5 research outputs found

    A Robust Specification Theory for Modal Event-Clock Automata

    Get PDF
    In a series of recent work, we have introduced a general framework for quantitative reasoning in specification theories. The contribution of this paper is to show how this framework can be applied to yield a robust specification theory for timed specifications.Comment: In Proceedings FIT 2012, arXiv:1207.348

    Computing Branching Distances Using Quantitative Games

    Full text link
    We lay out a general method for computing branching distances between labeled transition systems. We translate the quantitative games used for defining these distances to other, path-building games which are amenable to methods from the theory of quantitative games. We then show for all common types of branching distances how the resulting path-building games can be solved. In the end, we achieve a method which can be used to compute all branching distances in the linear-time--branching-time spectrum

    Compositionality for Quantitative Specifications

    Get PDF
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    The quantitative linear-time–branching-time spectrum

    Get PDF
    International audienceWe present a distance-agnostic approach to quantitative verification. Taking as input an unspecified distance on system traces, or executions, we develop a game-based framework which allows us to define a spectrum of different interesting system distances corresponding to the given trace distance. Thus we extend the classic linear-time–branching-time spectrum to a quantitative setting, parametrized by trace distance. We also prove a general transfer principle which allows us to transfer counterexamples from the qualitative to the quantitative setting, showing that all system distances are mutually topologically inequivalent
    corecore