407 research outputs found

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Get PDF
    In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT) of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER) between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR), Visual Information Fidelity (VIF) and Structural Similarity Index (SSIM). The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD) measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided

    Protecting Ownership Rights of Videos Against Digital Piracy: An Efficient Digital Watermarking Scheme

    Get PDF
    Violation of one’s intellectual ownership rights by the others is a common problem which entertainment industry frequently faces now-a-days. Sharing of information over social media platforms such as Instagram, WhatsApp and twitter without giving credit the owner causes huge financial losses to the owner and hence needs an immediate attention. Digital watermarking is a promising technique to protect owners’ right against digital piracy. Most of the state-of-the-art techniques does not provides adequate level of resilience against majority of video specific attacks and other commonly applied attacks. Therefore, this paper proposes a highly transparent and robust video watermarking solution to protect the owners rights by first convert each video frame into YCbCr color components and then select twenty five strongest speeded-up robust features (SURF) points of the normalized luminance component as points for both watermark embedding and extraction. After applying variety of geometric, simple signal processing and video specific attacks on the watermarked video meticulous analysis is performed using popular metrics which reveals that the proposed scheme possesses high correlation value which makes it superior for practical applications against these attacks. The scheme also proposes a novel three-level impairment scale for subjective analysis which gives stable results to derive correct conclusions

    A Localized Geometric-Distortion Resilient Digital Watermarking Scheme Using Two Kinds of Complementary Feature Points

    Get PDF
    With the rapid development of digital multimedia and internet techniques in the last few years, more and more digital images are being distributed to an ever-growing number of people for sharing, studying, or other purposes. Sharing images digitally is fast and cost-efficient thus highly desirable. However, most of those digital products are exposed without any protection. Thus, without authorization, such information can be easily transferred, copied, and tampered with by using digital multimedia editing software. Watermarking is a popular resolution to the strong need of copyright protection of digital multimedia. In the image forensics scenario, a digital watermark can be used as a tool to discriminate whether original content is tampered with or not. It is embedded on digital images as an invisible message and is used to demonstrate the proof by the owner. In this thesis, we propose a novel localized geometric-distortion resilient digital watermarking scheme to embed two invisible messages to images. Our proposed scheme utilizes two complementary watermarking techniques, namely, local circular region (LCR)-based techniques and block discrete cosine transform (DCT)-based techniques, to hide two pseudo-random binary sequences in two kinds of regions and extract these two sequences from their individual embedding regions. To this end, we use the histogram and mean statistically independent of the pixel position to embed one watermark in the LCRs, whose centers are the scale invariant feature transform (SIFT) feature points themselves that are robust against various affine transformations and common image processing attacks. This watermarking technique combines the advantages of SIFT feature point extraction, local histogram computing, and blind watermark embedding and extraction in the spatial domain to resist geometric distortions. We also use Watson’s DCT-based visual model to embed the other watermark in several rich textured 80×80 regions not covered by any embedding LCR. This watermarking technique combines the advantages of Harris feature point extraction, triangle tessellation and matching, the human visual system (HVS), the spread spectrum-based blind watermark embedding and extraction. The proposed technique then uses these combined features in a DCT domain to resist common image processing attacks and to reduce the watermark synchronization problem at the same time. These two techniques complement each other and therefore can resist geometric and common image processing attacks robustly. Our proposed watermarking approach is a robust watermarking technique that is capable of resisting geometric attacks, i.e., affine transformation (rotation, scaling, and translation) attacks and other common image processing (e.g., JPEG compression and filtering operations) attacks. It demonstrates more robustness and better performance as compared with some peer systems in the literature

    A Novel DWT-Based Watermarking for Image with The SIFT

    Get PDF
    A kind of scale invariant features transformation (SIFT for short) operators on DWT domain are proposed for watermarking algorithm. Firstly, the low frequency of the image is obtained by DWT. And then the SIFT transformation is used to calculate the key feature points for the low frequency sub-image. Based on the chosen space’s key points with moderate scale, a circular area as watermark embedding area is constructed. According to the research and final results, the novel digital watermark algorithm is proposed benefiting from the characteristics of SIFT’s key points and local time-frequency of DWT. The algorithm not only has good robustness to resist on such operations as compression, shearing, noise addition, median filtering and scaling, but also has good inhibition to possible watermark fake verification

    Geometric Invariant Semi-fragile Image Watermarking Using Real Symmetric Matrix

    Get PDF
    [[abstract]]In order to improve the detection of malicious tampering of images, it is necessary to decrease the fragility of hidden watermarks, even for digital images which have been distorted incidentally. However, watermarks are sensitive to geometric distortions. In this paper, we propose a new invariant semi-fragile digital watermarking technique based on eigenvalues and eigenvectors of a real symmetric matrix generated by the four pixel-pair. And the multi-rings Zernike transform (MRZT) is proposed to achieve geometric invariance. A signature bit for detecting malicious tampering of an image is generated using the dominant eigenvector. The MRZT method is against the geometric distortions even when the image is under malicious attacks. The experimental results show that this algorithm can resist high quality JPEG compression, and improve the detection performance of various malicious tampering.[[notice]]補正完
    • …
    corecore