922 research outputs found

    Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism

    Get PDF
    Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of max-pooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism

    A Neuromorphic Model for Achromatic and Chromatic Surface Representation of Natural Images

    Full text link
    This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.Air Force Office of Scientific Research (F496201-01-1-0397); Defense Advanced Research Project and the Office of Naval Research (N00014-95-0409, N00014-01-1-0624

    Visual Learning In The Perception Of Texture: Simple And Contingent Aftereffects Of Texture Density

    Get PDF
    Novel results elucidating the magnitude, binocularity and retinotopicity of aftereffects of visual texture density adaptation are reported as is a new contingent aftereffect of texture density which suggests that the perception of visual texture density is quite malleable. Texture aftereffects contingent upon orientation, color and temporal sequence are discussed. A fourth effect is demonstrated in which auditory contingencies are shown to produce a different kind of visual distortion. The merits and limitations of error-correction and classical conditioning theories of contingent adaptation are reviewed. It is argued that a third kind of theory which emphasizes coding efficiency and informational considerations merits close attention. It is proposed that malleability in the registration of texture information can be understood as part of the functional adaptability of perception

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Visual Aftereffect Of Texture Density Contingent On Color Of Frame

    Get PDF
    An aftereffect of perceived texture density contingent on the color of a surrounding region is reported. In a series of experiments, participants were adapted, with fixation, to stimuli in which the relative density of two achromatic texture regions was perfectly correlated with the color presented in a surrounding region. Following adaptation, the perceived relative density of the two regions was contingent on the color of the surrounding region or of the texture elements themselves. For example, if high density on the left was correlated with a blue surround during adaptation (and high density on the right with a yellow surround), then in order for the left and right textures to appear equal in the assessment phase, denser texture was required on the left in the presence of a blue surround (and denser texture on the right in the context of a yellow surround). Contingent aftereffects were found (1) with black-and-white scatter-dot textures, (2) with luminance-balanced textures, and (3) when the texture elements, rather than the surrounds, were colored during assessment. Effect size was decreased when the elements themselves were colored, but also when spatial subportions of the surround were used for the presentation of color. The effect may be mediated by retinal color spreading (Pöppel, 1986) and appears consistent with a local associative account of contingent aftereffects, such as Barlow\u27s (1990) model of modifiable inhibition

    Reflectance, illumination, and appearance in color constancy

    Get PDF
    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. © 2014 McCann, Parraman and Rizzi
    corecore