13 research outputs found

    Toward a Realistic Simulation of Organ Dissection

    Get PDF
    International audienceWhilst laparoscopic surgical simulators are becoming increasingly realistic they cannot, as yet, fully replicate the experience of live surgery. In particular tissue dissection in one task that is particularly challenging to replicate. Limitation of current attempts to simulate tissue dissection include: poor visual rendering; over simplification of the task and; unrealistic tissue properties. In an effort to generate a more realistic model of tissue dissection in laparoscopic surgery we propose a novel method based on task analysis. Initially we have chosen to model only the basic geometrics of this task rather than a whole laparoscopic procedure. Preliminary work has led to the development of a real time simulator performing organ dissection with a haptic thread at 1000Hz. A virtual cutting tool, manipulated through a haptic device, in combination with 1D and 2D soft-tissue models accurately replicate the process of laparoscopic tissue dissection

    Edge-Sharpener: A geometric filter for recovering sharp features in uniform triangulations

    Get PDF
    3D scanners, iso-surface extraction procedures, and several recent geometric compression schemes sample surfaces of 3D shapes in a regular fashion, without any attempt to align the samples with the sharp edges and corners of the original shape. Consequently, the interpolating triangle meshes chamfer these sharp features and thus exhibit significant errors. The new Edge-Sharpener filter introduced here identifies the chamfer edges and subdivides them and their incident triangles by inserting new vertices and by forcing these vertices to lie on intersections of planes that locally approximate the smooth surfaces that meet at these sharp features. This post-processing significantly reduces the error produced by the initial sampling process. For example, we have observed that the L2 error introduced by the SwingWrapper9 remeshing-based compressor can be reduced down to a fifth by executing Edge-Sharpener after decompression, with no additional information

    ReMESH: An interactive and user-friendly environment for remeshing surface triangulations

    Get PDF
    Research and software development involving geometry processing are often slowed down by the absence of suitable models for testing and benchmark purposes. In particular, when dealing with triangle meshes, a researcher may need to check the behavior of a new algorithm on several particular cases. In most situations, the test model is easily conceivable in mind but, at actual design time, its formalization turns out to be a much harder task than expected. Also, simple modifications over an existing triangle mesh may become a tedious work without a suitable interactive environment. In order to simplify the remeshing of existing models, we have developed a tool to interactively edit manifold triangle meshes, mostly through user friendly actions such as mouse clicks and drags

    A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes

    No full text
    When using triangle meshes in numerical simulations or other sophisticated downstream applications, we have to guarantee that no degenerate faces are present since they have, e.g., no well defined normal vectors. In this paper we present a simple but effective algorithm to remove such artifacts from a given triangle mesh. The central problem is to make this algorithm numerically robust because degenerate triangles are usually the source for all kinds of numerical instabilities. Our algorithm is based on a slicing technique that cuts a set of planes through the given polygonal model. The mesh slicing operator only uses numerically stable predicates and therefore is able to split faces in a controlled manner. In combination with a custom tailored mesh decimation scheme we are able to remove the degenerate faces from meshes like those typically generated by tesselation units in CAD systems

    A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes

    No full text
    Botsch M, Kobbelt L. A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes. In: Vision, Modeling & Visualization. 2001: 283-289

    A Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes

    No full text
    When using triangle meshes in numerical simulations or other sophisticated downstream applications, we have to guarantee that no degenerate faces are present since they have, e.g., no well defined normal vectors. In this paper we present a simple but effective algorithm to remove such artifacts from a given triangle mesh. The central problem is to make this algorithm numerically robust because degenerate triangles are usually the source for all kinds of numerical instabilities. Our algorithm is based on a slicing technique that cuts a set of planes through the given polygonal model. The mesh slicing operator only uses numerically stable predicates and therefore is able to split faces in a controlled manner. In combination with a custom tailored mesh decimation scheme we are able to remove the degenerate faces from meshes like those typically generated by tesselation units in CAD systems

    Low-discrepancy point sampling of 2D manifolds for visual computing

    Get PDF
    Point distributions are used to sample surfaces for a wide variety of applications within the fields of graphics and computational geometry, such as point-based graphics, remeshing and area/volume measurement. The quality of such point distributions is important, and quality criteria are often application dependent. Common quality criteria include visual appearance, an even distribution whilst avoiding aliasing and other artifacts, and minimisation of the number of points required to accurately sample a surface. Previous work suggests that discrepancy measures the uniformity of a point distribution and hence a point distribution of minimal discrepancy is expected to be of high quality. We investigate discrepancy as a measure of sampling quality, and present a novel approach for generating low-discrepancy point distributions on parameterised surfaces. Our approach uses the idea of converting the 2D sampling problem into a ID problem by adaptively mapping a space-filling curve onto the surface. A ID sequence is then generated and used to sample the surface along the curve. The sampling process takes into account the parametric mapping, employing a corrective approach similar to histogram equalisation, to ensure that it gives a 2D low-discrepancy point distribution on the surface. The local sampling density can be controlled by a user-defined density function, e.g. to preserve local features, or to achieve desired data reduction rates. Experiments show that our approach efficiently generates low-discrepancy distributions on arbitrary parametric surfaces, demonstrating nearly as good results as popular low-discrepancy sampling methods designed for particular surfaces like planes and spheres. We develop a generalised notion of the standard discrepancy measure, which considers a broader set of sample shapes used to compute the discrepancy. In this more thorough testing, our sampling approach produces results superior to popular distributions. We also demonstrate that the point distributions produced by our approach closely adhere to the blue noise criterion, compared to the popular low-discrepancy methods tested, which show high levels of structure, undesirable for visual representation. Furthermore, we present novel sampling algorithms to generate low-discrepancy distributions on triangle meshes. To sample the mesh, it is cut into a disc topology, and a parameterisation is generated. Our sampling algorithm can then be used to sample the parameterised mesh, using robust methods for computing discrete differential properties of the surface. After these pre-processing steps, the sampling density can be adjusted in real-time. Experiments also show that our sampling approach can accurately resample existing meshes with low discrepancy, demonstrating error rates when reducing the mesh complexity as good as the best results in the literature. We present three applications of our mesh sampling algorithm. We first describe a point- based graphics sampling approach, which includes a global hole-filling algorithm. We investigate the coverage of sample discs for this approach, demonstrating results superior to random sampling and a popular low-discrepancy method. Moreover, we develop levels of detail and view dependent rendering approaches, providing very fine-grained density control with distance and angle, and silhouette enhancement. We further discuss a triangle- based remeshing technique, producing high quality, topologically unaltered meshes. Finally, we describe a complete framework for sampling and painting engineering prototype models. This approach provides density control according to surface texture, and gives full dithering control of the point sample distribution. Results exhibit high quality point distributions for painting that are invariant to surface orientation or complexity. The main contributions of this thesis are novel algorithms to generate high-quality density- controlled point distributions on parametric surfaces and triangular meshes. Qualitative assessment and discrepancy measures and blue noise criteria show their high sampling quality in general. We introduce generalised discrepancy measures which indicate that the sampling quality of our approach is superior to other low-discrepancy sampling techniques. Moreover, we present novel approaches towards remeshing, point-based rendering and robotic painting of prototypes by adapting our sampling algorithms and demonstrate the overall good quality of the results for these specific applications.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-discrepancy point sampling of 2D manifolds for visual computing

    Get PDF
    Point distributions are used to sample surfaces for a wide variety of applications within the fields of graphics and computational geometry, such as point-based graphics, remeshing and area/volume measurement. The quality of such point distributions is important, and quality criteria are often application dependent. Common quality criteria include visual appearance, an even distribution whilst avoiding aliasing and other artifacts, and minimisation of the number of points required to accurately sample a surface. Previous work suggests that discrepancy measures the uniformity of a point distribution and hence a point distribution of minimal discrepancy is expected to be of high quality. We investigate discrepancy as a measure of sampling quality, and present a novel approach for generating low-discrepancy point distributions on parameterised surfaces. Our approach uses the idea of converting the 2D sampling problem into a ID problem by adaptively mapping a space-filling curve onto the surface. A ID sequence is then generated and used to sample the surface along the curve. The sampling process takes into account the parametric mapping, employing a corrective approach similar to histogram equalisation, to ensure that it gives a 2D low-discrepancy point distribution on the surface. The local sampling density can be controlled by a user-defined density function, e.g. to preserve local features, or to achieve desired data reduction rates. Experiments show that our approach efficiently generates low-discrepancy distributions on arbitrary parametric surfaces, demonstrating nearly as good results as popular low-discrepancy sampling methods designed for particular surfaces like planes and spheres. We develop a generalised notion of the standard discrepancy measure, which considers a broader set of sample shapes used to compute the discrepancy. In this more thorough testing, our sampling approach produces results superior to popular distributions. We also demonstrate that the point distributions produced by our approach closely adhere to the blue noise criterion, compared to the popular low-discrepancy methods tested, which show high levels of structure, undesirable for visual representation. Furthermore, we present novel sampling algorithms to generate low-discrepancy distributions on triangle meshes. To sample the mesh, it is cut into a disc topology, and a parameterisation is generated. Our sampling algorithm can then be used to sample the parameterised mesh, using robust methods for computing discrete differential properties of the surface. After these pre-processing steps, the sampling density can be adjusted in real-time. Experiments also show that our sampling approach can accurately resample existing meshes with low discrepancy, demonstrating error rates when reducing the mesh complexity as good as the best results in the literature. We present three applications of our mesh sampling algorithm. We first describe a point- based graphics sampling approach, which includes a global hole-filling algorithm. We investigate the coverage of sample discs for this approach, demonstrating results superior to random sampling and a popular low-discrepancy method. Moreover, we develop levels of detail and view dependent rendering approaches, providing very fine-grained density control with distance and angle, and silhouette enhancement. We further discuss a triangle- based remeshing technique, producing high quality, topologically unaltered meshes. Finally, we describe a complete framework for sampling and painting engineering prototype models. This approach provides density control according to surface texture, and gives full dithering control of the point sample distribution. Results exhibit high quality point distributions for painting that are invariant to surface orientation or complexity. The main contributions of this thesis are novel algorithms to generate high-quality density- controlled point distributions on parametric surfaces and triangular meshes. Qualitative assessment and discrepancy measures and blue noise criteria show their high sampling quality in general. We introduce generalised discrepancy measures which indicate that the sampling quality of our approach is superior to other low-discrepancy sampling techniques. Moreover, we present novel approaches towards remeshing, point-based rendering and robotic painting of prototypes by adapting our sampling algorithms and demonstrate the overall good quality of the results for these specific applications.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Low-discrepancy point sampling of 2D manifolds for visual computing

    Get PDF
    Point distributions are used to sample surfaces for a wide variety of applications within the fields of graphics and computational geometry, such as point-based graphics, remeshing and area/volume measurement. The quality of such point distributions is important, and quality criteria are often application dependent. Common quality criteria include visual appearance, an even distribution whilst avoiding aliasing and other artifacts, and minimisation of the number of points required to accurately sample a surface. Previous work suggests that discrepancy measures the uniformity of a point distribution and hence a point distribution of minimal discrepancy is expected to be of high quality. We investigate discrepancy as a measure of sampling quality, and present a novel approach for generating low-discrepancy point distributions on parameterised surfaces. Our approach uses the idea of converting the 2D sampling problem into a ID problem by adaptively mapping a space-filling curve onto the surface. A ID sequence is then generated and used to sample the surface along the curve. The sampling process takes into account the parametric mapping, employing a corrective approach similar to histogram equalisation, to ensure that it gives a 2D low-discrepancy point distribution on the surface. The local sampling density can be controlled by a user-defined density function, e.g. to preserve local features, or to achieve desired data reduction rates. Experiments show that our approach efficiently generates low-discrepancy distributions on arbitrary parametric surfaces, demonstrating nearly as good results as popular low-discrepancy sampling methods designed for particular surfaces like planes and spheres. We develop a generalised notion of the standard discrepancy measure, which considers a broader set of sample shapes used to compute the discrepancy. In this more thorough testing, our sampling approach produces results superior to popular distributions. We also demonstrate that the point distributions produced by our approach closely adhere to the blue noise criterion, compared to the popular low-discrepancy methods tested, which show high levels of structure, undesirable for visual representation. Furthermore, we present novel sampling algorithms to generate low-discrepancy distributions on triangle meshes. To sample the mesh, it is cut into a disc topology, and a parameterisation is generated. Our sampling algorithm can then be used to sample the parameterised mesh, using robust methods for computing discrete differential properties of the surface. After these pre-processing steps, the sampling density can be adjusted in real-time. Experiments also show that our sampling approach can accurately resample existing meshes with low discrepancy, demonstrating error rates when reducing the mesh complexity as good as the best results in the literature. We present three applications of our mesh sampling algorithm. We first describe a point- based graphics sampling approach, which includes a global hole-filling algorithm. We investigate the coverage of sample discs for this approach, demonstrating results superior to random sampling and a popular low-discrepancy method. Moreover, we develop levels of detail and view dependent rendering approaches, providing very fine-grained density control with distance and angle, and silhouette enhancement. We further discuss a triangle- based remeshing technique, producing high quality, topologically unaltered meshes. Finally, we describe a complete framework for sampling and painting engineering prototype models. This approach provides density control according to surface texture, and gives full dithering control of the point sample distribution. Results exhibit high quality point distributions for painting that are invariant to surface orientation or complexity. The main contributions of this thesis are novel algorithms to generate high-quality density- controlled point distributions on parametric surfaces and triangular meshes. Qualitative assessment and discrepancy measures and blue noise criteria show their high sampling quality in general. We introduce generalised discrepancy measures which indicate that the sampling quality of our approach is superior to other low-discrepancy sampling techniques. Moreover, we present novel approaches towards remeshing, point-based rendering and robotic painting of prototypes by adapting our sampling algorithms and demonstrate the overall good quality of the results for these specific applications
    corecore