1,397 research outputs found

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    Indoor localisation based on fusing WLAN and image data

    Get PDF
    In this paper we address the automatic identification of indoor locations using a combination of WLAN and image sensing. We demonstrate the effectiveness of combining the strengths of these two complementary modalities for very chal- lenging data. We describe a fusion approach that allows localising to a specific office within a building to a high degree of precision or to a location within that office with reasonable precision. As it can be orientated towards the needs and capabilities of a user based on context the method becomes useful for ambient assisted living applications

    Simulating and Modeling the Signal Attenuation of Wireless Local Area Network for Indoor Positioning

    Get PDF
    Location is a key filter for mobile services, including navigation or advertising. However, positioning and localization inside buildings and in indoor spaces, where users spend most of their time and where the signals of the most widely-used positioning system, i.e. Global Navigation Satellite Systems such as GPS (Global Positioning System), are not available, can be challenging. In this regard, Wireless Local Area Networks (WLAN), e.g. Wi-Fi, can be used for positioning purposes by using a WLAN-enabled device, e.g. a smartphone, to measure and match the Received Signal Strength (RSS) of a signal broadcast by an access point. The challenges of this approach are that accurate maps of RSS are required, and that measuring RSS can be affected by many factors, including the dynamics of the environment and the orientation and type of a device. This paper provides a path-loss model to produce RSS maps automatically from floor plans and introduces an agent-based simulation approach to investigate different positioning methods. This provides a pathway to reduce the time and effort associated with WLAN positioning research

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    WLAN-paikannuksen elinkaaren tukeminen

    Get PDF
    The advent of GPS positioning at the turn of the millennium provided consumers with worldwide access to outdoor location information. For the purposes of indoor positioning, however, the GPS signal rarely penetrates buildings well enough to maintain the same level of positioning granularity as outdoors. Arriving around the same time, wireless local area networks (WLAN) have gained widespread support both in terms of infrastructure deployments and client proliferation. A promising approach to bridge the location context then has been positioning based on WLAN signals. In addition to being readily available in most environments needing support for location information, the adoption of a WLAN positioning system is financially low-cost compared to dedicated infrastructure approaches, partly due to operating on an unlicensed frequency band. Furthermore, the accuracy provided by this approach is enough for a wide range of location-based services, such as navigation and location-aware advertisements. In spite of this attractive proposition and extensive research in both academia and industry, WLAN positioning has yet to become the de facto choice for indoor positioning. This is despite over 20 000 publications and the foundation of several companies. The main reasons for this include: (i) the cost of deployment, and re-deployment, which is often significant, if not prohibitive, in terms of work hours; (ii) the complex propagation of the wireless signal, which -- through interaction with the environment -- renders it inherently stochastic; (iii) the use of an unlicensed frequency band, which means the wireless medium faces fierce competition by other technologies, and even unintentional radiators, that can impair traffic in unforeseen ways and impact positioning accuracy. This thesis addresses these issues by developing novel solutions for reducing the effort of deployment, including optimizing the indoor location topology for the use of WLAN positioning, as well as automatically detecting sources of cross-technology interference. These contributions pave the way for WLAN positioning to become as ubiquitous as the underlying technology.GPS-paikannus avattiin julkiseen käyttöön vuosituhannen vaihteessa, jonka jälkeen sitä on voinut käyttää sijainnin paikantamiseen ulkotiloissa kaikkialla maailmassa. Sisätiloissa GPS-signaali kuitenkin harvoin läpäisee rakennuksia kyllin hyvin voidakseen tarjota vastaavaa paikannustarkkuutta. Langattomat lähiverkot (WLAN), mukaan lukien tukiasemat ja käyttölaitteet, yleistyivät nopeasti samoihin aikoihin. Näiden verkkojen signaalien käyttö on siksi alusta asti tarjonnut lupaavia mahdollisuuksia sisätilapaikannukseen. Useimmissa ympäristöissä on jo valmiit WLAN-verkot, joten paikannuksen käyttöönotto on edullista verrattuna järjestelmiin, jotka vaativat erillisen laitteiston. Tämä johtuu osittain lisenssivapaasta taajuusalueesta, joka mahdollistaa kohtuuhintaiset päätelaitteet. WLAN-paikannuksen tarjoama tarkkuus on lisäksi riittävä monille sijaintipohjaisille palveluille, kuten suunnistamiselle ja paikkatietoisille mainoksille. Näistä lupaavista alkuasetelmista ja laajasta tutkimuksesta huolimatta WLAN-paikannus ei ole kuitenkaan pystynyt lunastamaan paikkaansa pääasiallisena sisätilapaikannusmenetelmänä. Vaivannäöstä ei ole puutetta; vuosien saatossa on julkaistu yli 20 000 tieteellistä artikkelia sekä perustettu useita yrityksiä. Syitä tähän kehitykseen on useita. Ensinnäkin, paikannuksen pystyttäminen ja ylläpito vaativat aikaa ja vaivaa. Toiseksi, langattoman signaalin eteneminen ja vuorovaikutus ympäristön kanssa on hyvin monimutkaista, mikä tekee mallintamisesta vaikeaa. Kolmanneksi, eri teknologiat ja laitteet kilpailevat lisenssivapaan taajuusalueen käytöstä, mikä johtaa satunnaisiin paikannustarkkuuteen vaikuttaviin tietoliikennehäiriöihin. Väitöskirja esittelee uusia menetelmiä joilla voidaan merkittävästi pienentää paikannusjärjestelmän asennuskustannuksia, jakaa ympäristö automaattisesti osiin WLAN-paikannusta varten, sekä tunnistaa mahdolliset langattomat häiriölähteet. Nämä kehitysaskeleet edesauttavat WLAN-paikannuksen yleistymistä jokapäiväiseen käyttöön

    Design and realization of precise indoor localization mechanism for Wi-Fi devices

    Get PDF
    Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.Peer ReviewedPostprint (published version

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Observability of Path Loss Parameters in WLAN-Based Simultaneous Localization and Mapping

    Get PDF
    Indoor positioning by means of received signal strengths has been gathering much interest since the massive presence of wireless local area networks (WLANs) in buildings. Theoretical approaches rely on the perfect knowledge of the APs' positions and propagation conditions; since this is unrealistic in real world, we estimate such knowledge as well as the building map from data by applying Simultaneous Localization and Mapping (SLAM). In this paper we address the joint estimation of the path loss parameters, namely the transmitted power and the path loss exponent, this latter being usually approximated in the literature by the free space value. We provide examples that show the relevance of estimating both parameters and analyze observability issues from the point of view of estimation theory. The integration of the parameter estimation in a WLAN based SLAM algorithm - WiSLAM - has been carried out and the results are discussed
    corecore