modified by the underlying network. Consequently, the 

validity of the testing is problematic. Thus, the behavior of the context of the IUT has 
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to be considered for the test generation. In the following, we first introduce the external 

equivalence for context-based systems and then discuss the main issues in this setting. 

3.1 External equivalence 

Let K. be a system consisting of a finite set of FSMs Mi = (Si, Sifi, Xi,Yi,6i, \i), where 

i = 1 , . . . , k. Here, we assume all the actions in Xi, Yi are distinct. Suppose I C\JiXi and 

O C Uj Yi are the sets of the external inputs and the external outputs regarding the entire 

system, respectively. For K, to be a meaningful system, we have the following assumptions. 

• 7 D (ij^ Yi) = 0, i.e., an external input cannot be produced by any component FSM. 

• O n (U^ Xi) — 0, i.e., an external output cannot be accepted by any component FSM. 

• (Ui Yi) \ O C (\}i Xi) \ I, i.e., any internal output should be accepted by some com

ponent FSM. 

We say FSM Mi communicates with FSM Mj if there exists an internal action in set 

Yi D Xj. The communication among component FSMs can be either synchronous or asyn

chronous. We assume that the communication channels are reliable. A global FSM of 

a asynchronous/synchronous communication can be composed by performing reachability 

analysis [7, 62, 90, 93, 97]. In black-box testing, we are particularly interested in syn

chronous composition, where all the internal actions are hidden and only external inputs 

and outputs are indicated. In the following, we use operator x to denote the synchronous 

product of component FSMs. 

In the realm of deterministic FSMs, two FSMs are trace equivalent if for any input 

sequence, they produce the same output sequence in response. For testing in context, 

external equivalence is defined by taking into account the behavior of the context. Note 

that the following definition is adopted from [73] with slight modification. 

Definition 2 (External equivalence) Let Si and S2 be two FSMs, and C their context 

FSM. «Si is externally equivalent to S2 w.r.t. C, denoted by Si =c S2, if Si x C is trace 

equivalent to S2 x C. 
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The goal of testing in context is to ensure that the IUT is externally equivalent to its 

specification in a given context. Test generation aiming at ensuring external equivalence 

needs to take into account the behavior of the context. 

3.2 M a i n issues 

Many issues arise for testing in context. 

• stateless v.s. stateful. When the IUT and its context are stateful, test generation 

may suffer from the state explosion problem. Specification languages such as FSMs, 

Extended FSMs, and Labeled Transition Systems are often used to specify stateful 

systems. In this work, we consider the situation where the stateful IUT is specified by 

an FSM while its embedded context is either stateless or stateful. In the latter case, 

we require that the context be specified by a specification language that can be trans

lated to Extended Finite State Machines (EFSMs), which is a concise specification 

formalism that allows the use of variables. 

• deterministic v.s. non-deterministic. Studies on both deterministic testing and non-

deterministic testing have practical significance and confront different challenges. We 

are particularly interested in test generation techniques of deterministic systems be

cause two benefits can be provided. 

- A high level confidence on the correctness of the IUT can be ensured by applying 

a test sequence whose length is polynomial to the size of the IUT. For example, 

trace equivalence can be guaranteed with a checking sequence whose length is 

polynomial to the number of transitions under certain conditions. The detailed 

discussion on this regard is in Chapter 4. On the other hand, test sequences of 

non-deterministic systems are often of infinite length [82] or much more costly 

by requiring to repeat the testing for many times with the fairness hypothesis 

that all the possible paths with non-deterministic choices are tested, which it 

actually can not be always guaranteed. 

- If we can derive from deterministic testing that components I\ and Ii are trace 

equivalent to their respective specification P\ and P2, then under certain circum-
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stances we know hWh is a correct implementation of P1IIP2 without performing 

further integration testing or system testing which involves nondeterministic sys

tem specifications. 

In this work, we consider the case when both the IUT and its context are deterministic. 

• test criteria. Many fault coverage criteria have been proposed in the literature. In 

Chapter 4, four widely used criteria for FSM-based test sequence generation are ex

plained, namely, the T-method, the U-method, the D-method, and the W-method. 

In this work, we choose the T-method in Chapter 6 and the W-method in Chapter 7 

to demonstrate our proposed methods. Other criteria are applicable with proper 

adaptation. 

• optimization on the efficiency. It is always desirable to reduce the time complexity to 

generate tests and to reduce the time to carry out the testing while a certain desired 

fault coverage is satisfied. The existing optimization techniques for different fault 

coverage criteria are discussed in Chapter 4. 

• internal observer v.s. external observer only. An internal observer is an observer who 

can passively observe the interactions between IUT and its context although it has 

no control on them. An external observer is actually a tester who has the control 

to give the inputs and observe the outputs. When an internal observer is available, 

better testing results can be achieved by making use of the knowledge obtained by 

observing the internal interactions. We assume the internal observer is available. 

• fault propagation. The problem of fault propagation describes the fact that some 

faults of the IUT can be tolerated by the context. There are two types of reasons 

resulting in the tolerance: i) the selected test sequence is incomplete in the sense 

that it can not distinguish all the faulty implementation; and ii) some faults are 

intrinsically tolerated by the context such that no tester can detect them. Note that 

the fault propagation problem does not exist when an internal observer is available. 

Thus, we do not consider fault propagation as we assume the internal observer. 
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• test executability. Test executabitity problem describes the situation where a test 

sequence generated solely from a given specification without taking into account the 

behavior of the context may not be executable when we carry out testing in context. 

This problem is caused by the uncontrollable interaction between IUT and its context 

during testing. This problem is crucial in testing in context, and we have a detailed 

discussion in Chapter 5. 

4 Fault coverage and test optimization 

It is well known that the exhaustive testing is impossible in practice, and a tester has to make 

a tradeoff between the fault coverage and the cost. When the IUT has certain properties, 

it is possible to utilize these properties to maximize the fault coverage. These desirable 

properties include the reliable reset, the existence of some special input sequences which 

can be used to identify the states in the IUT, etc. In this chapter, we introduce four typical 

test generation methods along with the corresponding optimization techniques. Namely, 

these methods are the T-method [68], the U-method [1, 63, 76], the D-method [29, 32, 85], 

and the W-method [11]. Actually, these methods can also serve as fault coverage criteria. 

4.1 Graph representations of F S M s 

Since most of the algorithms for test sequence generation are based on some well-known 

algorithms in graph theory, in the following, we introduce the graph representation of an 

FSM and several typical problems in graph theory. 

Each FSM M has a graph representation G = (V,E,L), in which a state of M is 

represented by a vertex from V and a transition of M is represented by an edge from E. 

We use GM to denote the graph representation of FSM M, where state Si is represented by 

vertex V{, and transition from S{ to Sj with label x/y is represented by edge (vi,Vj,x/y). 

Terminologies and notations defined for FSMs are naturally extended to their graph 

representations. 

A digraph is strongly connected if for any ordered pair of vertices (vi, Vj) there is a 

path from v^ to Vj. When G is strongly connected, a Postman Tour of G is a tour which 
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contains every edge of E at least once. Given digraph G = (V, E, cost), where cost is a cost 

function that associates each edge in E with a cost, we say G is a weighted digraph. The 

Chinese Postman Problem (CPP) is to find the minimum-cost Postman Tour in a strongly 

connected (weighted) digraph. Given a strongly connected G = (V, E) and E\ C E, a Rural 

Postman Tour is a tour which contains each edge in E\ at least once. The Rural Chinese 

Postman Problem (RPP) is to find a Rural Postman Tour with minimum cost. CPP has a 

polynomial time solution while RPP is in general NP-hard. Various sophisticated heuristics 

have been proposed in the literature for RPP (see e.g. [22]). 

4.2 T-method 

The fault coverage criterion specified by the T-method [68] is as follows. 

• T-method: The corresponding path of the generated test sequence in the specification 

FSM M should contain each transition in M at least once. 

According to the T-method, a transition is tested to be correct when its output is 

correct in response to the corresponding input. If a faulty IUT has only output faults, test 

sequences generated with the T-method are capable of detecting any faults; otherwise, a 

faulty IUT may not be distinguished. The advantage of the T-method is that shorter test 

sequences are generated. 

Clearly, the optimization problem of generating a minimal-length test sequence can be 

reduced to Chinese Postman Problem (CPP). 

Example 3 Given specification Mo in Figure 1, a tour g is found: 

Q = tohtetstitgtetiit^h 

Then a test sequence of length 11 can be derived by concatenating the inputs of g: 

X = in(g) = aaacbcabbcb, whose expected output sequence is 01100010000. 

The faulty IUTs in Figure 2(B) and (D) can be distinguished by x since the actual 

output sequences are 00100010000 and 00000010000, respectively. However, the faulty IUT 

in Figure 2(C) cannot be distinguished since it yields the same output sequence as expected. 

0 
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states 

so 

Sl 

S2 

S3 

5 4 

UIO sequence 

IntPromU 

ReqFromL 0 RspFromL 

RspFromL 0 PerRspFromU 

PerRspFromU 0 RspFromL 

ReqFromL 0 RspFromL 0 PerRspFromU 

Table 2: UIO sequences for each states in Mi 

4.3 U-method 

The U-method can be applied to a special class of FSMs that have a Unique Input/Output 

sequence (UIO sequence) for each of their states. Given an FSM M, a UIO sequence of 

a state s is an input sequence such that the corresponding output sequence obtained by 

applying this input sequence at s in M is unique from those obtained by applying this 

input sequence at any other state. We use UIOi to denote the UIO sequence for state s*. 

Formally, 

Definition 3 (UIO sequences) Given an FSM M = (S, I, O, 5, A, SQ), an input se

quence UIOi is a UIO sequence of state si if for any Sj € S, Sj ^ Sj implies A(SJ, UIOi) 7̂  

A(Sl,UIOi). 

Example 4 We present here a protocol for establishing service connection, which is com

monly used in peer-to-peer systems. In this protocol, any participant, upon receiving a 

request from its user, can initiate a connection with any other peer participant by issuing a 

connection request. The connection will not be established until the confirmations from all 

peer participants are received. Each confirmation represents the permission from another 

participant. For simplicity, we consider such a protocol with two participants. 

Note that the connection requests can be issued concurrently by both participants. That 

is, the two participants may issue the requests at about the same time. Consequently, it is 

possible that each participant receives a connection request from the other participant right 

after it has sent out its own request and yet before it receives the confirmation from its 
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t,: PerRspFromU/nullI 

tl2: RspFromL/, 
ConfToU 

it4: RspFromL/null 

t|4: PerRspFromU/ 
t,: ReqFromL/ \ConfToL 

erReqToU 

. t„: InlFromU/null 

) t]5: ReqFromL/null 

t16: RspFromL/null 

tn : ReqFromL/null 

tl0: PerRspFromU/ConfToL 

tl7: IntFromU/null 

t.„: ReqFromL/null 

tl8: PerRspFromU/null 

^ — I s0, s t, s2, s,, s4 } 
I = { IntPromU, PerRspFromU, ReqFromL; RspFromL 
O = ( ConfToU, PerReqToU, ConfToL, ReqToL ) 
Note: Symbol "null" means no output is produced. 

Figure 5: FSM M\ of the connection establishment protocol for one 

file:///ConfToL
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partner. In this case, in order to establish a connection, each participant should respond 

to the request from its partner as well as receive the confirmation from its partner for its 

own request. 

The specification FSM M\ = (S, 1,O,5, A, so) of a participant in this protocol is shown 

in Figure 5. The service primitives and their symbolic representations for each participant 

in this protocol are listed below. 

• IntFromU: user's intention for establishing a service connection; 

• ReqToL: message to request the partner to establish connection; 

• RspFromL: response from the partner for service connection; 

• ConfTo U: confirmation of the service connection to the user; 

• ReqFromL: request from the partner for service connection; 

• PerReqToU: request for the user's permission for service connection; 

• PerRspFrom U: user's permission for a service connection; 

• ConfToL: confirmation of the service connection to the partner. 

Suppose process A is a participant of this connection establishment protocol modeled by 

Mo- I/O pair IntFromU'/ReqToL means that upon receipt of message IntFromU, A will send 

a request to its partner for the connection establishment. I/O pair ReqFromL/PerReqToU 

represents that when A receives message ReqFromL, it will send a request to its user asking 

for permission. 

Table 2 shows the shortest UIO sequences for each state. 

0 

Not every FSM has a UIO sequence for each of its states, and the problem of finding 

UIO sequences for an FSM is very hard [55]. For a given specification M, the following 

decision problems are proven to be PSPACE-complete: i) whether a specific state s of M 

have a UIO sequence; ii) whether all states of M have UIO sequences; iii) whether some 

of the states of M have UIO sequences. Furthermore, even though a state has a UIO 
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sequence, it is possible that this UIO sequence is of exponential length. In this case, there 

is no value for testing purpose. Note that these are the worst case result. In practice 

(e.g. communication protocols), short UIO sequences exist for most cases and can be found 

quickly [56]. Discussions on finding the UIO sequences from a given FSM can be found in 

[12, 28, 18, 47, 56, 76]. 

For conformance testing, UlOi can be used to verify whether an IUT is in a state 

corresponding to state S{ since the desired output sequence is supposed to be produced 

when applying UlOi in Sj. This property can be used to tackle the transfer faults in IUTs 

in the sense that the ending states of transitions can be verified with UIO sequences. Thus, 

the U-method is inspired. 

The fault coverage criterion specified by the U-method [1, 63, 76] is as follows. 

• U-method: The corresponding path of the generated test sequence in the specification 

FSM M should contain each transition in M with its ending state in the implemen

tation FSM verified. 

Example 5 Suppose we want to generate a test sequence from specification Mi in Figure 5 

with the U-method. For simplicity, we only consider two transitions, namely, £9 and £20! as 

examples. 

Let p9 = £g£i2ii4 and P20 = 2̂0̂ 1 be two paths in Mi. Since the input portion of 

label(ti2tu) is a UIO sequence for the ending state of transition £9, the ending state of £9 is 

verified by applying the input portion of pg. That is, pg can be used to test the correctness 

of £9. We call such a path a test segment of £9. Similarly, P20 is a test segment of £20- Using 

transfer sequence £i£7£io to connect these two test segments, we get 

p = £9*12*14*1*7*10*20*1 

which is a path containing both test segments. 

Analogously, a path g in M can be found containing the test segments of all the tran

sitions in Mi. Then the input sequence in(g) is a desired test sequence satisfying the 

U-method. 0 
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4.3.1 Test optimization 

As the U-method is effective to detect the transfer faults in the IUTs, it is appealing to 

study on how to minimize the lengths of the generated test sequences. In the literature, a 

lot of contribution has been made in this regard [1, 9, 10, 20, 33, 34, 63, 76, 78, 95], and 

the main ideas of these work are to maximize the overlaps among the test segments and 

to reduce the use of the transfer sequences connecting test segments. In the following, we 

explain some latest results along this approach. 

In [33], Hierons proposed the notion of the invertible transitions1. A transition (SJ, Sj,x/y) 

is invertible if it is the only transition entering state Sj with input x and output y. In the 

example FSM M\, £i, £2, £3 are invertible transitions while £s and £20 are not because both 

£g and £20 end at so with the same label RspFromL/ConfToU. 

The existence of invertible transitions in existing protocol descriptions has been the 

major source of the recent success in reducing the lengths of the generated U-sequences. 

This is based on the following observation ([63, 33]): 

O) If £ is an invertible transition and UlOi is a UIO sequence of end(t), then the input 

sequence in(t) o UlOi is a UIO sequence for start(t). 

Suppose that £ is an invertible transition, and to is a test segment for £ in the sense 

that a is a path induced by applying the UIO sequence of state end(t) at end(t). Now if 

t' is a transition adjacent to £ in the sense that end(t') = start(t), then path £'£cr is a test 

segment for £'. As £'£cr contains test segments for both £' and £, we say there is an overlap 

between test segment £'£cr and test segment to. By using invertible transitions, the overlap 

between test segments is increased. It follows that the length of the generated U-sequence 

can be reduced. 

Some heuristic algorithms have been proposed in [63, 33] to maximize the use of in

vertible transitions to reduce the lengths of the U-sequences. In doing so, the notion of 

invertible transition is extended to that of invertible sequence [34]. A path p is an invertible 

sequence if it is the only path with label label(p) that ends at end(p). That is, for any path 

XA similar notion called non-converging edge was defined on the digraphs that represent the FSMs ([63]). 
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p', start(p) •£ start(p') implies end(p) ^ end(p') or label(p) ^ label(p'). Clearly, when the 

length of an invertible sequence is 1, it is actually an invertible transition. 

Similar to O), we have the following result [34]: 

O') If p is an invertible sequence and UlOi is a UIO sequence of end(p), then the input 

sequence in(p) o UlOi is a UIO sequence of start(p). 

Note that the additional UIO for start(p) obtained from O') may be longer than the 

given UIO sequence for start(p). For the example in Figure 5, £10*20 is an invertible sequence 

ending at SQ. We know that UIOQ =• IntFromU and UIO2 = RspFromLoPerRspFromU. 

By using invertible sequence £10*20, we have another UIO sequence for S2-

UIO'z = PerRspFromU o RspFromL o IntFromU. 

Although this newly found UIO sequence is longer than the given one, it may help to reduce 

the total length of a U-sequence since the test segment it produced has an overlap with 

other test segment(s). Let us use pi to denote the test segment formed by concatenating U 

and the path induced by applying the originally given UIO sequence of end(U) at end(ti). 

Consider the two test segments for transitions £9 and £20 in MD- We have p$ = tgtutu and 

P20 = £20*1- Using transfer sequence t^tio to connect these two test segments, we get 

P = t9ti2tutit7tiot2oti 

which is a path containing both test segments. The length of p is 8. If we use the UIO 

sequence derived according to O'), one of the test segments for £9 is p9 = tgtio^o^i which 

contains p2o- In this case, p9 can be used to verify both £20 and £9 and its length is only 4. 

With this observation, a heuristic algorithm was given in [34] to use the invertible sequences 

to reduce the length of U-sequences. 

As from O) an optimal solution was derived for finding a minimal-length U-sequence in 

the special case when all transitions in M are invertible, now for general FSMs which may 

contain both invertible transitions and non-invertible ones, O') leads to the following idea: 

a') Determine a minimal-length path g — tv>o\t\c<it2 • • •0'fc£fc0'o> where for 0 < % < k, a{ti 

is an invertible sequence and for each £ € M, there exists i (0 < i < k) such that 



4 FAULT COVERAGE AND TEST OPTIMIZATION 22 

U = t. Without loss of generality, we assume to is a transition starting from the initial 

state so-

b') Obtain p by removing GQ from g and appending path p' induced by applying the UIO 

sequence of end(tk) at state end(tk). 

Then, in(p) can be used as the desired test sequence. This is formally introduced below. 

Definition 4 (proximate test path) Let M be a given FSM. Suppose i, is a transition in 

M and cr, is a path in M (0 < i < k). A proximate test path of M is g = i o o i ^ i 0 ^ • • • Cktk&o 

such that: 

• to is a transition starting from the initial state SQ; 

• Vi € {0 , . . . , k}. 0{ti is an invertible sequence; 

• Vt G M, 3i (0 <i<k) such that t = U. 

Let g = too--[t\(j2t2 • • • °~ktkO~o be a proximate test path of a given specification M, where 

ti is a transition and 0{ is a path in M such that Uiti is an invertible sequence for 1 < i < k. 

If end(tk) = sm, then in(tocriti<T2*2 • • • o"fĉ fc) ° UIOm is a test sequence satisfying the U-

method. 

The algorithms on how to find a minimal-length proximate test path of M is explained 

in details in [20]. Given specification M\ in Figure 5, a test sequence of length 26 can be 

generated by the approach in [20] compared with that of length 72 by the approach in [1] 

and that of length 31 by the approaches in [63, 33]. 

4.3.2 Weakness and strength of the U-method 

The U-method does not support the full fault coverage due to the following two main 

reasons. 

i) It does not check whether the starting states of transitions are correct. That is, when 

a transition starts from a wrong state in the IUT, no mechanism from the U-method 

intends to check it directly. 
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(A) Specification FSM (B) Implementation FSM 

Input alphabet I = {a, b, c, d}, Output alphabet 0 = (0,1, 2} 
UIO sequence of each state: 
UIO0 = da; UIO, = c; UI02 = c; UI03 = db; UI04 = bd. 
a possible test sequence generated by the U-method: 
bcbcdabacccbcdcabdbdbdbdbacbcaabdcbddbdbbdbcdbaacdcbbcddccda 
the corresponding expected output sequence: 
101100100001101010101010100110210210210120120102020121021200 

Figure 6: Illustration of the weakness of the U-method 

ii) The uniqueness of the output sequence in response to a UIO sequence in the speci

fication does not guarantee the uniqueness of that in the IUT. In a faulty IUT, it is 

possible that there are other states such that the same output sequence is produced 

by applying the UIO sequence in those states. Consequently, the state verification 

fails. 

Example 6 A faulty IUT (Figure 6(B)) of the specification shown in Figure 6(A) has a 

transfer fault for transition (si,S2,a/0): instead of ending at state 52, it ends at state S4 

in the IUT. The IUT passes the testing with a test sequence generated by the U-method 

since the actual output sequence produced by the faulty IUT is the same as the expected 

one with this test sequence. In this case, the testing fails to detect the above transfer fault. 

The strength of the U-method is that it can achieve a satisfactory fault coverage with 

an acceptable cost [92, 79, 67]: On one hand, compared to the T-method, the U-method is 
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much more effective in detecting faults; On the other hand, the U-method generates much 

shorter test sequences and are less restrictive than those methods (e.g. the D-method and 

the W-method) supporting the full fault coverage. For example, the U-method does not 

require a completely specified specification, reliable reset, a distinguishing sequence, etc. 

Due to the benefits the U-method provides, it is desirable to incorporate the U-method 

with the characterization sets (see Chapter 4.5 for the definition), which exist for all the 

minimal FSMs, such that the U-method is applicable to all the FSMs. For example, in 

[37], Hierons proposed a technique to generate a minimal-length test sequence satisfying 

the U-method with a characterization set. 

4.4 D - m e t h o d 

The D-method is applicable to a special class of FSMs that have a distinguishing sequence 

(DS) [27, 52]. Given an FSM At, a distinguishing sequence is an input sequence D with the 

following characteristics: the output sequences produced by M in response to D in different 

states of M are all different. Formally, 

Definition 5 (distinguishing sequences) Given an FSM M = (S, I, O, 5, X, so), an 

input sequence D is a distinguishing sequence of M if for all Si,Sj € S, Si ^ Sj implies 

\(Si,D)^\(Sj)D). 

Not every FSM has a DS. It is a PSPACE-complete problem to determine whether a 

given FSM has a DS [55]. The classical algorithms of finding a DS are of exponential time 

as discussed in [27, 52]. 

Clearly, a DS is a UIO sequence applicable to all the states. The existence of a DS of 

an FSM implies the existence of a UIO sequence for each state of the FSM; but the reverse 

is not true. 

Example 7 In Figure 1, a distinguishing sequence for Mo is D = aba: when we apply 

this input sequence to states SQ, SI and S2, the output sequences are 001, 100, and 101, 

respectively. They are all different. <£> 

Two FSMs Mi and Mi are equivalent if and only if for every state of'Mi there is an 

equivalent state of Mi and vice versa. An input sequence is a checking sequence of M if 
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and only if it distinguishes between M and any FSM that has the same sets of input and 

output alphabets as M but is not equivalent to M. Clearly, a checking sequence is a special 

test sequence that guarantees the full fault coverage. 

Assume that the IUT behaves like some (unknown) FSM N with the number of states 

no greater than that of the specification M. Since M and N are deterministic and minimal, 

determining whether N is equivalent to M can be achieved by establishing isomorphism 

between M and N. More precisely, 

• for each state s in M, we identify a state r in N that corresponds to s. 

• for each transition t = (si,S2,x/y) in M, we verify that there exists a transition 

t' = (ri,r2,x/y) in N which starts from a state corresponding to si, ends at a state 

corresponding to S2, and gives the same output y upon the same input x. 

A checking sequence is designed to help us to achieve the above two goals. With respect 

to these goals, the construction of a checking sequence usually involves two steps: one for 

state identification and one for transition verification [56]. 

The purpose of state identification is to build a one-to-one correspondence between the 

states in M and those in N. State identification using UIOs is possible but it turns out to 

be hard and less practical [40]. A characterization set (which is discussed in Chapter 4.5) is 

easier to find than a distinguishing sequence, yet a test suite generated using a characteri

zation set [11] is usually much longer than that generated using a distinguishing sequence 

in terms of total length of the test sequences [8, 29, 32, 85]. Of course, DS can also be used 

for state verification in the sense of verifying the ending states of transitions. 

Recall that D = aba is a distinguishing sequence of Mo in Figure 1. If we apply D 

to the IUT of MQ and observe 001, then we know that the state of N before we apply D 

corresponds to so, which is the only state in Mo that gives output sequence 001 in response 

to input sequence aba. Similarly, if we apply D to the IUT several times (at different states 

of N) and observe 001, 100, and 101, then we know that N has (at least) three states and 

the states of N before we apply each D correspond to so, «i and S2 respectively. 

Example 8 Suppose N\ shown in Figure 7(B) is an FSM describing the behavior of a 

possible implementation of specification MQ in Example 2.1. 
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expected output sequence: 

(A) Specification M() (B) Implementation N, 

Figure 7: An illustration of the necessity of state identification 

Recall that for Mo in Figure 1, we have distinguishing sequence D = aba. As the 

dashed arrows in Figure 7 show, we have ro corresponds to SQ and r<i corresponds to s<i 

in the sense that X(SQ,D) = X(TQ,D) = 001 and X(s2,D) = X(r2,D) = 101. However, 

X(s\,D) ^ X(ri,D): MO (at s\) and N\ (at n ) give different output sequences 100 and 101 

respectively in response to input sequence D. In other words, at r\, the implementation 

FSM iVi does not behave like M0. 

We can detect that Ni is a faulty implementation of Mo on the stage of state identi

fication: by applying D to the IUT, we fail to find a state in N\ which produces output 

sequence 100 in response to D, as s\ does. 

0 

When a distinguishing sequence D of M is given, sometimes a prefix of D is sufficient 

in helping us identify a state in N with a state in M. For example, in Figure 1, state so is 

the only one that gives output 0 in response to input a. Thus, we can simply use a (which 

is a prefix of D) as input to the IUT to identify a state in N that corresponds to so- We 

will use Di to denote the prefix distinguishing sequence for Sj. It is the shortest prefix of 

D that is sufficient to distinguish state Sj from others, i.e., for any state Sj where Sj ^ Sj, 

X(si,Di) ^ X(sj,Di). In Figure 1, with D — aba, the prefix distinguishing sequences for 
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input sequence: 
D,baD, 

i \j\jyj i i v w 

actual output sequence: 
10001001 

•^^c 
/0/c/o/ \b/0\b/0]c/0 

1 / a/1 \ V i 

1 t 

/^?N^^N MfciJ U ^ j 
1 / \ \ / - : 

^^^Lwo^^c/0 

(A) Specification M0 (B) Implementation N2 

Figure 8: An illustration of the necessity of transition verification 

states so, s\, and «2 are: DQ = a and D\ = Di — aba. In the following, we consider the 

situation when the prefix distinguishing sequence Di is given for all i < n, where n is the 

number of states in M. 

An a'-sequence [39] is an input/output sequence used to identify some states in N with 

D or Di (0 < i < n). A set of a'-sequences that can jointly identify all the states of N 

is called an a'-set. These two terminologies are evolved from similar but more restrictive 

terminologies a-sequences and a-set [85], respectively. 

Example 9 In the previous example, let po = (so, s i , a/0), p\ — {&\, si, aba/100), and />2 = 

(s2, si, aba/101) be the paths induced by applying DQ, DI, and Di to SQ, SJ, 52, respectively. 

Let p = po ° Pi ° {s\i S2,b/0) o p2 o px. Then, label(p) = aa6a6a6aafra/01000101100 is an 

a'-sequence, and {label(p)} is an a'-set. In fact, we can use this a'-sequence to identify all 

states in Ni: When we apply the input portion of label(p), i.e., D^DibD^Di = aabababaaba, 

to N\, if the expected output sequence 01000101100 is produced, then we can conclude 

that there are three distinct states in N\ corresponding to those in MQ. However, the 

actual output sequence produced is 01010101101 which is different from the expected one. 

Consequently, the one-to-one correspondence cannot be found between the states in Mo 

and those in N\. Thus, we can conclude that N\ is a faulty implementation. 

file:///j/jyj
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0 

Example 10 Suppose that the FSM N2 shown in Figure 8(B) describes another imple

mentation of specification MQ. 

Using the same a'-sequence aabababaaba/01000101100 on N%, we observe output se

quence 01000101100 as expected upon the input sequence aabababaaba. Thus, we conclude 

that there are three states in N2 corresponding to so, si, and S2 in MD, respectively. 

Later on we will show that even though JV*2 passes the test for state identification, it 

fails the test for transition verification. <0> 

Suppose that the state identification has been achieved. We can use this knowledge 

to investigate the structure of iV to determine whether it is equivalent to the specification 

FSM M. This can be realized by transition verification which builds the one-to-one corre

spondence between the transitions in M and those in N. More precisely, for each transition 

t = (SJ, Sj,x/y) in M, we verify the existence of a corresponding transition t' in N. This is 

basically achieved by the following three steps: i) lead N to the state corresponding to s$; 

ii) verify the label of t' by applying x to N to check whether the output is y; and iii) verify 

whether the ending state of t' corresponds to Sj. 

Steps ii) and iii) are usually realized by including (5-sequences into checking sequence 

construction. A (i-sequence of transition t = (si,Sj,x/y) is the input/output sequence 

x/y o Dj/X(sj,Dj). For example, in the FSM Mo in Figure 1, the /^-sequence of t = 

(s2> s i , a / l ) is a/1 o Di/\(s\,Di) = aaba/1100. 

When N is led to such a state r that its correspondence with a state in M can be 

derived, typically via state identification, we say r is recognized. A state r in N is verified 

if we apply an input sequence, typically a (prefix) distinguishing sequence, to N at this 

state in order to check the output sequence to confirm the correspondence between r and 

a state in M. If an input sequence allows us to lead N to a state recognized as Si, check its 

output y in response to input x, and subsequently verify that the ending state corresponds 

to Sj, then we say transition t = (si,Sj,x/y) is verified in this input sequence. The formal 

definitions of the notions can be found in [85]. 
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Suppose we want to verify the correspondence between transition t = (s2,si,a/l) in 

Mo and some if = (r2,ri,a/y) in AT2 in Figure 8(B). To apply the /?-sequence of t, we 

first need to make sure that the current state in N2 is recognized as S2- This can be 

realized by making use of the result of state identification. Recall that we use a'-sequence 

D0DibD2D1/\{so, £>o-DiM>2£i) = aabababaaba/01000101100 to identify states in N2. This 

implies that if the current state in N2 is recognized as so, then after applying input sequence 

DoD\b and observing correct output sequence 01000, we know the current state of N2 is 

recognized as s^. This is because we have already checked the output of DoD\bD2 for state 

identification. Similarly, if the current state of N2 is recognized as si, then after applying 

input sequence D\ b and observing correct output sequence 1000, we know the current state 

of iV~2 is recognized as S2- In fact, whether the current state in N2 corresponds to si or 

not is also known after we apply input sequence D\b: We just need to check whether the 

output sequence in response to D\ is 100. 

Now we use this knowledge to lead N2 to a state recognized as S2- Suppose N2 is 

currently in state TQ. We apply input a to N2, and r\ is supposed to be reached. Next, we 

apply D\b on JV2. If the expected output sequence 1000 is produced in response, we can 

conclude that: i) before applying D^b, N2 was indeed in a state corresponding to s\; and 

ii) after applying D\b, a state recognized as S2 is reached. 

Having reached a state recognized as S2, we are ready to use /^-sequence to test whether 

the label and the ending state of t' are correct. We apply input a to N2, and output 1 is 

produced as expected. That is, the label of t' is correct. Finally, we verify that the ending 

state in AT2 corresponds to si by applying D\\ The expected output sequence is 100 while 

the actual output sequence is 001. 

In summary, we use input sequence D\baD\ to verify the correspondence between tran

sition t and t', where D\b is used to lead N2 to reach r2, and the last D\ is used to verify 

the ending state of t''. This is shown in Figure 8. Since the expected output sequence is 

010001100 and the actual one is 010001001, there does not exist a transition in N2 corre

sponding to t. Therefore, we conclude that N2 is a faulty implementation of Mo-

Let n be the number of states in a given FSM M, and p the size of the input alphabet. 

According to [88], when a DS exists, the lower bound of the length of the generated check-
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ing sequence is Q,(pn3); and an algorithm is given to find a checking sequence of length 

0(p2n4 log(qn)). By making use of the prefix distinguishing sequences, Lee et al. proved 

in [56] that a checking sequence of length 0(pn3) can be found. 

As shown above, when there exists a DS for a given FSM M, the D-method can be 

used to generate a checking sequence for M; and under a different condition (which will be 

discussed in Chapter 4.5), the W-method also applies. 

The fault coverage criterion for checking sequences (the D-method and the W-method) 

[11, 32, 29, 85] is as follows. 

• checking sequences: The corresponding path of the generated checking sequence in 

the specification FSM M should contain each transition in M with its starting state in 

the implementation FSM identified and its ending state in the implementation FSM 

verified. 

When generating a checking sequence, it generally requires a completely specified spec

ification FSM. 

4.4.1 The test optimization approach in [39] 

Besides its advantage of guaranteeing a full fault coverage, the use of checking sequences for 

unit testing also provides an additional benefit for the integration testing or system testing. 

In the unit testing, if we can derive from deterministic testing that components I\ and I2 

are trace equivalent to their respective specifications Pi and P2, then without performing 

the integration testing or system testing, we know that the integration of 7i and I2 is a 

correct implementation of the parallel composition of Pi and P2. 

As the checking sequence usually suffers from too long a length, researchers are in

terested in the optimization techniques to reduce the testing cost in terms of the lengths 

of the generated checking sequence [8, 19, 39, 40, 81, 85, 86, 94]. Among these pieces of 

work, [39, 85, 86] consider how to reduce the length of the checking sequence by reducing 

the length of a-sequences or by increasing the chances of overlaps among a-sequences (or 

a'-sequences) and /3-sequences. [8, 81] focus on how to reduce the length of the check

ing sequence by exempting some transitions from being verified under certain conditions. 
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[19, 94] introduce alternative /3-sequences to expand the selection pool of test subsequences 

for transition verification such that the chance of the maximum overlaps is increased. Here, 

we explain two typical approaches in [39] and [86] on this topic. Note that the reduction 

techniques presented in [8, 19, 81, 94] can work together with those in [39] and [86] under 

certain circumstance. 

In the work of Hierons and Ural [39], a checking sequence is generated in two steps: i) 

construct an auxiliary graph G' = (V',E') from GM', U) find an RPP tour g in G', and 

then a checking sequence can be easily derived from g. 

According to [39] as well as some other work [8, 41, 81, 85], a set of a'-sequences that can 

form an a'-set was first constructed. Each a'-sequence will be used to identify a (sub)set 

of states in the implementation FSM. Suppose an a'-sequence g can be used to identify 

those states in the implementation FSM that correspond to s\, . . . , s^ (k > 1). g can 

be considered as some subsequences concatenated together, where each subsequence starts 

with an input/output sequence corresponding to the (prefix) distinguishing sequence of Sj 

for some 1 < i < k. That is, each subsequence has form Tj = Dj/A(s,, Di) o Ii: where ij is a 

possibly null input/output sequence called transfer sequence. Input/output sequence Tj is 

called a T-sequence. According to the explanation of [39], 7, = <p for al i i G {0 , . . . , n — 1}. 

In this setting, an a'-sequence is actually a concatenation of T-sequences. 

Example 11 Consider the FSM M$ in Figure 1. As we explained before, the prefix 

distinguishing sequences for each state are: DQ = a and D\ = D2 — aba; and a[ = 

DQDibD2Dll\{so,DoDibD2Di) is an a'-sequence. Let T0 = D0/\(s0,D0) = a/0, Ti = 

Dib/\{s\,Dib) = abab/1000, and T2 = D2/\{s2,D2) = aba/101. We have that a[ = 

ToTiTiTL 0 

In the following, we explain the checking sequence construction technique presented in 

[39]. Let Pi and Rj be the paths in GM — (V, E) induced by a'-sequence a[ and T-sequence 

Tj respectively. The auxiliary graph G' = (V, E') is constructed from GM as follows. 

• V = V U U' is a set of vertices, where 

- tf'= Ml «i e V}; 
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•© 

© 

Figure 9: Illustration of the construction of G'. The nodes in U' and V are on the top and 

at the bottom respectively. The solid bold arrows and the dashed arrows denote the edges 

in Ea> U Ec and ET, respectively. 

• E' = Ec U Ea> UETU E" is a set of edges, where 

- Ec = {{v'^v^x/y) \ e ~ (vi,Vj,x/y) G E}; 

- Ea, = {(start{Pd,{end(Pdy,aQ \ oJ e a'-set}; 

- ET = {(start(Ri), (end(Ri))1,T{) \ Tt is a T-sequence}; 

- E" is a subset of {(v^v^x/y) \ e = (vi,Vj,x/y) 6 E}, such that G' is strongly 

connected and G" = (U\ E") is acyclic, i.e. it does not contain any cycle. 

In order to get a shortest-length checking sequence, we can find an RPP tour g in G' 

such that each edge in Eai U Ec is traversed at least once. 

a'-sequences and T-sequences are represented in G' as edges in Ea> C E' and ET C E', 

respectively. Each transition of M is represented as an edge in Ec C E', and ultimately 

these edges will be contained in the RPP tour g. The edges in ET U Ea> start from the 

ending vertices of the edges in Ec so the ending states represented by these vertices are 

identified by either T-sequences or a'-sequences. The set of edges E" is included in G' to 

increase the connectivity of the vertices in G'. 

Figure 9 illustrates the construction of auxiliary digraph G' = (Vl)U', EcUEa'DETliE") 

from M. For any Sj 6 5, we introduce two vertices in G'\ vertex v[ in U' (shown on the top) 

V 
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and vertex V{ in V (shown at the bottom). Suppose P/ — (vi, VQ, a\) and Rt = (vi, Vj,Ti) are 

two paths in M, where a[ is an a'-sequence and T, is a T-sequence. P; is represented in G' by 

an edge (solid bold arrow) from Vi to v'0 with label a\. R4 is represented by an edge (dashed 

arrow) from v\ to v'j with label Tj. Suppose e = (vo,Vi,xi/y\) and e' = (vj,Vi,x2/y2) are 

two edges in GA/. e is represented in G' by an edge (solid bold arrow) from v'0 to u$ with 

label X\/y\ and e' is represented by an edge (solid bold arrow) from v'j to Vj with label 

£2/2/2-

To determine an RPP tour £ in G' such that each edge in Ea> U .Ec" is traversed at 

least once, we assign the cost of each edge in G' to be the number of input/output pairs 

in its label. This relates the minimal-cost of an RPP tour with the minimal-length of the 

checking sequence derived from it. It is formally proved in [39] that the input portion of 

label(g) is a checking sequence. 

Example 12 Given an FSM in Figure 1, the prefix distinguishing sequences for each 

state are: Do = a and D\ — D2 = aba. Based on these A s , an a'-set for MQ is {a^}, 

where ^ = D0DlbD'1Dll\{s(i,DQD1bD2Dx). T = {T0,TUT2}, where T0 = D0/\(s0,D0), 

Tj = Dib/A(si,I>i&), and T2 = D2/X{s2}D2). 

A checking sequence generated by the approach in [39] is of length 48. Combining this 

approach with the technique presented in [19], a checking sequence of length 45 can be 

found. The length of the generated checking sequence can be further reduced to 42 when 

the techniques in [8, 81] are considered. 0 

4.4.2 The test optimization approach in [86] 

In [86], Ural et al. considered to reduce the lengths of the generated checking sequences 

by identifying and eliminating the overlap among test segments for state identification and 

transition verification. Let P\ — p\o p and P2 = p o p2 be two paths in a graph G, when 

p ̂  e, we say Pi overlaps P2 with p. In particular, if label(p) has D as a prefix of its input 

portion, we say Pi D-overlaps P2 with p. 

Example 13 Let GM0 be the graph representation of MQ shown in Figure 1. Recall that 

D = aba. Pi = (vi,v\,bD/\(si,bD)) and P2 = (V2,VQ,DD/\(S2,DD)) are two paths in 
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in (p^ 

-D 

*' in(Pj) 

Figure 10: An illustration of the construction of G* = (V*,E*). Paths in A U B are 

represented by bold solid arrows, and D-overlaps among paths in A U B are represented by 

the dashed arrows. 

GMQ- Since p = (t>2, v\,D/\(s2, D)) is both a suffix of Pi and a prefix of Pi-, P\ overlaps P^ 

with p. Furthermore, since the input portion of label(p) is D, we also have Pi D-overlaps 

P2 with p. Q 

Let A — {(vi,5(si,DD),DD/X(si,DD))\vi € V} be a set of paths induced by ap

plying consecutively twice distinguishing sequence D in each vertex in GM- Let B = 

{(vi,<5(si,xD),a;Z)/A(si,x£)))|vj e V, a; € A"} be the set of paths corresponding to the /?-

sequences of each edge in GM- Apparently, the labels of the paths in A can be used for 

state identification and the labels of the paths in B can be used for transition verification. 

Let Q be a path that contains all the paths in A U B. Note that it is possible that the 

digraph induced by paths in A U B is not strongly connected: We may use some transfer 

edges in GM to connect paths in A U B. When the graph induced by these transfer edges 

is acyclic, the input portion of label(g) is a checking sequence. The goal of the work in [86] 

is to maximize the Z)-overlaps among the paths in A U B for checking sequence generation. 

Like many other existing methods, the method presented in [86] uses two steps to solve 

the optimization problem of checking sequence generation: i) from the given GM — (V, E), 

construct an auxiliary digraph G* = (V*,E*) such that the D-overlaps among the paths 

in A U B are explicitly expressed; and ii) find an RPP tour in G*. 

G* is defined by augmenting additional vertices and edges to GM- Figure 10 shows the 
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key ideas on this augmentation. For each path p in A U B, we add two new vertices with a 

new edge between them. This edge represents p and is labelled in(p). When looking for an 

RPP tour, we require that all such new edges be traversed at least once. Apparently, from 

this tour we can easily derive a path that contains all the paths in A U B as we desired. 

When pi D-overlaps pj, this D-overlap is explicitly expressed by adding a new edge 

starting from the ending vertex of the edge representing pi and ending at the starting 

vertex of the edge representing pj. The label of the edge that represents the D-overlap 

between the two paths is — D. This negative label can be used to remove the overlapped 

part when pi is concatenated with pj. 

The cost of each edge in G* is defined according to the length of its label: the cost of 

an edge with label in(p) is |m(p)|, and the cost of an edge with label — D is — \D\. A path 

g that contains all the edges representing paths in A U B with the minimum cost can then 

be found, and in[g) is the desired checking sequence with minimal length. 

Example 14 For FSM MQ in Figure 1, a checking sequence generated by the approach 

in [86] is of length 47. Combining this approach with the technique presented in [19], a 

checking sequence of length 44 can be found. The length of the generated checking sequence 

can be further reduced to 41 when the techniques in [8, 81] are considered. 0 

4.5 W-method 

Just like the D-method, the W-method [11] is to generate a checking sequence from a given 

specification FSM M for a full fault coverage testing. When an IUT can be reset to the 

initial state correctly at any time, we say the IUT has a reliable reset property. With this 

property, the W-method can be used to generate a checking sequence without requiring 

the existence of a distinguishing sequence of M. In order to realize state identification 

and transition verification, the W-method uses a characterization set, which exists in any 

minimal FSM. 

A characterization set consists of input sequences that can distinguish between the 

behavior of every pair of states of M. Formally, 

Definition 6 (characterization sets) Given an FSM M — (S, I, O, S, X, so), a set 
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W of input sequences is a characterization set of M if for any Si,Sj € S, Sj ^ Sj implies 

3w € W such that X(si,w) ^ X(SJ,W). 

Clearly, if M has UIO sequences for all of its states or a distinguishing sequence D, then 

both {UlOi | S{ G S} and {D} are characterization sets. How to find a characterization set 

from M is discussed in [27]. 

Suppose a specification M = {S,I,0,5, A, so) and its characterization set W are given. 

Let nfcjS denote a node at level k with label s in a tree. The concatenation of two sequences 

is extended to two sets of sequences. More precisely, let A, B be two sets of sequences, 

Ao B = {ao b \ a G A,b E B}. The core part of the W-method is given below. 

1) Construct a testing tree T from M. 

1.1) Let the root of T be no,So, ST = {so}, and k = 0. 

1.2) For each node njk)S, if s £ ST or k == 0, for each s' 6 {<5(s,x) | x € / } , add 

node 7ifc+1y, add an edge from rifciS to nfc+ijS/ with label x where s' — S(s,x). 

Let ST = ST U {s}. 

1.3) If ST # S, let k = k+1 and go to step 1.2. 

2) Let $ be the set of the labels of the paths from the root to each node of T. x = ® o W 

is the desired test suite. 

The construction of testing tree T takes 0 ( | S | • |/ |) time. Each edge of T corresponds 

to a transition of M, and thus the number of edges of T is \S\ • \I\ when M is completely 

specified. In step 2), x = $°W means that for each transition, there exist test sequences in 

X such that both its starting state and its ending state are identified with characterization 

set W. Here, the generated checking sequence \ is actually a set of test sequences, whose 

corresponding paths in M start from the initial state. After applying each of the test 

sequences, we reset the IUT to the initial state. 

Under the aforementioned assumptions, the above algorithm is optimal in terms of the 

size of the generated test suite [11]. 

Example 15 Figure 11(A) shows an example FSM Mi from [11] with slight modifications. 

Let W — {a, b} be a characterization set of Mi. Applying a at each state of Mi, we obtain 
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output 0 at so and si, output 2 at S2, and output 3 at S3. This means that S2 and S3 can 

be identified with a. Similarly, So and s\ can be identified with b. Combining the above 

results, all the states of Mi can be identified by W. 

The testing tree T (Figure 11(C)) is used for transition verification. Suppose we want 

to verify transition t — (S3, S2, c/2) in M2, which is represented by edge (n3>S3, n^S2, c) in T. 

The labels of the paths from the root to nsiS3 and rniS2 are abb and abbe. By concatenating 

abb with input sequences in IV, we obtain two test sequences abba and abbb, whose expected 

output sequences are 0123 and 0122 respectively. When the actual output sequences are 

produced as expected, it is guaranteed that the IUT reaches a state corresponding to S3 

after applying abb at the initial state. With this knowledge, we can achieve two goals by 

making use of test sequences generated from {abbe} o W: i) verify the label of t; and ii) the 

IUT reaches a state corresponding to S2 after applying abbe at the initial state. Thus, t is 

verified in the IUT. 

Since each transition of M2 is represented by an edge in T, all the transitions of M2 can 

be verified in the same way. 0 

4.6 Summary 

In this chapter, we have discussed the fault coverage and the optimization techniques related 

to the T-method, the U-method, the D-method, and the W-method. From the viewpoint 

of the fault coverage, from coarser to finer, we have the T-method, the U-method, and the 

checking sequences which include the D-method and the W-method. Of course, the cost 

in terms of the length of a generated test sequence for a finer fault coverage criterion, in 

general, is higher. Readers are referred to [79] for an experimental study on the comparison 

of the fault coverage and the cost of these four methods. 

Although the checking sequences are the most costly, they support full fault coverage. 

This provides the possibility of avoiding the integration testing or the system testing by 

leaving the insurance of the correctness of the integrated system to the formal verification 

[5, 13, 14, 31, 44, 60], which is a well studied research area with many available state-of-

the-art supporting tools such as SPIN and SMV. This approach is also adopted by many 

other state-based conformance testing techniques. For example, in [87], Tretmans et al. 
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presented the conditions of avoiding integration testing of labelled transition systems w.r.t. 

the ioco conformance relation [82, 83, 84]. 

The integration testing of the FSM-based systems usually do not support the full fault 

coverage. Interested readers are referred to [30, 54] for more details. 

Another issue of fault coverage criteria is their relationship with trace equivalence. Trace 

equivalence is a widely used equivalence relation for stateful systems in many research fields 

such as automata theory [46], process algebra [42, 64]. A trace is the corresponding i/o 

sequence of a path. We say two processes are trace equivalent if they have the same set 

of all possible traces. In the realm of deterministic FSMs, two FSMs are trace equivalent 

if for any input sequence, they produce the same output sequence in response. Clearly, 

when there exists a cycle in an FSM, the size of the set of all possible traces is infinite. 

It turns out that an infinite-length test sequence may be generated from a given FSM if 

we directly adopt the above definition for test generation. This is undesirable. With state 

identification techniques from the FSM-based testing, it is possible to generate a finite-

length test sequence that can ensure the trace equivalence between the specification FSM 

and the IUT. Such a test sequence is the so-called checking sequence generated by the 

D-method and the WT-method to support full fault coverage. 

5 Test executability problem 

In this chapter, we explain the test executability problem [72, 73] in details. 

Test executability problem describes the situation where a test sequence generated solely 

from a given specification without taking into account the behavior of the context may not 

be executable when we carry out testing in context. There are two causes of this problem. 

• improper order of tests. In this case, we have the so-called test translation problem, 

i.e., a test sequence generated in isolation may not be feasible in testing in context 

due to the improper order of inputs. In the example FSM S% shown in Figure 12, 

transition {si,S2,X2/o2) cannot be tested by applying test sequence xi — iiX2hxi-

This is because after the tester inputs ii to the IUT, the IUT produces an output y\ 

and sends to its context. In response, the context returns x\ instead of X2 as expected 
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specification FSM S, Context FSM C, 

Figure 12: An illustration of test executability problem caused by improper order of test 

sequence 

to the IUT. Therefore, xi is n ° t executable. 

• intrinsically non-executable transitions. The existence of intrinsically non-executable 

transitions originates from the fact that the specification of each individual FSM is 

usually designed separately and thus it does not consider how to trigger each transition 

in the context. As a result, some transitions specified in the specification cannot be 

executed in any circumstance, i.e., some transitions of the IUT are not testable due to 

the restriction imposed by the context. In the example FSM 52 of an IUT shown in 

Figure 13, since xi can not be produced by C2 with any (external) input sequence when 

the IUT is in s0, transitions (s\, S2, £2/02) and (S2, s\, ii/2/2) can not be triggered. We 

call these transitions intrinsically non-executable in context Ci-

6 Test generation with stateless embedded context 

In this chapter, we consider test generation of an IUT with embedded context in this setting: 

i) The IUT is stateful, deterministic, and specified by an FSM; ii) The context is stateless, 

and specified by a set of (request, response) pairs; and iii) The context may include several 

components. Our goal is to generate minimal-length test sequence while avoiding test 

executability problem when carrying out the testing whenever such a sequence exists. 

An example application is a web application that makes use of web services as shown in 

Figure 14. Very often, the functionality of web services is known and stateless. We consider 
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Figure 14: An example application of stateless embedded context 

the test generation of this web application without encountering test executability problem 

during testing. 

6.1 Solving test executabil i ty problem 

Due to the existence of the context, the executability problem occurs when the input of a 

transition is from the context instead of the tester. In this case, the traverse history has to 

be taken into consideration. In Figure 15(A), suppose that state s is entered by executing 

the transition with input %i from the tester and an output request is sent to its stateless 

context. The context responds request with message response, which will be the actual 

input to the IUT. For test generation, the execution of these two adjacent transitions has 

to be enforced to avoid executability problem. In doing so, we can split state s by adding a 

new state s' to isolate the transition pairs involving the interaction with the context from 

other transitions (See Figure 15(Figure 15(B)). Thus, any test sequence generated from the 

resulting graph will not encounter test executability problem at this point. An advantage 
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Figure 15: An illustration of solving executability problem for an IUT with stateless em

bedded context 

of this technique is that the computation of the synchronization product of the IUT and 

its context can be avoided. 

How to derive an auxiliary S' from a given specification FSM S of IUT is given in 

Algorithm 1. The time complexity of the algorithm is 0( |S| |T|) , where | 5 | and \T\ are 

the number of the states and transitions in S. When S' is constructed, the test generation 

problem of an IUT together with its stateless embedded context is reduced to the test 

generation problem of an isolated IUT. Consequently, the aforementioned test techniques, 

such as the T-method and the U-method, and their optimization techniques for testing 

isolated IUT are applicable. 

Proposition 1 Let S and C be the specifications of an IUT and its context. Let S' be the 

auxiliary FSM constructed by Algorithm 1. Then S' is externally equivalent to S w.r.t. C. 

PROOF. Since S and C are deterministic, 5 x C is deterministic. According to Algorithm 1, 

<S' is deterministic, and thus <S' x C is deterministic. Therefore, to prove S' is external 

equivalent to S w.r.t. C is equivalent to prove that for any input sequence, S' xC and S xC 

produce the same output sequence in response. In other words, for any path in S x C, there 

exists a path S' x C such that these two paths have the same label; and vice verse. 

Let p be a path in S x C and a its corresponding local path in <S. Suppose label(a) = 

i\/o\ o ^2/02 o . . . o %ijo\ for some integer / > 1. The output Oj (1 < j < I — 1) in label(o~) 

can be classified into two cases: i) Oj is an external output at the environment/tester port; 

or ii) Oj is an internal output at the context port, i.e., Oj = reqh for some h (1 < h < k). 
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Algori thm 1 Construction of an auxiliary FSM S' 
1: Input: FSM S, C = {(reqi, respi),..., (reqk, respf.)}-

2: Output: FSM S'. 

3: S' = S; 

4: for each state s in S do 

5: if there exist transitions t = (si,s,i/reqj) and t' — (s,S2,respj/o) in <S', where 

j G { 1 , . . . , k}, i 6 I and o & 0 then 

6: add a new state s' into <S'; 

7: remove transitions t and t' from 5'; 

8: add transitions (si,s',i/reqj) and (s',S2,respj/o) to 5'; 

9: end if 

10: end for 

11: output S': 

For case i), the corresponding transitions with labels ij/oj o ij+r/oj+i in S remain 

adjacent in S'. For case ii), since C is stateless and a is derived from S x C, we have 

i j+ i = resp/j where resp/j is the unique response message for req^- According to the way 

that we construct S', the corresponding transitions with labels ij/oj o ij+1/oj+\ in S are 

transformed to two transitions adjacent upon a newly introduced state in S'. 

As we see, for any j , no matter Oj is in case i) or case ii), there exist adjacent transitions 

in S' whose labels are ij/oj and ij+\/oj+\ respectively. Thus, for a in S, there exists a 

local path with label(a) in S' and in turn there exists a path with label(p) in S' x C for any 

path p in S x C. 

According to Algorithm 1, for any local path in S', it is obvious that there exists a local 

path with the same label in S. Consequently, for any path in <S' x C, there exists a path 

S x C with the same label. 

Therefore, we have S' is external equivalent to S w.r.t. C. • 
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6.2 Reducing the use of the context 

Tests involving the use of context may be very costly, especially when the context is dis

tributed. For example, invoking web services is more time-consuming than executing local 

transitions; Some web service providers charge fees according to the number of web service 

invokes. In this case, it is desirable to reduce the use of the context during testing. This 

problem can be reduced to classic problems in graph theory. 

Suppose we consider the T-method for test generation of an IUT with stateless em

bedded context. Algorithm 2 gives an algorithm that generates an optimal test sequence 

that traverses each transition at least once and the number of the invokes of the context 

of the IUT is minimal. We use G$> = (V, E) to denote the graph representation of FSM 

S', which is the auxiliary FSM generated from a given specification FSM S of the IUT by 

Algorithm 1. Clearly, |V| is linear to the number of states in 5 and \E\ is equal to the 

number of transitions in S. 

weight is a weight function which assigns a weight to each edge. When an edge e has 

an output sending to the port of the context, we assign a very large weight to it; otherwise, 

weight(e) = 1. Here, we use oo to denote a very large number. In implementation, we 

can use \E\ instead. Since CPP is to find a tour which traverses each edge at least once 

with minimal weight, the use of the edges representing the invokes of the context will be 

minimized. 

Assigning a weight to each edge of graph G$' is linear to its size \E\. Consequently, the 

time complexity of the algorithm is determined by the CPP algorithm, whose best known 

implementation is in 0(|^|2 |-E|3log(|F|)). 

Here, we use the T-method as an example to show how to use a weighted graph to reduce 

the communication with the context. Of course, other test criteria can also be applied. 

6.3 A n application 

In the following, we use a simplified online flight reservation system as a running example 

to show how to generate a test sequence for an IUT with stateless embedded context. 

A partial specification of the IUT is given in Figure 16. In the initial state ready, a 

customer can either login to change his/her reservations or query the list of the available 
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Algorithm 2 Test generation of the minimal number of context invokes with the T-method 

1: Input: Gs> = {V,E). 

2: Output: a test sequence with minimal number of context invokes generated by the 

T-method. 

3: Initialize function weight : E —> A/"; 

4: for each edge e = (v,v',i/o) in Gs do 

5: if o sends to the context then 

6: weight(e) = oo; 

7: else 

8: weight(e) = 1; 

9: end if 

10: end for 

11: let p be the path obtained by applying CPP on the resulting graph; 

12: output the input portion of label(p); 

flights without login. Suppose a customer can make three types of changes, namely, change 

a seat, postpone a flight, and cancel a flight. There are two ways to make these changes: 

One is to request a change form and fill in the change details in the form, and the other is 

via a web page that displays the current status of the reserved flight. The latter case needs 

to query the status of the reservation in advance. 

The IUT requests for two kinds of services provided by its context: status query of 

a flight and flight availability query. We abstract the service requests and responses as 

symbols, and assume these services are stateless. The specification of the context is 

{(serviceReqStatus, respStatus), (serviceReqFlight, respFlight)}. 

Note that whenever the IUT requests a service from its context, the service provider, 

it enters state wait for the response. A test executability problem occurs if a test sequence 

contains queryStatus a respFlight or queryFlightList o respStatus. To avoid this problem 

we split state wait into two states: waitS and waitF to denote the wait for the response of 

queryStatus and queryFlightList, respectively. The corresponding FSM derived by applying 

Algorithm 1 on the example is shown in Figure 17. 



6 TEST GENERATION WITH STATELESS EMBEDDED CONTEXT 46 

logout/confirmOut 

respStatus/ 
displays 

postponeFlight/ 
confirmP 

Figure 16: An example: online flight reservation system 

logout/confirmOut X 
?( ready)"* 

changeSeat/ 
confirms 

1 
'login/ 
confirmln 

queryStatus/ 
erviceReqStatus 

query FlightList/ 
serviceReqFlight 

respFlight/ 
displayF 

l 

reqChangeForm/ 
displayF 

postponeFlight/ 
confirmP 

respStatus/ 
displays 

Figure 17: An example with split states and weights 
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When the service requests to the context is very costly, it is desirable to reduce their uses 

during testing. According to Algorithm 2, the weight associated with the corresponding 

edge for each transition is labelled in Figure 17. Note that very large weights are assigned 

to the transitions involving the service requests to the context. When we want to test 

transition (change, login, postponeFlight/confirmP) from the initial state ready, instead 

of using the input sequence login o queryStatus o respStatus (whose total weight is oo), we 

use the input sequence login o requestChangeForm (whose total weight is 2) to reach state 

change. 

7 Test generation with stateful embedded context2 

For simplicity, we assume the FSM for an IUT has two ports: one for communicating with 

its context, called the context port; and the other for communicating with the rest part of 

its environment simulated by a tester, called environment port. For clarity, we will use 

• I and O as the IUT's input and output at the environment port; 

• X and Y as the IUT's input and output at the context port. 

The behavior of the IUT is thus given as S = (S, s0,1U X, O U Y, X8,SS). 

In order to focus on the major functionality and allow the flexibility for don't care 

cases, the specification of an IUT is usually partially specified in practice. In this case, it 

is suitable to consider trace pre-order < instead of trace equivalence in testing in context. 

<5 d>c -M holds if any (input/output) trace allowed by S x C are implemented, yet a trace 

not specified in S x C may or may not be implemented. 

We assume that the specification FSM <S is free from internal-port-cycles. An internal-

port-cycle in an FSM is a path (si ,s2 , i i /oi) (s2,S3,*2/°2) ••• (sfc,Sfc+i>W°fc) (fc ^ 2) 

such that si = sjt+i, and ij $ I for all 1 < j < k. An internal-port-cycle represents 

a possibly infinite internal communications between the IUT and its context, which is 

2This chapter is the result of joint research with Dr. Jessica Chen and extracted from the paper titled "An 

Approach to Testing with Embedded Context using Model Checker", which was published in the proceedings 

of the Ninth International Conference on Formal Engineering Methods (ICFEM'08), LNCS 5256, pp. 66-85, 

2008. Springer-Verlag. 
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normally considered as a design error called livelock [3, 65]. How to guarantee that the 

design specifications are free from such logical errors can be carried out by formally verifying 

the correctness of the design specifications. 

An input sequence generated from S cannot be served as an input sequence to test the 

IUT in its context Tc, as we cannot control the IUT's context port. To take the context 

into consideration, a possible approach is to develop a testing technique to check whether 

M conforms to S within context C w.r.t. trace pre-order, instead of checking whether M 

conforms to S w.r.t. trace pre-order. That is, we compare the model representing the 

actually behavior of (X,XC) with the one specifying its expected behavior. Just like we 

assume that the actual behavior of the IUT can be described by an FSM for testing the 

IUT in isolation, we assume that the actual behavior of (I,lc) can be described by an FSM. 

The model representing the expected behavior of (I, Tc) can be derived from the spec

ification of the IUT and that of the context. Suppose that the context specification C is 

given as a 1-port FSM. Of course, if it is given in a specification language with higher level 

of abstraction, we consider its equivalent FSM model. Let 

C = (C,CQ,Y,X,\C,5C) 

be the specification FSM of the context where X = {x | x e X} and Y = {y \ y € Y} 

are the output and input symbols of C to communicate with S: x and y are executed 

simultaneously with x and y respectively, representing the communications between the 

IUT and its context. Here we have ignored those actions internal to the context component. 

Note that since we have the slow environment assumption, it makes no difference to use 

synchronous or asynchronous communication mode between the IUT and its context. For 

simplicity, we consider synchronous communication. 

Given S and C as the above defined 2-port and 1-port FSMs, the expected behavior 

of (X,IC) can be described as a synchronous product FSM S x C defined on S and C as 

(S', (so, Co), I, ((O x F ) U X)*,X,S). It has only one port with the tester/environment for 

input. A global state consists of a local state of <S and a local state of C. S' C S x C is a 

set of global states reachable from (so, CQ) in the sense that for any (s,c) € 5", there exists 

an input sequence a £ I* such that 5((SQ, CQ), O) — (s, c). 
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((O x Y) U X)* is a set of outputs from the tester's viewpoint. As we mentioned in 

the Introduction, we assume that even though the input/output between the IUT and its 

context is not controllable, they are observable. Thus, corresponding to each input from 

the environment, the tester will observe a sequence of outputs which is composed of those 

outputs (o,y) of the transitions in S ((o,y) € O x Y) and those input x from its context 

(a: G X). 

A transition in S x C is derived from a path in S and a path in C. More precisely, we 

have transition ((si,ci), (s2,C2),i/o) in S x C, and thus A((si,Ci),i) = o and <5((si, ci),i) = 

(s2)C2), only if we have 

A s(sx , i i . ..ijt) = 01 ...o fc, 5s(sx,ii ...ik) = s2, 

Ac(ci, i j . . . i'h) = o\ ... o'h, 5c(ci ,i[... i'h) = c2; 

for h,k> 1 such that 

A: = /i, i = ii , o = oi o i2 o 02 . . . o i*. o Ofc, 

ij- = C(OJ) for 1 < j < k, ij+i = o'j for 1 < j < k — 1, o'fc = —; 

or 

k = h + 1, i = i\, o = o-i o i2 o 02 • • • o ik o Ok, 

i'j = C(OJ) for 1 < j < k — 1, ij+i = ô - for 1 < j < k — 1, 

°fc = (*) —) where * can be any output including -; 

Otherwise, A((si,ci),i) = rra/Z and 5((si,c\),i) = null. Here c(o) represents the output 

of o at the context port. In the following, when there is no confusion, we will drop the 

subscripts of A and S. 

Since there is no internal-port-cycle in S, the above defined product FSM fully describes 

the expected behavior of the IUT with its context using the slow environment feature. 

Furthermore, as we assume that <S and C are minimal and deterministic, the above defined 

synchronous product of them is also minimal and deterministic. 

Once we have a product FSM specification for the expected behavior of (J, J c) , it is 

straightforward to generate a suitable test suite from this product FSM in order to test 
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whether trace pre-order holds between this specification and the implementation FSM of 

(T,lc). This approach, however, requires that the FSM specification of Xc be available, and 

the global model of (1,2C) be calculated, which brings out the state explosion problem. In 

the present work, we consider using model checker as an auxiliary tool to retrieve necessary 

information from a context specification in order to generate test sequences. We do not 

require that the product of S and C be actually constructed. In particular, if the specifica

tion of the expected behavior of lc is given in a specification language of a higher level of 

abstraction, we do not need to construct its operational model neither. 

7.1 The proposed method 

To check whether a trace pre-order relation holds between <S x C and the implementation 

FSM of (J, Jc).,( we need to generate a complete test suite to identify all the states in 

S x C using a distinguishing sequence, and verify all the transitions in S x C using the 

same distinguishing sequence. Since the context implementation is known to be correct, 

we actually only need to generate test sequences to verify some of the transitions in <S x C. 

Consequently, we can look for a distinguishing sequence that is capable of distinguishing 

only a subset of states in S x C. In this chapter, we characterize such a subset of transitions 

and a subset of states. 

Definition 7 (TZ covers T) Let T be the set of transitions in S x C, and TZ C T. V, 

covers T if for any transition ((si,ci), (s2,C2),i/o) G T, there exists a transition t = 

((si,c'1),(s2,c'2),i/o) in 1Z where (si,Ci),(s2,C2),(s\,c'1), and(s2,c2) are states in S x C, i 

is an input of S x C and o is an output of S x C. 

The transitions in S x C can be partitioned into different groups according to the local 

states of S in their starting states, the local states of S in their ending state, and their 

input/output pairs. The above definition actually requires that the subset of transitions 

TZ contain at least one representative transition from each of the partitions. The intuition 

behind is this: Since <S and C are deterministic, given two states s\ and S2 in <S, an input i 

and an output o in <SxC, there exists exactly one path p in S from si to S2 with input/output 

sequence i\/o\ o 12/02 o . . . o i/t/ofe such that i = i\ and o = o\ o i2 o 02 o . . . o ik o Ofc. 
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According to the definition of synchronous product, for any states c\, c<i in C, if transition 

t — ((si,ci), (s2,C2),i/o) 6 T, then t is constructed from this path. Consider all such 

transitions in one partition G(si,S2,i,o). To check that each transition in G(s\,S2,i,o) is 

correctly implemented, we only need to make sure that path p is correctly implemented 

in the sense that there exists a path p' in M which starts from a state identified as si, 

ends at a state verified as S2, and correctly gives output o in response to input i. Since the 

context is correct, this implies that all transitions in partition G(si,S2,i,o) are correctly 

implemented. While any transition in G(si,S2,i, o) can be used to generate a test sequence 

for the above purpose, we require that the subset 71 of transitions contains one transition 

from each partition G(s\,S2, i, o). 

As we consider only transitions in such a subset of transitions 1Z that covers the total 

set of transitions in S x C, we only need a distinguishing sequence to identify all the states 

appeared as the starting or ending states in the transitions in 7Z, denoted by states(lZ). In 

the following, we show that we can further weaken this requirement: it is sufficient to have 

a distinguishing sequence that can identify, among the states in states(TZ), all those with 

different local states of S. 

Definition 8 (distinguishing sequence on S over W) Let W be a subset of reachable 

states in S x C. An input sequence D = i\ o xi o i2 o X2 • • • ° ik ° %k for ij E I, Xj € X* 

(1 < j < k) is a distinguishing sequence on S over W if 

• For any state s, s' € S, s ^ s' implies \(s,D) ^ X(s',D). 

• For any (si,ci) G W and for any h (1 < h < k), the input sequence of X* obtained 

from X((sh,Ch),ih) by removing all output ofY is Xh- Here for 2 <h<k, (sh,Ch) = 

<*((si,ci),ii oi2... oih-i). 

The above definition can be viewed as an extension of the normal definition of distin

guishing sequence of an FSM: A distinguishing sequence of <S over 0 is actually the original 

definition of distinguishing sequence on S without considering any context. 

Note that we do not require an input sequence to distinguish all the states in <S x C, but 

a subset of states of interest expressed in W. This brings out two benefits: i) an increased 
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possibility of the existence of a distinguishing sequence; ii) when there exist distinguishing 

sequences, a possibly shorter one which contributes to the reduction of the cost for carrying 

out the test. 

Now we show that in order to generate from S x C a complete test suite w.r.t. trace 

pre-order, it is sufficient to consider a subset 1Z of transitions as long as TZ covers its set T 

of transitions, with a distinguishing sequence on S over states(TZ). 

Note that while previous work on this topic for testing in isolation requires reliable reset, 

i.e. the IUT can be reset to its initial state at any time, here we assume that the IUT can 

be reset to its initial state at any time and its context will be reset at the same time. 

Similar to previous work, we assume a bound on the number of states in the implemen

tation FSM of the IUT. When we test an IUT with a context, since the input to the IUT 

from the context is not controllable, the description of the IUT can be considered as a 1-port 

FSM from the tester's viewpoint. As a consequence, some of the states in a given 2-port 

FSM are not stable in the sense that after an input from the tester/environment, the IUT 

will never stay in any of those states waiting for the next input from the tester/environment. 

For testing in context, we consider only stable states: When we say that the number of 

states in the implementation FSM of the IUT is no more than the number of states in the 

specification FSM of the IUT, we refer to those states that appear to be the starting states 

of some transitions with input at the environment port. 

With the above assumptions, we present the following result: 

Proposi t ion 2 Let T be the set of transitions in S x C and K C T . Let T be a test suite 

derived from S x C. If 

• % covers T, 

• there exists an input sequence D such that D is a distinguishing sequence on S over 

states(TZ), andVt = ((si,ci),(s2,C2),i/o) 6 TZ, there exists an input sequence a such 

that ao D eT, aoio D £ T, and path(cr) is a path in S x C from (SQ, CQ) to (s\, c\), 

then T of S x C is complete w.r.t. trace pre-order. 



7 TEST GENERATION WITH STATEFUL EMBEDDED CONTEXT 53 

This proposition indicates that a desired test suite can be generated by finding a transi

tion set TZ and a distinguishing sequence D such that TZ covers T and D is a distinguishing 

sequence over states(lZ). In the next chapter, we will show how to find TZ and D with a 

model checker. 

7.2 Test generation using model checking tools 

Model checking tools such as SPIN [44], SMV [15], UPPAAL [4] are originally designed to 

verify the correctness of design specifications. Recent years have seen trends in applying 

model checking tools to assist the test generation procedures (see e.g. [73, 57, 72, 70, 23, 24]). 

When we use a model checker to verify a system model against some required property, 

a counter-example will be returned if the system model is not correct w.r.t. the property 

being checked. Making use of this functionality of model checkers, we can characterize a 

desired test sequence as a property. We use a model checker to verify the negation of this 

property, called trap property, against a system specification. When this trap property is 

violated, a counter-example returned by the model checker actually serves as a desired test 

sequence. Following this line of research, we present here another example of using model 

checkers to generate test sequences in conformance testing with context. 

To avoid constructing synchronous product of <S and C, the specifications of the IUT 

and its context are given to a model checker as a system specification. The specification 

FSM of the IUT can be straightforwardly translated into any formal specification language 

accepted model checking tools. For its context, we do not restrict it to be given in a 

particular specification language or a particular model, as long as it can be translated into 

a specification language accepted by the adopted model checker. In the following, we use 

Spec to denote the specification for the composition of the IUT and its context given in the 

specification language of the chosen model checker. 

We explain below how to make use of the specification FSM of an IUT and a model 

checker (with Spec) to derive a test suite of the IUT and its context that is complete with 

respect to trace pre-order. 
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7.2.1 Finding transitions in 11 

As we explained in Chapter 7.1, we need to find a subset 1Z of transitions i n 5 x C such 

that 7Z covers T where T is the set of transitions in S x C. Since the synchronous product 

FSM for the IUT and its context is not available, we analyze S and derive 1Z via a model 

checker. Algorithm 3 shows an algorithm to use a model checker to determine a transition 

set 1Z such that H covers T. 

Algorithm 3 To find a transition set 1Z 
1: Input: <S, Spec. 

2: Output: a set V of pairs of transitions in <S x C and input sequences in I*, 1Z. 

3: Let $ contains all composable paths in <S; 

4: Let V = 0; 

5: for each path p in <J> do 

6: define a formula <f> to express the non-existence of a path in Spec which contains a 

subpath which is equal to p when all its transitions from the context are ignored. 

7: use model checker to verify formula </> in Spec, 

8: if formula (f> is violated then 

9: add {t,a) to V, where (i) t G S x C is a transition derived by p and a path in C 

defined by the counter-example returned from the model checker; and (ii) a is an 

input sequence in I* derived from the counter-example that defines a path from 

(SO) co) to the starting state of t; 

10: end if 

11: end for 

12: Let U= {t\ (t,cr) eV}\ 

13; return V and 7?.; 

A path p = (si,S2,h/oi) o (s2,s3,12/02) o . . . o {sk,Sk+i,ik/ok) in S is composable if 

i\ € / , ij € X for 2 < j < k, and d(sfc+i,i) ^ null for some i € / . According to the 

definition of synchronous product, any transition t = {(s,c), (s',c'),i/o) € T is constructed 

from some composable path. On the other hand, not all composable paths in S can be used 

to define a transition in S x C. Those that can be used to define a transition in S x C are 
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called executable paths. Recall that transitions of T in partition G(s, s', i, o) share the same 

local state s of the IUT in its starting state, the same local state s' of the IUT in its ending 

state, and the same input i and output o. Each executable path is actually uniquely used 

to define all transitions in one of the partitions. 

Now, as we want to derive a set TZ of transitions that contains at least one (arbitrary) 

transition in each partition, we can use an executable path p in S to request the model 

checker to find an arbitrary transition of T that represents the partition uniquely determined 

by p. This can be done as follows: Use temporal logic formula to express such a property 

that there exists a subpath which is equal to p when all its transitions from the context 

are ignored. Request the model checker to verify the trap property, i.e. the negation of 

the above property. If p is used to define a transition t i n S x C, then the model checker 

will detect the violation of the trap property, returning a path in Spec from which we can 

derive a transition in the partition of p. Note that in addition to the transition in T, we 

also derive from the counter-example an input sequence in I* which defines a path from 

(so,co) to the starting state of t. This input sequence will be used later on to construct a 

test suite. 

As statically we do not know which composable path is executable, we simply ask the 

model checker to check all composable paths. If a composable path is not executable, the 

model checker will prove the trap property. In this case, we do not need to record any 

information. 

Since S is finite and free from internal-port-cycles, the number of composable paths in S 

is finite and the computation of 3> is in polynomial time. Consequently, the time complexity 

of Algorithm 3 depends on that of the model checking algorithms used by the model checker. 

See e.g. [15] for the discussions on the complexity of model checking algorithms. In fact, 

optimization techniques of model checking have been well studied in recent years to enhance 

its applicability. Thus, the practicality of Algorithm 3 is endorsed. 

According to Algorithm 3, we have the following result. 

Proposition 3 Let T be the set of transitions inSxC, and TZ the set of transitions obtained 

from Algorithm 3. We have TZ covers T. 
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7.2.2 Finding a distinguishing sequence 

Algorithms for finding a distinguishing sequence of an FSM are well-discussed in the liter

ature. See [56] for a good survey on this topic. However, finding a distinguishing sequence 

of an FSM in context is much more complicated. Due to the fact that a distinguishing 

sequence on S over states(JZ) must be calculated with both the specification of the IUT 

and that of its context, while synchronous product FSM of them is not available, we will 

apply model checker again. In [75J, the authors presented an approach to generating a 

distinguishing sequence of an EFSM with UPPAAL model checker [4]. Here, we adopt the 

idea of this approach to generate a distinguishing sequence on S over states(7Z). 

Algorithm 4 To find a distinguishing sequence over statesiJZ) 
1: Input: Spec, 1Z. 

2: Output: a distinguishing sequence on S over states^). 

3: for each state (s,c) in statesijl) do 

4: create a variant of Spec with {s, c) as its initial state; 

5: end for 

6: create a monitor process to synchronize all variants in the sense that a variant can only 

accept an input if all others accept the same input simultaneously; 

7: define a formula <f> to express the property that there does not exist an input sequence 

such that the corresponding output sequences produced by any two variants with dif

ferent local states of S as their initial states are all different; 

8: request model checker to verify <f> in Spec; 

9: if model check detects a violation then 

10: Let D be the input sequence derived from the counter-example returned by the model 

checker; 

11: return D; 

12: else 

13: return "There does not exist any distinguishing sequence on S over states(1Z)"; 

14: end if 

Algorithm 4 shows an algorithm for this purpose. Initially, for each state (s,c) 6 
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states(TZ), we create a variant of S with s as its initial state and a variant of C with c 

as its initial state. Then by making use of a special monitor process, we request all the 

processes that represent these variants of S to synchronize all their actions on accepting 

input from both the environment port and the context port so that they will always accept 

the same input at the same time. For any two variants whose local states of S in their 

initial states are different, if the output sequences produced upon a same input sequence 

are all different, then the input sequence can be used as a desired distinguishing sequence 

D on S over states(7l). 

As we know, not every FSM has a distinguishing sequence, In our setting, we cannot 

guarantee either their existence. However, as distinguishing sequences very often exist in 

real-life examples, the distinguishing sequences in our setting also exist in many application 

examples. 

The problem of finding a distinguishing sequence is PSPACE-hard by itself [56]. Al

gorithm 4 reduces the problem to an application of model checking tools. This allows us 

to benefit from important features that they provide, such as the efficient partial order 

reduction and OBDD, and thus, reduce the actual cost for the computation. 

Finally, with V and D, a test suite T is obtained: For each (t,a) e V, add both a o D 

and a o i o D to T, where i is the input of t. 

7.3 A n app l i ca t i on 

In the following, we use Inter-library Loan System (ILS) as a running example and we use 

SPIN [43] as a supporting model checker to show how to use the proposed technique to 

generate a complete test suite w.r.t. trace pre-order for testing in context. 

SPIN targets the efficient verification of a system model against the required properties 

on-the-fly. Here, the system model is described in Promela [43] and the required system 

properties are often expressed in Linear Temporal Logic (LTL) formulas. As a matter of 

fact, a design specification expressed in many other specification languages such as FSM 

and EFSM can be easily translated into a Promela model. 

A simplified ILS consists of two components: a borrowing library and a lending library. 

A user at the borrowing library can search a book in the lending library. When a book 
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is found, the user can choose either to purchase the book or to issue a loan request. The 

lending library will always grant the purchase of the book; however, the allowance of the 

loan of the book depends both on the availability of the required book and on the length 

of the waiting list. There are three cases: i) if the book is available, the loan request will 

be granted; ii) if the book is unavailable but the waiting list is not full, the lending library 

will ask the user if he/she wants to make a reservation; and iii) if the waiting list is full, 

the lending library will tell the user that the book is unavailable. 

Suppose that the borrowing library is the IUT and the lending library is its context. 

The specification S of the IUT has two ports: portUser and portContext. Port portUser 

represents the interface of the borrowing library with the environment/tester, and port 

portContext represents the interface of the borrowing library with its context, the lending 

library. The semantics of service primitives used in ILS can be inferred by their symbolic 

representations. For example, searchBook is an input primitives at portUser to represent 

a user's action of searching a book; loanAccptd is an input primitives at portContext to 

represent that a user's request of a book loan is accepted. 

Figure 18, Figure 19, and Figure 20 give the specification FSM S of the borrowing 

library, the specification extended FSM and the Promela model of the lending library C, 

respectively. Suppose that the number of available books is 3, and the length of the waiting 

list for a book reservation cannot exceed 3. Let T be the set of transitions in <S x C, 

and 7Z Q T. To find 7£ such that 1Z covers T and to find a distinguishing sequence over 

states(1Z), we need to translate FSM S and the behavior of a user of the ILS into Promela 

processes. Thus, there are three processes in the Promela model of ILS: User, Borrower 

and Lender, which represent the specifications of the environment/tester, the borrowing 

library, and the lending library, respectively. To establish the communication among these 

processes, there are four channels. 

• fromUser: a channel through which Borrower receives inputs from User; 

• ToUser: a channel through which Borrower sends outputs to User; 

• fromLender: a channel through which Borrower receives inputs from Lender; 

• ToLender: a channel through which Borrower sends outputs to Lender. 



7 TEST GENERATION WITH STATEFUL EMBEDDED CONTEXT 59 

Figure 18: Specification FSM of the borrowing library 

Now we show how to find TZ. Let p = loanReq/(—, fwdReq)onotAvail/(fwdNotAvail, —). 

Clearly, p is a composable path in S. In order to use SPIN to check whether p is executable, 

we need an LTL formula to express the negation of the existence of a transition in S x C 

derived from p. 

Since the sending actions are always executable, we focus on finding a path to enable 

the receiving actions in p. Let the temporal logic variables be defined as follows: 

r = Borrower@S2 

p = fromU ser?[loanReq] 

q = fromLender?[not Avail] 

Here, r represents that process Borrower is in state S2; p represents that message loanReq 

is received from channel fromllser; and q represents that message not Avail is received 

from channel fromLender. Then the desired trap LTL formula can be expressed as 

4> =!(<> (rUp)Uq). 

When verifying the ILS Promela model against <j>, we obtain the following result from 
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fwdYes I ackYes fwdNolmkNo 

waitingLst + +; 

Figure 19: Specification extended FSM of the lending library 

the returned counter-example: 

o = searchBook o loanReq o searchBook o loanReq o searchBook o loanReq o 

searchBook o loanReq o yes o searchBook o loanReq o yes o searchBook o loanReq o 

yes o searchBook 

t = ((s2t ^1,2), (so, co,4), loanReq/'(—, fwdReq) o not Avail /(fwdNot Avail, —)), 

where 03,4 and ci,2 are concrete states split from abstract state aco and aci in the situation 

when inStock — 0 and waitingLst = 3, respectively. 

This result actually describes a possible scenario of having a transition in S x C derived 

from p when all the books in the lending library are checked out and the waiting list is full. 

As shown in [56], the role of distinguishing sequences can actually be replaced by their 

prefixes, one for each state. This very often helps us achieve shorter test sequences. The 

definition of a distinguishing sequence over W can be extended to prefix distinguishing se

quences Di (for state Sj) straightforwardly. Following Algorithm 4, prefix distinguishing se

quence Di over states(7l) can be found with SPIN. For example, we have Do = searchBook 

and Z?2 = -D4 = searchBook o purchase. Thus, test sequences for t are ( r o D 2 and 

a o loanReq o Do-
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proctype Lender() { 

bool book; /*initialization*/ 

int inStock = 3; /*No. of available books*/ 

int waitingLst = 0; 

int Max = 3; /*the maximum length of waiting list*/ 

if 

:: book = true; 

:: book = false; 

fi; 

acO: /*label acO is associated with abstract state aco*/ 

if 

:: book = = true —> toLender ? fwdSearch —> fromLender ! found; 

:: book = = false —> toLender ? fwdSearch —• fromLender ! notFound —> goto acO 

fi; 

acl: /*label acl is associated with abstract state ac\*/ 

if 

:: toLender ? fwdReq; 

if 

:: inStock > 0 —* fromLender ! loanAccptd —> inStock • goto acO 

:: (inStock < = 0) A (waitingLst > = Max) —> fromLender ! notAvail —> goto acO 

:: (inStock < = 0) A (waitingLst < Max) —> fromLender ! reservationQuery 

fi; 

:: toLender ? fwdPurchase —* fromLender ! confirm —• goto acO 

fi; 

ac2: /*label ac2 is associated with abstract state ac2*/ 

if 

:: toLender ? fwdYes —• fromLender ! ackYes —> waitingLst+H—• goto acO 

:: toLender ? fwdNo —> fromLender ! ackNo —+ goto acO; 

fi; 

} 

Figure 20: Promela model of the lending library 
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8 Conclusion 

In this dissertation, we presented techniques to generate a minimal-length test sequence 

from the given specifications of a stateful IUT and its embedded context, either stateless 

or stateful, while avoiding the state explosion problem during test generation and avoiding 

the test executability problem during testing in context. 

In particular, when the context is stateful, we provided a way of implementing our 

method by making use of model checking tools. As an initial piece of work on testing 

in context with model checkers, our focus has been put on the general method. Further 

improvements can be made in terms of the size of the constructed test suite. For example, 

we can adopt those model checkers that can always find shortest counter-examples in terms 

of the lengths so that shorter test sequences can be derived. Apart from the optimization 

issue, there are many other directions to extend our current work. 

• It remains interesting to discuss our test generation technique in more general situa

tions where both the IUT and its context have communications with the environment. 

• IUT may be nondeterministic: we would like to study how to extend our results to 

nondeterministic testing in context. 

• When the IUT is completely specified, it is possible to achieve (global) trace equiv

alence. However, this is not trivial due to the interoperability of the IUT and its 

context. For example, when some transitions in S are intrinsically non-executable 

w.r.t. context C, we cannot generate executable tests to verify these transitions. On 

the other hand, the corresponding transitions in a faulty IUT may be executable, and 

thus there are more traces in Is x C than those in <S x C. To reach trace equivalence 

in such cases, adapting failure semantics could be a promising solution. 

• We have used distinguishing sequence for state identification. At expense of its con

venience for testing, distinguishing sequence does not always exist. Although the use 

of characterization set usually results in much bigger test suites, a characterization 

set is more likely to exist in an FSM with context. Therefore, we would like to study 

on how to use model checking tools to generate characterization set in our setting. 
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