105 research outputs found

    Some Applications of Homotopy Perturbation Method

    Get PDF
    In this thesis paper, I review the basic idea of Homotopy perturbation method (HPM), Modified Homotopy perturbation method (MHPM) and Homotopy perturbation transform method (HPTM). Then apply these on some higher order non-linear problems.Further, I tried to compare the results obtained from Modified homotopy perturbation method with HPM using the Sine-Gordon and fractional Klein-Gordon equation respectively. Homotopy perturbation transform method is the coupling of homotopy perturbation and Laplace transform method. Lastly, I applied the homotopy perturbation and homotopy perturbation transform method for solving linear and non-linear Schrödinger equation

    On new and improved semi-numerical techniques for solving nonlinear fluid flow problems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.Most real world phenomena is modeled by ordinary and/or partial differential equations. Most of these equations are highly nonlinear and exact solutions are not always possible. Exact solutions always give a good account of the physical nature of the phenomena modeled. However, existing analytical methods can only handle a limited range of these equations. Semi-numerical and numerical methods give approximate solutions where exact solutions are impossible to find. However, some common numerical methods give low accuracy and may lack stability. In general, the character and qualitative behaviour of the solutions may not always be fully revealed by numerical approximations, hence the need for improved semi-numerical methods that are accurate, computational efficient and robust. In this study we introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems. These techniques aim to combine the strengths of both analytical and numerical methods to produce efficient hybrid algorithms. In this work, the homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral methods are well known for their high levels of accuracy. The new spectral homotopy analysis method is further improved by using a more accurate initial approximation to accelerate convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral methods are used to solve the linearised equations. The new techniques were used to solve mathematical models in fluid dynamics. The thesis comprises of an introductory Chapter that gives an overview of common numerical methods currently in use. In Chapter 2 we give an overview of the methods used in this work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter 4 the methods were used to find solutions of the laminar heat transfer problem in a rotating disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and the classical von Kάrmάn equations for boundary layer flow induced by a rotating disk. In Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem due to a shrinking sheet with a chemical reaction, were solved using the new methods

    Numerical solution of fractional partial differential equations by spectral methods

    Get PDF
    Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs

    Numerical Investigation of the Fractional Oscillation Equations under the Context of Variable Order Caputo Fractional Derivative via Fractional Order Bernstein Wavelets

    Full text link
    This article describes an approximation technique based on fractional order Bernstein wavelets for the numerical simulations of fractional oscillation equations under variable order, and the fractional order Bernstein wavelets are derived by means of fractional Bernstein polynomials. The oscillation equation describes electrical circuits and exhibits a wide range of nonlinear dynamical behaviors. The proposed variable order model is of current interest in a lot of application areas in engineering and applied sciences. The purpose of this study is to analyze the behavior of the fractional force-free and forced oscillation equations under the variable-order fractional operator. The basic idea behind using the approximation technique is that it converts the proposed model into non-linear algebraic equations with the help of collocation nodes for easy computation. Different cases of the proposed model are examined under the selected variable order parameters for the first time in order to show the precision and performance of the mentioned scheme. The dynamic behavior and results are presented via tables and graphs to ensure the validity of the mentioned scheme. Further, the behavior of the obtained solutions for the variable order is also depicted. From the calculated results, it is observed that the mentioned scheme is extremely simple and efficient for examining the behavior of nonlinear random (constant or variable) order fractional models occurring in engineering and science.Comment: This is a preprint of a paper whose final and definite form is published Open Access in 'Mathematics' at [http://dx.doi.org/10.3390/math11112503

    Fractional derivative models for the spread of diseases

    Get PDF
    This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution.This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution

    New Challenges Arising in Engineering Problems with Fractional and Integer Order

    Get PDF
    Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem

    An application of modern analytical solution techniques to nonlinear partial differential equations.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.Many physics and engineering problems are modeled by differential equations. In many instances these equations are nonlinear and exact solutions are difficult to obtain. Numerical schemes are often used to find approximate solutions. However, numerical solutions do not describe the qualitative behaviour of mechanical systems and are insufficient in determining the general properties of certain systems of equations. The need for analytical methods is self-evident and major developments were seen in the 1990’s. With the aid of faster processing equipment today, we are able to compute analytical solutions to highly nonlinear equations that are more accurate than numerical solutions. In this study we discuss solutions to nonlinear partial differential equations with focus on non-perturbation analytical methods. The non-perturbation methods of choice are the homotopy analysis method (HAM) developed by Shijun Liao and the variational iteration method (VIM) developed by Ji-Huan He. The aim is to compare the solutions obtained by these modern day analytical methods against each other focusing on accuracy, convergence and computational efficiency. The methods were applied to three test problems, namely, the heat equation, Burgers equation and the Bratu equation. The solutions were compared against both the exact results as well as solutions generated using the finite difference method, in some cases. The results obtained show that the HAM successfully produces solutions which are accurate, faster converging and requires less computational resources than the VIM. However, the VIM still provides accurate solutions that are also in good agreement with the closed form solutions of the test problems. The FDM also produced good results which were used as a further comparison to the analytical solutions. The findings of this study is in agreement with those published in the literature

    Computational and numerical analysis of differential equations using spectral based collocation method.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.In this thesis, we develop accurate and computationally efficient spectral collocation-based methods, both modified and new, and apply them to solve differential equations. Spectral collocation-based methods are the most commonly used methods for approximating smooth solutions of differential equations defined over simple geometries. Procedurally, these methods entail transforming the gov erning differential equation(s) into a system of linear algebraic equations that can be solved directly. Owing to the complexity of expanding the numerical algorithms to higher dimensions, as reported in the literature, researchers often transform their models to reduce the number of variables or narrow them down to problems with fewer dimensions. Such a process is accomplished by making a series of assumptions that limit the scope of the study. To address this deficiency, the present study explores the development of numerical algorithms for solving ordinary and partial differential equations defined over simple geometries. The solutions of the differential equations considered are approximated using interpolating polynomials that satisfy the given differential equation at se lected distinct collocation points preferably the Chebyshev-Gauss-Lobatto points. The size of the computational domain is particularly emphasized as it plays a key role in determining the number of grid points that are used; a feature that dictates the accuracy and the computational expense of the spectral method. To solve differential equations defined on large computational domains much effort is devoted to the development and application of new multidomain approaches, based on decomposing large spatial domain(s) into a sequence of overlapping subintervals and a large time interval into equal non-overlapping subintervals. The rigorous analysis of the numerical results con firms the superiority of these multiple domain techniques in terms of accuracy and computational efficiency over the single domain approach when applied to problems defined over large domains. The structure of the thesis indicates a smooth sequence of constructing spectral collocation method algorithms for problems across different dimensions. The process of switching between dimensions is explained by presenting the work in chronological order from a simple one-dimensional problem to more complex higher-dimensional problems. The preliminary chapter explores solutions of or dinary differential equations. Subsequent chapters then build on solutions to partial differential i equations in order of increasing computational complexity. The transition between intermediate dimensions is demonstrated and reinforced while highlighting the computational complexities in volved. Discussions of the numerical methods terminate with development and application of a new method namely; the trivariate spectral collocation method for solving two-dimensional initial boundary value problems. Finally, the new error bound theorems on polynomial interpolation are presented with rigorous proofs in each chapter to benchmark the adoption of the different numerical algorithms. The numerical results of the study confirm that incorporating domain decomposition techniques in spectral collocation methods work effectively for all dimensions, as we report highly accurate results obtained in a computationally efficient manner for problems defined on large do mains. The findings of this study thus lay a solid foundation to overcome major challenges that numerical analysts might encounter

    Analytical and Numerical Methods for Differential Equations and Applications

    Get PDF
    The book is a printed version of the Special issue Analytical and Numerical Methods for Differential Equations and Applications, published in Frontiers in Applied Mathematics and Statistic

    New developments in Functional and Fractional Differential Equations and in Lie Symmetry

    Get PDF
    Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis
    corecore