319 research outputs found

    The neural basis of responsibility attribution in decision-making

    Get PDF
    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context

    Neural signature of fictive learning signals in a sequential investment task

    Get PDF
    Reinforcement learning models now provide principled guides for a wide range of reward learning experiments in animals and humans. One key learning (error) signal in these models is experiential and reports ongoing temporal differences between expected and experienced reward. However, these same abstract learning models also accommodate the existence of another class of learning signal that takes the form of a fictive error encoding ongoing differences between experienced returns and returns that "could-have-been-experienced" if decisions had been different. These observations suggest the hypothesis that, for all real-world learning tasks, one should expect the presence of both experiential and fictive learning signals. Motivated by this possibility, we used a sequential investment game and fMRI to probe ongoing brain responses to both experiential and fictive learning signals generated throughout the game. Using a large cohort of subjects (n = 54), we report that fictive learning signals strongly predict changes in subjects' investment behavior and correlate with fMRI signals measured in dopaminoceptive structures known to be involved in valuation and choice

    Functional Dissociation in Frontal and Striatal Areas for Processing of Positive and Negative Reward Information

    Get PDF
    Reward-seeking behavior depends critically on processing of positive and negative information at various stages such as reward anticipation, outcome monitoring, and choice evaluation. Behavioral and neuropsychological evidence suggests that processing of positive (e.g., gain) and negative (e.g., loss) reward information may be dissociable and individually disrupted. However, it remains uncertain whether different stages of reward processing share certain neural circuitry in frontal and striatal areas, and whether distinct but interactive systems in these areas are recruited for positive and negative reward processing. To explore these issues, we used a monetary decision-making task to investigate the roles of frontal and striatal areas at all three stages of reward processing in the same event-related functional magnetic resonance imaging experiment. Participants were instructed to choose whether to bet or bank a certain number of chips. If they decided to bank or if they lost a bet, they started over betting one chip. If they won a bet, the wager was doubled in the next round. Positive reward anticipation, winning outcome, and evaluation of right choices activated the striatum and medial/middle orbitofrontal cortex, whereas negative reward anticipation, losing outcome, and evaluation of wrong choices activated the lateral orbitofrontal cortex, anterior insula, superior temporal pole, and dorsomedial frontal cortex. These findings suggest that the valence of reward information and counterfactual comparison more strongly predict a functional dissociation in frontal and striatal areas than do various stages of reward processing. These distinct but interactive systems may serve to guide human\u27s reward-seeking behavior

    Developing thoughts about what might have been

    Get PDF
    Recent research has changed how developmental psychologists understand counterfactual thinking or thoughts of what might have been. Evidence suggests that counterfactual thinking develops over an extended period into at least middle childhood, depends on domain-general processes including executive function and language, and dissociates from counterfactual emotions such as regret. In this article, we review the developmental evidence that forms a critical but often-overlooked complement to the cognitive, social, and neuroscience literatures. We also highlight topics for further research, including spontaneous counterfactual thinking and counterfactual thinking in clinical settings. © 2014 The Society for Research in Child Development

    The role of regret and responsibility in decision-making

    Get PDF
    Regret is a cognitively mediated, multifaceted emotion engendered by thoughts of how things might have been better had we behaved differently. The causes, experience and behavioural impact of regret have been widely studied by psychologists. However, research into the neural basis of regret has been motivated primarily by economic approaches, which often reduce regret to such a simplistic construct that it loses many of its interesting qualities. This thesis attempts to build a bridge between recent functional imaging studies of regret and a more established psychological literature that addresses the subjective content and motivational impacts of regret. The thesis aims to provide a deeper understanding of the experience of regret, the factors necessary for it to be elicited, and its behavioural impact. Using functional imaging, I also provide new insights into the neural mechanisms underlying each of these levels. In the first two studies, I provide evidence for a key role of responsibility in the experience and neuronal representation of regret, and in the efficacy of learning and decision-making more generally. In three further studies, I explore the immediate motivational impact of the experience of regret, and contrast findings with conventional models that address the impact of anticipated regret on choice. Specifically, I provide evidence that experienced regret encourages decision inertia, a bias to repeat, rather than avoid, a previous choice. These studies indicate that conventional models of the experiential content of regret, and its motivational effect, traditionally employed by economists and cognitive neuroscientists alike, do not provide a full description of behavioural responses to regret. I go on to consider multiple motivational effects of regret, including those (not always beneficial) responses through which individuals tend to manage and regulate aversive emotions

    Amygdala involvement in self-blame regret

    Get PDF
    Regret-related brain activity is dependent on free choice, but it is unclear whether this activity is a function of more subtle differences in the degree of responsibility a decision-maker exerts over a regrettable outcome. In this experiment, we show that trial-by-trial subjective ratings of regret depend on a higher subjective sense of responsibility, as well as being dependent on objective responsibility. Using fMRI we show an enhanced amygdala response to regret-related outcomes when these outcomes are associated with high, as compared to low, responsibility. This enhanced response was maximal in participants who showed a greater level of enhancement in their subjective ratings of regret engendered by an objective increase in responsibility. Orbitofrontal and cingulate cortex showed opposite effects, with an enhanced response for regret-related outcomes when participants were not objectively responsible. The findings indicate that the way the brain processes regret-related outcomes depends on both objective and subjective aspects of responsibility, highlighting the critical importance of the amygdala

    Habits without values

    Get PDF
    Habits form a crucial component of behavior. In recent years, key computational models have conceptualized habits as arising from model-free reinforcement learning (RL) mechanisms, which typically select between available actions based on the future value expected to result from each. Traditionally, however, habits have been understood as behaviors that can be triggered directly by a stimulus, without requiring the animal to evaluate expected outcomes. Here, we develop a computational model instantiating this traditional view, in which habits develop through the direct strengthening of recently taken actions rather than through the encoding of outcomes. We demonstrate that this model accounts for key behavioral manifestations of habits, including insensitivity to outcome devaluation and contingency degradation, as well as the effects of reinforcement schedule on the rate of habit formation. The model also explains the prevalent observation of perseveration in repeated-choice tasks as an additional behavioral manifestation of the habit system. We suggest that mapping habitual behaviors onto value-free mechanisms provides a parsimonious account of existing behavioral and neural data. This mapping may provide a new foundation for building robust and comprehensive models of the interaction of habits with other, more goal-directed types of behaviors and help to better guide research into the neural mechanisms underlying control of instrumental behavior more generally

    Neural computations underlying social risk sensitivity

    Get PDF
    Under standard models of expected utility, preferences over stochastic events are assumed to be independent of the source of uncertainty. Thus, in decision-making, an agent should exhibit consistent preferences, regardless of whether the uncertainty derives from the unpredictability of a random process or the unpredictability of a social partner. However, when a social partner is the source of uncertainty, social preferences can influence decisions over and above pure risk attitudes (RA). Here, we compared risk-related hemodynamic activity and individual preferences for two sets of options that differ only in the social or non-social nature of the risk. Risk preferences in social and non-social contexts were systematically related to neural activity during decision and outcome phases of each choice. Individuals who were more risk averse in the social context exhibited decreased risk-related activity in the amygdala during non-social decisions, while individuals who were more risk averse in the non-social context exhibited the opposite pattern. Differential risk preferences were similarly associated with hemodynamic activity in ventral striatum at the outcome of these decisions. These findings suggest that social preferences, including aversion to betrayal or exploitation by social partners, may be associated with variability in the response of these subcortical regions to social risk
    corecore