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Abstract—In this paper we address the automatic identification
of indoor locations using a combination of WLAN and image
sensing. We demonstrate the effectiveness of combining the
strengths of these two complementary modalities for very chal-
lenging data. We describe a fusion approach that allows localising
to a specific office within a building to a high degree of precision
or to a location within that office with reasonable precision. As
it can be orientated towards the needs and capabilities of a user
based on context the method becomes useful for ambient assisted
living applications.
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I. INTRODUCTION

Due to complex indoor environments, users should use more
than one modality in order to improve localisation accuracy
and precision [1], [2], [3]. This paper addresses the automatic
identification of indoor locations using WLAN technology in
addition to image sensing. By fusing these modalities we hope
to obtain better performance than using them individually.
Whilst GPS has become synonymous with user localisation, its
robustness can be called into question. Outdoors, GPS signals
can be affected by obstacles, multipath propagation and tall
buildings causing serious errors in localisation. Indoors, GPS
signals are weak or non-existent.

Using WLAN for indoor localisation has given promis-
ing results, but its performance is subject to change due
to multipath propagation and changes in the environment
[4], [5]. Recently researchers have investigated image-based
localisation, for example in [6], but the limitations of this
approach are occlusion, changes in lighting, noise and blur.
Many localisation methods that have been proposed are based
on fusion of UWB and WLAN, WLAN and RF tags (indoors)
and GPS and WLAN (outdoors) [7], [8], [9], [10]. There
are only a few techniques based on fusion of RF and image
sensing methods. These fusion algorithms were used to build
active tracking systems based on particle filtering models [11],
[5]. For previously mentioned reasons, we propose combining
WLAN and image data as complementary sensor modalities.
Our motivation for this is that nowadays, any cellphone can
be used as a WLAN and image data gathering hub e.g. see
the Campaignr (http://www.campaignr.com) micropublishing
platform [12]. As it can be orientated towards the needs and
capabilities of a user based on context the method becomes
useful for ambient assisted living applications. In this paper,
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Fig. 1. RSSI histogram of one access point consisting of signal strengths
of all orientations taken at one CP. RSSI is defined as the absolute value of
RSS, given in dBm

we present the results for locating a user to within a specific
office in a building or to a location within that office.

II. EXPERIMENTAL SETUP

For our experiments we use 20 offices of average size
8.9m2. Within each office we use 5 calibrations points (CP),
A, B,C,D & E. Each orientation of a CP (N, S, W and E) has
8 (640 x 480 pixel) images and 300 associated received signal
strength (RSS) observations taken with camera and laptop
respectively. An observation consists of RSSs from up to 14
access points. An example of histogram is given in fig. 1. In
total we gathered 5, 000 images, of which 3, 200 were used for
training and 1,800 for testing, and 125,000 signal strengths
observations of which 120,000 were used for training and
5,000 for testing. Offices are next to each other and look very
similar inside thus resulting in very challenging data for both
WLAN and image-based localisation methods (see examples
in fig 2).

For testing we used one image and one signal strength
observation per CP and tested how often we could localise
to the correct CP. We also present results for localising to a
given office whereby the office selected as the location is that
associated with the 1°¢ ranked CP. Hence it is often possible to
identify the correct office even if the identified CP is incorrect
provided it is in the same office as the actual CP location. We
examined localisation precision for 5 different combinations
of 1, 2 and 3 CPs per office. We used two precision measures:
normal precision and average precision. Average precision



Fig. 2.  Some of the images used in the experiments

takes into account not only the top ranked guess but the entire
location ranking and therefore gives more information. In case
of N images (or signal strength observations) to evaluate,
average precision is computed as AV P = Eszl P, /N where
P, represents the position of the correct location in the k!
test.

IIT. LOCALISATION METHODS
A. WLAN-based localisation

Probabilistic WLAN-based localisation techniques presume
a priori knowledge of the probability distribution of the
user’s location [4], [13]. A Naive Bayes method [4] was
employed which takes into account the access points’ (APs)
signal strength values (RSS) and also the frequency of the
appearance of these APs. A CP’s signature is defined as a
set of W distributions of signal strengths of W APs and a
distribution representing the number of appearances of W
APs received at this CP. We denote by C' the CP random
variable where K is the number of CPs, X,, € {1,2,..., W}
represents the mt" AP random variable, Y,, € {81, .., 8V}
is the signal strength that corresponds to m!” AP where W
is number of APs, M is number of APs of an observation
and V is number of discrete values of signal strength. From
a set of N training observations D = {01, 02, ...,0,} where
o, = (c™ x("),yﬁn),. 5\7}), J(\Z)) ,n=1,..,N we can
then estimate the signature parameters. The joint distribution
P(C,X1,Y1,..., X, Yar) is given by:

M
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Let the identity function I(a,b) = 1 if a = b else = 0, in
the Naive Bayes estimation framework sufficient statistics are

[4]:
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Eventually at the prediction step we have:
M
= P(c) H P(zm|c)P(ymlc, Tm) (7
m=1

The algorithm chooses the location which maximises I; as
being the user location. We rescaled these probabilities to sum
to one and denoted their new values as the CP confidences,
Pi-

B. Image-based localisation

For image-based localisation, we use an interest point based
approach [14] using a variation of a hierarchical vocabulary
tree [15] to efficiently match query images of a specific CP
to the image training dataset of all CPs — see figure 3. 64-
dimensional SURF descriptors were used [14].

SURF (Speeded Up Robust Features) is a robust image
detector and descriptor that is used in computer vision tasks.
It is inspired by SIFT descriptor [16] but it is several times
faster and more robust against different image transformations
than SIFT. It builds on the strengths of the best existing
detectors and descriptors [17] which gives novel state-of-the
art detection, description, and matching steps. Interest points
must be selected at distinctive locations (T-junctions, corners,
blobs). The main property of the detector is its robustness to
changes. Thus it should be reliable in finding the same physical
interest points under various viewing conditions. It uses a Haar
wavelet approximation of the determinant of Hessian blob
detector:

L. (x,0)
L,,(x,0)

Ly(x,0)

H(Xa U) = Lyy(x, O’) , ®)

where L., (x,0) is the convolution of the Gaussian second
L 2 . . . .

order derivative 25g(o) with the image I in point x ,

and similarly for L,,(x,0) and Ly, (x,0). The determinant

approximation would be:
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Then every interest point’s neighborhood is represented by
a feature vector. In order to build the descriptor, one has to
calculate orientation and descriptor vector for each interest
point. Orientation of an interest point was calculated using
Haar wavelet responses in x and y direction within circle of

det(Happrox) =Dy Dyy —



radius 6s around the same interest point (s is the scale at which
the interest point was detected). The horizontal and vertical
responses within the window are summed and yield a local
orientation vector. The longest such vector among all windows
gives the orientation of the interest point. The descriptor vector
is calculated by splitting up the square region around interest
point (the square size is 20s) into 16 small sub-squares (4 x 4
within one square). Then one has to compute Haar wavelet
responses at 5 x 5 regularly spaced sample points. There
are four of them: > d, (the sum of Haar wavelet responses
in horizontal direction) and )" d,, (the sum of Haar wavelet
responses in vertical direction) and two sums of absolute
values ) |d,| and ) |dy|. This results in a descriptor vector
for all 4 x 4 sub squares regions of length 64.

Eventually, the descriptor vectors are matched between
different images. Every interest point in the test image is
compared to every interest point in the training image by
calculating the Euclidean distance between their descriptor
vectors. The nearest neighbor ratio matching strategy gives
pair (match) detected, if its distance is closer thane.g. 7' = 0.7
times the distance of the second nearest neighbor. Usually 7" is
between 0.6 and 0.8. Since this measure is asymmetrical, we
can also compute the matches in the reverse direction (from
the training to the test image) and those that appear in both
directions (bidirectional matches). Such matches are found to
be very stable and strong indicators of a good match.

The SURF features from all 3,200 database images were
associated with the image and the CP to which they be-
longed. The features were split into two groups (denoted +1
respectively) based on the sign of the Laplacian which halves
the search time. For each group, we created a hierarchical
tree clustering the descriptors using the K-means algorithm
repeatedly. This algorithm for partitioning (or clustering) N
features into K disjoint subsets S; containing IN; features
minimizes the sum-of-squares criterion:

K
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where x,, is a vector representing the n‘" data point and
i; is the geometric centroid of the data points in S;. The
algorithm does not achieve a global minimum of J over the
assignments since it uses discrete assignment rather than a set
of continuous parameters. The algorithm consists of a simple
re-estimation procedure as follows. Initially, the features are
assigned at random to the sets. For step 1, the centroid is
computed for each set. In step 2, every feature is assigned
to the cluster whose centroid is closest to that feature. These
two steps are alternated until a stopping criterion is met. This
means that either there is no further change in the assignment
or the algorithm reaches certain threshold value (for which
we stop the iteration process). We also tried to use adaptive
threshold values that depended on the previous iterations but
this increased computational complexity. Nevertheless it might
be taken into account in the future analysis.

Fig. 3. SURF matching between two different images for the same CP.
Unidirectional matches in right image that correspond to left image are
represented with red lines (vice versa for blue lines) and bidirectional matches
with the green lines

Initially, K clusters were created, then within each cluster,
K more clusters, and so on until the last cluster contained
less than K descriptor elements. In the case of query image,
its SURF descriptors and the (corresponding) signs of the
Laplacian were extracted and a match for each descriptor
was found using +1 or —1 hierarchical tree. Since match
was labelled with the image and location from which it was
extracted, it therefore casted one vote for the location it
belongs to. After each descriptor had voted for a location,
we then had a ranked list of locations, from the most likely
to the least likely one. We assigned a confidence for each CP
(g;) as the ratio of the number of votes associated with that
CP and the total number of votes.

IV. DATA FUSION

To perform fusion, we take confidences p; and ¢g; from both
sensing modalities P (WLAN) and () (image) into account.
Here, i refers to a given CP. The first ranked, the second
ranked, the third ranked, sorted confidences are denoted by
DPmazl> Pmaz2> Pmaz3, fespectively (similarly for Q). We de-
cided to use a large training dataset of confidences in building
a robust fusion function which would be reliably used on (un-
known) testing data. First, let us define P;; = pmazi — Pmacj-
Observing Pj5 and (12 in many training confidence pairs we
concluded that for values P;» and/or (012 beyond some reliably
large thresholds, denoted 77 and 75, we were sure that the
correct CP (location) was the 1% ranked one, based either on
P or @ (or both).

Moreover we deduced that introducing multiplication (p;q;)
and/or addition (p; + ¢;) functions under some conditions
can improve precision (and/or average precision) even more.
This improvement is small though and the main improvement
comes from the previous steps. Also we found that the ranking
of the correct location did not fall below some positions in
both sets of rankings (m!” position for P and the n'" for
(2 modality). If none of conditions are satisfied we decided



[NoofCPs | Pw | Pr | Pr || Pwo | Pro | Pro |

I 70.00 | 57.83 | 76.00 || 70.00 | 57.83 | 76.09

2 64778 | 51.74 | 7239 || 72.61 | 60.87 | 76.96

3 5042 | 4667 | 6841 || 7504 | 6537 | 8145
TABLE I

LOCALISATION RESULTS: Py, Pr, Pr DECREASE WHILE Py o, Pro,
Pro INCREASE WHEN THE NUMBER OF CPS PER OFFICE INCREASES

to take the ranking of the one with min(n,m). Eventually,
the main steps in the fusion process are given in the eq. 11.
Here f; represents fusion confidence and k; confidence of the
method to which min(n, m) corresponds. The location output
by the algorithm is the one with the maximum value of the
fusion confidence.

i, Pi2>QuaANPia>T1 ANQi2 >1Th
gi» Qi2>2PiaANPio>2TyANQi122>21Ts
P >Ty ANQu2 < Th
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k;, else

(1)

V. RESULTS

The fusion function can show the behaviour of precision
considering the top N ranked results, thus illustrating how
often each modality returned the correct location as the top
ranked result, 2" ranked results, and so on and also how
precision increases if the top N ranked results are considered.
Overall results are presented in the table I. The left hand side
of the table shows results for the precision on average when
using 1, 2 and 3 CPs per office using WLAN data only (Py),
image data only (Pr) and the fusion of both modalities (Pr).
Every CP represents a different location. The right hand side
of the table shows results where we only try to localise to the
correct office, rather than the correct location within the office.
The office chosen is that associated with the 1¢ ranked CP.
This gives the precision to a particular office. Pyyo, Pro and
Pro are WLAN, image and the fusion precision on average
respectively.

From the table it is clear that fusion of WLAN and
images significantly improves the performance over using
either approach on its own. The performance variation for the
localisation to within an office obtained by using a variable
number of CPs also gives an interesting conclusion. The
quality of the results improve as we increase the number
of CPs used in each office, but acceptable performance is
obtained using a single CP: 76.09% on average. Thus, the
manual data collection stage for model creation outlined in
section II is viable as it only needs to be performed once (i.e.
at one CP) to obtain reasonably accurate performance.

VI. CONCLUSION

In this work, we presented results combining two com-
plementary data sources for classifying indoor locations. By
fusing them we achieve better performance than any individual
modality. Thus we demonstrated the effectiveness of the

method for very challenging data. Use of images is justified as
there were situations where WLAN broke down. Moreover, we
have to collect the images as they give contextual information
about user’s activities, so it does not bring extra costs in
terms of additional capture. Future work will investigate the
possibility of seamlessly tracking a user indoors, using dy-
namic confidence-based weighting between these modalities,
and more sophisticated classifiers such as neural networks.
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