
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Comparison of two approaches for test case generations from Comparison of two approaches for test case generations from

EFSMs. EFSMs.

Yongdong Tan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Tan, Yongdong, "Comparison of two approaches for test case generations from EFSMs." (2005).
Electronic Theses and Dissertations. 1498.
https://scholar.uwindsor.ca/etd/1498

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1498?utm_source=scholar.uwindsor.ca%2Fetd%2F1498&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Comparison of two approaches for test case
generations from EFSMs

by

Yongdong Tan

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2005

@2005 Yongdong Tan

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09778-7
Our file Notre reference
ISBN: 0-494-09778-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o ; i > c?la

Abstract
Testing is one of the vital steps in software development process. To convey testing, test

cases need to be generated to check whether an implementation conforms to the design

specification. Design specifications are usually expressed as Extended Finite State

Machines (EFSMs) and test cases are actually a path from the initial state to a specific

state on that EFSM. One of the most difficult issues of test case generation for EFSMs

comes from the fact that infeasible paths exist on EFSMs. Two approaches have been

developed in earlier 90s’ to generate feasible paths from EFSMs: one is to develop

algorithm to search EFSMs directly to generate feasible paths, and the other is to expand

EFSMs into Finite State Machines (FSMs), followed by applying FSM techniques to

generate feasible paths. Model checking method was proposed recently as a new

approach for test case generation. It has some advantages over previous methods such as

efficiency on number of states explored. However, by nature, it also has some

disadvantages such as time inefficiency. Here we present a comparison between the

model checking method and the previous expansion method from pragmatic aspect by

running experiments. To carry on this comparison, we implemented a classical expansion

algorithm, defined the translation from EFSMs to Promela models, and used SPIN model

checker in the model checking approach. We have run sufficient number of test case

generation experiments, compared the two approaches on their time consumptions,

numbers of states explored, performance changes when EFSMs’ sizes increase etc. By

this comparison, we can see the tradeoff between time consumptions and the number of

states explored in the two approaches and observe their performance changes while

EFSMs change. Finally, we show the existence of the trade-off between state efficiency

and time efficiency of the two approaches, the impact of domain size of variable value,

the native drawbacks of the expansion algorithm and the performance improvement by

tuning Premela models.

Keywords: Test Case Generation, Extended Finite State Machines, Model Checking,
Feasible Path

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Jessica Chen, for her invaluable

guidance and advices, for her enthusiastic encouragement and her great patience to me.

Without her help, the work presented here would not have been possible.

Next, I would like to thank my committee members, Dr Ezeife, Dr. Hu and Dr. Jaekel, for

spending their precious time to read this thesis and putting on their comments,

suggestions on the thesis work.

My special thanks go to Mrs. Hanmei Cui, Ms. Lihua Duan, Mr. Xiaoshan Zhao and

other members of our research group, for their help.

Finally, I also would like to thank my parents, my wife for their support, understanding

and patience, and my daughter, Alice, for giving me endless happiness.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Content
Abstract..iii
Acknowledgement... iv
List of Tables..vi
List of Figures.. vii
1 Introduction and Motivation..1
2 The three EFSM test generation approaches... 9

2.1 Search EFSM directly.. 9
2.2 D. Lee and M. Yannakakis’s Expansion Algorithm......................................10
2.3 SPIN model checker and Promela.. 14

2.3.1 Introduction to SPIN... 14
2.3.2 SPIN working as a model checker... 15
2.3.3 Promela Introduction... 16

2.4 Using model checker to generate test cases.. 16
2.4.1 Temporal Logic and Linear Temporal Logic (LTL)................................. 17
2.4.2 Using model checker to generate test cases...18

2.5 Coverage criteria...20
3 Comparison of the Two Approaches..22

3.1 Generic EFSMs generation from real protocols.. 22
4 Implementation of two approaches..26

4.1 Implement the expansion algorithm...26
4.1.1 Implement the algorithm..26
4.1.2 Implement the path generation.. 26

4.2 Translating EFSM into Promela model... 26
5 Result analysis and Conclusion.. 32

5.1 Tuning Promela model can improve performance..32
5.2 Impact of the domain size of the variables values..33
5.3 Time consumption and state space efficiency tradeoff.................................37
5.4 Expansion method will be more efficient in the presence of more coverage
criteria..40
5.5 The expansion algorithm has two native drawbacks:....................................40

5.5.1 The reverse transition need to be coded individually...........................40
5.5.2 The expansion method could waste time on unreachable states 41

6 Future Work... 42
Bibliography... 43
Appendix A .. 47

Vita Auctoris... 68

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 1.1 An Extended Finite State Machine.. 2

Figure 1.2 An infeasible path.. 3

Figure 1.3 A feasible path...3

Figure 1.4 Example of an EFSM specified protocol..4

Figure 2.1 An EFSM representing Active Monitor Protocol.. 12

Figure 2.3 Four types of LTL operations...18

Figure 2.4 Model Checker framework..18

Figure 2.5 Framework of test case generation via model checking....................................21

Figure 3.1 An generated EFSM with a specified size... 25

Figure 5.0 A state has multi non-deterministic out-going transitions.................................35

Figure 5.1 Comparison: Time consumption of test generation via SPIN model checker for

well tuned Promela model and not tuned Promela model.................................35

Figure 5.2 Time consumptions of the two approaches when domain size is 128..............37

Figure 5.3 Time consumptions of the two approaches when domain size is 3200............38

Figure 5.4 Time consumptions of the two approaches when domain size is 9800............39

Figure5.5 The time consumptions increase as the domain size of variables values

increases...40

Figure 5.6 Comparison of time consumptions... 41

Figure 5.8 Time consumption of two steps of expansion method.......................................43

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 1.1 Transitions table for EFSM in Figure 1.1.. 3

Table 1.2 The transition table of EFSM in Figure 1.4..5

Table 1.3 Generated test cases including feasible and infeasible paths.............................6

Table 2.1 Transitions table for EFSM in Figure 2.1.. 12

Table 5.1 Comparison: Time consumption of test generation via SPIN model checker for

well tuned Promela model and not tuned Promela model................................33

Table 5.2 Time consumptions of the two approaches when domain size is 128............ 36

Table 5.3 Time consumptions of the two approaches when domain size is 3200.......... 37

Table 5.4 Time consumptions of the two approaches when domain size is 9800......... 38

Table 5.5 The time consumptions increase as the domain size of variables values

increases... 39

Table 5.6 Comparison of time consumptions...41

Table 5.7 Comparison of number of states explored... 42

Table 5.7 Comparison of number of states explored... 42

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction and Motivation
Testing is one of the vital steps in software development process. Given a software

application, it is necessary to measure its quality - Have all the requirements been satisfied

under all possible circumstances? If not, how well has the application satisfied the

requirements? Is it acceptable?

If the application is determined to be not acceptable, it will need revision - the first step is

to identify the errors: where are the errors and how did they occur?

Such questions can only be answered through testing. For testing, basically, we run a set of

test cases: Each test case is a set of tuples of inputs, execution preconditions and expected

outcomes developed for a particular objective, such as to verify compliance with a specific

requirement. The application is executed with the specified input and preconditions and its

outcomes are observed.

Ideally, combining together, the test cases should be able to cover all requirements, all

possible behavior of the application, or it might be desirable to use as few test cases as

possible to cover some critical parts.

As we can see, it is highly unlikely that such criteria will be met if the test cases were

chosen randomly. Picking test cases manually is possible, but it will not be very efficient

and can likely be affected by human errors. Thus, it is highly desirable that the test cases be

generated automatically.

To generate test cases automatically, the application must be specified formally: The

assumptions about the world in which the application will operate, the requirements that

the application is to achieve and the design to meet those requirements must all be

expressed using formal notations. A formal specification can be understood and analyzed

by computers and the test cases can be generated based on it.

One of the most commonly used set of notations for formal specification is the Extended

Finite State Machine (EFSM).

An EFSM is formally represented as a 6-tuple <S, s0, 1, O, T, V> Where

1. S is a non empty set of states,

2. 50 is the initial state,

3 .1 is a finite set of input symbols,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. O is a finite set of output symbols,

5. T is a finite set of transitions,

6. V is the finite set of variables.

Each element of T is a 5-tuple t=(source_state, dest_state, input, predicate, action).

Here “source_state” and “dest_state” are the states in S representing the starting state and

the ending state oft, respectively. The “input” is either an input interaction from I or empty:

it will trigger the specific transition. For example in protocol specification, an input often

represents an incoming message from the message channel. Not all EFSMs have input and

output messages. The “predicate”, also called guard, is a Boolean expression of the

variables in V. Only when the “predicate” is satisfied, the transition is enabled.

Figure 1.1 presents a simple example of EFSM. This EFSM can also be expressed by a

transition table shown in Table 1.1. In Figure 1.1, the nodes represent states, and the arcs

are transitions between states. Transitions may have guards (preconditions) expressed by

an “i f ’ statement. Every transition leads the system to evolve from one state to another.

Ifi(counter != 6) counter++;

Ifl[counter== 6) ;

SO

If(l) counter = 0;

Figure 1.1 An Extended Finite State Machine

transitions Starting state Ending state Guard Action

to sO si True Null

tl s i sO counter!=6 counter++

t2 si s2 counter==6 Null

t3 s2 sO True counter=0

Table LI Transitions table for EFSM in Figure 1.1

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Intuitively, for an EFSM specification, the coverage criterion for test case generation is all

transition coverage, requiring every transition be covered at least once, which means the

test cases should cover all the edges in the EFSM. But it is not easy to generate such test

cases automatically. The difficulty stems from the fact that, in general, an EFSM model

contains infeasible paths.

Figure 1.2 shows a part of an EFSM. We can see that the system can not evolve along the

dashed line although there are transitions connecting state nodes Sj and sk. The guard

“x=l” blocks the way. While in Figure 1.3, the system can evolve along the solid line. It is

a feasible path.

X—1 /x:=0
 +•
invalid

Figure 1.2 An infeasible path

x:=0

valid
x=0/x:=l

Figure 1.3 A feasible path

By nature, the infeasible path problem is due to the existence of the so-called context

variables. A variable of an EFSM is called a context variable if there exists a path from the

initial state such that the variable is used in either an assignment or output statement but

without a prior value assigned to it [LCM94].

The EFSM example in Figure 1.4 is from [CZ93], which is a real protocol from industry. It

has 36 transitions, 20 states and five self-loops. In this Figure, the variable “number”

“counter” are context variables. This is because they did not have values in when the

system is in initial state, but they are assigned values when the system evolves into some

reachable states.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Idle

116
117 115

it 14
Wait
Discern
Jiectedj

Con­
nected Sending

Blocked

Figure 1.4 Example of an EFSM specified protocol.

The corresponding transitions table is shown below in Table 1.2.

Input Guard Output Action

t1 U.sendrequest Lcr

t2 L.cc U.sendconfirm

t3 U.data_req(sdu,n,b)

number:=0;

counter:=0;

no_of_segm ent:=n;

blockbound:=b;

t4 L.tokengive L.dt(sdu[number])

start timer

number:=number

+1;

t5 L.resume

t6 expire_timer L.token release blockbound:=b;

t7 l.ack()
number==no_of_

segment

U.monitor_complete(co

unter)

token_release

L.disrequest

t8 L.ack()

number<no_of_s

egment

not expirejimer

L.dt(sdu[number])
number:=number

+1

t9 L.block not expire_timer counter:=counter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+1

t10 L.resume
not expire_timer and

counter<=blockbound

t11
counter>blockbo

und

!L .token_realease

!U.monitor_incomplete(

number)

!U.dis_request

t12 ex p ire jim er

counter<=blockbound
L.token_release

t13 L.resume

t14 L.block

t15 Lack

t16 L.dis_request U.disindication

t17 L.dis_request U.disindication

Tabl e 1.2 The transition table of EFSM in Figure 1.4

Using the method in [CZ93], the author can generate test cases by using static loop analysis

and symbolic evaluation techniques to determine how many times the self loop should be

repeated so that test cases become executable. But when applying this method onto the

EFSM in Figure 1.4, the result, in Table 1.3, shows that among the generated test sequences,

only some are feasible (executable). More than half of the test sequences have to be

discarded.

Path Discarded Reason why path is discarded

1,2,3,4,9,10,6,4,7 no -

1,2,3,4,9,10,6,4,8,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,6,5,4,7 no -

1,2,3,4,9,10,6,5,4,8,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,7 yes

will be equivalent to the first

path after solving the

executability

1,2,3,4,9,10,8,6,4,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,8,6,5,4,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,8,7 no -

1,2,3,4,9,12,4,7 no -

1,2,3,4,9,12,4,8,7 yes predicate in t7 become (3=2)

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1,2,3,4,9,12,5,4,7 no -

1,2,3,4,9,12,5,4,8,7 Yes predicate in t7 become (3=2)

Table 1.3 Generated test cases including feasible and infeasible paths

An infeasible path can result from many reasons, but the key reason is that the values of the

context variables are nondeterministic. For example, if a state has two out-going transitions,

and the preconditions of both transitions are true, then which transition will be chosen to go

will be totally undetermined. This will obviously lead to the resulting values undetermined.

How can we make sure the generated sequences are feasible? Some researchers [SBC97,

MP92, CZ93, LHHT97, HB94, HLJ95] tried to develop algorithms to search the graph or

the EFSM models directly, with some heuristic techniques, to find feasible path. More

details are given in section 2.1. Other researchers [PTB85, PT87, KS90, BFH90, LY92]

tried to expand EFSM into Finite State Machines (FSM). FSM is similar to EFSM, but it

has no variables and no guards on the transitions, so all paths are feasible. Through this

expansion, we can apply various FSM tools and techniques to generate test cases. D. Lee

and M. Yannakakis’s expansion algorithm is such a classical algorithm [LY92]. Details are

given in section 2.2.

In recent years, researchers proposed another approach for generating test cases covering

all edges in EFSM specification - using model checkers [ABM98], [CSE96], [EFM97],

[GH99], [HLSU02], [RH01].

The idea of this approach is to take advantage of the counter-example generation capability

of model-checkers for constructing test cases. The basic capability of model checkers is to

check whether a model satisfies a specific property (which can be expressed by e.g. Linear

Temporal Logic (LTL). Details of LTL are given in section 2.3.1). To generate test cases

using model checkers, we can claim that a state (a node in EFSM graph) or a transition (an

arc in EFSM graph) is unreachable. The claim can be expressed as a LTL property. Then a

model checker is used to check against it. If the state (or transition) is reachable, then the

model checker should find the property unsatisfiable, and give a counter-example by error

tracing to prove that the state (or transition) is reachable. The counter-example is actually a

feasible path to the state (or transition). More details about model checker are given in

section 2.3 and 2.4.

Having the three test case generation approaches, we want to know which is better. As the

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first method often require some kinds of heuristics, while the other two can be applied to

general test case generations, we have more special interest on which is better between the

expansion method and model checking method.

As a new proposed method for generating feasible test sequence, the model checking

method has many advantages: first, of course, it guarantees that the test sequence is

feasible; second, finding violations of the properties is relatively easy because it only needs

to find a counter example against the property, but does not need to explore all states; third,

it can take the advantage of many efficiency improvement techniques that have been

integrated into the model checkers.

However, there is a conceivable issue: during each run, the model checker can only find

one trace - which is one test case, guaranteed to cover only one edge in the EFSM. So if the

EFSM has n edges, in the worst case we need to run the model check n times to ensure

complete coverage. It is inefficient when compared with expansion methods which are

intended to derive all feasible paths in one run.

But as a trade-off, the state space of model checking method is reduced. This is because a

model checker does not need to keep and explore all states, but can check the model

on-the-fly, which means exploring state only as needed. Further, model checker can

leverage some performance improvement method, like partial order reduction, binary

decision diagrams (BDD), efficient memory management etc, which can help us to gain a

lot of performance improvement.

Thus it is hard to say which approach is definitely better. It is conceivable that there is a

trade off between the two methods: model checking is more memory efficient but worse on

time efficiency: it gains less number of states to be explored, at cost of more time

consumed to generate the corresponding test suit.

In this thesis, we compare the two methods from empirical study. The major concerns of

test generation are time consumption and space efficiency. We run a set of EFSM examples

with a linear increase in sizes, observe a) the trend of their time consumption while their

sizes increase, b) the state number explored, and its relation to the time consumption. Since

we want to do comparison, every test generation will be run under both approaches. The

time consumption and state number explored are the two objects we will compare, and they

will be recorded.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Through the comparison, we answer the question which approach has what advantages

over the other. We figure out how worse or better one approach is over the other, and on

what kind of EFSMs, one approach has overall advantages over the other. We demonstrate

the above trade off quantitatively through empirical study. We show how the consumed

time varies as the size of EFSMs increase on both methods. We also show how the number

of state explored varies as the size of EFSMs increase on both methods. By analyzing the

result, we make further observation and investigate on, for example, whether there exist a

size range within which one method is better than the other, etc.

Another way to compare the two approaches is via theoretical analysis. But the theoretical

analysis is only applicable on expansion method, not on model checking method. This is

because almost all model checkers have integrated many techniques for efficiency such as

partial order deduction which makes the resulting time consumption unpredictable.

To the best of our knowledge, a direct experimental comparison of the performance of

these two basic approaches has never been made. The contribution of this work is to

perform such a comparison. For the expanding EFSM approach, we use D. Lee and M.

Yannakakis's algorithm [LY92], For the model checking method, we use SPIN model

checker.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 The three EFSM test generation approaches
In this chapter, we briefly review the directly searching EFSM methods, and give a detailed

introduction of the other two approaches: expansion approach and model checking

approach.

2.1 Search EFSM directly
In this section, we briefly review those works on generating test case via searching EFSM

directly.

Sarikaya et al. used the functional program testing approach to generate test sequences

from the EFSMs without considering feasibility of tests in advance [SBC97].

Miller and Paul [MP92] introduced a method to generate tests from EFSM models under

the assumption that the variables used in an implementation under test (IUT) are accessible

by a tester (i.e., the IUT is a white box). Such an assumption may not be applicable to many

implementations.

Chanson and Zhu [CZ93] studied a test generation method using the constraint satisfaction

problem technique from the artificial intelligence field. The feasibility of the tests is

checked only after they are constructed. Furthermore, some of the assumptions for the

EFSM model (e.g., the presence of the influencing self-loops) may not hold for general

EFSM models.

Li et al. [LHHT97] introduced a method for EFSM state verification. He defined and used

the Extended-UIO (E-UIO) sequences, each of which, if exists, contains predicates with

feasible conditions for each of the outgoing transitions. Therefore, it may be argued that the

generation of E-UIO sequences is equivalent to generating feasible test sequences.

However, in general, a state may not have an E-UIO sequence for each of its outgoing

transitions, which limits the applicability of this method.

For a restricted class of LOTOS expressions, called P-LOTOS, Higashino and Bochmann

proposed a test case derivation method [HB94]. A tree, called the extended labeled

transition system (ELTS), which can be an infinite tree for the general case, is defined to

represent the possible event sequences of a P-LOTOS expression. After all infeasible paths

are deleted from the ELTS by using linear programming, the resulting tree is used to derive

test cases. The applicability of this method is restricted to tree-like structures. For a general

EFSM model, the equivalent tree structure may be exponentially large.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chung-Ming [HLJ95] overcomes this problem by executing the EFSM to find all possible

executable paths. The problem with this method is that the test cases generated do not

cover control flow. Also, the method can not deal with large EFSMs.

All these methods mentioned above made sound contributions toward test generations

from the EFSMs. Inclusion of infeasible paths in the test sequences may be inevitable since

the underlying models are EFSMs. Therefore, without a proper analysis of the

interdependencies among the variables used in the actions and conditions of the EFSMs,

considerable effort may be wasted on test generation since the infeasible portions will have

to be discarded later.

2.2 D. Lee and M. Yannakakis’s Expansion Algorithm
In this section, we introduce expansion approach and D. Lee and M. Yannakakis’s

expansion algorithm [LY92], and give a detailed explanation on how it works and its

efficiency.

The expansion approach is to transform an EFSM into an equivalent FSM which can

present the same behaviors. Many researchers have worked on this kind of equivalent

transformation. The first significant result related to the algorithmic solution of the

equivalence problem is in [Hop71], where Hopcroft presents an algorithm for the

minimization of the number of states in a given finite state automaton. The problem is

equivalent to that of determining the coarsest stable partition of a set with respect to a finite

set of functions. A variant of this problem is studied in [PTB85], where it is shown how to

solve it in linear time. Finally, in [PT87] Paige and Taijan solved the problem for the

general case (which is the same as computing equivalence) in which the stability

requirement is relative to a relation E (on a set N) with an algorithm whose complexity is

0(|E| /og|N|). In [KS90] Kannellakis and Smolka noticed that the algorithm by Paige and

Taijan [PT87] can be used to determine the maximum bisimulation over a graph G = <N,

E>. In [BFH90] Bouajjani, Fernandez, and Halbwachs proposed an algorithm for the

relational coarsest partition problem tailored for the context of the so-called on-the-fly

Model Checking. The algorithm stabilizes only the reachable blocks with respect to all

blocks at each iteration. In [LY92] Lee and Yannakakis improved this method by using

only reachable blocks to stabilize the reachable blocks.

We choose D. Lee and M. Yannakakis’s expansion algorithm [LY92] in our experiment

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rather than others. This is because it has improved the previous methods, it is more

efficient and it is regarded as a classical algorithm that was widely referenced.

In this algorithm, an EFSM is expressed as a tuple © = (Q, k , I, T) consisting of

(1) A set of configurations Q. A configuration is a state the system could be in;

(2) A partition n of Q. It defines how configurations are divided into blocks. It is a

description of what values the variables could take when the system is in a specific state;

(3) A finite set / of actions (or inputs); and (4) a set T of transition relations on Q

corresponding to the actions, i.e., for each action ae I, there is a relation Ra c QQ. The

transition system is deterministic if the transition relation for every action is a function,

which means each state has no more than one out-going transition feasible at any time,

otherwise it is nondeterministic.

Algorithm Input: An EFSM expressed as (Q, n, I, T) with an initially marked block < BO,

pO >.

Algorithm Output: The minimal reachable graph (R, p, I, T).

Figure 2.1 is an EFSM representing Active Monitor Protocol.

t7 : (P>0)&(M=0)/M:=1

tl: /P:=R.M:=1

Figure 2.1 An EFSM representing Active Monitor Protocol

In the example in Figure 2.1, the input Q, n , I, T are as follows

Q: { (S,P,M,R)|Se {S0,S1,S2 }; P e {0-7}; M e {0,1}; Re {0-7} }, Totally there are

3x8x2x8=384 configurations (states).

k : contains 3 blocks: SO: { (S,P,M,R)|Se {SO}; Pe {0-7}; M e {0,1}; Re {0-7} },

SI: { (S,P,M,R)|Se {SI}; Pe {0-7}; Me {0,1}; Re {0-7} },

S2: { (S,P,M,R)|Se {S2}; Pe {0-7}; M e {0,1}; Re {0-7} },

I and T describe the transitions between states:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition from To guard Action

t1 S1 SO P:=R M:=0

t2 S2 S1

t3 SO S2 M==1

t4 SO S2

t5 SO SO R:=min{R+a, 7}

t6 SO SO P==0 & M==0

t7 SO SO P>0 & M==0 M:=1

Table 2.1 Transitions table for EFSM in Figure 2.1

BO: initial state the system will be in is SO

PO: the initial values of all variables: P=0, M=0, R=0

The output of the algorithm is a minimal reachable graph and a semi-stable transition (R, p,

1,7).

R is the reduced configuration set, and p is a new partition generated by splitting the

original partition.

We say that an arc, B — C with label a, of the graph is stable if every configuration of B

has an a-arc to some configuration of C; otherwise, arc a is unstable, which means some

configuration of B can not transfer to any configuration of C via arc a. The transition

system is stable if all arcs of its quotient graph are stable. An important property is that,

every unstable transition system has a unique coarsest stable refinement, and that

refinement is precisely the reduced transition system.

We can obtain the reduced transition system by splitting unstable arcs straightforwardly

until there are no unstable arcs.

The two obvious ways for constructing the reachable minimal graph are: (1) forward

search to compute all the configurations that are reachable from pO, and then minimize the

derived FSM; (2) first minimize the given EFSM, and then compute the part that is

reachable from the block of the initial configuration.

Both of these methods can be arbitrarily bad. In general, the reachable minimal graph can

be arbitrarily smaller than both the reduced system and the number of reachable

configurations, which are the minimal amount of work to be done using the two obvious

methods, respectively. Furthermore, the reachable minimal graph can be finite while the

other two can be infinite. Thus an intermediate method that explores the graph and splits

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocks simultaneously is necessary. This method should combine the forward inference of

reachability information with the backward inference of inequivalence information. The

key point is to split the unstable arc at an appropriate time. D. Lee and M. Yannakakis’s

algorithm is such a method that it keeps track of some configurations reached from the

initial one, and prefers to search forward than split, but it does not search unless it knows

for sure we are accessing inequivalent configurations. Instead of split unstable arc and

block immediately, it maintains a queue to keep all unstable blocks, splits them until the

current round of search traversed all reachable blocks. It does not split blocks unless it

knows they are reachable, and it gives every reachable block a fair chance to split. During

the execution of the algorithm, when it reaches some blocks, it will pick one reachable

configuration pB from that block, and use it to do further determination of whether the

following blocks are reachable.

It maintains one stack and one queue. The stack keeps all reachable states that have been

reached. These blocks will be checked whether they are stable or not. The queue keeps all

blocks that are unstable and will be split.

Starting from the initial configuration in the initial block, the algorithm does a depth-first

search. It marks every unmarked block it reached and checks whether this block is stable or

not. If it is not stable, it will put it into the queue, and then continue the search until there is

no unmarked blocks. Then it begins to split blocks in the queue. When a block is split, a

new block will be generated, and the old block will shrink. The edges on the original blocks

need to be checked whether they are still available on the old block, and whether they are

applicable on the new block. The new block will be put into stack for the next round of

search. When the block is split, all blocks connected to it will be checked again to see

whether they need to be split.

To carry out the expanding, the following Basic Operations on blocks in % are needed: (i)

The intersection of two blocks CDB; (ii) The inverse of a block B: a -1 (B), actually we

only need the combination of (i) and (ii): CTI a~x (B); (iii) The difference of two blocks:

C-C and (iv) Test for emptiness. Assume for now that each operation takes time c.

During the whole process, configurations in different blocks are not equivalent. Let N be

the number of blocks in the reachable reduced system (R, p,I ,T). At any moment of the

execution of Algorithm 3.1, there are three classes of blocks: (i) marked block, which

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains one or more reachable blocks in p; (ii) unmarked block that contains one or more

reachable blocks in p; (iii) unmarked block that is disjoint from R. The size of the union of

Class (i) and (ii) blocks is no more than N.

The time complexity is 0 (ck N 2) where N is the number of blocks in the resulting FSM, k

is the number of actions, and each block operation takes time c.

2.3 SPIN model checker and Promela
For the model checking approach, we choose SPIN/Promela model checker.

SPIN is a widely used model checker, especially for communication protocols. It is free to

get and easy to use. It is well maintained by Bell Lab. Promela stands for Process Meta

Language, which is a model description language coupled with SPIN.

2.3.1 Introduction to SPIN

SPIN is a popular open-source software tool for the formal verification of distributed

software systems. The tool was developed at Bell Labs in the original UNIX group of the

Computing Sciences Research Center, starting in 1980. It supports a high level language,

called PROMELA, to specify systems descriptions. It has been used to trace logical design

errors in distributed systems design, such as operating systems, communications protocols,

switching systems, concurrent algorithms, railway signaling protocols, etc. The tool

checks the logical consistency of a specification. It reports on e.g. deadlocks, unspecified

receptions, flags incompleteness and race conditions about the relative speeds of processes.

SPIN provides direct support for the use of embedded C code as part of model

specifications. This makes it possible to directly verify implementation level software

specifications, using SPIN as a driver and as a logic engine to verify high level temporal

properties.

SPIN works on-the-fly, which means that it avoids the need to pre-construct a global state

graph, or Kripke structure, as a prerequisite for the verification of system properties.

SPIN can be used in three basic modes:

• as a simulator, allowing for rapid prototyping with a random, guided, or interactive

simulations

• as an exhaustive verifier, capable of rigorously proving the validity of user

specified correctness requirements (using partial order reduction theory to optimize

the search)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• as proof approximation system that can validate even very large system models

with maximal coverage of the state space.

To generate test case, we need to use the second mode.

2.3.2 SPIN working as a model checker

Model checking is one kind of formal verification, and it relies on building a finite model

of a hardware or software system and checking that the model satisfies the desired

properties. In order to perform model checking, a formal abstract model has been

established in advance. The desired correctness properties are expressed in a concise and

unambiguous way. A series of model checking techniques will be applied to perform

exhaustive state analysis in order to search the desired properties in verification models.

SPIN accepts a verification model and correctness requirement, and generates a C code

model checker. After compiling and executing the model checker, the final results are

reported. The correctness requirements can be expressed in 3 aspects: assertions, state

labels and never claims. Never claims are used to describe the temporal properties of a

Promela model and it can also be expressed in LTL expressions. SPIN embeds an LTL

converter, which translates LTL formula into never claims in Promela.

For verification, the Promela and LTL correctness claims are translated into a C model

checker. After this model checker is compiled, an executable verifier is generated. When

this verifier is executed, it performs on-the-fly modeling checking according to model

checking algorithms provided in SPIN. If the verification model does not satisfy the

correctness requirements, some counter examples are created.

PROMELA

Countcr-Ex.

LTL Parser

Optimized

SPIN Front End

1. Syntax Error
 Ppnnrtc

Figure 2.2 Structure of SPIN

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPIN can be used as a full LTL model checking system, supporting all correctness

requirements expressible in linear time temporal logic

Correctness properties can be specified as system or process invariants (using assertions),

as LTL requirements, as formal Buchi Automata, or more broadly as general

omega-regular properties in the syntax of never claims.

The tool also supports both exhaustive and partial proof techniques, based on either

depth-first or breadth-first search. To optimize the verification runs, the tool exploits

efficient partial order reduction techniques, and (optionally) BDD-like storage techniques.

This feature is very important for test case generation and is applied in this thesis.

2.3.3 Promela Introduction

Promela is a verification modeling language. It is for making abstractions of (distributed)

software systems that suppress details unrelated to process interaction. The system’s

behavior is modeled in Promela and verified by SPIN.

Promela programs consist of processes, message channels, and variables. Processes are

global objects. Message channels and variables can be declared either globally or locally

within a process. Processes specify behavior and channels, and global variables define the

environment in which the processes run.

In Promela there is no difference between conditions and statements: even isolated

Boolean conditions can be used as statements. The execution of every statement is

conditional on its executability. Statements are either executable or blocked. The

executability is the basic means of synchronization. A process can wait for an event to

happen by waiting for a statement to become executable. For instance, instead of writing a

busy wait loop:

while (a != b)

skip /* wait for a= =b */

one can achieve the same effect in Promela with the statement

(a = = b)

A condition can only be executed (passed) when it holds. If the condition does not hold, the

execution blocks until it does.

2.4 Using model checker to generate test cases
We introduce test case generation via model checking in this section. Before that, we need

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to introduce Linear Temporal Logic first.

2.4.1 Temporal Logic and Linear Temporal Logic (LTL)

In year 1977, Pnueli proposed temporal logic as a very convenient formal language to state,

and reason about, the behavioral properties of parallel programs and more generally

reactive systems [Pnu77, Pnu81]. Correctness of these systems typically involves

reasoning upon related events at different moments of a system execution [OL82].

In defining a system of temporal logic, there are two possible views regarding the

underlying nature of time. One is that the course of time is linear: at each moment there is

only one possible future moment. The other is that time has a branching, tree-like nature: at

each moment, time may split into alternate courses representing different possible futures.

In linear time logics, temporal modalities are provided for describing events along a single

time line. In contrast, in branching time logic, the modalities reflect the branching nature of

time by allowing quantification over possible futures. A major distinction between them is

reflected in the classes of time frames: linear orderings or trees.

Regarding a linear sequence of states: s0 —> s, —>.....................s,+1 —>......

LTL provides the following temporal operators (p and q represent logic statements):

• “Finally”(or ‘future”): Fp is true means (p holds in a future point

• “Globally” (or “always”): Gp is true means p always holds from now on

• “Next”: Xp is true means p holds in the next time point

• “Until”: pUq is true means q will hold in a future point, and p hold from now to that

point

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finally p globally p

F p
next p

G p

p until q

x p
Figure 2.3 Four types of LTL operations

2.4.2 Using model checker to generate test cases

p U q

Generally, a model checker (shown in Figure. 2.4) takes a model (of a finite state system)

and a specification written as a temporal formula as the input, checks whether the model

satisfies the formula. The algorithm returns “true” if the model satisfies this specification;

otherwise it returns “false” and provides a counterexample demonstrating why the model

does not satisfy the formula. The counterexample feature is vital to the testing & debugging

of the system.

System
Model: M

System
Properties: ®

Model Checker
M h ® ?

No
Counter-Ex Yes

Figure.2.4 Model Checker framework
The model checker was developed to check the correctness of a design by checking

whether it satisfies the given properties, while it can be used to do test generation.

Model checking techniques have been proposed as a method for test sequences generation

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from formal models in many papers [ABM98], [CSE96], [EFM97], [GH99], [HLSU02],

[RH01]. These proposed approaches leverage the witness (or counter-example) generation

capability of model-checkers for constructing test cases. Test criteria are expressed as

temporal properties. Witness traces generated for these properties are instantiated to create

complete test sequences satisfying the criteria. It is well-known that one of the issues that

often hinders model-checking is the state-space explosion problem. As the size of the state

space to be explored increases, model-checking might become too time-consuming or

infeasible. But, in the context of test generation, we are only interested in finding

counter-examples against given properties so that counter-examples can be instantiated to

test sequences. Generally, finding violations of the properties is relatively easy and that the

counter-examples can be constructed easily even for quite large models. Given a finite state

transition system, a model checker will exhaustively explore the reachable state space

searching for violations of the given LTL properties. Should a property violation be

detected, the model checker will produce a counter-example illustrating how this violation

can take place. In short, a counter-example is a sequence of transitions that will bring the

finite state model from its initial state to a state where the violation occurs.

A model checker can be used to find test cases by formulating a test criterion as a

verification condition for the model checker. For example, we may want to test a transition

(guarded with condition Q between states A and B in the formal model. We can formulate

a property stating that the transition sequence must take the model to state A; in state A, C

must be true, and the next state must be B. This property is expressible in the logics that can

be used in common model checkers, for example, LTL. We can now challenge the model

checker to find a way of getting to such a state by negating the property (saying that we

assert that there is no such sequence) and start verification. The model checker will now

search for a counterexample demonstrating that this negated property is satisfiable; such a

counterexample constitutes a test case that will go through the transition we want. By

repeating this process for each transition in the formal model, we use the model checker to

automatically derive test sequences that will cover all transitions of the model.

This approach can be used to generate tests for a wide variety of coverage criteria, such as

all state variables have taken values, and all decisions in the model have been evaluated to

both true and false.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This test generation process is outlined in the following Figure 2.4. The figure takes the

simple EFSM in Figure 1.1 as an example. It claims a property that counter= =6 would

never happen as an LTL statement, !([](counter= =6)). Then, the SPIN (details are given in

the following section) model checker runs to check whether the property holds or not, and

find that when the system is in state s2, the property does not hold. So the model checker

gives an error trace, starting from initial state s0 to ending state s2, to prove the property

does not hold. This error trace is exactly what we want. It can be used as a test sequence

from s0 to s2.

Yes, property
is satisfied

SPIN model checker: M 1= <J>

 Property®
! (H(counter==6))

No, generate
trace to error, i.e.

the test case

byte counter;
proctype count() {
SO: goto SI;
SI: if

:: :(counter !=6)->counter++;goto

(counter==6)->goto S2

Promela M odel: M

Figure 2.5 Framework of test case generation via model checking

2.5 Coverage criteria
When we perform software testing, we want to know on what degree the testing can

demonstrate the absence of errors in a program? In other words, is the testing adequate?

How much detail or rigor should be applied to the testing? How large and diverse should

the test be?

Coverage criterion is the measurement.

A coverage criterion is an assumption about how defects are distributed in the program in

relation to the program model. The stronger the assumptions are made, the smaller the size

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of test set is.

Among many types of coverage criteria, we use two most common ones:

All State coverage: Requires every state to be covered at least once.

All Transition coverage: Requires every transition be covered at least once.

For the EFSM in Figure 1.1, the state overage can be expressed by the following set of

LTLs: <>S/i, n=0,l,2, which means “eventually, it can reach Sn”, and transition Sr>Sy can

be expressed by the following set of LTLs: <>(Si && xSj), i,j=0,l,2, which means

“eventually, it will hold that Si reached and the next state is Sj”. “<>”, stands for “Finally”

operator of LTL (see LTL operators in Figure 2.3). && is logic “and” operator.

To make the comparison, we make the two methods generate test suites that meet the two

coverage criteria.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Comparison of the Two Approaches
The purpose of the experiment is to compare the two test generation approaches: model

checking approach and expansion approach.

To compare the two approaches, we need to do the followings:

1. Define the comparison content and comparison standard.

2. Define a set of translation rules that can translate a general EFSM into a Promela

model, against which SPIN model checker can run model checking to generate

feasible paths we want.

3. Implement D. Lee and M. Yannakakis’s algorithm [LY92] which can expand a

general EFSM into a FSM and further derive all feasible paths.

4. Obtain sets of EFSM examples so that we can run the two approaches against them.

As we mentioned in section 1, the content of comparison are time consumption and number

of states explored. The implementations of the two approaches are discussed in section 4.

In this section, we introduce how to obtain sets of EFSM examples for the experiments and

how to carry the experiment.

3.1 Generic EFSMs generation from real protocols
To make the experiment convincing, the set of EFSMs used in our experiments should

meet the following requirements:

1. They are from well-known protocols,

2. They should cover as many types of EFSM graphs’ characteristics as possible, such

as cycles and self-loops,

3. Their sizes should have a linear equitable increase.

Running sufficient number of EFSMs from well-known protocols is very necessary to

reach a convincing result, but it is not enough. First, because we want to compare the time

consumption in the two methods and their performances when EFSMs’ sizes increase, the

set of EFSMs should have a linear equally increasing sizes, by which we can observe the

increase of the consumed time as EFSM’s size increase. As we mentioned before, a major

difficulty of expanding an EFSM into a FSM is from self-loops and cycles that exist in

EFSMs, so we must have our examples contain such characteristics. For the same reason,

the EFSMs must contain other characteristics that common EFSMs have, such as branches

and guards.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However these requirements are not easy to meet all together. Most examples only meet

one or two requirements. For example, EFSMs in Figure 1.4 and 2.1 are small in size,

while others may not contain self-loops or cycles.

The most difficult thing is to have a set of EFSMs with linear increasing sizes. The size of

an EFSM refers to its number of states, number of transitions, number of variables and

domain sizes of variables’ values. The more states, we have the larger the EFSM will be.

The more transitions, we have the more complex the EFSM will be, and generally, more

transitions lead to more states be generated when we expand the EFSM to FSM. We

browsed a wide range of available EFSMs. Some are small and some are large, but we

could not collect a set of EFSM examples with linear increasing sizes.

The solution to this problem is to implement an EFSM generation mechanism to derive

EFSMs with specified size and characteristics from the selected protocols, by which we

can make them meet the above requirements.

To derive an EFSM from a select protocol means we already have an EFSM for that

protocol, but the EFSM may not meet our expectation, so we modify it by adding nodes,

transitions or expanding domain size of variable values. The additional nodes and

transitions should be constructed via duplicating original nodes and transitions. By

duplicating some nodes, transitions and expanding variable value range, we enlarge an

EFSM to a specific size. In the mean while, we can add self-loops and cycles as we need.

For example, we can enlarge the EFSM in Figure 2.1 into the following EFSMs, in which

all original transitions are kept and transplant into the additional states. The generated

EFSM has a larger size as we expected.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t 7 : (P>0)&(M=0)/M :=1 t3: (M=l)/

ti: /P:=R.M:=1(P>0)&(M=0)/

Figure 3.1 An generated EFSM with a specified size

It is reasonable to do this derivation. Although the derived EFSM does not represent the

original protocols any more, it has no impact on our experiment.

In this thesis, we select three real communication protocols: Active Monitor Protocol,

which is part of the token ring protocol of ANSI/IEEE Standard 802.5 [ANSI2], the

INitiator-RESponder protocol [Hog91] and a simplified class 2 transport protocol

[RTD96]. Having the original EFSMs corresponding to the protocols, we enlarge the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EFSMs via the approach mention above. We make a set of EFSMs with 10,20,30,40, 50,

60 states and add 4 transitions to every additional state. We have chosen number 10,20,30,

40, 50, 60 only because we want the EFSMs have linear increasing sizes. We can also

make them 15, 30, 45, 60, 75, ... etc. For the additional parts of states, we want most of

them to be reachable. Otherwise the additional states are meaningless for us. It is obvious

the more transitions we add, the less number of states will be unreachable. By observation,

we found it is good enough if we add 4 more transitions for every addition states.

Having the sets of EFSMs ready, we run ten times for each experiment to eliminate

possible interference. For the result, we eliminate obvious aberrancies, then calculate the

average value of others. As we have 3 sets of EFSMs, every set contains 7 EFSMs, and we

need to run them by two approaches, we totally run experiments 10x3x7x2 times.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Implementation of two approaches
4.1 Implement the expansion approaches
The implementation is composed of two parts. The first part is a direct implementation of

the algorithm [LY92], which expands an EFSM into a FSM by splitting states and

eliminating predicates. The second part is an implementation to find the shortest path

between the initial state (the root node) and destination transitions (arcs) or states (nodes)

of a generated FSM. We developed a segment of code to do this job. The generated path is

the test case for the original EFSM.

We use Microsoft C# to do the coding.

4.1.1 Implement the algorithm

The implementation is straightforward. The code is in Appendix A.

4.1.2 Implement the path generation

The code is the shadow part of Appendix A

This part was not discussed in [LY92]. We developed a segment code to implement it. The

input is the generated FSM. We can regard it as a direct graph with an initial node. The

output is a set of paths staring from initial node to all other reachable nodes and arcs. To

make sure the generated path is the shortest path from the initial node to a specific node or

arc, we browse the graph in this way: We start from the initial node, then at each iteration,

we check all the nodes and arcs directly reached from the nodes we checked in the previous

iteration. If a node or arc has been visited, we skip it. If it has not been visited, we record

the current path for output. We repeat it until there is no unvisited reachable nodes

This part of work only takes less than 1% time consumption of the whole process. See

section 5.4.

4.2 Translating EFSM into Promela model
In this section, we discuss how to translate an EFSM model into a Promela model and

introduce some specific issues. We use the example EFSM in Figure 2.1 to demonstrate the

translation. Then we discuss how the verification works on the translated Promela mode.

An EFSM is composed of states, transitions, variables, inputs and outputs. We discuss

them one by one.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• One EFSM model -> One Promela process

One Expanded Finite State Machine will be translated into one Promela process.

Although processes in Promela can be recursive, accept parameters and exchange values

with other processes by the use of global variables and message channels, we only use it in

the simplest way. We declare a process to represent an EFSM. A declaration of a process

starts with the keyword “proctype” followed by the name of the process. Each process has

a body in which variables are declared and statements are specified. The body of a process

is marked with and “}”.

active proctype ActiveMonitor

• EFSM Variables -> Promela variables

Promela provide the following 4 types of variable types

lypename Typical Range

bit or bool 0..1

byte 0..255

short 1 to V
l 1 to V
i 1

int - 2 31 -1 .. 231 -1
Integer is the most important data type. Promela pre-defined types: bit, byte, short and int

are all integers, but their value ranges are different. As the real and float numbers will lead

to infinite size of the data set, they are not included into Promela. For the same reason, we

only consider integers in our EFSM models

The range of a variable in an EFSM may not exactly match any one of the four provided

data type, for example, the variables R and P of EFSM in Figure 2.1 range from 0 to 7.

Among all the types that cover this range, we can choose one with the smallest data range.

So we define P and R as byte type. As the actual range depends on the operations carried on

that variable, this enlargement will not lead to the increasing of state space. As the variable

M can only be 0 or 1, we can assign bit data type directly as the followings.

byte a= l;

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

active proctype ActiveMonitor

• EFSM states -> Promela blocks with labels

The process body is composed of several blocks, each corresponding to one state of the

EFSM. The block is labeled with the state# for identification, and contains transitions

description. Although a Promela program, like all other structure programs, is sequentially

executed, we use “goto state#” statement to enforce it to switch between state blocks. Thus

the Promela model will behave exactly same as a EFSM model,

byte P, R;

byte a=l;

active proctype ActiveMonitor

statel:

• EFSM Transitions -> Promela “i f ... goto . . .” statements

The transition between two states are translated into Promela “i f ’ and “goto” statements.

As we mentioned above, one EFSM state corresponds to one block in Promela program.

For example, the block labeled with stateO corresponds to the SO in the EFSM graph. The

block is actually a segment quoted by “if... fi” Promela provides double colon “::”

operator together with arrow operator “->” to represent “if condition is satisfied, then

action, otherwise hold”. The condition here can be used to represent the guard of an EFSM

transition. The actions followed correspond to the computation jobs the transition will

complete. In one “i f ... fi” block, there can be multi “::” operators. These features are

dedicated to multi transitions from one state. For example, in Figure 2.1, there are five

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outgoing transitions from SO. Correspondingly there are five (condition) -> actionl;

action2;...” in that block. Each corresponds to one transition. In an EFSM, if there are

more than one guard that can be satisfied, it will randomly choose one transition to go

through. Promela use multi operation in “i f ... fi” statement to handle it.

tempR=R+a;

.
:: (tempR<7)->R=temp; goto stateO

:: (tempR>=7)->R=7; goto stateO

:: (P= =0&&M= =0)-> goto stateO

:: (P>0&&M= =0)->M=l; goto stateO

:: (M= =1)-> goto state2

:: (true)->goto state2

fi; ^ 3

Coverage criteria-^Promela’s never claim

As we stated in section 2, to use model checker to generate a feasible path, we need to give

a property that claims the EFSM can not reach a specific state or edge, then run model

checker against this property to generate a counterexample, which actually contains the

path we want. For example, if we want to test the edge from S1 (state= =1 && M= =1 &&

R= =5 && P= =5) to S0(state= =0 && M= =0 && R= =5 && P= =5), we need to define

the following two statement:

#define p (M - =1 && R- -5 && P= -5)

#define q (M= =0 && R= =5 && P= =5)

Then, we claim the following LTL property:

!(p&&(Xq))

It means: it will never happen that p holds and q holds right after that. X is temporal logic

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operator “next”. SPIN will translate the property into a never claim as:

never { /* (<>p) */

TOJnit:

:: ((p))-> g°t0 accept_all
:: (1) -> goto T0_init

accept_all:

* *!®PrS?:S

It is actually a monitor automata. Whenever the system goes into a new state, this automata

will check whether p holds. If so, the automata will check whether q holds at the immediate

state followed. If so, the model checker stops and the counterexample including the path

from initial state to current state is provided as output.

Having all the above elements, now we give the complete Promela specification derived

from the EFSM model in Figure 2.1..

#define p (M= =1 && R= =5 && P= =5)

#define q (M= =0 && R= =5 && P= =5)

byte temp;

active proctype ActiveMonitor()

R=R+a;

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:: (R<7)->R=temp; goto stateO

:: (R>=7)->R=7; goto stateO

:: (P=0&&M==0)-> goto stateO

:: (P>0&&M =0)->\T-1: goto slaleO

: : (M = l)-> goto state2

:: (true)->goto state2

state 1:

fflVHHWHHM
goto stateO;

state2:

goto statel;

never { /* (o p) */

T0_init:

:: ((p)) -> goto accept_all

:: (1) -> goto T0_init

i M n i
accept_all:

skip

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Result analysis and Conclusion
5.1 Tuning Promela model can improve performance
Through the experiment, we found that, the time consumption of test case generation via

model checking can be reduced by tuning the Promela model.

This is due to the SPIN model checker deals with non-determinism. When a state has two

or more feasible outgoing transitions, it will be non-deterministic which transition will be

first chosen and traversed. See the example in Figure 5.0. Transitions 1 and 5 are always

true, and transitions 2 ,3 ,4 have guards. At anytime, the state could have two (1 and 5) or

three (1,5 and one of 2 ,3 ,4) outgoing feasible transitions available. SPIN always traverses

the first feasible one, then the second, etc. In this case, it always traverses transition 1,

while 5 is always the last transition to traverse. Thus, if the faulty state occurs on the path

following the last transition, the worst case happened, and the time consumption will be

maximum. So when facing non-determinism, SPIN follows a fixed sequence to traverse

rather than randomly traverses. We can not say this is a drawback. On the contrary,

sometimes it is even better than randomly traverse. This is because with a fixed sequence

traverse, we have a chance to tune the Promela model to get a better performance. For

example, if we have some heuristics such as where the faulty state could locate, we could

tune the Promela model to move that specific transition forward. With the random traverse,

the average performance cannot be improved, and the worst case still could happen, while

we have no way to control it.

State/i:

tempR=R+a;

if

(true)-> transition 1

:: (tempR<7)->R=temp; goto stateO

:: (tempR>=7)-^R=7; goto stateO

(P= =0&&M= =0)-> goto stateO

(P>0&&M= =0)->M= I; goto stateO

(M= =!)-> goto state2.....................

transition 3

.transition 2

transition 4

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:: (true)-^goto state2.. transition 5

Figure 5.0 A state has multi non-deterministic out-going transitions

Table 5.1 is a comparison of time consumption of test generation via SPIN model checker

between a well tuned Promela model and an untuned one. The domain size of variables is

9800. The time consumption for untuned Promela model is 40-50 times more than that of

that tuned one.

Number of EFSM

states

Test case generation time

consumption(second)

well tuned Promela

model

not tuned

Promela model

3 0.09 5.65

10 0.19 9.12

20 0.32 13.32

30 0.71 23.9

40 0.94 33.14

50 1.25 41.13

60 1.63 52.21

Table 5.1 Comparison: Time consumption of test generation via SPIN model checker

for well tuned Promela model and not tuned Promela model

-♦— tuned SP IN
m odel

• — not tuned SPIN
m odel

3 10 20 30 40 50 60

n u m b e r o f EFSM s ta te s

Figure 5.1 Comparison: Time consumption of test generation via SPIN model

checker for well tuned Promela model and not tuned Promela model

5.2 Impact of the domain size of the variables values
During the experiment, we found that with expansion method in [LY92], the domain size

of the variables values has a bigger impact on the time consumption. As domain size

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increases, of course, the time consumption of both methods will increase, but that of

expansion method increases much faster than that of SPIN model checking method.

Figure 5.2, 5.3 and 5.4 show the impact of domain size of variable value on time

consumption. The three figures are the results of three experiments with all other

conditions the same except for the domain size of variable value. The domain sizes of the

variables’ values in the three experiments are 128, 3200 and 9800 respectively. The time

consumptions are shown in Table 5.2, 5.3 and 5.4. We can see in Figure 5.2 when domain

size is 128, the time consumption of expansion method is roughly 1/20 ~ 1/3 of that of

SPIN model checking method.

number of EFSM

states

Test case generation tim e consumption (second)

Expansion method SPIN method

3 0.02 0.43

10 0.06 0.62

20 0.11 0.9

30 0.23 1.48

40 0.56 2.31

50 1.17 3.07

60 1.74 4.24

Table 5.2 Time consumptions of the two approaches when domain size is 128

Expansion time
consuming

- • — SPIN time consuming

Figure 5.2 Time consumptions of the two approaches when domain size is 128

34

o on

Mmm

3 10 20 30 40 50 60

n u m b e r o f EFSM sta tes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the domain size increases to 3200 (see the Table 5.3 and Figure 5.3) the time

consumption of both method increase, but that of expansion method increases faster and is

approximately equal to that of SPIN model checking method.

number of EFSM

states

Test case generation time consumption (second)

Expansion method SPIN method

3 0.11 0.17

10 0.56 0.45

20 1.18 0.94

30 1.9 1.81

40 2.81 2.71

50 3.94 3.63

60 5.61 5.35

Table 5.3 Time consumptions of the two approaches when domain size is 3200

1 2 3 4 5 6 7

n u m b e r o f EFSM sta tes

- Expansion method

-SPIN method

Figure 5.3 Time consumptions of the two approaches when domain size is 3200

When the domain size increased to 9800 (see Table 5.4 and Figure 5.4), the time

consumption of expansion method is approximately 1.5~2 time of that of SPIN method.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of EFSM

states

Test case generation time consumption (second)

Expansion method SPIN method

3 0.26 0.23

10 0.78 0.5

20 2.09 1

30 4.21 1.96

40 5.77 3.02

50 8.22 4.24

60 10.83 5.61

Table 5.4 Time consumptions of the two approaches when domain size is 9800

c
o

u0>cc
O)c

2 = a> E
C 3
V (0 o> c g> o w o
(S (I)
° I4->(0 *- a>

12
10
8
6
4

2
0

3 10 20 30 40 50 60

Expansion time
consuming

-■—SPIN time
consuming

number of EFSM states

Figure 5.4 Time consumptions of the two approaches when domain size is 9800

The reason of this phenomenon is that for expansion method, the program needs to keep all

values of all variables for every state in memory, and does calculations on them when a

transition occurs. While for SPIN model checker, SPIN traverses states with only

particular values that the variables are having.

domain size of
variables values

Test case generation tim e consumption (second)
Expansion method SPIN method

128 1.74 4.24

3200 5.61 5.35
9800 10.83 5.61

Table 5.5 The time consumptions increase as the domain size of variables values

increases

So increasing domain size of variables values does not have much impact on SPIN model

checking. We compare the time consumption of the two methods as the domain size

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increases in Table 5.5 and Figure 5.5. The curves show the time consumption of SPIN

model checking method almost stays unchanged while that of expansion method increases

a lot.

1?

Expansion method

«— SPIN model
checking method

128 3200 9800

Domain size of variables values

Figure 5.5 The time consumptions increase as the domain size of variables values

increases

5.3 Time consumption and state space efficiency tradeoff
As we mentioned before, every run of SPIN model checker can only generate one test case.

So if we want to cover all the n states of an EFSM which has n states, we need to run SPIN

model checking n times, which is less efficient than expansion method, while on every run

of SPIN model checker, it checks less number of states than expansion method. So actually

there is a tradeoff here between time efficiency and state space efficiency.

The experiment shows that the tradeoff does exist. Table 5.6, 5.7 and Figure 5.6, 5.7 show

the tradeoff.

In Figure 5.6, the curve on the top represents the time consumption of SPIN model

checking method for generating both states and transitions coverage test cases. It is the sum

of the two dashed curves below. The solid curve equipped with triangles represents the

time consumption of expansion methods for generating the same test cases. It shows that

the time consumption of SPIN method is always more than that of expansion method,

which is reasonable and conform to what we expected.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of

EFSM states

Tim e consumption (second) of SPIN

method test case generation for

Time consumption (second) of

expansion method test case

generation tim e fo r state and

transition coverage

Transition

coverage

state

coverage total

3 0.26 0.17 0.43 0.02

10 0.4 0.22 0.62 0.06

20 0.6 0.3 0.9 0.11

30 1.02 0.46 1.48 0.23

40 1.62 0.69 2.31 0.56

50 2.04 1.03 3.07 1.17

60 3.01 1.23 4.24 1.74

Table 5.6 Comparison oi' time consumptions

- - - - - - - SPIN: transition courage

SPIN: state coverage

— * — Expansion: state &
transition coverage

— h— SPIN: state & transition
coverage

Table 5.7 is composed of two sets of numbers. The numbers in the first column are the

number of states in the original EFSM. The numbers in the second column are the number

of the states in the derived FSM. As we mentioned before, the derived FSM contains two

parts: the reachable states and unreachable states. We regard the stetes number of FSM as

the number of states that expansion method needs to explore. The numbers in the third and

fourth columns are the numbers of states that SPIN model checker needs to explore to

generate a test case for a specific state and transition respectively. For states and transitions

coverage, we need to generate one test case for every state and transition, so actually we

have many test cases generated. Here we use the maximum number, the number when

38

o o#

s « 1.5

10 20 30 40 50

number o f EFSM states

60

Figure 5.6 Comparison of time consumptions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

worst case happens, as the number of states explored for SPIN method generating the test

case, and to compare with the expansion method.

In Figure 5.7, the curve on the top represents the number of derived FSM states, the other

two curves represent the number of states explored for SPIN method. It shows that the

number of expansion method is larger the number of SPIN method. The result is reasonable

because expansion method needs to explore all states to derive FSM, while SPIN model

checker does not need to do so.

number of

EFSM states

number of states expansion

method needs to explore

worse case number of states explored

when using SPIN to generate a test fo r

a transition a state

3 8 6 5

10 20 8 7

20 41 13 12

30 68 18 17

40 80 23 22

50 101 28 27

60 121 33 32

Table 5.7 Comparison of number of states explored

140

■o 120

EL 100

10 20 30 40 50 60

number of EFSM states

- number of states expansion
method needs to explore

- • — worse case number of states
explored when using SPIN to
generate a test for a transition

- a — worse case number of states
explored when using SPIN to
generate a test for a state

Figure 5.7 Comparison of number of states explored

Comparing Figure 5.6 and 5.7, we can see there is obviously a tradeoff between time

efficiency and state space efficiency. The expansion method keeps all derived states in the

memory, so it is more efficient on time consumption at the cost of state space (memory)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inefficiency. On the contrary, the SPIN model checking method does not need to explore

all states, and stops when it reaches the state that is against the property, so it is more state

space efficient at the cost of time efficiency.

5.4 Expansion method will be more efficient in the presence of more

coverage criteria
Another conclusion is that expansion method will be more efficient if more coverage

criteria present. Of course, the test case generation for the additional criteria should not be

harder than that of state or transition coverage.

The expansion process includes two steps: expanding EFSM into FSM first, then generate

needed paths from the FSM. Figure 5.8 shows how much time needed for the two steps.

The higher one is time consumed on expanding step. We can see that generating paths only

consume a very small part of time. The rate is 0.015:1.73 « 8.6:1000. If we have more

coverage criteria, and these coverage criteria are similar to state or transition coverage

criteria regarding their time complexity of path finding, the expansion method could be

more efficient, especially when compared with SPIN method. For example, path coverage

criterion [ZHM96] is such a similar criterion.

I Time consumed for
expanding EFSM

I Time consumed for
find all feasible path

Figure 5.8 Time consumption of two steps of expansion method

5.5 The expansion algorithm has two native drawbacks:
5.5.1 The reverse transition need to be coded individually

As we mentioned before, both methods need EFSMs to be modeled and the modeling is

straightforward in both methods. However, the algorithm [LY92] additionally needs

reverse transitions to be implemented, in another word, coded into the program. As we

mentioned before, the algorithm assumes having reverse functions available, which means

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given transition T: A-> B, and all variables’ values when the system is in state B, we can

calculate and obtain all the variable values when the system is in state A. But unfortunately,

the reverse function, expressed as C_1, is not available directly. As we know, the function

C could be a “one to one” or “many to one” mapping from variable set A to variable set B.

So in the reversed direction, “one to many” mapping could exist, which leads to difficulty

of coding and more time consumption. Further, to code the reverse function manually

prevents the algorithm to be generic.

5.5.2 The expansion method could waste time on unreachable states

As we know, expanding EFSM will generate two parts of states, the reachable part and

unreachable part. When we further generate paths, the unreachable states will not be

reached, so they will be excluded automatically without any efforts. D. Lee and M.

Yannakakis did not implement a mechanism to eliminate the generation of unreachable

states in this algorithm, which means it could waste some time to generate unreachable

states. This part of job is meaningless. As the algorithm can not determine a state is

reachable or not before it is generated, it is hard to eliminate the waste in advance.

Fortunately, the algorithm will not go further to traverse and expand from an unreachable

state, which means it is not a serious waste.

While a model checker does not have such a problem because it will never reach

unreachable states.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Future Work
The future work can be considered in two aspects: comparing the symbolic version of those

expansion algorithms with model checking method and applying other kind of comparison

on the two approaches.

In this thesis, we only considered explicitly expressed EFSM models. The states can also

be symbolically represented: for example we can represent states using a Binary Decision

Diagram (BDD) [BCM+92]. There are also some algorithms developed to do the

equivalent expansion on symbolically expressed models (cf. [FV99], [HL95], [CS01]). It is

possible to do the similar comparison on that.

In this thesis, we focus our comparison on time consumption and number of states explored

regarding all transitions coverage and all states coverage. The comparison could be done

on other approaches. For example, we can consider other coverage criteria.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography
[AB99] P. E. Ammann and P. E. Black, “A specification-based coverage metric to evaluate

test sets”, In Proc. o f the Fourth IEEE International Symposium on High-Assurance

Systems Engineering, IEEE Computer Society, Nov. 1999.

[ABM98] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to generate

tests from specifications”, In Proceedings o f the Second IEEE International Conference on

Formal Engineering Methods (ICFEM’98), pages 46-54. IEEE

[AD97] Larry Apfelbaum and John Doyle “Model-Based Testing”, In Proceedings o f

Software Quality Week 1997

[ANSI2] International standard ISO/IEC 8802-5, ANSI/IEEE std 802.5,1992. [BCM+92]

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, "Symbolic model

checking: 10A{20} states and beyond", In Information and Computation, 98(2): 142-170,

June 1992

[BEI83] B. Beizer, “Software Testing Techniques”, In New York: Van Nostrand Reinhold

Company, 1983.

[BFH90] A. Bouajjani, J. C. Fernandez, and N. Halbwachs, “Minimal model generation”,

In Proc. o f Int. Conference on Computer Aided Verification (CAV’90), volume 531 of

Lecture Notes in Computer Science, pages 197-203. Springer-Verlag, Berlin, 1990.

[CS01] R. Cleaveland and O. Sokolsky, “Handbook of Process Algebra”, chapter

Equivalence and Preorder Checking for Finite-State Systems, pages 391-424,

North-Holland, 2001.

[CZ93] S. Chanson and J. Zhu, “A Unified Approach to Protocol Test Sequence

Generation,” In Proc. IEEEINFOCOM, pp. ld .l.l- ld .1 .9 ,1993.

[CK96] K.T. Cheng and A.S. Krishnakumar, “Automated Generation of Functional

Vectors Using the Extended Finite State Machine Model,” In ACM Trans. Design

Automation, vol. 1, no. 1, pp. 57-79, Jan. 1996.

[CSE96] J. Callahan, F. Schneider, and S. Easterbrook, “Specification based testing using

model checking”, In Proc. o f the SPIN Workshop, August 1996.

[DU00] A. Duale and U. Uyar, “Generation of Feasible Test Sequences for EFSM

Models,” In Proc. IFIP In t’I Conf. Testing o f Communicating Systems (TestCom), pp.

91-109, Sept. 2000.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[EFM97] A. Engels, L. M. G Feijs, and S. Mauw, “Test generation for intelligent networks

using model checking”, In Proceedings o f TACAS’97, LNCS 1217, pages 384—398.

Springer, 1997.

[FV99] K. Fisler and M. Y. Vardi, “Bisimulation and model checking”, In L. Pierre and T.

Kropf, editors, Proc. o f Correct Hardware Design and Verification Methods

(CHARME’99), volume 1703 of Lecture Notes in Computer Science, pages 338-341.

Springer-Verlag, Berlin, 1999.

[GH99] A. Gargantini and C. Heitmeyer, “Using model checking to generate tests from

requirements specifications”, In Software Engineering Notes, 24(6): 146-162, November

1999.

[HB94] T. Higashino and G Bochmann, “Automatic Analysis and Test Case Derivation for

a Restricted Class of LOTOS Expressions with Data Parameters”, In IEEE Trans. Software

Eng., vol. 20, no. 1, pp. 29-42, Jan. 1994.

[HCLSU03] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural, “Data flow testing as

model checking”, In Proceedings o f 2003 International Confemece on Software

Engineering, Portland, Oregon, May 2003.

[HL95] M. Hennessy and H. Lin, “Symbolic bisimulations”, In Theoretical Computer

Science, 138(2):353-389, 1995.

[HLJ95] Chung-Ming Huang, Yuan-Chuen Lin, and Ming-Yuhe Jang, "An Executable

Protocol Test Sequence Generation Method for EFSM-Specified Protocols”, In IFIP

Transactions C: Communication Systems - Protocol Test Systems, pp. 20-35,1995.

[HLSU02] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of

test coverage and generation. In Proceedings of the International Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS ’02), Grenoble, France,

April 2002.

[Hog91] D. Hogrefe, "OSI formal specification case study: The INRES protocol and

service" tech. rep., IAM 91-012, University of Beme, Institute of Computer Science and

Applied Mathematics, 1991

[Hop71] J. E. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton”,

In Kohavi and Paz, editors, Theory o f Machines and Computations, pages 189-196,

Academic Press, 1971.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[KS90] P. C. Kannellakis and S. A. Smolka, “CCS expressions, finite state processes, and

three problems of equivalence”, In Information and Computation, 86(l):43-68, 1990.

[LY92] D. Lee and M. Yannakakis, “Online minimization of transition systems”, In Proc.

o f 24th ACM Symposium on Theory o f Computing (STOC’92), pages 264—274, ACM Press,

1992.

[LCM94] Liang-Seng Koh, Chang-Jia Wang and Ming T. Liu, “A Functional Model for

Test Sequence Generation”, In Computers and Communications, 1994 IEEE 13th Annual

International Phoenix Conference on 12-15 Apr 1994 Page(s):336

[LY94] D. Lee and M. Yannakakis, “Testing Finite-State Machines: State Identification

and Verification”, In IEEE Trans. Computers, vol 43, no. 3, pp. 306-320, Mar. 1994.

[LHHT97] X. Li, T. Higashino, M. Higuchi, and K. Taniguchi, “Automatic Generation of

Extended UIO Sequences for Communication Protocols in an EFSM Model”, In Proc.

Seventh In t’l Workshop Protocol Test Systems, pp. 225-240, Nov. 1997.

[MP92] R. Miller and S. Paul, “Generating Conformance Test Sequences for Combined

Control Flow and Data Flow of Communication Protocols”, In Proc. 12th In t’l Symp.

Protocol Specification, Testing, and Verification, pp. 12-27, 1992.

[PBY96] A.F. Petrenko, G v Bochmann, and M.Y. Yao, “On Fault Coverage of Tests for

Finite State Specifications”, In Computer Networks and ISDN Systems, vol. 29, no. 1,

1996.

[PT87] R. Paige and R. E. Taija, “Three partition refinement algorithms”, In SIAM Journal

on Computing, 16(6):973-989,1987.

[PTB85] R. Paige, R. E. Taijan, and R. Bonic, “A linear time solution to the single function

coarsest partition problem”, In Theoretical Computer Science, 40:67-84,1985.

[RTD96] T. Ramalingom, Krishnaiyan Thulasiraman and Anindya Das, “Context

Independent Unique Sequences Generation for Protocol Testing”, In INFOCOM 1996:

1141-1148

[RH01]S. Rayadurgam and M. P. Heimdahl, “Coverage based testcase generation using

model checkers”, In Proceedings o f the 8th Annual IEEE International Conference and

Workshop on the Engineering o f Computer Based Systems (ECBS 2001), pages 83-91.

IEEE Computer Society, April 2001.

[SBC97] B. Sarikaya, G. Bochmann, and E. Cemy, “A Test Design Methodology for

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Protocol Testing”, In IEEE Trans. Software Eng., vol. 13, no. 5, pp. 518-531, May 1987.

[SH083] M.L. Shooman, “Software Engineering”, New York: McGraw-Hill Book

Company, 1983.

[U92] H. Ural, “Formal Methods for Test Sequence Generation”, In IEEE Trans. Comm..,

vol. 39, no. 4, pp. 514-523,1992.

[U89] H. Ural, “A Test Derivation Method for Protocol Conformance Testing”, In Proc.

Sixth In t’l Conf. Protocol Specification, Testing, and Verification, pp. 347-358,1989.

[UY91] H. Ural and B. Yang, “A Test Sequence Selection Method for Protocol Testing”, In

IEEE Trans. Comm., vol. 39, no. 4, pp. 514-523, Apr. 1991.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A
using System;
using System.Collections;
namespace OLMA
{

public class partition
{

psubindex)

public point partpoint;
public int[„] ps;
public ArrayList es;
public int pi;
public int psi;
public bool marked=false;
public partition(int[„] pointset, ArrayList edgeset, int pindex, int

{

}

ps=pointset;
es=edgeset;
pi=pindex;
psi=psubindex;

}
public partition()
{

ps=OLMA.initPS(l);
}

public class OLMA
{

public static int nov=2;
public static int nop=99;
public static tl actionl=new tl (0,0,0)
public static t2 action2=new t2(0,0,0)
public static t3 action3=new t3(l,0,0)
public static t4 action4=new t4(0,0,0)
public static t5 action5=new t5(0,0,0)
public static t6 action6=new t6(0,0,0)
public static t7 action7=new t7(0,0,l)
public static Transition[] actionset=new Transition[7]

{actionl ,action2,action3,action4,action5,action6,action7};

public static ArrayList initP(int[„] ps, int[][][] pesd)
{

ArrayList partitions=new ArrayList();
for (int i=0; i<pesd.GetLength(0); i++)
{

(M==l)

(P=0)&(M=0) /
(P>0)&(M==0)/M:

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArrayList es=new ArrayList();
for (int j=0; j<pesd[i][0].Length; j+ +)
{

Edge e=new
Edge(pesd[i][0][j]-I,pesd[i][l][j],pesd[i][l][j]); / / j actionset index, pesd[i][l][j]

es.Add(e);
}
partition p=new partition(ps, es, i, i); // int[„] pointset,
partitions.Add(p);

}
((partition)partitions [0]) .partpoint=new point(0,0,0);
((partition)partitions[1]).partpoint=new point(0,0,0);
((partition)partitions [2]) .partpoint=new point(0,0,0);
return partitions;

}
public static int[„] initPS(int val) //val could be 1 or 0
{

int[„] ps^new int[2,8,8];
for (int a=0; a<ps.GetLength(0); a++)

for (int b=0; b<ps.GetLength(l); b++)
for (int c=0; c<ps.GetLength(2); C + +)

{
ps[a,b,c]=val;

}
return ps;

}

public static int[„] initPS()
{

int[„] ps=new int[2,8,8];
return ps;

}

public static void Main()
{

DateTime begintime = DateTime.Now;
int[][][] pesd=new int[60][][];//partition edge set desc, describ what

edges a partition has,
// for

ex:s0 has edge 3,4,5,6,7

pesd[0]=new int[2][];
pesd[0][0]=new int[] {3,4,5,6,7};
pesd[0][l]=new int[] {2,2,6,0,0};

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pesd[l]=new int[2][];
pesd[1] [0]=new int[] {1};
pesd[l][l]=new int[] {0};

pesd[2]=new int[2][];
pesd[2][0]=new int[] {2};
pesd[2] [1]=new int[] {1};

int[„] ps=initPS(l);
// initialization part»
ArrayList partitions=initP(ps,pesd); //new ArrayList();//keep

blockpt, initially it has some blocks, then new blocks will be put into
Stack myStack = new Stack(); //stack: keep

blockponit, blocks to search from
Queue myQ = new Queue(); //queue: keep

blockponit, unstable block to be split in a FIFO order
for (int i=0; i<partitions.Count; i++)
{

partition temp=(partition)partitions[i];
Console.WriteLine("partition + {0:G} {1} ", temp.pi,

temp.psi);
}
mark((partition)partitions[0]);

//mark a blockpoint
myStack.Push(partitions[0]);
Console. WriteLine("search: Stack + {0:G}

{1 :G} ",((partition)partitions[0]).pi,((partition)partitions[0]).psi);
ArrayList edges=new ArrayList();
search:

while(myS tack. Count!=0)
{

partition B=(partition)myStack.Pop();
if (B.psi==30)

B.psi=30;
Console.WriteLine("search: Stack - {0:G}

{l:G}",B.pi, B.psi);

tempps=OLMA.initPS(0);
point tempendp=new point(); int[„]

foreach (Edge e in B.es) //tempesl)
{

ArrayList blocksap = new ArrayList();
//keep all partitions that a(B) reach;

int[„] D=OLMA.initPS(); //new int[2,8,8];
point pc=(e.t).action(B.partpoint);
partition

Cbp=(partition)partitions[e.EndBlockSubIndex];

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (pc.M !=-l && Cbp.ps[pc.M, pc.P,
pc.R]==l)

// && a(p) intersect C is not empty
{

if (!(e.t).rev_ints_eq_bg(B.ps,Cbp.ps)
&& ImyQ.Contains(B))

{
myQ.Enqueue(B);
Console.WriteLine("search:

myQ + {0:G} {1:G} ",B.pi, B.psi);
}
if (ICbp.marked)
{

point
pointC=(e.t) .action(B .partpoint);

Cbp.partpoint=pointC;
mark(Cbp);
myStack.Push(Cbp);
Console.WriteLine("search:

Stack + {0:G} {l:G}",Cbp.pi, Cbp.psi);
}

}
else
{

e.tobedeleted=true;
}

}
for (int i=(B.es).Count-l; i>=0; i—) // Edge e in B.es)

//tempesl)
{

if (((Edge)(B.es)[i]).tobedeleted==true)
(B.es) .Remo veAt(i);

}
}

//split:
while(myQ.Count != 0)
{

partition B=(partition)myQ.Dequeue();
if (B.pi==10)

B.pi=10;
Console.WriteLine("split: myQ - {0:G} {1:G}

",B.pi, B.psi); //(Bp.bpblock).blockindex,(Bp.bpblock).blocksubindex);
partition Bl=new partition();
B1 .ps=(int[„])(B.ps).Clone();

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pointblp=findp(Bl.ps); Bl.pi=B.pi; Bl.psi=B.psi;
Bl.partpoint=blp; Bl.marked=B.marked; Bl.es=B.es;

if (blp.M==-l) continue;
ArrayList tempes=esclone(B.es);
foreach (Edge e in tempes) // compute B' := { q<-B':

blocks(a(q))=:blocks(a(p))};
{

point endp=(e.t). action(B .partpoint);
if (endp.M!=-l &&

intersect(endp,((partition)partitions[e.EndBlockSubIndex]).ps))

B1 .ps=(e.t).buildB 1 (B1 .ps,((partition)(partitions[e.EndBlockSubIndex])).ps);
}
partition B2=new partition();
B2,ps=blockminus(B,B 1); //B" :=B-B'
point b2p=findp(B2.ps);
if (b2p.M— -1) continue;
int B2subindex=partitions.Count; // get current

next partition index
B2.pi=B.pi; B2.psi=B2subindex; B2.marked=false;

B2.partpoint=b2p; B2.es=esclone(B.es);
partitions. Add(B2);
Console.WriteLine("split:

partition + {0:G} {1} ",B2.pi, B2.psi);
B.ps=(int[„])(Bl .ps).Clone();

// B=B'
B .partpoint=findp(B .ps);

ArrayList tempedges=new ArrayList();
int pnn=partitions.Count;
for (int pn=0; pn<pnn; pn++) //foreach (partition part in

partitions)
{

partition Cpc=new partition();
if (((partition)partitions[pn]).marked-true)

Cpc=(partition)partitions[pn];
if (Cpc.marked— false)

continue;
int nE=((ArrayList)Cpc.es).Count;
for (int i=nE-l; i>=0; i--) //Edge Cpce in Cpc.es)
{

if
(((Edge)Cpc.es [i]) .EndBlockSublndex! =B .psi)

continue;
point pc=Cpc.partpoint;

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int[„]
pc2b=(((Edge)Cpc.es[i]).t).action_fwd(Cpc.ps);

int[„] C2B=intersect(pc2b,B.ps);
point C2Bp=findp(C2B);
int[„] tempps=OLMA.initPS(0); point

tempendp=new point();
if (C2Bp.M!=-l) // if (a(q)AB =0) delete

edge <C,q> -> <B,p>
{

if (!myQ.Contains(Cpc)
&& !(({Edge)Cpc.es[i]).t).rev_ints_eq_bg(Cpc.ps,B.ps))

{
myQ.Enqueue(Cpc);

//
Console.WriteLine("split:

myQ + {0:G} {1:G} ",Cpc.pi,Cpc.psi);
}

}
else
{

/*
tempps=intersect(((Edge)Cpc.es[i]).t.action_fwd(B.ps), B.ps);

if (Cpc.pi==2 && ((Edge)Cpc.es[i]).EndBlockSubIndex=:=::l)

tempendp.M—1;

tempendp=findp(terapps);

if (tempendp.M==-l)

{

if (Cpc.pi==2 && ((Edge)Cpc.es[i]).EndBlockSubIndex==l)

tempendp.M^-l ;*/
Console.WriteLine("split:

Edge-to {0:G} {1:G} {2:G}",
((Edge)Cpc.es[i]).ActionIndex,((Edge)Cpc.es[i]).EndBlockIndex,((Edge)Cpc.es[i]).EndB
lockSublndex);

((Edge)Cpc.es[i]).tobedeleted=true;
//the edge from Cpc to B after splitted

is not valid any more, (Cpc.es).Remove(((Edge)Cpc.es[i]));
//}

}

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int[„]
pc2b2=(((Edge)Cpc.es[i]).t).action_fwd(Cpc.ps);

int[„] C2B2=intersect(pc2b2,B2.ps);
point C2B2p-findp(C2B2);
if (C2B2p.M!=-l) // the edge from Cpc to

B2 need to be added
{

if (!B2.marked)
{

B2 .partpoint=fmdp(B2 .ps);
mark(B2);
myStack.Push(B2);
Console.WriteLine("split:

Stack + {0:G} {l:G}",B2.pi, B2.psi);

((Edge)Cpc.es[i]).EndBlockSubIndex==l)

Edge(((Edge)Cpc.es[i]).ActionIndex,B2.pi,B2.psi);

}
if (Cpc.pi==2 &&

C pc.pi^;
Edge newedge=new

(Cpc.es). Add(newedge);
Console.WriteLine("split:

Edge + to {0:G} {1:G} {2:G}", newedge.Actionlndex,
newedge. EndBlockIndex,newedge. EndBlockSublndex);

if (ImyQ.Contains(Cpc))
{

if
(!(((Edge)Cpc.es[i]).t).rev_ints_eq_bg(Cpc.ps,B2.ps))

{
myQ.Enqueue(Cpc);

//

Console.WriteLine("split: myQ + {0:G} {1 :G} ",Cpc.pi,Cpc.psi);
}

}

}

}
if (((Edge)Cpc.es[i]).tobedeleted=true)

(Cpc.es).Remove(((Edge)Cpc.es[i]));

}
int edgesCount=(B.es).Count; //edges.Count;
for(int m=edgesCount-l; m>=0; m—)
{

int[„]
tempendps=((Edge)((B.es)[m])).t.action_fwd(B.ps);

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int[„]
tempps=intersect(((partition)partitions[((Edge)((B.es)[m])).EndBlockSubIndex]).ps,
tempendps);

point tempendp=findp(tempps);
if (tempendp.M==-l)
{

Console.WriteLine("split:
Edge-to {0:G} {1:G} {2:G}",

((Edge)((B.es)[m])).ActionIndex,((Edge)((B.es)[m])).EndBlockIndex,((Edge)((B.es)[m])
) .EndBlockSublndex);

B.es.RemoveAt(m);
}

}

if (myStack.Count != 0) goto search;
int b =13;
DateTime b4genpath = DateTime.Now;
System.TimeSpan diffl = b4genpath.Subtract(begintime);
string difftostringl=diffl .ToString();
Console.WriteLine("Time B4 genpath: {0:G}", difftostringl);
genpath(partitions);
DateTime endtime = DateTime.Now;
System.TimeSpan diff = endtime. Subtract(begintime);
string difftostring=diff.ToString();
Console.WriteLine("Total Time: {0:G}", difftostring);
DateTime timegenpath = DateTime.Now;
System.TimeSpan diff2 = timegenpath. Subtract(b4genpath);
string difftostring2=dif£2.ToString();
Console.WriteLine("Time for genpath: {0:G}", difftostring2);
inttempa=13;

}

public static void genpath(ArrayList partitions)
{

ArrayList sfp=new ArrayList();
ArrayList efp=new ArrayList();
// marked means visited, marked true means the blcok(state) has

been visited

has been visited

for (int i=0; i<partitions.Count; i++)
{

((partition)partitions[i]).marked=false;
ArrayList spath=new ArrayList();
sfp.Add(spath);
// tobedeleted means visited,tobedeleted true means the edge

for (int j=0; j<((partition)partitions[i]).es.Count; j++)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

((Edge)((((partition)partitions[i]).es)[j])).tobedeleted=false;
ArrayList epath=new ArrayList();

}
}
Queue stateQ = new Queue(); 11 contains a state (partition psi) just

found as
//unvisited one, and it will be checked in the next round
// assume partion[0] contains the initial state, (need to be checked)

stateQ.Enqueue(O);
//int offset=0;
while (stateQ.Count!=0)
{

int i=(int)stateQ.Dequeue();
partition cS=(partition)partitions[i]; // cS current State

being checked
for (int j=0; j<(((partition)partitions[i]).es).Count; j++)
{

Edge cE=(Edge)((((partition)partitions [i]). es) [j]);
// cE curren Edge being checked

if (cE.tobedeleted==false)
{

cE.tobedeleted=true;
stateQ.Enqueue(cE.EndBlockSublndex);
//generate edge path
ArrayList

path=(ArrayList)((ArrayList)sfp[i]).Clone();
if

(((partition)partitions[cE.EndBlockSubIndex]).marked==false) // unvisited
{

((parti tion)partitions[cE.EndBlockSubIndex]).marked=true;
//generate state path

sfp.RemoveAt(cE.EndBlockSublndex);

sfp.Insert(cE.EndBlockSubIndex,path);

stateQ.Enqueue(cE.EndBlockSublndex);
}
path.Add(cE.EndBlockSublndex);
efp.Add(path);

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

}
for (int i=0; i<efp.Count; i++)
{

int last=((ArrayList)efp[i]).Count-l;
int k=(int)((ArrayList)efp[i])[last];
int j;
if (last >= 2)

j=(int)((ArrayList)efp[i])[last-1];
else

j=0;
Console.WriteLine(”{0:G} {1:G} {2;G}",i, j, k);

}
int tempabc=l 11;

public static point findp(int[„] ps)
{

point p=new pointQ;
p.M=-l;
p.P=-l;
p.R=-l;
for (int i=0;i<ps.GetLength(0);i++)

for (int j=0; j<ps.GetLength(1);j++)
for (int k=0;k<ps.GetLength(2);k++)
{

if (ps[ij,k]==l)
{

p.M=i; p.P=j; p.R=k;
return p;

}
}

return p;
}
public static int[„] intersect(int[„] A, int[„] B)
{

int[„] AB=OLMA.initPS();
for (int i=0;i<AB.GetLength(0);i++)

for (int j=0; j<AB.GetLength(l)J++)
for (int k=0;k<AB.GetLength(2);k++)
{

if (A[ij,k]==l & & B [ij,k]==l)
AB[ij,k]=l;

}
return AB;

}

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public static bool intersect(point p, int[„] C)
{

if (p.M!=-l && C[p.M,p.P,p.R] == 1)
return true;

else
return false;

}

public static ArrayList esclone(ArrayList edgeset)
{

ArrayList newes=new ArrayList();
for (int i=0; i<edgeset.Count; i++)
{

Edge ne=new Edge(((Edge)edgeset[i]). Actionlndex,
((Edge)edgeset[i]).EndBlockIndex, ((Edge)edgeset[i]).EndBlockSubIndex);

newes.Add(ne);
}
return newes;

}
public static int[„] blockminus(partition C, partition B)
{

int[„] ps=(int[„])(C.ps).Clone();
for (int i=0;i<ps.GetLength(0);i++)

for (int j=0; j<ps.GetLength(l);j++)
for (int k=0;k<ps.GetLength(2);k++)
{

if ((B.ps)[i,j,k]==l)
ps[ij,k]=0;

}
return ps;

public static int[„] psminus(int[„] C, int[„] B)
{

int[„] A=OLMA.initPS();
A=(int[„])C.Clone();
for (int i=0;i<A.GetLength(0);i++)

for (int j=0; j<A.GetLength(l);j++)
for (int k=0;k<A.GetLength(2);k++)
{

i f (B [ij,k]== l)
A[ij,k]=0;

}
return A;

public static void mark(partition bp)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
bp.marked=true;

}
}

public class point
{

public int M, P, R;

public point(int Pm, int Pp, int Pr)
{

M = Pm;
P = Pp;
R = Pr;

}
public point()
{

M = -1;
P = -l;
R = -l;

}
}

public class Edge
{

public int StartBlocklndex;
public int EndBlocklndex;
public int StartBlockSublndex;
public int EndBlockSublndex;
public int Actionlndex;
public Transition t;
public bool tobedeleted;
public int p i ;
public int p2;
public int p3;
public Edge(int ai, int ebi, int ebsi) //, int parameterl, int parameter2, int

parameters)
{

EndBlockIndex=ebi;
EndBlockSubIndex=ebsi;
t=OLM A.actionset[ai];
ActionIndex=ai;
tobedeleted=false;

}
}

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public abstract class Transition
{

public Transition()
{

// Code to initialize the class goes here.
}

public int StartBlocklndex;
public int EndBlocklndex;
public int StartBlockSublndex;
public int EndBlockSublndex;
abstract public point action(point begin); //because return point could be

null, use object instead of point
abstract public int[„] action_fwd(int[„] beginps);
abstract public bool rev_ints_eq_bg(int[„]beginps,int[„] endps);
abstract public bool rev_ints_eq_null(int[„]beginps,int[„] endps);
public int[„] buildBl(int[„] beginps, int[„]endps)
{

int[„] Blps=OLMA.initPS();
for (int i=0; i<Blps.GetLength(0); i++)

for (int j=0; j<Blps.GetLength(l); j++)
for (int k=0; k<Blps.GetLength(2); k++)

if (beginps[i,j,k]==l && (action(new
point(i,j,k))).M!=-l && endps[(action(new point(ij,k))).M,(action(new
point(i,j,k))).P,(action(newpoint(ij,k))).R]==l)

Blps[i,j,k]=l;
return Blps;

}
}

public class tl transition
{

public int p i;
public int p2;
public int p3;
public 11 (int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}
override public point action(point begin)
{

point end=new point();
end.M=pl; // pl=0;
end.P=begin.R;
end.R=begin.R;
return end;

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=OLMA.initPS();
for (int i=0; i<beginps.GetLength(0); i++)

for (int j=0; j<beginps.GetLength(l); j++)
for (int k=0; k<beginps.GetLength(2); k++)

if (beginps[i,j,k]==l)
endps[pl,k,k]=l; // pl=0

return endps;
}
override public bool rev_ints_ecL_bg(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
{

if ((beginps[ij,k]==l) &&
endps[pl,k,k]!=l)

return false;
if ((beginps [ij,k]==0) &&

endps[pl,k,k]==l)
return false;

}
return true;

}
override public bool rev_ints_eq_null(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
if (beginps[i,j,k]==l && endps[pl,k,k]==l)

return false;
return true;

}
}

public class t2:Transition
{

public int p i;
public int p2;
public int p3;
public t2(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

override public point action(point begin)
{

point end=new point();
end.M=begin.M;
end.P=begin.P;
end.R=begin.R;
return end;

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=(int[„])beginps.Clone();
return endps;

}
override public bool rev_ints_eq_bg(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
{

if (beginps[i,j,k]==l && endps[i,j,k]!=l)
return false;

if (beginps[i,j,k]!=l && endps[i,j,k]==l)
return false;

}
return true;

}
override public bool rev_ints_ecL_null(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
if (beginps[i,j,k]==l && endps[i,j,k]==l)

return false;
return true;

}
}

public class t3:Transition
{

public int p i ;
public int p2;
public int p3;
public t3(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

override public point action(point begin)
{

point end=new point();
if (begin.M==p 1) //M= 1, p 1=1
{

end.M=begin.M;
end.P=begin.P;
end.R=begin.R;

}
return end;

}

override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=OLMA.initPS();
for (int j=0; j<beginps.GetLength(l);j++)

for (int k=0;k<beginps.GetLength(2);k++)
endps [p 1 ,j ,k] =beginps[p 1 j ,k];

return endps;
}
override public bool rev_ints_eqj)g(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
{

if (i!=pl && beginps[i,j,k]==l)
return false;

if(beginps[plj,k]==l &&
endps[pl,j,k]!=l)

return false;
}

return true;
}
override public bool rev_ints_eq_null(int[„]beginps,int[„] endps)
{

for (int j=0; j<beginps.GetLength(l); j++)
for (int k=0; k<beginps.GetLength(2); k++)

if (beginps[pl j ,k] = l && endps[pl,j,k]==l)
return false;

return true;
}

}

public class t4:Transition
{

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public int p i;
public int p2;
public int p3;
public t4(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}
override public point action(point begin)
{

point end=new point();
end.M=begin.M;
end.P=begin.P;
end.R=begin.R;
return end;

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=(int[„])beginps.Clone();
return endps;

}
override public bool rev_ints_eq_bg(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
{

if (beginps[ij,k]==l && endps[i,j,k]!=l)
return false;

if (beginps[i,j,k]!=l && endps[i,j,k]==l)
return false;

}
return true;

}
override public bool rev_ints_eq_null(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
if (beginps[i,j,k]==l && endps[ij,k]==l)

return false;
return true;

}
}

public class t5'.Transition
{

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public int p i ;
public int p2;
public int p3;
public t5(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}
override public point action(point begin)
{

point end=new point();
end.M=begin.M;
end.P=begin.P;
end.R=Math.Min(begin.R+l ,7); // ??????????? 7 need to be

replaced
return end;

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=OLMA.initPS();
for (int i=0; i<beginps.GetLength(0); i++)

for (int j=0; j<beginps.GetLength(l); j++)
for (int k=0; k<beginps.GetLength(2); k++)

if (beginps[i,j,k]==l)
{

int
r=Math.Min(k+l,beginps.GetLength(2)-l); // ????????? 7 need to be ..

endps[i,j,r]=l;
}

return endps;
}
override public bool rev_ints_eq_bg(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2)-l; k++)
{

if (k<(beginps.GetLength(2)-l) &&
beginps[ij,k]==l && endps[i,j,k+l]!=l)

return false;
if (beginps[i,j,beginps.GetLength(2)-2]!=l

&&beginps[ij,beginps.GetLength(2)-l]==l && endps[i,j,beginps.GetLength(2)]!=l)
return false;

}
return true;

}
override public bool rev_ints_eq_null(int[„]beginps,int[„] endps)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
for (int i=0; i<beginps.GetLength(0); i++)

for (int j=0; j<beginps.GetLength(l); j++)
for (int k=0; k<beginps.GetLength(2); k++)
{

if (k<(beginps.GetLength(2)-l) &&
beginps [ij,k]==l && endps[ij,k+l]==l)

return false;
if (beginps[ij,beginps.GetLength(2)-2]!=l

&&beginps[i,j,beginps.GetLength(2)-l]==l && endps[i,j,beginps.GetLength(2)]==l)
return false;

}
return true;

}
}

public class t6:Transition
{

public int p i ;
public int p2;
public int p3;
public t6(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}
override public point action(point begin)
{

point end=new point();
if (begin.P==p2 && begin.M =pl) //pl=0 M=0 ;;; p2=0 P=0
{

end.M=begin.M;
end.P=begin.P;
end.R=begin.R;

}
return end;

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=OLMA.initPS();
for (int k=0; k<beginps.GetLength(2); k++)

if (beginps[p l,p2 ,k]= l)
endps[pl,p2,k]=l;

return endps;
}
override public bool rev_ints_eq_bg(int[„]beginps,int[„] endps)
{

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int k=0; k<beginps.GetLength(2); k++)
if (beginps[pl,p2,k]==l & & endps[pl,p2,k]!=l)

return false;
for (int i=0; i<beginps.GetLength(0); i++)

for (int j=0; j<beginps.GetLength(l); j++)
for (int k=0; k<beginps.GetLength(2); k++)

if ((i!=pl || j!=p2) && beginps[ij,k]==l)
return false;

return true;
}
override public bool rev_ints_eq_null(int[„]beginps,int[„] endps)
{

for (int k=0; k<beginps.GetLength(2); k++)
if (beginps[pl,p2,k]==l && endps[pl,p2,k]==l)

return false;
return true;

}
}

public class t7:Transition
{

public int p i;
public int p2;
public int p3;
public t7(int pari, int par2, int par3)
{

pl=parl; p2=par2; p3=par3;
}
override public point action(point begin)
{

point end=new point();
if (begin.P>pl && begin.M==p2) // P>0: p 1 =0, M=0: p2=0, M> 1:

{
end.M=p3;
end.P=begin.P;
end.R=begin.R;

}
return end;

}
override public int[„] action_fwd(int[„] beginps)
{

int[„] endps=OLMA.initPS();
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
if (j>pl && beginps[0 ,j,k]~ l)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

endps[p3,j,k]=l;
return endps;

}
override public bool rev_ints_eq_bg(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
{

if (j>pl && i==p2 && beginps[ij,k]==l
&& endps[p3j,k]!=l)

return false;
if ((j<=pl II i!=p2) && beginps[ij,k]==l)

return false;
}

return true;
}
override public bool rev_ints_ecL_null(int[„]beginps,int[„] endps)
{

for (int i=0; i<beginps.GetLength(0); i++)
for (int j=0; j<beginps.GetLength(l); j++)

for (int k=0; k<beginps.GetLength(2); k++)
if (j>pl && beginps[i,j,k]== 1)

return false;
return true;

}
}

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris
Yongdong Tan was bom in 1972 in Beijing, China. He graduated from Zhejiang University,

Hangzhou, China, 1995, where he received a Bachelor's degree in Electronic Engineering.

He is currently a Master's candidate in the School of Computer Science at the University of

Windsor and expects to graduate in summer, 2005.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Comparison of two approaches for test case generations from EFSMs.
	Recommended Citation

	tmp.1614702394.pdf.rDpxZ

