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Abstract—Indoor positioning by means of received signal Path-loss model
strengths has been gathering much interest since the massive —hy = 30, a
presence of wireless local area networks (WLANSs) in buildings. -_._";Lo = :ggg
Theoretical approaches rely on the perfect knowledge of the APs @—60 dB,Ar ~7m hg — 50 a
positions and propagation conditions; since this is unrealistic in
real world, we estimate such knowledge as well as the building
map from data by applying Simultaneous Localization and
Mapping (SLAM).

In this paper we address the joint estimation of the path
loss parameters, namely the transmitted power and the path
loss exponent, this latter being usually approximated in the
literature by the free space value. We provide examples that
show the relevance of estimating both parameters and analyze
observability issues from the point of view of estimation theory.
The integration of the parameter estimation in a WLAN based ~100- @10 m, ARSS ~ 8 dB
SLAM algorithm - WIiSLAM - has been carried out and the
results are discussed. 110 ‘ ‘
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I. INTRODUCTION User—AP distance [m]

Indoor navigation and other Location Based Services Hlb 1. Path loss model: expected RSS as a function of theARetlistance
buildings and urban areas have prompted growing demandfour couples of valuegho, o}
for reliable indoor localization techniques [1], [2]. Dgss
of such systems should take into account features which are
valuable in the context of market application, such as the cddayesian approach for SLAM based on the Rao-Blackwellized
for the user and integration of sensors in everyday objests,particle filter (RBPF) that has been applied with success to
well as privacy issues. Therefore, attention has been tlgcermany scenarios. The user’s trajectory is sampled indepen-
gathered by such sensors which are already available irdently for each particle, and the environmental informatior
mobile phone, like accelerometers, compass, magnetasnetgrap, is then inferred for each trajectory hypothesis [90][1
and radio receivers, whose data can be fused in a probabili§tootSLAM uses FastSLAM approach to localize pedestrians
framework to perform accurate positioning [3]. inside buildings and at the same time to infer the building
Information about the topology and any feature of interettpologic map by using inertial measurements derived from
of indoor environments turns out to be extremely valualde; fa foot-mounted IMU [11], [12]; this algorithm makes use
example, inertial navigation by means of inertial measun@m of only a local sensor and does not require any dedicated
units (IMUs), that are usually affected by a heavy drift innfrastructure.
the heading error, can be made robust by exploiting the floorBased on FootSLAM, in a previous paper we proposed
plan [4]-[6]. Furthermore, when radio receivers are emgihy WiSLAM - a Bayesian SLAM algorithm which fuses received
information about the transmitters and the radio propagatisignal strengths (RSSs) in wireless local networks (WLANS)
are needed [7]. with IMU’s inertial measurements [13]. The algorithm does
Environmental information is easily available during surot assume any initial information about the position of the
pervised experiments, but cannot be assumed for wide-scAfs; in each particle the user’s trajectory is sampled seque
global deployments of localization techniques. One pdgyib tially and the APs are tracked consequently, by multiplytimg
is to acquire it from data by applying the Simultaneous LocaRSS likelihood functions. This way, a probability distritaun
ization and Mapping (SLAM) approach [8]. FastSLAM is dor the AP’s position is obtained, which shrinks in time
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around the right position. The evaluation of the RSS likaith Squared Error (MSE) achieves the optimal value indicated
function requires the characterization of radio propagati by the CRLB. We discuss the geometrical conditions which
and this is done according to the path loss model, whoaee favorable to parameter observability and the impact of
parameters can actually be tuned in order to add flexibilitpeasurement noise. In the second part of the paper we
to the algorithm [14]. In WiSLAM, the transmitted power isapply estimation of both parameters to the SLAM case: we
added to the state space and estimated by means of the RBREENd the WISLAM algorithm in order to account for both
while the path loss exponent, which describes the decay pH#rameters and we show the results of both simulations and
power with distance, is fixed at the free space value. of datasets collected in two different buildings.

Another SLAM approach based on RSS measurementsThe paper is structured as follows: in Section Il we analyze
involves a representation of the radio signal across theand the impact of mismatches in the path loss parameters on
area in terms of Gaussian process latent variable models (@Rtances determination and, therefore, on positionirg; o
LVM) [15]. However, as acknowledged by the authors, igervability of parameters in a supervised context and their
the absence of other sensors, quite strong assumptions nassiimation is instead subject of Section Ill; applicatioh o
be made about the user’s trajectory and data associationp@rameter estimation to SLAM is proposed in Section IV and
Graph-SLAM like approach is instead exploited in [16], wderthe results are discussed in terms of simulations and reddiwo
also the necessity of IMU data is stated in order to overcoregperiments in Sections VI and VII, respectively; conchgli
limitations imposed on the user's movement. remarks are given in Section VIII.

The impact of a mismatch in the path loss exponent has been
explored in several papers. An empirical study based on RSS
measurements in a IEEE 802.11.b network, proposed in [17],The path loss model describes in a compact but effective
besides validating the path loss model with additive Gamssiway the power loss due to radio propagation. It is derivethfro
noise in an indoor scenario, shows the negative effects tbe Friis formula and states that the powefr) received at
a wrong exponent on localization performance. The mogkstancer from the transmitter is given by [14]
general context of wireless sensor networks is used in (@8] t do\®
develop a RSS-based localization algorithm in which thé pat P(r) = F () ; 1)
loss exponent is considered unknown. The authors combine "
the range estimations which are yielded by the RSS by usinjeredo is a reference distance; is a constant representing
a spring-relaxation method: each AP-user distance is raddethe transmitted power and antenna gains ant the path
by a spring, whose elasticity coefficient is made variablgnwiloss exponentd = 2 in free space). This model is intended
distance in order to mitigate the path loss exponent inacyur to work only in far field condition, as for — 0, P(r) — oc.
Their claim is that such a mismatch yields an error in th@ this paper, we usé, to determine the limit between near
distance determination that is proportional to the distan@nd far field, so that we will always assume> dy. Restating
itself; therefore, their solution is, in practice, to inase €equation (1) in dB for the signal strength(r) (square root
the variance of weak RSS measurements so that it includégpower) we find:
the error yielded by the parameter mismatch. A theoretical _
analysis of the joint estimation of user’s position and gatis i (r) = ho = 20ar10g,¢ (r/do) - )
exponent is instead presented in [19] based on the Cramlerthis Section we do not consider any measurement noise,
Rao Lower Bound (CRLB); the author focuses mainly on thg&ince we analyze the sensitivity of the model with regards to
geometry impact on the estimation performance. the transmitted signal strengtly and the path loss exponent

Joint estimation of both transmitted power and path logs Figure 1 shows the expected RSS with 4 different combi-
exponent is instead proposed in [20]; in that paper, autharations of parameters. In particular, the 20 dB variatiohgn
perform a training stage to provide a maximum likelihoods likely when different receivers are adopted; furtherenae
estimation of the parameters and then use Bayesian pasdionaddress the case with= 2, that is the free space value, often
algorithms, which account also for the residual unceryaintised even in indoor positioning, and= 1.5 which is referred
of parameters. Real world experiments show once again toein the literature as a likely value in indoor environments
impact of parameter estimation on localization. especially in absence of obstacles between transmitter and

Our paper, instead, proposes a SLAM Bayesian algorithraceiver, i.e. line of sight (LOS) propagation [14].
which includes the estimation of both path loss parameters Visual inspection of the curves in Fig. 1 shows that a
AP’s positions and the user’s trajectory without any calftin  variation inhg yields simply a shift in terms of expected RSS;
phase or prior information on the WLAN. In the first part ofa variation in the path loss exponeftn yields a variation
the paper we analyze the observability issues arising flmm tin the expected RSS which is proportional to the distance
joint estimation of transmitted power and path loss expbneand assumes relevant values even at close distances: in this
by means of a theoretical framework based on estimatierample, withAa = 0.5, the expected RSS differs by 8 dB at
theory. To do so, we approach the parameter estimation al@ndistance of 10 meters and by 13 dB at 30 meters. Inverting
by providing the CRLB for the joint estimation and thehe perspective, the same RSS can refer to very differing
efficient estimator, i.e. the unbiased estimator whose Medistances: in the example highlighted in Fig. Aa = 0.5

Il. MODEL SENSITIVITY TO PARAMETERS
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i Fig. 3. Geometrical primitives: the user walks on (a) a cirdatered in the
2 57 AP, (b) a line radially directed w.r.t. the AP.

Lo s 10 st 0 % we can rewrite (2) as a linear function

AN _ /
Fig. 2. Impact of mismatcljA«|| on the path loss exponent on the expected h (”Xk - XAP”) —h (rk) = ho — ary, (4)

RSS (in absolute value) for 4 values in the rariga/|| € [0.25, 1]. which highlights the different roles of the parameters i th
path loss model.
yields about 7 meters of distance variation in the distartoerw ~ We now show two examples with opposite results regarding
the RSS is -60 dBH, = —30 dB). observability, where, for simplicity, we neglect the measu
The absolute value of the difference in the expected R®®Nt noise, i.ec = 0. In the framework of Fig. 3, panel (a),
obtained using several valudig\ce|| up to 1 is depicted in the user's path lies on a circle and a number K of RSS are
Fig. 2 against the distance; it is linear withha|| and can collected from the AP in the center. In this case the user-AP
assume values of tens of dB even at quite short distances.distance is constant, wheneg — +" andh () — h (r'), the
system of K equations (2), one per measurement, collapses
into one independent linear equation, that is not suffictent
We investigate the joint estimation of the path loss parampserve the parameters. In the second example, depicted in
eters by resorting to estimation theory. To do so, we needtfe framework of Fig. 3, panel (b), the user walks straightly
introduce some more formalism. away from the AP, and thus each measurement is collected
A pedestrian walks across the area, where an arbitrajy 5 different distance, e, # r; if k& # j. In this case
number of APs is deployed, carrying a WLAN receiver. RSgn arbitrary pair of measurements can be used to evaluate the
vectors are collected at a constant pa@nd they are assumedparameters, since, in absence of noise, it yields a linesiesy
independent in time given the user’s and the APs’ positiogf two equation and two variables, i.e. for# j:
furthermore we also assume that RSS from different APs

IIl. OBSERVABILITY OF THE PATH LOSS PARAMETERS

are conditionally independent. From now on the time will be ho — ary, = yr, ho — ar} =y, (5)
con_5|dered discrete, by d(_anotlng the sgm!olmg |_n_stantb Wilhich admits one solution fol, and o:
the indexk = 1,2, .... If X, is the pedestrian’s position at the _ , _
instantk, the RSS measurement in dB from one generic a=22"0 py =y o, ST (6)
AP is assumed a random variable with Gaussian distribution T3 =Tk Ty =Tk

yk ~ N (h (), 0?) (3) A plain explanation for both cases involves the model in

) ) ] Fig. 1 and is based on the consideration that it should be
wherery, =[x, —Xap|| is the user-AP distancé, (r4) is the  sampled at two different points at least, i.e. two measurgsne
expected _RSS given by the path loss model in (2)@&his the 4t gifferent distances need to be collected, in order toifgpec
noise variance, independent of the parameters and suppagdrepresentation.

known throughout the paper. We notice that the parameters _ . .
ho anda of the path loss model are present only in the medh CRLB in presence of Gaussian noise

of the measurements. When measurement noise is considered, é.e> 0, the

A. Estimation of the parameters in absence of noise observability problem can be afforded from a probabilistic

. . . Point of view. We define that a vector of parameters is
We now propose considerations about parameter estimatign

starting from a supervised set-up. Let the pedestrian nsito servable from a set of data when a consistent estimator
9 P P » P p exists, i.e. an estimator that tends to no bias and zeronaia
X; be known, as well as the position of an AR p. By

denoting for simolicit when the size of data tends to infinity.
Ing for simplicity We claim that, adopting the model (2) with additive Gaus-
i, = 201ogyo (||[Xx — Xap||/do) , sian measurement noisgjven user’s trajectory and AP’s



position, observability ofiy and « is guaranteed if relevant
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Parameter estimation performance

changes in the user-AP distance are provided. ‘ " Root CRLE on hy
To prove our statement we first compute the Fisher Informa- ] Rﬁ?SE[hw] me
tion Matrix (FIM) and the Cramer-Rao Lower Bound (CRLB) ® RMSE[a"F]
for the parameters and then provide the unbiased estimator 10 | B y
which achieve the bound [21]. Define the parameters vector "
L ‘ié
6 = [ho, a]T, (7) ‘g 10 : |"::‘ .
o —‘l//
and consider one measuremant, whose distribution (3) will PR T
be denoted by(y;; ), with x; andx4p known as before; the . e it T .
log-likelihood function of data is, recalling (3) and (2), 10 ®- . o e B g s
1 N2 .--...'."".- -Q-
logp(y1;6) =C+—ﬁ(y1 —ho+ary)”, (8) 3
107 ] ‘
wherec is a constant, and the FIM of the parameters based 10’ 10 10° 10°

X . Number of measurements
on y; results straightforwardly following [21]

Fig. 4. Performance of the joint unbiased estimators/grand «: root
CRLB (dotted lines) and root mean square error (RMSE) compfatesome
sizes of the dataset (markers).
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(r7)?

Since the CRLB is obtained from the inverse of the FIM, we
notice that the determinant is zero, yielding undefined CRLB
one measurement alone does not provide any information VAR [;{O} > Cre(ho)
useful to estimate the parameters. In the cag€ afdependent
measurements$y,. }, whose log-likelihood function is =

11(0) = (7_2 [

_7«’1

oAy L)

detix)
o> (Zk (1)) /K ,
K e, o (K ;)

=
K

1 2 . : _
logp(y1,...,yx;0) = KC_@ Z (yi — ho + ar})?, (9) and for any unbiased estimatarof the path loss exponent:

VAR (4] > Cx(0) = i
the total FIMZg is the sum of the single ones: _ oi‘ZIK) 1
Ksfl op? (25,
K _E?ﬂ T " 7( = )
Tk (0) = o2 = , . .
_Zkal r 2571(7"2)2 Both bounds tend asymptotically to zerosif is assumed

limited, so that the difference between mean square value
and square mean cannot diverge. This condition is widely
accomplished, since the far field condition yielgs> 0 and

the maximum range achieved by an AP is no more than 100 m

K K 2
detzi(6) = o+ (KL, 007 - (Srt))
(r}, <20log,(,(100/1.6) ~ 35.9), becoming lower in practical
scenarios. Finally, we can notice in the expressions of both

= oiK? (zz;lw _ (ZK)2> . (10)
K K bounds the absence of the true parameters.

In the second line of (10) we have isolated the difference In Fig. 4 the root CRLBs for both estimators are denoted
between the mean square value of the and their squared by dashed lines as functions of the numbers of measurements
mean. Realizing that the square function is convex, the dfP ©© 2V = 1000. The results have been obtained in the linear
plication of the Jensen inequality yields that not only thgcenario of Fig.3, panel (b), with = 3, by sampling the user-
determinant ofZx () is non negative, in accordance to thé\" distances mdepgnde.ntly between 1.6 and 50 meters and
FIM definition, but also that it is zero if and only if all termsthen averaging orl0" trajectories. The asymptotic behavior

v/ are equal [21]. Conversely, when terns are not equal, of the root CRLB, proportional td /+/N, is evident already
d]zat(IK(H)) < 0. and the CRLB matrix after as few as 10 measurements; the two orders of magnitude
’ between the CRLBs in favor of are reasonable, since the
Cx(0) = (Zx(0))™

path loss exponent has a smaller variation range than
is well defined. The diagonal terms of the CRLB matrixC: MMSE unbiased estimator
henceforth denoted bk (ko) and Ck («) respectively, pro-  We now show that the maximum likelihood (ML) estimators
vide lower bounds to the variance achieved by any correspofidr hy and o are unbiased and achieve the CRLB, which
ing unbiased estimator. Therefore we find for any unbiasedsures their optimality in the minimum mean square error
estimatorh, of the transmitted power: (MMSE) sense [21]. By derivating the log-likelihood furani

whose determinant, semi-definite positive, results in




of data in (9) with regards to both parameters, we get the
system of equations:

N
ST k—hotary) =0, (1)
k=1
N
Z . (yr — ho + ary,) =0, (12)
k=1

whose solution provides the ML estimator far

N 1 —N N
aML — Dokt Tk = N ket Yk Dop—1 Tk

13)
N N (
%(Zk:l T)? = > p=1 (13)?
and, consequently, fdk:
N N aML N
_ - /
Wt = =Y et DT (14)
k=1 k=1
i _ / _ 2
_applylng Bye] = ho — arj, and VARy;] = o°, as well as Fig. 5. The DBN following [11]-[13] for our scenario showirree time
independence between measurements, we show that slices and two APs; for the meaning of the symbols refer to then rreait.
E[R""] = ho, E[aM"] = a, (15)

. . . the FOotSLAM mapM [11], [12], and the WLAN map for
and, moreover, their variances attain the correspondlﬂgch of the APSW, for the j-th AP, consisting of its position

CRLBs. This shows that ML estimators are optimal in th q ¢ Th both idered stati d
MMSE sense, at least in the class of unbiased estimatdfa Parameters. 1he maps are both considered stationary an

and proves the observability of the path loss parameters Wﬁoglttlal(l)ytunlér;f)\gvtr;(urr:]lgfaosrn;:;trllvee n%ogﬁ;rxsrgerise:;ensﬁfnts
user’s trajectory and AP position are known. an dyg - step u u
Our result is validated by simulations, whose results aFe‘C ! s : :
. L The relations among the variables are encoded in the Dy-
denoted by the curves with markers in Fig. 4. We COMPAN2 mic Bayesian Network (DBN) of Fig. 5, in which intention
the root MSE (RMSE) obtained by the ML estimators of thF Y 9.,

parameters with the root of CRLB computed in Section III—B.rlt and visual systerwis of the pedesrian drive her steps but

. are not observable [11]. The FOotSLAM map can include
For each trajectory the true values afand ho are drawn any features and information to let the pedestrian chdose
randomly in the rangel, 4] and [—60, —30] respectively, the y P

user-AP distances are those being used to compute the Cﬁ’ﬁ@le each WLAN mapW, contams the pos[tlon and path
: : . 0ss parameters of the corresponding AP. Since the WLAN
and again, the results are averaged dvérindependent trials.

The ML estimates are carried out for 11 values\gf chosen maps and mt_aasurer_nents are co_n(_j|t|0nally mdepende_nt_, from
. . now on we will consider for simplicity only one AP, omitting
between 2 and 1000, and the theoretical performance is alw% index

achieved. The goal of the algorithm is to compute the posterior pdf

IV. ESTIMATION OF PROPAGATION PARAMETERS INSLAM  of the state given the measurements (and the priors when

We address the joint estimation of transmitted power arfformative):
path loss exponent in the WiISLAM framework, by augmenting p(Po.Uo.kEor, W, M |2V, Z1"), (16)
the state space of the underlying RBPF. In WiSLAM the trans- . .
mitted power only is estimated in a probabilistic way; we nO\)O’h'Ch can be factorized as follows:
extend the state space by adding also the path loss exponemi(M|Py.;)- p(W|Po.x, Z¥,)- p(Po:xUo:xEo:kZY,, Z1).
and evaluating observability issues in this framework. Our a7
claim is that convergence of the algorithm is not preventethe first two terms relate to mapping and the last one to
by the new variable and that the observability of the patk lofocalization. This latter admits a recursive formulatiomsed
parameters is also preserved. We start by deriving our égtén on the relationships encoded in the DBN:
version of WiSLAM with particular attention to the novelty. » ({PUE},, IZm,ZS{k) ~

A Extendeq WISLAM (.jerivation. . p (Z{|{UE},) -» (2} IPo:k, Z1_1)

WIiSLAM is a Bayesian algorithm whose state space in- p ({Ex|Er—1}) -p ({PU}, [ {PU}y_y)
cludes several variables: the user’s trajectory, in teris o PUE 7U W 18
positions and pose®y.,; auxiliary variables related to the ex- P ({ Yow—11Z1ik—1 1;1@71) . (18)
ploitation of IMU measurements, i.e. the step sequeblgg,, In order to compute all the factors in (18) we need to

and step measurement procdsgy; the maps of interest, i.e. marginalize some of the terms on the maps. The FootSLAM



map determines the term concerning the present step avith values in a finite sefa, } ., and update recursively

s=1,..
position given the past ones [11], [12]: their probabilities by applying the Bayes rule:
I =p ({PU}, | {PU}y_1) (19) Pr(as|Po, Z1%) op (Z) [Pou, ZV0e_1)

w
N / P (Pi,; Ug|M, Pr_1) - p (M[Po:p—1) dM. Pr(asIPos-1,Z151) (25)
M

S o starting from a uniform prior and normalizing after eactpste
The WLAN map determines instead the RSS likelihood funq"he final expression for the WLAN map pdf is, therefore,

tion [13]:
W o~ W w D (W|P0:k7z¥[;/k) = (26)
LY =p (25 [Pok, Z1—1) (20) N N
w w
:/ p(ZV W, Py) - p (W[Pox—1,Z1% 1) dW. Z;Pr(as’ IPo:k: Z1k ) {}Zl Pr (hn|as, Pos, 215, )
W S§= h—

The models which are adopted to describe and devise the step” P (Xap|hn: @, Poi, Z1) 8 (ho — hn) - } 6 (a — a)

U .
measurementsZ;, from IMU raw data are proposed in the The complexity issues arising from the extra sum in (26)
FOOtSLAM papers and therein references. with respect to (24) will be discussed after implementation
B. WLAN map learning anf path loss parameter estimation V. PARTICLE FILTER IMPLEMENTATION

The WLAN map is composed of the AP's positiooir  |mplementation is similar to WiSLAM's in [13], in which
and the path loss parametérs and . The map distribution the variablen is embedded in the WLAN mapy; it resorts to
(second term from left in (17)), that has an active role in)(20the RBPF in which at time: the variables{P, U, E},,, are

can be factorized as follows: sampled according to the function [9], [11]
P(W[Po, Z1) =p(Xap|ho, o, Pos, Z1') (21) p (UelZ¥ L) -p (Ex[EL_,) @7)
plhola, Pouk, Z3%)- p(ofPock, Z1)- from right to left, for thei — th particle. Each map provides
The first two terms on the right hand side of (21) are equi@ Multiplicative contribution to the particle weights:
alent to the ones in former WiSLAM [13], with the formal wi o w;i_l-l,i”’i-l,fv’? (28)

difference that here we make the dependencyxoexplicit. ) )
The distribution of the AP’s position given the parametiss Wherel,"" andI,"* are suitable numerical approximations for
anda is the product of the RSS likelihood functions, each on& in (19) andZ}" in (20), respectively (further APs result in
being a circular pdf centered on the user’s positiorPjn independent termﬁ,?/’l). The approximation undernealﬂ“
w w resorts to the Markov Random Field built on a discretized gri
p (Xarlho, @, Pox, Z1:1.) ocp (21 [xap, hos , P) (22)  and it is discussed in [11]. As for the WLAN map approx-
-p (Xap|ho, &, Po—1, 21 _1) imation, for any given couple of parameter values indexed
k by (h,s), the pdf of the AP’s position in (26) undergoes a
qu(ZZV|XAp,ho,a,PS). Gaussian Mixture Model (GMM) approximation with fixed
s=1 number of components:
The trangmltted.power is modeled as a finite dlscretep (XAplhh,as,Po:k,Zm) ~ (29)
random variable with 2-3 dB spaced valugs,},_; - N
Accordingly, the statistical characterization faf is provided . W =
by the probabilities of alky,, which are computed recursively (Xaplhn; o, Pos Z1x) = Z Up i+ for(Xap,hs)

. . . =1
by means of the Bayes rule (uniform prior is here assumed) ) P ) o
where 4, 5, is a set of non-negative coefficients whose sum

Pr (Ao, PO:MZm) xp (Z,ﬁV\hh,a, PO:kaZm—l) over p is one andf, ,(Xap,h,s) are Gaussian distributed
~Pr(hh|a, Po;k_th_l), (23) components. When an AP is reliably detected for the first time,

o - . the corresponding GMM (29) is initialized from the user’s
f"‘r.‘d normalization. Comblr_ung (22) and (.23).We obtain for thl?ajectory and the measurements according to the Maximum
joint pdf of X, p andhg & mixture of RSS likelihood products: Likelihood criterion [21]. The procedure is repeated fok al

p (Xap, hola, Po.e, Z1%,) = (24) coupleg(h, s) of parameter values; the starting probabilities for
N both hy and« are set to be uniform. At any new measurement
Z {Pr(hs|a, Po.y, Zm,) from the same AP, model (29) is now updated by transforming
he1 ' the old GMM into a new one, since it can be seen that [13]

w ~
P (XAPIhh’ a, PO:k, Zl?k?) : 6 (ho - hh)} 4 p (Z}Q/Ii1|XAP7 hh> s, PkJrl) 'p (XAplhhu O, PU:k7 ZIl/Vk;)
whered () denotes the Dirac delta function. Npeaks
To perform the estimation of, we use the same technique ~ ~ D tpkt1(h, ) fphs1(Xap, b, s), (30)

as forhg: we modela in terms of a discrete random variable p=1
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Fig. 6. Simulative scenario with the true trajectory (bluelivith circles) and
a corrupted one (red line with crosses); the AP is denoted bhack circle,
and the measurements are collected in the points of the wajedenoted by
markers; the arrow on the lower side indicates the directioth® walk.

where the new set of coefficients and parameters of the
Gaussian functions are computed by closed formula. Co-
efficients u,, ,+1(s, ) should be normalized ovep to get
the new WLAN map. However, the new probabilities of
h, and «, require only sums of unnormalized coefficients
up k+1(s, ) W.rt. the corresponding index. The updated
Pr(hn|as, Pokt1, ZYe41) and is proportional to (a normal-
ization is then needed):

Nu
Pr(hh|as; PO:kvz‘l/‘;/k) 'Zup,k+l(hvs)7 (31)
h=1
while for a:
Na
Pr (0| Pouk41, Z Y g1) o< Pr (s |Pok, Z1) Y p kg (hys).
s=1
(32)

Normalized Y/ products

Fig. 7.
particles in function of the number of RSS measurements andr@ippility
of most likely hypotheses for the real trajectory in the sirtiuvéascenario
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We provide next a summary of extended WiSLAM.

Algorithm (Extended WiSLAM).

« Initialize all Np particles toP}, = (z,y,h = 0) where
x, y and h denote the pose location and heading in two
dimensions; dravE}, from a suitable initial distribution
for the odometry error state.

Then, for each time step incrementand any patrticles:

« Draw Ej, U} from the proposal density in (27), compute
P}, by adding the vectob); to P;,_.

For all previously initialized APs, and all components of
the corresponding GMM:
— Update peaks’ parameters as in [13, Eqgs. (20)-(24)].
— Compute the unnormalized,, 1 (h,s) as in [13,
Eqg. (25)].
Normalize theu,, ;. (h, s) over p to obtaina, x(h, s).
Updateh and« distribution by means of (31) and (32),
normalizing then orh ands, respectively.

« Computel}; as in (33).
« Update the particle weights as in (28), whefg are

computed as in FootSLAM [11, Eq. (5)].

Decide if any detected but not yet employed AP should
be processed and, if so, initialize new APS’ posterior.
Update the maM as in FootSLAM [11, Eq. (4)].
Resampling can be performed if required.



(a) Extended WiSLAM

(b) Classic WiSLAM

Fig. 8. Experiments conducted in a building with 4 APs: the nvesighted trajectory is denoted by a blue line and fit in theugtbtruth for comparison;
the AP’s true positions are denoted by green triangles amddhresponding pdfs by contour lines, each one denotingy the outer to the inner the points
with 1%, 10%, 50%, 75% and 99% of the maximal pdf value; extend&8LAM results are in panel (a), classic WiSLAM in panel (b).

With respect to WiSLAM, additional complexity is due to VI. SIMULATIVE RESULTS
the fact that more GMMs have to be trained, for each patrticle,
to explore thex range of variation. The number of GMMs (29) Consider the example of Fig. 6 with only two idealized
is Ny x Np in WiSLAM, whereas it becomesd/, x Ny x particles: the former follows the true trajectory of the use
Np in the extended WiSLAM. As for the update step, theplue line with circles), whereas the latter’s trajectorgd
increase of GMMs means effort at each new measurement Qjigh squares) is corrupted by an angular error that is quiadra
the complexity is still linear in time. However, the effedttbe in time and resembles a likely step measurement sequence.
new variable is mitigated by the restricted range of vasiati A single AP is located internally to the trajectory and 80
of a and by the consideration that, based on the simulation iﬂfjependen’[ measurements are generated in dB according
Fig. 2, the resolution of the values can be as coarse as 0.5t0 the path loss model (2) and are corrupted by additive
since the standard deviation of noise measurements in éhe Baussian noise with variancg® = 5. The parameters are
world usually lies between 5 and 10 dB. set tohy = —35 dB anda = 2 but are considered initially
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(a) Extended WiSLAM (b) Classic WiSLAM

Fig. 9. Further experimental testbed with 4 APs as well; traplic details are the same as in Fig. 8; extended WiSLAM =sult in panel (a), classic
WIiSLAM in panel (b).

unknown. Finally, we have repeated the simulation 10 timeser equipment is composed of a foot mounted IMU which
and we present here the averaged results. provides inertial measurements and a hand-held smartphone
For this example we do not resort to the GMM representahich logs the RSS measurements from 4 APs; the WLAN
tion, but rather we sample the functions involved in the RBP$tandard being used is IEEE 802.11 (WiFi), version b/g; the
of Section 1V, since we are using only two particles. For botprocessing has been done off-line.
parameters we allow 5 hypotheses, iféy = N, = 5, in In Fig. 8, panel (a), we show the extended WiSLAM, with
which the true values are included, so that the final numbestimation ofh, and o for each AP, while in panel (b) we
of hypotheses is 25. For the transmitted power hypotheses present the result of classic WiSLAM, both run with 5000
use a 5 dB step while a 0.5 step is employeddoMe have particles. We use 9 hypotheses fay in both cases, with a
computed the WLAN contribution (20) to the weights for botl2 dB spacing, while only 5 values between 1.5 and 3.5 (0.5
particles and all time instants: their cumulative products  spacing) are selected far estimation in the case of panel (a).

K To ensure a fair comparison, we use the same computational
H[]ZVJ complexity in both cases: the number of components per
Ee1 GMM is increased by a factor 5 in the case of classic WiSLAM

represent, in absence of the FootSLAM weight (19), th\é(ers_ion, i_.e. the total_ number of Gaussian components per
complete particle weights (28) and are depicted after ndi'licles is the same in both cases.

malization in Fig. 7, panel (a). The real trajectory attains 1 he second testbed is depicted in Fig. 9 and represents
clear preference after about 45 measurements and the affgRther office environment about 45 m long and 25 m wide,
rithm takes further 15 measurements to definitively discal¥fth @ circular hallway and 4 APs. The walk lasts about 7
the wrong path. The initial latency corresponds to the tinf8INutes and corres_pond_s to 3 turns in the hallway with visits
needed by the algorithm to discriminate the right hypothesP Some of the offices; in this case the RSS were collected
about the path loss parameters. The probability evolutions Py @ hand-held laptop. Fig. 9, panel (a), shows the extended
those hypotheses are traced in Fig. 7, panel (b); for cjariW'S'-AM resglt while papel (b) contains rgsults Wlth fixed
we have selected only the hypotheses which show highér= 2_: AP 1is WeI_I localized by both algorithms, while the
probabilities at some point, thus neglecting the ones theat 4"&n improvement is shown on AP 2; AP 3 and 4 do not show
never considered likely by the algorithm. The true hypathes2ny improvement and in the case of AP 4 the resulting pdf is
becomes dominant after about 40 measurements, just befopgrower, but centered still on the wrong position; however
the right particle starts having a significantly higher vijg the exact AP's position is still in the pdf's support.

as seen in Fig. 7, panel (a). Finally, Fig. 10 shovys the bivariate pdf of the parameters,
averaged over the particles, for the AP 1 of the second téstbe
VII. REAL WORLD EXPERIMENTS Fig. 9. For this result, we increased the number of hypothese

Extended WiSLAM has been tested in two environmentoncerning the exponent, by settiljn = 0.125 and the
and compared with the case in which= 2, henceforth called resulting discrete distribution has been smoothed by mefns
classic WiSLAM. Fig. 8 refers to an office environment whicla Gaussian kernel to improve visualization. In panel (agraf
is about65 x 20 m. A user walks for about 3 minutes back2 minutes of the walk and a first passage close by the AP, the
and forth the hallways, stepping in some of the rooms; thwvariate pdf evolves following a line; after the secondgzae
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Evolution of the bivariate pdf of the parameters fd?1Ain the scenario of Fig. 9.

of the user in proximity of the AP (b) the pdf is narrower, [6] Oliver Woodman and Robert Harle. Pedestrian localisafar indoor
the walk (c) only one hypothesis survives.

VIIl. CONCLUSION

(7]

(8]

Path loss parameters in WLAN based SLAM are of interest

since a mismatch in the model can yield relevant errors i

both positioning and mapping. In this paper we discussed
the issues arising from the joint estimation of transmitteld0]

power and path loss exponent. We present and discuss two

main results: in the first part of the paper we dealt with only1)
parameter estimation, by proving their joint observapilit
the framework of estimation theory; to show this we computed
the theoretical bound of the estimator in terms of the CRLB.2)
proving that the ML estimator is optimal according to the
MMSE criterion.
In the second part of the paper we proposed an extensjos
of WiSLAM, a WLAN-based Bayesian SLAM algorithm,
which accounts also for both parameters and we showed [itzﬁ
effectiveness in practical scenarios.
Some model mismatches are still present and in future \Wél
will consider improved path loss models, based on a sector-
ization of the parameters in different parts of the buildingie]
Challenging three-dimensional models, far from being mere
extensions, will be developed in order to obtain a WLAN map
in realistic buildings.
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