648 research outputs found

    Student motivation and academic success: Examining the influences, differences, and economics of mechatronic experiences in fundamental undergraduate courses

    Get PDF
    In this study, we examined influences, differences, meanings, and economics of mechatronic experiences in a first-year, fundamental technology course. Our first objective examined the primary and secondary influences of mechatronic experiences on student engagement. Using a systematic review methodology, we collected n=402 articles. Screened by title and abstract, we mapped six parent and 22 child codes to the remaining n=137 articles. From these, we appraised n=17 studies, assessing eight as high quality. Our synthesis included these n=8 articles, from which we identified five primary influences (Student Motivation, Self-Efficacy, Course Rigor, Learning Retention, and Gender) and two secondary influences (Accreditation and Ease-of-Implementation). In these influences, we found evidence that mechatronic experiences can increase student motivation, self-efficacy, and course rigor. Also, positive impacts on learning, gender diversity, accreditation efforts, and ease of course content implementation were identified. Our second objective was to quantify differences in students’ motivational orientation and academic success in a mechatronic experience vs. a non-mechatronic experience. To this end, we developed, piloted, and deployed a mechatronic experience in a first-year technology course. Using a quasi-experimental, non-equivalent control vs. treatment design (n=84) we found no statistically significant difference in students’ motivational orientation – specifically value choices [F(6,77)=0.13, p=0.7224] and expectancy beliefs [F(6,77)=0.38, p=0.5408] – between mechatronic and non-mechatronic experiences. This is an encouraging outcome, as literature would indicate students’ motivation drops over the course of a semester and wane towards the end of a project. In contrast, statistically significant increases in project scores [F(5,78)=6.51, p=0.0127, d=0.48, d95%CI=0.00 to 0.98] and course grades [F(5,78)=7.76, p=0.0067, d=0.70, d95%CI=0.20 to 1.20] were observed in the mechatronic experience group (three and eight percentage points, respectively). However, when we analyzed the correlation between motivational orientation and academic success, we found no relationship. We concluded that students’ motivational orientation did not moderate differences in academic success, as others have indicated. Our final objective was to quantify the costs and scalability of implementing our mechatronic experience. We found limited literature focusing on costs of such efforts, and therefore developed a novel costing method adapted from medical and early childhood education literature. We implemented this method using marginal (above baseline) time and cost ingredients that were collected during the development, pilot, and steady-state phases of the mechatronic experience. Our evaluation methods included descriptive statistics, Pareto analysis, and cost per capacity estimate analysis. For our 121-student effort, we found that the development, pilot, and steady-state phases cost just over 17.1k( 17.1k (~12.4k for personnel and ~4.7kforequipment),basedon2015US4.7k for equipment), based on 2015 US and an enrollment capacity of 121 students. Total cost vs. capacity scaled at a factor of -0.64 (y = 3,121x-0.64, R2 = 0.99), which was within the 95% interval for personnel and capital observed in the chemical processing industry. Based on a four-year operational life and a range of 20 – 400 students per year, we estimated per seat total costs to range from 70–70 – 470, with our mechatronic experience coming in just under $150 per seat. The development phase cost, as well as the robot chassis and microcontroller capital cost were the primary cost terms for our mechatronic experience

    Influences of Mechatronics on Student Engagement in Fundamental Engineering Courses: A Systematic Review

    Get PDF
    In our review we examined the primary and secondary influences of mechatronic experiences on student engagement in fundamental engineering courses. Using a systematic review methodology, we collected 402 articles with publication dates ranging from 1990–2014. Screening on title and abstract information reduced our included sources to 137, from which we mapped six parent and 22 child codes. Appraising 17 of these articles we identified eight high quality studies as the focus of our synthesis, which identified five primary influences (Student Motivation, Self-Efficacy, Course Rigor, Learning Retention, and Gender) and two secondary influences (Accreditation and Ease-of-Implementation). In these influences we found evidence that mechatronic experiences can increase student motivation, self-efficacy, and course rigor. Also, positive effects on learning retention, gender diversity, accreditation efforts, and ease of course content implementation were identified. Future research is needed to clarify: (1) if mechatronic experiences truly increase student motivation and self-efficacy more than lecture-based strategies, (2) how the positive short-term impacts of these experiences translate to subjective academic success (i.e., future course and career goals), (3) how implementation logistics are influenced by experience type (i.e., open-ended projects verse contests), class size, institution and industry support, etc., and (4) to what degree the factors of gender, underrepresented student groups, course curricular placement, and activity type influence student engagement

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    Remote practicals in the time of coronavirus, a multidisciplinary approach

    Get PDF
    Due to the COVID-19 pandemic, universities across the world have curtailed face to face teaching. Associated with this is the halt to the delivery of the practical experience required of engineering students. The Multidisciplinary Engineering Education (MEE) team at The University of Sheffield have responded to this problem in an efficient and effective way by recording laboratory experiences and putting videos, quizzes and data online for students to engage with. The focus of this work was on ensuring all Learning Outcomes (LOs) for modules and courses were preserved. Naturally, practical skills cannot be easily provided using this approach, but it is an effective way of getting students to interact with real data, uncertainty and equipment which they cannot access directly. A number of short case studies from across the range of engineering disciplines are provided to inspire and guide other educators in how they can move experiments on line in an efficient and effective manner. No student feedback is available at the time of writing, but anecdotal evidence is that this approach is at least acceptable for students and a way of collecting future feedback is suggested. The effort expended on this approach and the artefacts produced will support student learning after the initial disruption of the lockdown has passed

    Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

    Get PDF
    Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. Doi: 10.28991/ESJ-2023-07-04-025 Full Text: PD

    MECHATRONIC SYSTEM DESIGN - A HYDRAULIC-BASED ENGINE COOLING SYSTEM DESIGN AND REFINEMENT OF A TECHNICAL ELECTIVE MECHATRONICS COURSE

    Get PDF
    The improvement of consumer products and industrial processes, in terms of functionality and reliability, has recently focused on the integration of sensors and real time controllers with attached actuators into the given physical system. The likelihood of long-term market penetration of smart devices has placed an emphasis on preparing engineering graduates for technology leadership roles in the workforce. This thesis examines mechatronic systems in two manners. First, an intelligent automotive internal combustion engine cooling system is studied for ground vehicles using hydraulic actuators which offer the opportunity for greater versatility and performance. Second, improvements to a technical elective mechatronics course at Clemson University in the Department of Mechanical Engineering have been completed to offer a better educational experience for both undergraduate and graduate students. Traditional and modern internal combustion engine cooling systems typically use a mechanical wax based thermostat along with a number of mechanical and/or electric actuators to remove the excessive heat of combustion from the engine block. The cooling system\u27s main objective is to maintain the engine temperature within a prescribed range which optimizes engine performance and promotes mechanical longevity. However, the cooling system adds to parasitic engine losses and vehicle weight, so a mechatronic based smart thermal management system has been designed to explore the higher power density and controllability of hydraulic actuators. In this research project, the experimental data has been initially gathered using a 4.6L gasoline engine with a mechanical wax based thermostat valve, engine driven coolant pump, and a hydraulic motor driven radiator fan with classical feedback control. A series of mathematical models for the hydraulic, electric, and thermal automotive subsystems have been developed to estimate the engine, coolant, and radiator temperatures as well as the overall system performance for various operating conditions. The experimental test platform features a medium duty eight cylinder internal combustion engine, stand-alone radiator, engine dynamometer, smart cooling system components, high speed data acquisition system, and real-time control algorithm with associated sensors. Specifically, J-type and K-type thermocouples measure the engine block, coolant, and radiator core temperatures at various locations. A multiplexer switches these input signals at predetermined intervals to accommodate the large number of temperature probes. Further, optical sensors measure the engine and radiator fan speeds, and pressure sensors record the hydraulic line pressures. A hydraulic direction control valve was used to adjust the speed of the radiator fan. The experimentally recorded engine data was compared with the numerical simulation results to estimate the engine\u27s thermal behavior for warm up and idle conditions. The findings demonstrated that the proposed experimental model and mathematical models successfully controlled the engine temperature within ±1.5°K . In the future, the mathematical models can be used for linear quadratic regulator and Lyapunov-based nonlinear controllers after further refinement and the addition of state variables for the engine thermal management system. To implement such a mechatronic-based cooling system, engineers must have a fundamental understanding of system dynamics, control theory, instrumentation, and system integration concepts. Given the growing industrial demand for graduates with diverse engineering knowledge, a mechatronic systems course has been designed in the Department of Mechanical Engineering at Clemson University. This mechatronics course, ME 417/617, has been designed to introduce both engineering and personal skills. The students, who would successfully complete the course, will be able to join global work teams designing smart products. The course uses various teaching paradigms such as classroom activities, laboratory experiments, team based design projects, and plant tours to introduce the concepts and offer hands-on experience. As part of a continuous improvement process, the course has been evaluated using assessment methods such as pre- and post-tests, qualitative measures, and advisory panel observations. Over a four course offering period (2008-2011), the pre- and post-tests reflect improvements in the students\u27 personal growth (7.0%), team building (12.8%), mechanics/engineering (25.4%), and human factor (17%) skills. The qualitative assessment was completed using student feedback regarding the course content. Most of the students reported that they liked the course and its \u27hands-on\u27 experimental approach. An advisory panel, consisting of industry experts, course instructors, and faculty analyzed the progress of students and evaluated the course materials. The advisory panel\u27s recommendations established the direction for continuous improvements to successfully teach the concepts of mechatronics and better meet the student needs. Going forwards, the mechatronic systems course will serve an important role in preparing graduates for future endeavors

    Integrating multidisciplinary engineering knowledge in a final year technical university diploma programme : an analysis of student praxis

    Get PDF
    Includes bibliographical references (leaves 61-63).In order to determine two distinct engineering qualification levels for an existing University of Technology (UoT) programme, empirical evidence based on the current diploma is necessary to inform decisions as to qualification-appropriate curriculum design. This evidence needs to shed light on the nature of and the relationship between the contextual and conceptual elements underpinning a multidisciplinary engineering curriculum

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    The RoCKIn Project

    Get PDF
    The goal of the project “Robot Competitions Kick Innovation in Cognitive Systems and Robotics” (RoCKIn), funded by the European Commission under its 7th Framework Program, has been to speed up the progress toward smarter robots through scientific competitions. Two challenges have been selected for the competitions due to their high relevance and impact on Europe’s societal and industrial needs: domestic service robots (RoCKIn@Home) and innovative robot applications in industry (RoCKIn@Work). The RoCKIn project has taken an approach to boosting scientific robot competitions in Europe by (i) specifying and designing open domain test beds for competitions targeting the two challenges; (ii) developing methods for scoring and benchmarking that allow to assess both particular subsystems as well as the integrated system; and (iii) organizing camps to build up a community of new teams, interested to participate in robot competitions. A significant number of dissemination activities on the relevance of robot competitions were carried out to promote research and education in robotics, as to researchers and lay citizens. The lessons learned during RoCKIn paved the way for a step forward in the organization and research impact of robot competitions, contributing for Europe to become a world leader in robotics research, education, and technology transfer

    A Novel Real-Time MATLAB/Simulink/LEGO EV3 Platform for Academic Use in Robotics and Computer Science

    Get PDF
    Over the last years, mobile robot platforms are having a key role in education worldwide. Among others, LEGO Robots and MATLAB/Simulink are being used mainly in universities to improve the teaching experience. Most LEGO systems used in the literature are based on NXT, as the EV3 version is relatively recent. In contrast to the previous versions, the EV3 allows the development of real-time applications for teaching a wide variety of subjects as well as conducting research experiments. The goal of the research presented in this paper was to develop and validate a novel real-time educational platform based on the MATLAB/Simulink package and the LEGO EV3 brick for academic use in the fields of robotics and computer science. The proposed framework is tested here in different university teaching situations and several case studies are presented in the form of interactive projects developed by students. Without loss of generality, the platform is used for testing different robot path planning algorithms. Classical algorithms like rapidly-exploring random trees or artificial potential fields, developed by robotics researchers, are tested by bachelor students, since the code is freely available on the Internet. Furthermore, recent path planning algorithms developed by the authors are also tested in the platform with the aim of detecting the limits of its applicability. The restrictions and advantages of the proposed platform are discussed in order to enlighten future educational applications
    • …
    corecore