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Abstract

Many physics and engineering problems are modeled by differential equations. In

many instances these equations are nonlinear and exact solutions are difficult to

obtain. Numerical schemes are often used to find approximate solutions. However,

numerical solutions do not describe the qualitative behaviour of mechanical systems

and are insufficient in determining the general properties of certain systems of

equations. The need for analytical methods is self-evident and major developments

were seen in the 1990’s. With the aid of faster processing equipment today, we are

able to compute analytical solutions to highly nonlinear equations that are more

accurate than numerical solutions.

In this study we discuss solutions to nonlinear partial differential equations with

focus on non-perturbation analytical methods. The non-perturbation methods of

choice are the homotopy analysis method (HAM) developed by Shijun Liao and the

variational iteration method (VIM) developed by Ji-Huan He. The aim is to compare
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the solutions obtained by these modern day analytical methods against each other

focusing on accuracy, convergence and computational efficiency.

The methods were applied to three test problems, namely, the heat equation, Burgers

equation and the Bratu equation. The solutions were compared against both the exact

results as well as solutions generated using the finite difference method, in some cases.

The results obtained show that the HAM successfully produces solutions which are

accurate, faster converging and requires less computational resources than the VIM.

However, the VIM still provides accurate solutions that are also in good agreement

with the closed form solutions of the test problems. The FDM also produced good

results which were used as a further comparison to the analytical solutions. The

findings of this study is in agreement with those published in the literature.
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Chapter 1

Introduction

Many physics and engineering problems are modeled by partial differential equations.

In many instances these equations are nonlinear and exact solutions are difficult to

obtain. Numerical methods were developed over a period of time in order to find

approximate solutions to these nonlinear equations. However, numerical solutions

are insufficient to determine general properties of certain systems of equations and

thus analytical and semi-analytical methods have been developed. These methods

have transformed numerical analysis and we are now able to provide both qualitative

and quantitative analysis to complex mathematical problems.

In this study we discuss solutions to nonlinear partial differential equations

with focus on non-perturbation analytical methods. The aim is to compare these

modern day analytical methods against each other focusing on accuracy, convergence
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and computational efficiency.

1.1 Early methods of solution

We begin the study by reviewing some popular approaches to solving ordinary and

partial differential equations. The earliest attempts, dating back to the 1930’s,

began with purely numerical schemes based on discretization of the independent and

dependent variables in the original equation. The three most popular numerical

discretization schemes, the finite difference, finite element and finite volume method,

are discussed briefly below.

1.1.1 The method of finite differences

The method of finite differences (FDM) is one of the oldest numerical schemes that

has been used to solve a variety of differential equations. The method is based on

discretizing derivatives using finite difference approximations. The method dates

back to the early 1930’s, Thomee [99], where it was used to determine solutions to

Dirichlet problems and the biharmonic equation.

The scheme is based on discretization of the independent variable(s), such as

the space x (and/or the time t), using a step-width h (and/or k). The problem

is then solved using a set of grid points derived using the step width’s above.
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The original equation is then replaced by finite difference approximations which

are derived from Taylor’s theorem, LeVeque [70]. Depending on the order of the

equation, the Taylor approximation of the same order is obtained and this creates an

iterative scheme which generates a sequence of solutions at each point on the grid.

There are three main versions of the FDM, namely;

1. The explicit FDM,

2. The implicit FDM and

3. The Crank-Nicholson scheme.

The main difference between the methods is the manner in which the Taylor series

is expanded with respect to the independent variable. The explicit method uses a

forward time difference approximation while the implicit method uses a backward

time difference and the Crank-Nicholson scheme uses a central time difference

approximation. The delicate balance between the different methods is a trade off

between the speed of convergence of the solution against the ease of implementation.

The fastest converging and hardest to implement scheme is the Crank-Nicholson

scheme while the explicit method is slower converging but is fairly easier to implement.

The main disadvantage of the FDM method arises from the errors at each

step due to discretization of the independent variables. This has been shown to cause
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divergence in complex problems. However, the FDM has been shown to be relatively

easy to implement and produces accurate results if the step width’s are chosen

appropriately. The convergence of the explicit FDM is discussed further in Chapter 2.

The FDM is a widely used method and provides a starting point for the numerical

solution of many problems in applied mathematics and physics. Some popular

problems which have been solved using the FDM include; the Helmholtz equation,

Wong and Li [108], the heat equation, Recktenwald [95] and the Schrödinger

equation, Kurtinaitis and Ivanauskas [68]. The ease of implementation and the

history behind the method is the reason it has been chosen as a test method in this

dissertation. It also provides direction and validation of solutions for problems where

analytical solutions to do not exist.

1.1.2 The finite element method

The finite element method (FEM) was formulated by Courant [37] in 1943. The

method did not receive notable attention until the 1950’s when it appeared in

engineering literature and thereafter found its way back into mathematics in the

1960’s with important advances in results obtained by Zlámal [111].

The main difference between the FDM and the FEM is in the discretization

of the domain. The FDM uses a square network of lines (grid) upon which the
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differential equation is discretized upon, while the FEM uses different geometric

shapes, termed finite elements. Therefore, this method has the ability to solve

problems with complex geometries and boundary conditions.

The two common formulations of the FEM are the Galerkin formulation and

the Ritz formulation. The Galerkin formulation approximates variables using

continuous piecewise functions inside the element. The approximations generates

a residual when applied to the original equation. In order to reduce the residual

to zero, which provides the true solution, the weighted residual is set to zero and

solved for the approximate solution. In the Ritz formulation, the original problem

is converted into integral form by applying calculus of variation. Thereafter, the

approximate solution is determined by substitution into the integral equation and

then extremized using partial derivatives.

The Galerkin method has been used to solve popular problems such as the Maxwell

equations, Cohen et al. [34], Burgers equation, Dogan [40] and the two-dimensional

Helmholtz equation, Thompson and Pinsky [100]. The Ritz formulation has been

used to discretize problems involving fracture and delamination in solids, Chowdhury

and Narasimhan [33] as well as the approximation of the Navier-Stokes equation,

Boncut [26].
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As with most discretization schemes, there are drawbacks when using the FEM. The

method suffers from low accuracy in problems with complex geometries. The choice

of the ideal domain for a given problem is not always apparent which may cause

divergence in the solutions. The method is also harder to implement as compared to

the FDM, which uses simple difference equations.

1.1.3 The finite volume method

The finite volume method (FVM) is a discretization scheme, similar in principle to

the FEM and FDM, and has been used to solve various conservation laws in fluid

mechanics. The method dates back to the 1980’s where it was used to solve the

two-dimensional Euler equation, Jameson et al. [60, 61].

The idea behind the method is to discretize the domain into grid cells of adjacent

control volumes. Using conservation laws, the partial differential equation can be

converted to an integral equation. The integrals are then evaluated in each cell

and the approximate cell average, integral divided by the volume of the cell, is

determined, LeVeque [71]. These averages are then interpolated which results in an

equation which provides an approximate solution to the problem.

The FVM can be used to solve problems with complex geometries and has

been used to solve popular equations such as; the Euler equation, Uygun and
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Kirkköprü [101], and convection-diffusion problems, Shukla et al [97]. There

are challenges in higher dimensions due to the method requiring three levels of

approximation, interpolation, integration and differentiation. Due to the complexity

of the algorithm, the FVM will not be used to generate any numeric solutions to the

problems in this study.

There are several other improved discretization schemes in the literature which have

been developed over the years in order to enhance solutions to problems. However,

the above three methods laid the foundation and changed numerical analysis as we

know it. Nonetheless, numerical solutions do not tell us much about the qualitative

behaviour of systems and the need to obtain analytical solutions remains. The first

attempts at analytical solutions were to apply perturbation techniques to obtain

approximate analytical solutions and is discussed below.

1.1.4 Perturbation methods

A traditional approach used by mathematicians to solve nonlinear equations

is the application of perturbation techniques to obtain approximate analytical

solutions. These include methods such as the δ-expansion method, Bender et

al. [24], Jones [63], Lyapunov’s artificial small parameter method, Lyapunov [78],

and the method of multiple scales, Nayfeh [89], to name a few. These methods

rely heavily on the availability of a perturbation parameter, ε, which forms part
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of the equation and/or the boundary conditions, Liao [73]. The requirement is

that the solution at ε = 0 must be known and the corresponding approximate

solutions would then be generated as the parameter is expanded. Liao [73],

showed that the approximate solutions are dependent on the chosen parameter ε

and not the independent variable, thus placing additional restrictions on the problem.

The solutions generated by the above methods proved to be useful in describing

both quantitative and qualitative properties of the problem, which is an advantage

compared to numerical solutions. However, there were several draw backs for

complex equations due to either the non-existence of small or large perturbation

parameters or such parameters cause a divergence of solutions as the quantities

increase or decrease. In problems where these quantities do not exist, the parameter

has to be artificially introduced which may lead to incorrect results, Holmes [53].

Perturbation techniques are therefore found to be mainly useful for weakly nonlinear

problems.

To overcome some of the restrictions of the perturbation parameters in perturbation

techniques, some non-perturbation techniques were later developed.

20



1.2 Non-perturbation methods

These include methods such as the Adomian decomposition method (ADM),

Adomian [12], the differential transform method (DTM), Zhou [110], the variational

iteration method (VIM), He [51], the homotopy perturbation method (HPM), He [49],

and the homotopy analysis method (HAM), Liao [73]. These methods remove the

requirement for the presence of small parameters in the equation to be solved and are

discussed in detail below.

1.2.1 The Adomian decomposition method

In the 1980’s, George Adomian introduced a powerful method for solving nonlinear

equations, now commonly known as the Adomian decomposition method (ADM),

Adomian [10, 11, 12]. In recent times, the ADM has proved to be more efficient than

the Taylor series method and Picard’s method, Wazwaz [103], and has been used

to generate analytical solutions to a wide class of linear and nonlinear differential

equations. The method does not require linearization or discretization and produces

solutions which are closed form.

The idea is to separate the equation into its linear and nonlinear components.

The highest order derivative of the linear part is inverted into the corresponding

integral and applied to the equation resulting in the approximate solution. The
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constant of integration is determined by the initial or boundary condition depending

on whether the problem is an initial or boundary value problem.

The Adomian decompostion method assumes that the unknown function can be

expressed as an infinite series and the nonlinear operator can be decomposed into a

special series of polynomials referred to as Adomian polynomials. These polynomials

can be constructed using recurrence relations for all classes of non-linearity as shown

by Adomian [10, 11]. The solutions given by ADM have been shown to converge

rapidly, Cherruault et al. [32], and are valid for strongly nonlinear partial differential

equations.

The ADM has been used successfully to solve problems such as the Falkner-Skan

equation, Alizadeh et al. [16], the Klein-Gordon equation, Basak et al. [21], the KdV

equation, Wazwaz [107], the Riccati equation, Gbadamosi et al. [44] and nonlinear

equations in non-Newtonian flows, Siddiqui et al. [96].

The advantage of the Adomian decomposition method as shown by Wazwaz [103],

is its simplicity and ease of implementation as well as the high convergence rate

as compared to methods based on the Taylor series expansion. However, there

are certain limitations when compared to modern methods such as the variational

iteration method and the homotopy analysis method, Wazwaz [104]. The main
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difficulty arises with the computation of the Adomian polynomials which are based

on power series expansions and may have small convergence regions. These can

be tedious to compute. Further modifications have been made to the ADM by

Abassy [2], Wazwaz and El-Sayed [105] and Dehghan et al. [38] to name a few.

1.2.2 The differential transform method

The differential transform method (DTM) was first introduced by Zhou [110] in 1986.

It is an iterative technique initially designed to solve linear and nonlinear problems

in electric circuit analysis. In 1999, Chen and Ho [30], developed a two-dimensional

DTM which can be used for solving differential and integral equations. This method

generates an analytical solution based on Taylor series expansions.

The DTM is based primarily on the Taylor series method. However, at higher

orders, the DTM differs from the Taylor series method in the way the coefficients

are computed. The Taylor series method requires computing coefficients using the

initial data and the differential equation which requires more computational work

while the DTM iteratively obtains the Taylor series equations.

The principle behind the method is to apply a differential transform to the

original equation. Thereafter, the equation is simplified by applying certain theorems

of the differential transform theory, Kangalgil and Ayaz [64]. Finally, an inverse
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differential transform is applied to the simplified equation resulting in an iteration

formula for the problem. Ayaz [19], showed that the DTM is better equipped to

solve highly nonlinear problems than the Taylor series method. The DTM does

not require linearization or discretization and, like the ADM, produces closed form

solutions, Chen and Ho [30].

The DTM has been used to solve various problems in applied mathematics

and physics such as systems of differential equations, Ayaz [18], Kanth and

Aruna [66], the Schrödinger equation, Kanth and Aruna [65], the KdV and mKdV

equations, Kangalgil and Ayaz [64] and the Emden-type equations, Mukherjee et

al. [88].

The drawbacks of the DTM are the small convergence regions of the truncated series

solutions and does not exhibit periodic behaviour. Several improvements have been

made over the years by Odibat and Momani [92], who generalised the method in

order to improve convergence using the Caputo fractional derivative. Momani and

Ertürk [85], applied Laplace transforms and Padé approximations to the DTM in

order to study the periodic behaviour of the solutions and improve the accuracy of

the DTM solution in a larger region. The modifications made above have provided

more accurate series solutions as compared to the original ADM and other methods,

Odibat and Momani [92].
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1.2.3 The variational iteration method

In 1999, Ji-Huan He [51, 52], proposed the variational iteration method (VIM). This

method is a modification of the general Lagrange multiplier method and provides

analytical solutions to linear, nonlinear, initial and boundary value problems.

The principle behind the method, He [52], is to apply a correction functional

to the problem which is constructed using a Lagrange multiplier, λ. The initial

approximation is determined by the initial and/or boundary conditions. The optimal

Lagrange multiplier for the problem is determined by applying the stationary

condition to the correction functional and λ is chosen to produce a solution

that is superior to the initial approximation. The solution procedure is iterative

and is improved at each iteration using the previous solution. This generates an

infinite series solution which generally converges to the exact solution to the problem.

Several problems in fluid mechanics have been solved using the VIM such

as, the Euler-Bernoulli beam, Liu and Gurram [76], the evolution equations,

Mohyud-Din [83], the gas dynamic equation, Mayinfar et al. [82], the KdV equation,

Mohyud-Din and Noor [84], the Sawada-Kotera equations, Jafari [57] and the

Sturm-Liouville equations, Altintan [17]. The method has also been used as a

test method and the solutions have been compared to other methods such as the

Adomian decomposition method and the homotopy analysis method, Wazwaz [104].
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The advantages of the variational iteration method, just like the ADM and the DTM

are that the problem can be solved without any discretization or transformation and

is free from round-off errors. Another important advantage of the VIM is that the

method provides successive approximate solutions iteratively as compared to the

ADM and the DTM, which generates components of the approximate solution and

require summation to provide the series approximate solution, Wazwaz [104].

The VIM also requires calculation of the Lagrange multiplier and evaluation

of the correction functional while the ADM requires evaluation of the Adomian

polynomials, which has been shown to be a tedious task for certain problems. Thus,

the VIM solution is straightforward while the ADM requires subsequent steps. The

ease of computing the correction functional in the VIM as compared to applying the

differential transform theorems in the DTM shows that the VIM is a simpler and

more efficient method.

The disadvantage of the VIM is the limited convergence region of the truncated series

solution, Abassy et al. [4]. This issue has also been observed in the ADM and DTM

methods as stated previously. Abassy et al. [5], also showed for severely nonlinear

problems, that VIM may produce unnecessary terms or unneeded computations which

may cause a divergence of the solution and increases computation time. These

limitations have been addressed by some author’s and modified variational iteration

26



methods have been developed over time, such as using the Padé technique and

Laplace transforms to eliminate unnecessary computations, Abassy et al. [1, 3], Noor

and Mohyud-Din [91]. These modifications have made the VIM one of the most

useful methods in order to obtain exact solutions to a variety of problems. In this

dissertation, the standard VIM has been chosen to solve the test problems and will

be compared to other methods.

1.2.4 The homotopy perturbation method

The homotopy perturbation method (HPM) was developed by Ji-Huan He. The

method was initially proposed in 1999, He [50] and revised in 2003, He [49]. The

method is derived from Liu’s artificial parameter method, Liu [77] and Liao’s

homotopy analysis method, Liao [75] and generates analytical solutions for linear

and nonlinear differential equations.

The principle behind the method is to construct a homotopy of the original

equation, Liao [73], using an embedding parameter, p. The general linear operator is

then split into a linear and a nonlinear component. As p changes from zero to one,

the approximate solution approaches the exact solution in a process referred to as

deformation in topology. The embedding parameter can be considered as a small

parameter and by the artificial parameter method, the approximate solution can be

expressed as a series solution of the power of p. This series is then substituted into
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the homotopy equation and solved recursively to obtain the exact solution.

The HPM has been used to solve various problems in fluid flow theory such

as the Blasius equation, He [48], nonlinear free vibration of systems, Danaee

Barforoushi et al. [20], the Helmholtz equation [25], the Brinkman momentum

equation, Ezzati and Mousavi [42], as well as a test method for solving nonlinear

partial differential equations, He [47].

The advantage of the HPM is that analytical solutions can be obtained relatively

easily for highly nonlinear problems. However, Liao showed that the homotopy

perturbation method is in fact a special case of the homotopy analysis method,

Liao [74]. The main drawback of the method is in relation to the choice of the initial

guess and the auxiliary parameter which may cause the solution to diverge if chosen

incorrectly. Liao concluded that the homotopy analysis method is a more powerful

method than the homotopy perturbation method, a subject that will be discussed

later in the chapter.

1.2.5 The homotopy analysis method

In 1992, Shi-Jun Liao proposed the homotopy analysis method (HAM) as part of his

PhD thesis. The method aimed to remove the shortfalls seen with other perturbation

techniques and, as shown in Liao’s book [73], addresses the following points:
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1. The method needs to be valid for strongly nonlinear problems with or without

small/large parameters,

2. There has to be a convenient way to adjust the convergence region and rate of

approximation series,

3. The ability to use different base functions to approximate a nonlinear problem.

The method, which addressed the above points, is thus a powerful analytical method

for nonlinear partial differential equations with strong non-linearity.

The basic principle behind the HAM is to replace the nonlinear equation by a

system of ordinary differential equations which can be solved iteratively. The first

step is to split the general operator into its linear (L) and nonlinear (N ) components.

Thereafter, using the concept of a homotopy from topology, a zero-order deformation

equation is formed using an embedding parameter, p, an auxiliary parameter, ~, and

an auxiliary function, H , as shown below

(1 − q)L [ φ(x, t; q)− u0(x, t)] = q~ H(x, t)N [ φ(x, t; q)], (1.1)

where u0(x, t) is an initial guess of the solution u(x, t) and φ(x, t; q) is an unknown

function.

The auxiliary parameter and the auxiliary function were introduced by Liao

in order to provide a convenient way to adjust or control the convergence region of
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the solution. As p increases from zero to one, the initial guess approaches the exact

solution. The linear operator, auxiliary parameter and initial guess are chosen such

that the solution converges at p = 1. The solutions generated by HAM are expressed

by a set of base functions which can be solved using computer programming software

such as Maple and Mathematica.

The HAM relies on certain assumptions such as the following:

1. For p ∈ [0, 1], there exists a solution of the zero-order deformation equation.

2. The higher order deformation equations all have solutions.

3. All Taylor series expansions in p, converge at p = 1.

There are numerous engineering and physics problems that have been solved

using the HAM. These include the KdV equations, Jafari and Firoozjaee [58],

the Davey-Stewartson equation, Jafari and Alipour [59] and the Drinfield-Sokolov

equations, Afrouzi et al. [13]. The HAM has also been used to find solutions of

general nonlinear integro-differential equations, Hanan [45].

Liao [73], showed that the HAM is in fact a generalized method and is related to

perturbation methods such as the δ expansion method and Lyapunov’s artificial

small parameter method. He also showed that the ADM is a special case of the

HAM. In Liao [74], a comparison was made between HAM and HPM and the results

30



showed that the HPM is also a special case of HAM and that for certain values of ~,

the VIM and the HAM are equivalent as shown in this study. Thus, the homotopy

analysis method has been referred to as a unification of non-perturbation methods.

The obvious advantage of the HAM is that like other non-perturbation methods,

there is no need for small parameters, discretization or linearization. The main

advantage of the HAM over other non-perturbation method is mainly due to

the introduction of an auxiliary parameter and auxiliary function. The auxiliary

parameter generates the so-called ~-curves which provide an easy way to control

and adjust the region of convergence based on the value of ~. Further details on

~-curves will be discussed in Chapter 2 and Chapter 3. The fact that the HAM

provides solutions based on a set of base functions also allows the freedom to express

solutions using different base functions. Choosing solutions in this way helps improve

efficiency and speed convergence when solving problems.

As with any technique, there are limitations to the HAM. There are no concrete

methods to determine the initial approximation, the auxiliary parameter and the

auxiliary function. Liao [73], suggested some general rules in order to ensure these

parameters are determined appropriately. These rules include:

1. The rule of solution expression,

2. The rule of coefficient ergodicity,
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3. The rule of solution existence.

The rule of solution expression determines the initial approximation, auxiliary linear

operator and the auxiliary function. The rule of coefficient ergodicity and the rule

of solution existence assists in determining whether the higher order deformation

equations are closed and have solutions. These rules are discussed further in Chapter

2.

1.2.6 Further advances on the homotopy analysis method

The main limitation of the HAM is that the initial approximation, auxiliary linear

operator and auxiliary function have to be chosen appropriately in order to obtain

convergence of the solution, using the suggested rules above. Incorrectly chosen

parameters may result in difficultly solving the higher order deformation equations

used to obtain the solution to the problem. In terms of convergence, the plot of

~-curves as suggested by Liao [73], aids in finding the optimal convergence parameter

but in most cases these values are generated by trial and error and can be time

consuming to obtain.

In recent times there have been enhancements and improvements made to the

HAM. In 2007, Yabushita et al. [109], introduced a modified optimisation method

which uses the square residual to determine two optimal convergence control

parameters. The use of the square residual in determining the optimal value of the
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convergence control parameters were also applied by Akyildiz and Vajravelu [15] and

Marinca and Herisanu [80, 81]. The results showed that the rate of convergence to

the series solution was faster using the optimal method, so-called optimal homotopy

asymptotic method. Liao [72], showed that although the optimal asymptotic method

does provide improved convergence, it is time consuming to calculate square residuals

at higher orders and fails for highly complicated problems. Liao [72], proposed a

modification to the HAM which contains up to three convergence control parameters.

The method was named the optimal homotopy analysis method (OHAM). The

method uses an average residual error to determine the optimal convergence

control parameters and has been found to be efficient, easier to apply than previous

optimal methods and accelerates the convergence of the series solution to the problem.

The OHAM addressed the convergence of the solution by determining the optimal

value of the convergence parameter(s). However, there was a need to improve

convergence based on the initial guess. Motsa et al. [86], provided an innovative

way to improve the HAM algorithm using the Chebyshev pseudospectral collocation

method, Bazan [23].

The method, which is a powerful semi-analytical method, was called the

spectral-homotopy analysis method (SHAM). The main advantage of the SHAM

over the HAM is that there is no need to conform to the rules of solution expression
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and coefficient ergodicity. In addition, any form of an initial approximation

can be used regardless of the impact it would have on the higher deformation

equations. The method also allows for a wider range of linear operators due to

the higher order equations being discretized and integrated using the Chebyshev

pseudospectral method. The SHAM has been shown to converge faster than the

HAM algorithm and has been used to solve the MHD Jeffery-Hamel problem and

the Darcy-Brinkman-Forchheimer equation, Motsa [86, 87]. The OHAM and SHAM

have proved itself as efficient methods however they have moved away from being a

fully analytical method like the HAM.

For purposes of this study, the standard HAM will be used to solve the test

problems and compared to the VIM. The idea is to illustrate the effectiveness of

purely analytical methods with focus on convergence, accuracy and computational

efficiency.

1.3 The test equations

1.3.1 The heat and the Burgers equation

The heat equation is a well known parabolic partial differential equation first

described by Joseph Fourier in 1807. The equation describes isotropic diffusion and

has been extensively used to verify and compare different numerical techniques over
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time. The general solution was found by Fourier using a method now commonly

referred to as Fourier analysis, Fourier [43]. The heat equation has subsequently

been solved analytically using separation of variables as shown in this study and

other numerical schemes such as finite differences, Recktenwald [95]. The heat

equation has been chosen in this study for two reasons; firstly to verify the results of

the analytical and numerical methods chosen for analysis and secondly, it forms the

basis for the derivation of Burgers equation.

The second test equation of interest in this study is the Burgers equation.

Johannes Martinus Burgers [29], a Dutch physicist derived the equation in 1939 by

simplifying the Navier-Stokes equations to exclude the pressure term and external

force. He also investigated the equation in one spatial dimension in the form,

∂u

∂t
− u

∂u

∂x
= c2 ∂2u

∂x2
,

where u = u(x, t) is the temperature and c ∈ R is the viscosity.

Burgers equation is described as a nonlinear quasi-parabolic partial differential

equation. This equation embodies all the main mathematical features of the

Navier-Stokes equations in one-dimension, since it possesses both the advection,

uux, and the diffusion, uxx, terms from the Navier-Stokes equations. Despite its

fundamental non-linearity, closed form analytical solutions have been obtained for

Burgers equation for a variety of initial and boundary conditions, Cole [36] and
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Hopf [54].

Literature suggests that the Burgers equation was initially derived by Bateman [22]

in 1915 and later by Burgers. However, the study by Burgers on this equation

deserves the name attributed to him. The equation has been extensively used

to test numerical algorithms and to explore the phenomena of one-dimensional

turbulence, Burgers [29]. The essence of turbulence is embodied in the quadratic,

nonlinear convection terms of the general three-dimensional Navier-Stokes equations

and is a fully three-dimensional phenomenon and as such can be understood

completely only with a three-dimensional view. However, Burgers equation,

although one-dimensional, possesses a fundamental quadratic nonlinearity and is

viewed as an appropriate starting model for studying turbulence. The models

can be used to study other physical processes such as shock waves, traffic flow,

acoustic transmission, supersonic flow around airfoils and turbulent flow in a channel.

In 1950, Cole [36] and Hopf [54], independently showed that Burgers equation

can be transformed into the linear heat equation. Thus, since the solution to the

heat equation was well known, a solution to Burgers equation could be obtained.

They also proved that the solution to Burgers equation does not exhibit chaotic

behaviour. Therefore, the significance of the Burgers equation has been more geared

towards numerical analysis in recent times.
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Many analytical methods have been applied to the Burgers equation such as

the Adomian decomposition method, Mamaloukas and Spartalis [79], the variational

iteration method, Abdou [7], the homotopy perturbation method, Desai and

Pradhan [39] and the differential transform method, Abazari [6]. Burgers equation

is an important test equation to develop and compare the accuracy and convergence

of analytical and numerical methods using different initial and boundary conditions.

1.3.2 The Bratu equations

The third test equation in this study is the Bratu equation. The Bratu problems are

nonlinear differential equations of the form:

d2u

dx2
+ γ eu = 0, 0 < x < 1,

where γ is a constant.

The equation arises from the simplification of the solid fuel ignition model

and describes the thermal reaction process in a combustible, non-deformable

material of constant density during the ignition period, Jacobsen and Schmitt [56],

Cohen and Toledo Benavides [35].

The Bratu equation was first solved in 1914, Bratu [28]. The equation has
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been known to model various phenomena such as radiative heat transfer and the

expansion of the universe, Boyd [27]. The other importance of the Bratu equation is

that it is often used as a benchmark equation to test the accuracy and robustness of

analytical and numerical methods.

The solutions to the Bratu problem depend on a pre-determined constant,

γc ≈ 3.51. The problem has two solutions when γ < γc, one solution for γ = γc

and no solutions for γ > γc. The Bratu equations have been solved using the

Laplace Adomian decomposition method, Syam and Hamdan [98], Khuri [67], and

the differential transform method, Hassan and Ertürk [46].

The main focus in the literature has been placed on the initial and boundary

value problems of the Bratu-type. The Bratu-type equations are special cases of the

Bratu equation with specific choices of γ. The two particular choices for this study

are γ = −π2 and γ = −2 which provide difficult nonlinear problems which test even

the most robust techniques. For this choice of γ, the Bratu problem has been solved

analytically using methods such as the Haar Wavelet method, Venkatesh et al. [102]

and the Adomian decomposition method, Wazwaz [106]. The Bratu problem has

a unique solution for the chosen boundary and initial conditions which provides a

good benchmark for comparison to the analytical and numerical methods used in

this study.
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1.4 Objectives of this dissertation

This study aims to compare the analytical solutions generated by Liao’s homotopy

analysis method [73] and He’s variational iteration method [51]. The focus will be

placed on the accuracy of the method as compared to the exact solution as well

as the computation time and the rate of convergence. For problems where exact

solutions are not specified the method of finite differences will be used to verify

the results obtained from each method. It is understood that the method of finite

differences is a fully numerical technique but the idea behind using the method is to

provide direction of the solution as well as to prove that the HAM and the VIM are

more efficient methods.

The test differential equations used in this study to compare the performance

of these methods are:

1. The heat equation,

2. the Burgers equation and

3. the Bratu equation.
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1.5 Dissertation outline

The dissertation is organised as follows;

In Chapter 2, we will present the theory of the methods and the derivation of

the algorithms. We are particularly interested in the following methods; (1) The

homotopy analysis method (HAM), (2) the variational iteration method (VIM) and

(3) the method of finite differences (FDM). A brief solution of the heat equation

will be presented and the Burgers equation will be derived based on the relationship

between the Burgers equation and the heat equation. The Bratu problem will be

presented together with the boundary and initial conditions.

In Chapter 3, we will use the HAM, VIM and FDM to solve the test problems. The

first iteration of the algorithm is performed by hand and thereafter solved using

Maple and Matlab software.

In Chapter 4, we present the results of our numerical simulations in tabulated

and graphical form. The results will be discussed in detail noting key aspects such

as speed, accuracy and convergence of each method.

In Chapter 5, we present our conclusions and recommendations.

40



Chapter 2

Theory and Formulation

In this chapter we present the underlying theory behind the selected analytical

schemes, the homotopy analysis method and the variational method as well as the

finite difference method. This includes a description of the scheme as well as the

important convergence theorems. The heat equation is presented together with an

analytical solution followed by a brief derivation of the Burgers equation along with

the initial conditions. The Bratu equations are also presented with their analytical

solutions. The aim of the chapter is to explain how each method works and to provide

a brief physical background of the test problems.
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2.1 The homotopy analysis method (HAM)

The homotopy analysis method is discussed in detail below. Consider the nonlinear

partial differential equation

N [ u(x, t)] = 0, (2.1)

where N is a nonlinear operator, x and t denote the independent variables and u is

an unknown function.

A zeroth-order deformation equation, Liao [73], is constructed from the nonlinear

equation (2.1) as follows

(1 − p)L [ φ(x, t; p) − u0(x, t)] = p~ H(x, t)N [ φ(x, t; p)], (2.2)

where L is an auxiliary linear operator, H(x, t) denotes a non-zero auxiliary function,

p ∈ [0, 1] is an embedding parameter, ~ 6= 0 is an auxiliary parameter.

The embedding parameter p has the following impact on equation (2.2). When

p = 0, we have

L [ φ(x, t; 0)− u0(x, t)] = 0, (2.3)

which simplifies to

φ(x, t; 0) = u0(x, t), (2.4)

which is the initial condition. Similarly when p = 1 in equation (2.2)

~ H(x, t)N [ φ(x, t; 1)] = 0. (2.5)
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Since H(x, t) 6= 0, ~ 6= 0 and using equation (2.1) we have

φ(x, t; 1) = u(x, t), (2.6)

which is the exact solution to the original problem.

Thus, it is clear that as p increases from 0 to 1, the solution φ(x, t; p) varies

from the initial guess u0(x, t) to the exact solution u(x, t). The parameter p is key

in determining a convergent solution and is the basis used to derive the higher order

deformation equations which are discussed below.

The Taylor expansion of φ(x, t; p) with respect to p is

φ(x, t; p) = φ(x, t; 0) +

∞∑

m=1

um(x, t) pm, (2.7)

where

um(x, t) =
1

m!

∂mφ(x, t; p)

∂pm

∣∣∣∣
p=0

(2.8)

Using equation (2.4), equation (2.7) reduces to

φ(x, t; q) = u0(x, t) +

∞∑

m=1

um(x, t) pm. (2.9)

The convergence of equation (2.9) depends upon the auxiliary parameter ~. If ~ is
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chosen such that a convergent solution exists at p = 1, equation (2.9) becomes

u(x, t) = u0(x, t) +

∞∑

m=1

um(x, t) pm, (2.10)

which is the solution of the original nonlinear equation, Liao [73].

Now suppose

~un = {u0(x, t), u1(x, t), ..., un(x, t)},

is a vector of unknown functions. Differentiating the zeroth-order deformation

equation (2.2) m-times with respect to p, setting p = 0 and then dividing the resulting

equation by m!, we get the mth order deformation equation

L [ um(x, t) − χm um−1(x, t)] = ~Rm[ um−1(x, t)], (2.11)

where

Rm[ um−1(x, t)] =
1

(m − 1)!

∂m−1N [ φ(x, t; p)]

∂pm−1

∣∣∣∣
p=0

(2.12)

and

χm =






0, m ≤ 1,

1, m > 1.

(2.13)

Now suppose the linear operator, L, is invertible, then the resulting equation is

um(x, t) = χm um−1(x, t) + ~L−1 Rm[ um−1(x, t)]. (2.14)

The initial approximation is derived using the boundary and/or initial conditions

specified in the problem and thereafter the linear equation (2.14) will be solved
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to generate um(x, t) for m ≥ 1. This will provide an analytical solution for each

iteration of m and thus an analytical solution to the problem.

The method will be applied to the problems following certain rules suggested

by Liao [73], namely;

1. The rule of solution expression,

2. The rule of coefficient ergodicity,

3. The rule of solution existence.

The rule of solution expression is useful for determining the initial approximation,

auxiliary linear operator and the auxiliary function. The rule of coefficient ergodicity

and the rule of solution existence are used to determine whether the higher order

deformation equations are closed and have solutions.

The homotopy analysis method is the fundamental test method in this study

and will be applied to all the test equations with emphasis placed on the method

providing a convergent analytical solution. The accuracy and computational

efficiency will be compared to the other methods in the study.
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2.1.1 Convergence of the HAM

There is no concrete proof of convergence in the book by Liao [73]. The auxiliary

parameter ~ does control the rate of convergence but the question still remains

with the optimal choice of ~. Literature states that the optimal value of ~ can

be determined using so-called ~-curves. The ~-curves will be plotted against the

error term to determine which value of ~ produces the most accurate and fastest

converging solution. The underlying convergence theorems are stated below.

Theorem 1: If the series solution (2.10) is convergent, then it converges to

an exact solution of the nonlinear problem (2.1).

The proof of theorem 1 can be found in Liao, [73]. Odibat [93] and Abdulaziz

et al. [9], both presented sufficient conditions for convergence which also placed

additional focus on the region of the ~-curves that would provide a convergent

solution. Their theorem, with slight modification on notation, is stated below.

Theorem 2: Suppose that A ⊂ R is a Banach space denoted with a suitable

norm ‖.‖ over which the sequence uk(x, t) of (2.10) is defined for a prescribed value

of ~. Assume also that the initial approximation u0(x, t) remains inside the ball of

the solution u(x, t). Taking r ∈ R to be a constant, the following statements hold

true:

46



(i) if ‖uk+1(x, t)‖ ≤ r‖uk(x, t)‖ for all k, given some 0 < r < 1, then the series

solution defined in (2.10) converges absolutely at q = 1 to u(x, t) over the

domain of definition of t,

(ii) if ‖uk+1(x, t)‖ ≥ r‖uk(x, t)‖ for all k, given some r > 1, then the series solution

defined in (2.10) diverges absolutely at q = 1 over the domain of definition of t.

The proof of theorem 2 can be found in Odibat [93] and provides a sufficient condition

for convergence at each k. Let rk be defined as

rk =
‖uk+1(x, t)‖

‖uk(x, t)‖
, (2.15)

then by ensuring that rk < 1 at each step k of the algorithm will result in a

convergent series solution.

In order for the condition rk < 1 to be satisfied, there may be restrictions on

the value of ~. This test will be useful in determining the region of ~ which provides

a convergent solution.

Now to determine the ~ value that converges the fastest, an estimate of the

error is required.

Theorem 3: Suppose the series solution (2.10) is convergent for a prescribed value

of ~. If the truncated series solution
∑M

m=0 um(x, t) is used as an approximation to
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the solution u(t) of (2.1), then an upper bound for the error, EM(x, t), is

EM (x, t) ≤
rM+1

1 − r
‖u0(x, t)‖. (2.16)

The convergence of the test problems are studied further in Chapter 3.

2.2 The variational iteration method

The basic idea of the variational iteration method (VIM) is discussed below. Consider

the following partial differential equation

L[ u(x, t)] + N [ u(x, t)] = g(x, t), (2.17)

where L is a linear operator, N is a nonlinear operator, x and t denote the

independent variables and g is an unknown function.

The VIM requires that a correction functional, He [51], be applied to equation

(2.17) as follows

um(x, t) = um−1(x, t) +

∫ t

0

λ

(
L[ um−1(x, τ)] + N [ ũm−1(x, τ)] − g(x, τ)

)
dτ, (2.18)

where λ is the general Lagrangrian multiplier, um−1 the (m − 1)th approximation of

u and ũm−1 are the restricted variations such that δũm−1 = 0.

The method is based on obtaining an initial approximation using the initial

and/or boundary conditions. The stationary condition is then applied to the
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correction functional and the Lagrange multiplier λ is chosen such that the solution

is superior to the initial approximation. This creates an infinite series solution to the

problem which converges to the exact solution.

It is important to note that the solution at each step in the VIM procedure is

an analytical solution to the problem for each value of m as opposed to HAM which

creates a solution at each m and then requires a summation to obtain the analytical

solution to the problem. The final solution is

u(x, t) = lim
m→∞

um−1(x, t). (2.19)

The variational iteration method will be tested on all the equations in this study as a

competitor to the homotopy analysis method. Emphasis will be placed on convergence

of the method to an analytical solution as well as the accuracy and time taken to

obtain the solution.

2.2.1 Convergence of the VIM

A convergence theorem similar to that stated for the homotopy analysis method will

be applied for the variational iteration method. Odibat [94], published a paper on

the convergence of the VIM and the important theorem is stated below.

Theorem 1: Suppose that A ⊂ R is a Banach space denoted with a suitable norm

‖.‖ over which the sequence uk(x, t) of (2.19) is defined. Assume also that the initial

approximation u0(x, t) remains inside the ball of the solution u(x, t). Taking r ∈ R
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be a constant, the following statements hold true:

(i) if ‖uk+1(x, t)‖ ≤ r‖uk(x, t)‖ for all k, given some 0 < r < 1, then the solution

defined in (2.19) converges absolutely u(x, t) over the domain of definition of t,

(ii) if ‖uk+1(x, t)‖ ≥ r‖uk(x, t)‖ for all k, given some r > 1, then the solution

defined in (2.19) diverges absolutely over the domain of definition of t.

The proof of the theorem 1 above can be found in Odibat [94]. The theorem provides

a sufficient condition for convergence at each k. Similarly, let rk be defined as

rk =
‖uk+1(x, t)‖

‖uk(x, t)‖
, (2.20)

then by ensuring the rk < 1 at each step of the algorithm will result in a convergent

series solution.

2.3 Method of finite differences

The method of finite differences (FDM) is a numerical method based on Taylor’s

theorem, LeVeque [70], and has been extensively used to solve differential equations

dating as far back as the early 1930’s. The method is based on discretization of

derivatives using finite difference approximations and is discussed below.

Suppose we partition the [x, t] space into x0, ..., xi in steps of h and t0, ..., tj in
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steps of k. Taylor’s theorem is as follows

u(x+h, t) = u(x, t)+
∂u(x, t)

∂x

h

1!
+

∂2u(x, t)

∂x2

h2

2!
+ ...+

∂mu(x, t)

∂xm

hm

m!
+O(hm+1). (2.21)

An approximation for the first derivative of u with respect to x can be obtained using

the first two terms from the above expansion

∂u(x, t)

∂x
=

u(x + h, t) − u(x, t)

h
+ O(h). (2.22)

Similarly an approximation for the first derivative of u with respect to t is

∂u(x, t)

∂t
=

u(x, t + k) − u(x, t)

k
+ O(k). (2.23)

The second derivative with respect to x can be approximated as follows

∂u(x, t)

∂x
=

u(x + h, t) − 2u(x, t) + u(x − h, t)

h2
+ O(h2). (2.24)

The idea behind the method is to replace the derivatives of the nonlinear partial

differential equation with finite difference approximations and thus, using a basic

iteration scheme, approximate solutions can be determined using a suitable initial

approximations and reasonable sized step widths, h and k.

The solution generated by the FDM is purely numerical and will be used as a

guideline or starting point for problems which have no general analytical solution.

In this study, it will be applied to the heat equation and thereafter to the Burgers

equation. This will provide a benchmark for the analytical methods, HAM and
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VIM and the comparison will centre on accuracy, computational efficiency and

convergence of these analytical methods.

2.3.1 Consistency, stability and convergence of the FDM

The study of consistency, stability and convergence has been a broad discussion over

the years and is problem specific. For our purposes, the general definitions, found in

Chern [31] and LeVeque [70], are given below.

Definition 1 (Consistency): A finite difference method is consistent if its local

truncation error, τ , satisfies

‖τh,k‖ → 0 as h, k → 0. (2.25)

If a scheme has reasonable discretization such that ‖τh,k‖ = O(hp) + O(kq) for some

integer p, q > 0, then the scheme is most definitely consistent.

Definition 2 (Stability): A finite difference method in the form, uj+1
i = (Ah,k uj)i

is stable under the norm ‖.‖ in a region (h, k) ∈ R if

‖An
h,k u‖ ≤ ‖u‖, (2.26)

for all n with h, k fixed. To show stability in general may require a tedious amount of

work especially for nonlinear partial differential equations. Von Neumann analysis,

which is a necessary condition for stability, has been applied to many linear partial
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differential equations and sometimes provides restrictions on the step sizes used

in the scheme, Chern [31]. These restrictions provide direction when determining

numerical results using Matlab or Maple software.

Definition 3 (Convergence): A finite difference method is convergent if the

error, E, satisfies

‖Eh,k‖ → 0 as h, k → 0. (2.27)

It has been shown in the literature, Chern [31] and LeVeque [70], that

stability + consistency =⇒ convergence.

The issue of consistency, stability and convergence will be discussed in Chapter 3

with application to the heat equation.

2.4 The heat equation in one dimension

Consider an object with temperature u(x, t) at time t. Let x ∈ [0, `] and t ≥ 0 be the

space and time variables. The heat equation is defined as

∂u

∂t
= c2 ∂2u

∂x2
, (2.28)
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where c ∈ R is the viscosity of the body.

The corresponding initial and boundary conditions are

u(x, 0) = u0(x) ,

u(0, t) = 0 ,

u(`, t) = 0 ,

(2.29)

where u0(x) is an arbitrary function of x only.

The general solution to the heat equation can be obtained by Fourier analysis.

Since the equation of interest is bounded by a finite domain, a simple method of

separation of variables can be used to determine the exact solution. To proceed, we

assume the function can be split into the product

u(x, t) = X(x) T (t) . (2.30)

Applying the necessary derivatives and substituting into (2.28) gives

X(x) T ′(t) = c2 X ′′(x) T (t).

Rearranging the above equation yields

1

c2

T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ2 .

Since the left-hand side (LHS) of the equation is a function of t only and right-hand

side (RHS) is a function of x only, they must both be equal to a constant (−λ2).
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Simplifying the above, we get two linear differential eigenvalue equations

1

c2
T ′(t) = −λ2 T (t) , (2.31)

X ′′(x) + λ2 X(x) = 0 . (2.32)

Integrating and using the method of undetermined coefficients and thereafter applying

the necessary boundary conditions, the solution to the heat equation is as follows

u(x, t) =

∞∑

n=0

Bn sin
(nπ x

`

)
exp

(
c2 n2 π2 t

`

)
, (2.33)

and Bk can be obtained from the Fourier series of u(x, t)

Bk =
1

`

∫ `

−`

u0(m) sin

(
kπm

`

)
dm . (2.34)

The heat equation is linear and will be used as a benchmark equation in this

dissertation to verify and compare the solutions obtained by the analytical and

numerical methods. The problem selected for comparison is

∂u

∂t
=

∂2u

∂x2
, (2.35)

with initial condition,

u(x, 0) = sin πx, (2.36)

and x ∈ (0, 1).

The exact solution to equation (2.35) using the solution (2.33) is

ue(x, t) = sin(πx) e−π2t. (2.37)
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2.5 The Burgers equation

Johannes Martinus Burgers [29], derived and performed extensive work on this

nonlinear equation. The equation is of importance in applied mathematics as it

exhibits similar characteristics to the Navier-Stokes equation and possesses both

advection and diffusion terms. These terms make computing analytical solutions

more difficult and has challenged mathematicians to obtain solutions using a variety

of methods. These methods include, to name a few, the Adomian decomposition

method, Mamaloukas and Spartalis [79], the homotopy perturbation method, Desai

and Pradhan [39], the differential transform method, Abazari and Borhanifar [6],

exact-explicit finite difference method, Kutluay et al. [69] and spectral/spline

methods, El-Hawary and Abdel-Rahman [41].

The derivation below is based on an inverse Hopf-Cole transformation, Cole [36],

Hopf [54], which is applied to the heat equation (2.35). The Hopf-Cole transform is

given by

v(x, t) = −2c2 1

u

∂u(x)

∂x
, (2.38)

Taking the heat equation as defined above

∂u

∂t
= c2 ∂2u

∂x2
, (2.39)
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where c ε R and c 6= 0 is the viscosity of the body.

Using the inverse form of equation (2.38), let

u(x, t) = exp

(
−

1

2 c2
v(x, t)

)
.

Now taking the necessary derivatives of u(x, t) gives

∂v

∂t
+

1

2

(
∂v

∂x

)2

= c2 ∂2v

∂x2
. (2.40)

Equation (2.40) is known as the potential form of the Burgers equation.

Now make a second substitution

v(x, t) =

∫
w dx .

Applying the above to equation (2.40) gives

∫
∂w

∂t
dx +

1

2
w2 = c2 ∂w

∂x
. (2.41)

and taking the derivative with respect to x gives

∂w

∂t
+ w

∂w

∂x
= c2 ∂2w

∂x2
, (2.42)

which is known as the Burgers equation (BE). The main challenge in obtaining

solutions to the BE is due to non-linearity of the advection term wwx which poses

challenges with integration in most analytical/numerical schemes. There are exact

solutions to the equation in the literature for a variety of initial and boundary
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conditions as shown by Cole [36] and Hopf [54]. This study looks at two different

initial conditions of the BE, namely;

1. The test initial condition

u(x, 0) =
α + β + (β − α)eη

1 + eη
, (2.43)

where η = α(x/ν) and α, β and ν are arbitrary constants.

The exact solution to equation (2.42), Abdou and Soliman [8], is

u(x, t) =
α + β + (β − α)eξ

1 + eξ
, (2.44)

where ξ = (α/ν)(x − βt).

2. The common initial condition

u(x, 0) = sin πx. (2.45)

The first condition (2.43) has been chosen due to the availability of an exact solution

which is easily computable and will provide guidance to the approximate analytical

solutions generated by the HAM and the VIM. The second condition is a more

popular initial condition which has been referenced numerously in the literature.

The exact solution can be obtained by Fourier analysis, Fourier [43] which has shown

to be a tedious task. The HAM and the VIM algorithms perfected in this study

using initial condition (2.43), will be used to determine the solution for the common

initial condition (2.45). The FDM will also be used on condition (2.45) to provide a

comparison between the analytical solutions and the numerical solution.
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2.6 The Bratu equation

The one-dimensional Bratu equation arises from the simplification of a solid fuel

ignition model that describes the thermal reaction process in a non-deformable

material of constant density during the ignition period, Jacobsen and Schmitt [56],

Cohen and Toledo Benavides [35]. The equation was named after Bratu [28] who

solved it in 1914. The significance of the equation in applied mathematics is that it is

used as a benchmark in order to compare and test various numerical and analytical

methods due to its non-linearity. Mathematicians have used various methods to

solve the equation such as the Laplace Adomian decomposition method, Syam

and Hamdan [98], Khuri [67], and the differential transform method, Hassan and

Ertürk [46].

The Bratu equation is defined as

∂2u

∂x2
+ γ eu = 0, 0 < x < 1, (2.46)

where u = u(x) and γ is a constant.

The corresponding boundary conditions

u(0) = u(1) = 0. (2.47)

The exact solution, Wazwaz [106], to (2.46) is given by

u(x) = 2 ln

[
cosh(0.5(x − 0.5) θ)

cosh(0.25 θ)

]
, (2.48)
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where θ satisfies

θ =
√

2γ cosh(0.25 θ). (2.49)

The above equation has zero, one or two solutions depending whether γ > γc, γ = γc

or γ < γc. The critical value of γ is determined by solving the equation

1 =
1

4

√
2γc sinh(0.25 θc), (2.50)

which has been calculated as

γc = 3.513830719.

The above discussion is used as a basis to introduce the two Bratu-type equations

chosen for the analysis in this study. In order to obtain the Bratu-type equations from

the Bratu equation (2.46), the value of γ has been chosen as, γ = −π2 and γ = −2.

The reason for the choices of γ are due to the severe non-linearity of these problems

as shown in the literature as well as the existence of unique analytical solutions which

provides comparison between the methods, Wazwaz [106].

2.6.1 The Bratu equation when γ = −π2

The boundary value problem when γ = −π2 together with the boundary conditions

are defined as follows:
∂2u

∂x2
− π2 eu = 0 ,

u(0) = u(1) = 0 .

(2.51)
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The analytical solution, as found by Wazwaz [106], is:

ue(x) = − ln

(
1 + cos

[(
1

2
+ x

)
π

])
(2.52)

This solution will be used for comparative purposes to the approximate solutions

determined by the HAM and the VIM.

2.6.2 The Bratu equation when γ = −2

The boundary value problem when γ = −2 together with the boundary conditions

are defined as follows:
∂2u

∂x2
− 2 eu = 0 ,

u(0) = u(1) = 0 .

(2.53)

The analytical solution, as found by Wazwaz [106], is:

ue(x) = −2 ln(cos x) (2.54)

This solution will be used for comparative purposes to the approximate solutions.

In summary we presented the theory behind the analytical and numerical methods

used in this study along with important convergence theorems. The test problems

were also discussed with the corresponding initial conditions. In Chapter 3 we

provide the modifications on the test equations in order to apply the analytical and

numerical methods before implementation in Maple and Matlab. The first iteration
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of each method is performed by hand in order to demonstrate the schemes and

noting the assumptions made and parameters chosen.
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Chapter 3

Solution of the test problems

In this chapter we apply the analytical and numerical methods to the test problems.

The test problems are presented with the modifications required for implementation

as well as their corresponding initial conditions. A few iterations of each method

are performed by hand to illustrate the algorithms and address the convergence of

the method. The higher order iterations are then obtained using Maple and Matlab

software. We begin with the homotopy analysis method (HAM).

3.1 The HAM applied to the test equations

The HAM procedure is applied using the suggested guidelines by Liao [73]. The

method requires the following operators to be defined from the test equations:

• The linear operator, L.
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• The nonlinear operator, N .

• The right hand side of the mth order deformation equation (2.11), Rm which

includes ~.

Using the definitions above, the iteration formula (2.14) can be determined for the

underlying test equations.

3.1.1 Application to the heat equation

As shown in Chapter 2, the heat test problem is as follows

∂u

∂t
=

∂2u

∂x2
, (3.1)

with initial condition

u(x, 0) = sin(πx). (3.2)

The linear operator, L, for the above equation (3.1) is chosen as

L[ u(x, t)] =
∂u(x, t)

∂t
, (3.3)

with the property

L[ c1] = 0, (3.4)

where c1 is a constant. The linear operator is time dependent only and thus allows

for a simpler inverse operator for the problem. The inverse linear operator is simply

L−1[ u(x, t)] =

∫ t

0

u(x, τ) dτ . (3.5)
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The nonlinear operator is the total operator of the problem and for this problem it

is in fact linear

N [ u(x, t)] =
∂u(x, t)

∂t
−

∂2u

∂x2
, (3.6)

and thus using the HAM methodology

Rm[ um−1(x, t)] =
∂um−1

∂t
−

∂2um−1

∂x2
. (3.7)

Finally, the iterative formula for the heat equation is as follows

um = χm um−1 + ~

∫ t

0

(
∂um−1

∂τ
−

∂2um−1

∂x2

)
dτ, (3.8)

Using the initial condition (3.2), the initial guess is chosen as

u0 = sin(πx). (3.9)

The first two steps, m = 1 and 2, of the HAM will be computed by hand and thereafter

in Maple. Applying the initial approximation (3.9) and using the iterative formula

(3.8) with m = 1 gives

u1 = χ1 u0 + ~

∫ t

0

(
∂u0

∂τ
−

∂2u0

∂x2

)
dτ,

u1 = ~

∫ t

0

π2 sin(πx)dτ,

u1 = ~ π2 sin(πx) t,

u1 = ~ π2 t u0.

(3.10)
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Similarly for m = 2

u2 = ~ π2 sin(πx) t + ~

(
~ π2 sin(πx) t +

~ π4 sin(πx) t2

2

)
,

u2 =

(
1 + ~ +

~ π2 t

2

)
u1.

(3.11)

The HAM procedure does become complex even for a simple test equation to compute

by hand for m > 2.

Convergence

The convergence theorems for the HAM have been presented in Chapter 2. Applying

the sufficient condition from theorem 2 to equation (3.10) gives:

‖u1‖

‖u0‖
= |~ π2 t| (3.12)

Similarly for equation (3.11):

‖u2‖

‖u1‖
=

∣∣∣∣1 + ~ +
~ π2 t

2

∣∣∣∣ . (3.13)

The above restrictions will be monitored closely at each iteration and the values of

~ and t will be chosen such that the norm of the error is less than unity which will

ensure convergence. The optimal value of ~ will be determined using ~-curves and

will be examined further in Chapter 4.
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3.1.2 Application to the Burgers equation

The Burgers equation is

∂u

∂t
+ u

∂u

∂x
= c2 ∂2u

∂x2
(3.14)

where c ∈ R. For our purposes we take c = 1 which simplifies the algebra.

Similar to the heat equation, the linear operator for equation (3.14) has been

chosen as

L[ u(x, t)] =
∂u(x, t)

∂t
, (3.15)

with the property

L[ c1] = 0, (3.16)

where c1 is a constant. The operator is chosen this way in order to satisfy the

suggested rules by Liao [73]. This ensures that the operator is easily invertible and

results is simpler deformation equations to be solved as m gets larger. The inverse

operator is therefore defined as

L−1[ u(x, t)] =

∫ t

0

u(x, τ) dτ . (3.17)

The nonlinear operator is

N [ u(x, t)] =
∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
−

∂2u

∂x2
, (3.18)

and thus Rm is defined by

Rm[ um−1(x, t)] =
∂um−1(x, t)

∂t
−

∂2um−1(x, t)

∂x2
+

m−1∑

i=0

ui(x, t)
∂um−1−i(x, t)

∂x
. (3.19)
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The iterative formula for Burgers equation is

um = χm um−1 + ~

∫ t

0

(
∂um−1

∂τ
−

∂2um−1

∂x2
+

m−1∑

i=0

ui

∂um−1−i

∂x

)
dτ. (3.20)

The above iteration formula will be computed in Maple. For m < 5, solutions can

be computed efficiently in Maple. However, as m increases, there is a need for more

powerful processing power in order to compute the higher order integrals.

Two separate initial conditions are chosen to illustrate the HAM on Burgers

equation.

• The test initial condition

u(x, 0) =
α + β + (β − α)eη

1 + eη
(3.21)

where η = α(x/ν) and α, β and ν are arbitrary constants.

• The common initial condition

u(x, 0) = sin πx. (3.22)

To illustrate the method and sufficient condition for convergence, one iteration is

performed using initial condition (3.22). Using equation (3.22) and m = 1 in equation
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(3.20) gives

u1 = χ1 u0 + ~

∫ t

0

(
∂u0

∂τ
−

∂2u0

∂x2
+ u0

∂u0

∂x

)
dτ,

u1 = ~

∫ t

0

(π2 sin(πx) + π sin(πx) cos(πx)) dτ,

u1 = ~ π t(π sin(πx) + sin(πx) cos(πx)),

u1 = ~ π t(π + cos(πx)) u0.

(3.23)

Convergence

Using the same approach as the heat equation, the sufficient condition for convergence

for equation (3.49) is

‖u1‖

‖u0‖
= |~ π t(π + cos(πx))|. (3.24)

The value above will be monitored at each step and for each value of ~ also taking

into account the error at each step to determine the optimal value of ~. The values

of ~ will be plotted on the so-called ~-curves and discussed further in Chapter 4.

3.1.3 Application to the Bratu equation

The Bratu equations of interest in this study have the form

∂2u

∂x2
+ γ eu = 0, 0 < x < 1, (3.25)
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where u = u(x) and γ = −π2 or γ = −2.

The linear operator for the above equation (3.25) is

L[ u(x, t)] =
∂2u

∂x2
, (3.26)

with the property

L[ c1] = 0, (3.27)

where c1 is a constant. The inverse operator is thus a double integral of the form

L−1[ u(x)] =

∫ x

0

∫ s

0

u(φ) dφ ds . (3.28)

The nonlinear operator is

N [ u(x)] =
∂2u

∂x2
+ γ eu , (3.29)

and thus

Rm[ um−1(x, t)] =
∂2um−1(x)

∂x2
+ γ eum−1(x) . (3.30)

The iterative formula for the Bratu-type equation is

um = χm um−1 + ~

∫ x

0

∫ s

0

(
∂2um−1

∂φ2
+ γ eum−1

)
dφ ds. (3.31)

A problem arises with the double integral due to the exponential function eu(x).

Clearly equation (3.31) with any arbitrary initial condition will result in an

undetermined integral in the next step. For example, suppose u0(x) = 0 then applying

the iterative formula (3.31) yields the following

u1(x) =
~

2
γ x2.
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The next iteration would result in the term containing eum−1 being

∫ x

0

∫ s

0

(
~

2
γ eh γ φ2

)
dφ ds,

which has no real solution due to integral
∫

eφ2

dφ .

To overcome this limitation an approximation is imposed on eu(x). Using Taylor’s

theorem, the second order approximation of eu(x) is

eu(x) = [1 + u(x) +
1

2!
(u(x))2].

Substituting the Taylor approximation into equation (3.31) gives a second order

Taylor modified iterative formula the for Bratu equation

um = χm um−1 + ~

∫ x

0

∫ s

0

(
∂2um−1

∂φ2
+ γ

[
1 + um−1 +

1

2!
(um−1)

2

])
dφ ds. (3.32)

Similarly a fifth order Taylor modified iterative formula for the Bratu equation is

um = χm um−1 + ~

∫ x

0

∫ s

0

(
∂2um−1

∂φ2
+ γ

[
1 + (um−1)

+
1

2!
(um−1)

2 +
1

3!
(um−1)

3 +
1

4!
(um−1)

4 + +
1

5!
(um−1)

5

])
dφ ds.

(3.33)

This subsequently allows for the evaluation of the double integral. The second and

fifth order expansions have been chosen in order to compare the accuracy and impact

of the Taylor approximation to the final solution.
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There are two separate problems considered in this study with different values

of γ, namely;

1. γ = −π2, with the initial condition

u0(x) = πx, (3.34)

2. γ = −2, with the initial condition

u0(x) = 0. (3.35)

To illustrate the method by we apply the initial condition (3.35) as the initial

approximation to the solution for γ = −2 and letting m = 1 in equation (3.32),

the first iteration is

u1 = χ1 u0 + ~

∫ x

0

∫ s

0

(
∂2u0

∂φ2
− 2

[
1 + u0 +

1

2!
(u0)

2

])
dφ ds,

u1 = ~

∫ x

0

∫ s

0

−2 dφ ds.

(3.36)

Using basic integration, equation (3.36) reduces to

u1 = −~x2. (3.37)

Convergence

As shown earlier, the exact solutions to the Bratu problems are known and the

~-curves will be compared to the solution that provides the smallest absolute error

when compared to the exact solution. Convergence will be monitored by evaluating

72



the absolute error at each iteration.

Higher order iterations of the HAM solutions are discussed in Chapter 4. We

now move our attention to the variational iteration method (VIM).

3.2 The VIM applied to the test equations

3.2.1 Application to the heat equation

A similar approach as used in the HAM algorithm is used to determine the linear and

nonlinear operators. The operators are also shown in the literature and are as follows

L[ u(x, t)] =
∂u

∂t
, (3.38)

and

N [ ũ(x, t)] =
∂2ũ

∂x2
, (3.39)

Using equation (3.1) above, the correctional functional for the heat equation is

um(x, t) = um−1(x, t) +

∫ t

0

λ

(
∂um−1

∂τ
−

∂2ũm−1

∂x2

)
dτ, (3.40)

To calculate the optimal Lagrange multiplier, λ, a variation is applied to equation

(3.40)

δum = δum−1 +

∫ t

0

λ

(
(δum−1)τ − (δũm−1)xx

)
dτ. (3.41)

Since δũm−1 = 0, equation (3.41) reduces to

δum(x, t) = δum−1(x, t) +

∫ t

0

λ(δum−1)τdτ. (3.42)
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Integrating by parts reveals the stationary conditions

λ′(τ)|τ=t = 0, (3.43)

1 + λ(τ)|τ=t = 0. (3.44)

Solving the above equations yields λ = −1 and therefore the correctional functional

for the heat equation reduces to

um = um−1 −

∫ t

0

(
∂um−1

∂τ
−

∂2um−1

∂x2

)
dτ. (3.45)

Using the initial approximation (3.9) and letting m = 1, the first iteration is

u1 = u0 −

∫ t

0

(
∂u0

∂τ
−

∂2u0

∂x2

)
dτ,

u1 = sin(πx) −

∫ t

0

π2 sin(πx)dτ,

u1 = sin(πx) − π2 sin(πx) t,

u1 = (1 − π2 t) u0.

(3.46)

Convergence

The convergence theorems of the VIM has been shown in Chapter 2. Applying the

sufficient condition from theorem 1 to equation (3.46) gives

‖u1‖

‖u0‖
= |1 − π2 t|. (3.47)

The ratio above will be monitored closely ensuring it does not exceed one. The

remaining iterations for the heat equation will be computed using Maple software.
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3.2.2 Application to the Burgers equation

Using equation (3.14) and applying the same methodology above, noting that λ = −1

for Burgers equation as well, the correctional functional is

um = um−1 −

∫ t

0

(
∂um−1

∂τ
+ um−1

∂um−1

∂x
−

∂2um−1

∂x2

)
dτ. (3.48)

To illustrate the method, we take the initial condition (3.22) and m = 1 in (3.48)

which gives

u1 = u0 −

∫ t

0

(
∂u0

∂τ
+ u0

∂u0

∂x
−

∂2u0

∂x2

)
dτ,

u1 = sin(πx) −

∫ t

0

(π2 sin(πx) + π sin(πx) cos(πx)) dτ,

u1 = sin(πx) − π t(π sin(πx) + sin(πx) cos(πx)),

u1 = [1 − π2 t − π t cos(πx)] u0.

(3.49)

Convergence

Similarly to the convergence theorem above, we monitor the ratio below for each

iteration of the VIM

‖u1‖

‖u0‖
= |1 − π2 t − π t cos(πx)|. (3.50)

The remaining iterations for the BE equation will be computed using Maple.
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3.2.3 Application to the Bratu equation

The correctional functional for the Bratu-type equation is

um(x) = um−1(x) +

∫ x

0

λ

[
∂2um−1

∂φ2
+ γ eũm−1

]
dφ. (3.51)

To calculate the optimal Lagrange multiplier, λ, we apply a variation to (3.51)

δum = δum−1 + δ

∫ x

0

λ

[
∂2um−1

∂φ2
+ γ eũm−1

]
dφ. (3.52)

Since δũm−1 = 0, all terms involving δũm−1 are set to zero and (3.52) becomes

δum = δum−1 + δ

∫ x

0

λ

[
∂2um−1

∂φ2

]
dφ. (3.53)

Integrating by parts gives

δum = δum−1(1 − λ′) + δum−1λ +

∫ x

0

δum−1λ
′′dφ, (3.54)

which results in the following stationary conditions:

(1 − λ′)|φ=x = 0 ,

λ|φ=x = 0 ,

λ′′|φ=x = 0 .

(3.55)

Solving (3.55) yields:

λ = φ − x, (3.56)
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and thus the variational iteration formula for the Bratu equation becomes:

um = um−1 +

∫ x

0

(φ − x)

[
∂2um−1

∂φ2
+ γ eum−1

]
dφ. (3.57)

The above iteration formula requires evaluation of a single definite integral and as

we did in the HAM formulation we need to approximate the exponential function

using Taylor’s theorem.

In the same manner as before, the second and fifth order Taylor modified

iteration formula for the Bratu equation is

um = um−1 +

∫ x

0

(φ − x)

(
∂2um−1

∂φ2
+ γ

[
1 + um−1 +

1

2!
(um−1)

2

])
dφ, (3.58)

and

um = um−1 +

∫ x

0

(φ − x)

(
∂2um−1

∂φ2
+ γ

[
1 + um−1

+
1

2!
(um−1)

2 +
1

3!
(um−1)

3 +
1

4!
(um−1)

4 + +
1

5!
(um−1)

5

])
dφ.

(3.59)

For illustration purposes we apply the initial condition (3.35) as the initial

approximation to the solution for γ = −2 and letting m = 1 in equation (3.58),

the first iteration is

u1 = −2

∫ x

0

(φ − x) dφ,

u1 = x2.

(3.60)

Convergence

The convergence of the method will be monitored using the absolute error between

the VIM solution as compared to the exact solution of the problem at each iteration.
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Now that we have applied our analytical schemes, we move onto the numerical

scheme used in this study - the method of finite differences (FDM).

3.3 The FDM applied to the heat and Burgers

equations

The FDM method will only be applied to the heat and Burgers equation. The

application to the heat equation is purely for test purposes in order to verify that all

the computer codes are running correctly. This method is primarily used to provide

contrast between the analytical methods and to provide direction in determining

whether the solutions are converging or diverging.

The application to the heat equation is as follows. Suppose u is represented

by:

u = u(xi, tj) = uj
i .

Applying the approximations of the first and second derivatives to equation (3.1)

gives

uj+1
i − uj

i

k
=

uj
i+1 − 2uj

i + uj
i−1

h2
(3.61)

which is simplified to

uj+1
i = (1 − 2r)uj

i + r(uj
i−1 + uj

i+1) (3.62)
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where r = k/h2. It has been shown in literature that for a convergent solution, the

value of r must be less than or equal to a half.

Similarly, applying the necessary derivatives to Burgers equation (3.14) yields

uj+1
i − uj

i

k
=

(
uj

i+1 − 2uj
i + uj

i−1

h2

)
− uj

i

(
uj

i+1 − uj
i

h

)
, (3.63)

which simplifies to

uj+1
i =

k

h2

(
uj

i+1 − 2uj
i + uj

i−1

)
−

k

h
uj

i

(
uj

i+1 − uj
i

)
+ uj

i . (3.64)

The iteration schemes above are easily solved using Matlab and discussed further

in Chapter 4 with emphasis around convergence, accuracy and speed of each of the

methods.

In summary, we have presented algorithms for finding solutions to the test

equations in this chapter and illustrated how the analytical methods are used to

generate solutions. We also showed the modifications required for the Bratu problem

in order for the integration to be applied at higher orders. In Chapter 4 we present

the results obtained using these schemes and the computational software, Matlab

and Maple.
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Chapter 4

Results and Discussion

As shown in Chapter 3, the analytical methods used in this study are fairly complex

to apply by hand for more than one or two iterations. It must also be noted that a

single iteration is sometimes not sufficient to give an accurate solution to the test

problems and further iterations may need to be done. We thus require mathematical

software to program the algorithms to obtain higher order results.

The homotopy analysis method (HAM) and the variational iteration method

(VIM) were coded in Maple while the method of finite differences (FDM) was coded

in Matlab. The Maple software package develops closed form solutions and is the

reason it has been chosen to compute the analytical methods. Matlab was used for

the FDM method as it is a proven array based software which develop numerical

results. The graphs were plotted in Matlab due to convenience. The results were
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then compared to the exact solution, where possible, and measured in terms of the

convergence rate, accuracy and computation speed. The findings are presented below

in graphical and tabulated form .

4.1 The solution to the heat equation

The problem to be solved is

∂u(x, t)

∂t
=

∂2u

∂x2
, (4.1)

subject to

u(x, 0) = sin(πx). (4.2)

The results will be compared to the exact solution

ue = sin(πx) e−π2t. (4.3)

The initial approximation for all three schemes is chosen as

u0 = sin(πx). (4.4)

Since the problem is linear, the computer algorithms proved to be computationally

efficient and all three schemes were run until the exact solution was reached at t =

0.1s.
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HAM Solution

The optimum value of the auxiliary parameter ~ for the HAM was determined by

trial and error. We began by comparing the absolute error that is, the difference

between the approximate solution and the exact solution, using the ~-values,

~ = {−0.25,−0.50,−0.75,−1.00,−1.25}. The number of iterations before the

method converged up to order seven, consistent with measurements in the literature,

are shown in Table 4.1 below.
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Table 4.1: The heat equation: Comparison of the HAM and the exact solutions of

different ~-values at t = 0.1s.

HAM HAM HAM HAM HAM Exact

x ~ = −0.25 ~ = −0.5 ~ = −0.75 ~ = −1.0 ~ = −1.25 Solution

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.1151731 0.1151731 0.1151731 0.1151731 0.1151730 0.1151731

0.2 0.2190723 0.2190722 0.2190722 0.2190722 0.2190722 0.2190722

0.3 0.3015272 0.3015270 0.3015270 0.3015270 0.3015270 0.3015270

0.4 0.3544665 0.3544662 0.3544662 0.3544662 0.3544662 0.3544662

0.5 0.3727081 0.3727079 0.3727078 0.3727079 0.3727078 0.3727078

0.6 0.3544665 0.3544662 0.3544662 0.3544662 0.3544662 0.3544662

0.7 0.3015272 0.3015270 0.3015270 0.3015270 0.3015270 0.3015270

0.8 0.2190723 0.2190722 0.2190722 0.2190722 0.2190722 0.2190722

0.9 0.1151731 0.1151731 0.1151731 0.1151731 0.1151731 0.1151731

1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Time (s) 0.234 0.078 0.047 0.015 0.094 0.000

No. of steps 43 21 12 10 23 1

Conv. test ratio 0.881 0.443 0.259 -0.099 -0.386 -
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Table 4.1 shows that the fastest convergence region lies between ~ = −0.75 and

~ = −1.00. The convergence test ratio was used at each step ensuring that it

remained below unity for convergence. Now that we have isolated the region of

fastest convergence, further values of ~ were tried and it was found for ~ = −0.95,

the solution converged after 8 iterations. The error curves were plotted showing the

absolute error after evaluating the solution at every value of ~ after 7 iterations.

This is shown in Figures 4.1 and 4.2 below. Figure 4.1 shows the error curves

for ~ = {−0.25,−0.50,−1.00,−1.25} and Figure 4.2 shows the refinement where

~ = {−0.75,−0.85,−0.95,−1.00}.
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Figure 4.1: The heat equation: HAM error curves at different values of ~ for t = 0.1s.

VIM and FDM solution

It was found that the VIM algorithm produced equivalent results as the HAM

algorithm when ~ = −1. This is due to the value of the Lagrange multiplier at

the stationary point which was found to be λ = −1. This does not come as a

surprise as Liao [73, 74] has shown that various other analytical methods, such

as the Adomian decomposition method and the homotopy perturbation method,

are also special cases of the HAM depending on the value of ~. Therefore, a
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(refined).

finding made in this study is that the VIM is also a special case of the HAM for

the heat equation. Thus like the HAM, the VIM solution converged after 10 iterations.

The FDM was also run to determine whether an accurate solution, up to

order 7, could be generated from the numerical scheme. The scheme converged after

240 steps in t and 20 steps in x (r = 0.2). The final results of all the schemes are
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summarized in Table 4.2 below.

Table 4.2: The heat equation: Comparison of the HAM, VIM and FDM solution for

t = 0.1s.

Exact HAM VIM FDM Absolute Error

x Solution ~ = −0.95 λ = −1 Exact − FDM

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.1151731 0.1151731 0.1151731 0.1151732 0.0000001

0.2 0.2190722 0.2190722 0.2190722 0.2190724 0.0000002

0.3 0.3015270 0.3015270 0.3015270 0.3015273 0.0000003

0.4 0.3544662 0.3544663 0.3544662 0.3544666 0.0000004

0.5 0.3727079 0.3727079 0.3727079 0.3727083 0.0000004

0.6 0.3544662 0.3544662 0.3544662 0.3544666 0.0000004

0.7 0.3015270 0.3015270 0.3015270 0.3015273 0.0000003

0.8 0.2190722 0.2190722 0.2190722 0.2190724 0.0000002

0.9 0.1151731 0.1151731 0.1151731 0.1151732 0.0000001

1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Time (s) 0.000 0.015 0.015 0.016 -

No. of steps 1 8 10 240/20 -

87



The results in Table 4.2 show that all three schemes converged to the exact solution

relatively easily. The HAM with ~ = −0.95 converged in the fewest number of

iterations, 8. The HAM and VIM are both more accurate than the numerical scheme,

FDM. However, the FDM also produced excellent results for the heat equation. In

terms of computational efficiency, all three schemes compiled in roughly the same

amount of time, 0.015s, which is practically instantly. A plot of the FDM solution

alongside the exact solution is shown in Figure 4.3 below.
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Figure 4.3: The heat equation: FDM solution vs. exact solution for t = 0.1s.
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We now turn our attention to solving the partial differential equations in this study,

beginning with the Burgers equation.

4.2 The solution to the Burgers equation

The Burgers equation was solved using two different initial conditions. This is due to

the existence of an exact solution on one condition which will be used to verify the

accuracy of the code used to generate the HAM and VIM solutions. The equation to

be solved is

∂u

∂t
+ u

∂u

∂x
= c2 ∂2u

∂x2
, (4.5)

where c = 1 for our purposes.

4.2.1 The Burgers equation with test initial condition

The initial condition used to test the programs is given by

u(x, 0) =
α + β + (β − α)eη

1 + eη
, (4.6)

where η = α(x/ν) and α, β and ν are arbitrary constants.

The exact solution to Burgers equation with initial condition (4.6), Abdou and

Soliman [8], is

ue(x, t) =
α + β + (β − α)eξ

1 + eξ
, (4.7)
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where ξ = (α/ν)(x − βt).

The values of the constants were chosen randomly in order to obtain numerical

values for comparison and are α = −2, β = 1 and ν = 1.

HAM solution

The optimum value of the auxiliary parameter ~ was determined by trial and error.

We began with ~ = −1.0 and compiled the program. The solution converged to order

6 after 5 iterations with the 5th iteration requiring a large amount of resources. The

convergence to order 5 is used in most literature concerning Burgers equation and

thus sixth order convergence using the HAM is a very good approximation of the

analytical solution. We examined different choices of ~ in order to determine if the

convergence rate could be improved. Table 4.3 shows the solution after 5 iterations

with ~-values {−0.25,−0.50,−0.75,−1.00,−1.25}.
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Table 4.3: Burgers equation: Comparison of HAM solutions at different ~-values at

t = 0.1s.

HAM HAM HAM HAM HAM Exact

x ~ = −0.25 ~ = −0.5 ~ = −0.75 ~ = −1.0 ~ = −1.25 Solution

0.00 1.1524701 1.1934168 1.1992077 1.1993360 1.1993896 1.1993360

0.10 0.9523460 0.9937703 0.9998449 1.0000000 1.0000238 1.0000000

0.20 0.7531800 0.7942465 0.8004828 0.8006639 0.8006654 0.8006640

0.30 0.5588791 0.5987815 0.6050449 0.6052492 0.6052357 0.6052494

0.40 0.3729739 0.4109969 0.4171517 0.4173746 0.4173523 0.4173748

0.50 0.1983786 0.2339453 0.2398668 0.2401020 0.2400755 0.2401021

0.60 0.0372436 0.0699416 0.0755252 0.0757656 0.0757382 0.0757657

0.70 -0.1090920 -0.0795051 -0.0743378 -0.0740992 -0.0741255 -0.0740991

0.80 -0.2400574 -0.2136671 -0.2089661 -0.2087355 -0.2087597 -0.2087356

0.90 -0.3557425 -0.3325024 -0.3282909 -0.3280735 -0.3280949 -0.3280735

1.00 -0.4567556 -0.4365182 -0.4327964 -0.4325957 -0.4326142 -0.4325957

Time (s) 15.959 16.006 16.037 16.489 15.990 0.000

No. of steps 5 5 5 5 5 1

The table above shows the fastest convergent solution lies between ~ = −0.75 and

~ = −1.25. Further analysis on different values of ~ revealed that the optimal value of
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~ was in fact ~ = −1.0. The error curves below show the absolute error between the

approximate solution and the exact solution for ~ = {−0.75,−0.85,−0.95,−1.00}.
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Figure 4.4: Burgers equation: HAM error curves at different values of ~ for t = 0.1s.

VIM Solution

The HAM program converged to the exact solution after 5 iterations using ~ = −1.0.

The VIM program with 4 iterations gave an accurate solution up to order 4 but

the program required further resources was unable to provide a 5th iteration after
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compiling for over 60 minutes. The summarized results are shown in Table 4.4 below.

Table 4.4: Burgers equation: Comparison of the HAM and the VIM solution for

t = 0.1s.

Exact VIM HAM HAM Error

x Solution λ = −1.0 ~ = −1.0 ~ = −1.0 VIM - Exact

0.00 1.1993360 1.1993925 1.1993333 1.1993360 0.0000566

0.10 1.0000000 1.0000670 0.9999975 1.0000000 0.0000670

0.20 0.8006640 0.8007232 0.8006621 0.8006639 0.0000592

0.30 0.6052494 0.6052861 0.6052482 0.6052492 0.0000367

0.40 0.4173748 0.4173836 0.4173745 0.4173746 0.0000088

0.50 0.2401021 0.2400870 0.2401025 0.2401020 -0.0000151

0.60 0.0757657 0.0757364 0.0757666 0.0757656 -0.0000293

0.70 -0.0740991 -0.0741322 -0.0740979 -0.0740992 -0.0000331

0.80 -0.2087356 -0.2087648 -0.2087343 -0.2087355 -0.0000293

0.90 -0.3280735 -0.3280953 -0.3280724 -0.3280735 -0.0000217

1.00 -0.4325957 -0.4326094 -0.4325948 -0.4325957 -0.0000136

Time (s) 0.000 25.646 0.827 16.489 -

No. of steps 1 4 4 5 -
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The HAM solution after 4 iterations is shown in Table 4.4 above to demonstrate

that the HAM is a faster converging and a more accurate method as compared to

VIM for the Burgers equation. In terms of computational efficiency, the HAM also

takes a shorter time and requires less processing power and is able to provide more

iterations than the VIM. However, the VIM solution is still a good approximation to

the exact solution as shown in Figure 4.5 below.
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Figure 4.5: Burgers equation: VIM solution vs. exact solution for t = 0.1s.
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We now turn our attention to the common initial condition.

4.2.2 The Burgers equation with u(x, 0) = sin(πx)

We apply a similar approach as before. The HAM and VIM programs will be used

to generate an analytical solution which will be then compared against a numerical

solution determined by FDM. This will demonstrate the ability of these analytical

methods to provide solutions which are accurate and convergent without the need

for a complete exact solution to compare to. The complete exact solution for the

problem is not computed in this study but can be obtained using Fourier analysis.

The numerical values to the exact solution for t = 0.1 have been used, Aksan and

Ozdes [14], Inc [55], for comparative purposes to the solutions generated by the three

schemes.

The HAM solution was generated using different values of ~. We began with

the choice of ~ = −1.0 which gave unfavourable results after 7 iterations. With

~ = −0.25 and ~ = −0.5 better results were obtained and it was evident the optimal

~ lied in this range. Further analysis resulted in convergence to order 5 after 7

iterations at ~ = −0.33.

Due to limitations on computer processing equipment, the VIM program could not

compile for more than 5 iterations and the solution did not converge to the analytical
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solution. The FDM solution was run for 240 steps in t and 20 steps in x. The

resulting solution are shown in Table 4.5 below.

Table 4.5: Burgers equation: Comparison of the HAM, VIM and FDM solution for

t = 0.1s.

Exact HAM HAM HAM VIM FDM

x Solution ~ = −0.25 ~ = −0.5 ~ = −0.33 λ = −1

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.10 0.10954 0.11283 0.10829 0.10954 -0.27375 0.11080

0.20 0.20979 0.21582 0.20889 0.20945 -0.29944 0.21230

0.30 0.29190 0.29958 0.29078 0.29063 -0.00283 0.29555

0.40 0.34792 0.35578 0.34578 0.34506 0.44059 0.35250

0.50 0.37158 0.37803 0.36996 0.36668 0.73187 0.37668

0.60 0.35922 0.36290 0.35889 0.35226 0.68826 0.36413

0.70 0.31006 0.31091 0.31003 0.30221 0.38466 0.31436

0.80 0.22793 0.22693 0.22743 0.22093 0.07284 0.23111

0.90 0.12069 0.11959 0.12025 0.11658 -0.05106 0.12242

1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Time (s) 0.000 19.891 15.319 17.300 96.495 0.044

No. of steps 1 7 7 7 5 240/20
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As shown in the test problem (4.6), the HAM solution is more accurate method and

faster converging than the VIM solution. The point is further validated using the

different initial condition above. The VIM solution would have most likely converged

given further iterations. However, we are interested in the most accurate and fastest

converging method. The main disadvantage of the VIM in this problem is the fixed

value of λ = −1.0 which cannot be controlled to improve the convergence rate.

We saw a similar issue using the HAM at ~ = −1.0 but the algorithm allowed for

modification which improved the convergence to the exact solution.

The FDM solution is in closer relation to the exact solution than the VIM

solution and is shown plotted alongside the HAM solution in Figure 4.6 below.

The HAM is however, the superior method to the VIM and this is also seen when

compared to other methods, Aksan and Soliman [14], which take longer to converge

to the exact solution for Burgers equation.
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Figure 4.6: Burgers equation: FDM solution vs. HAM solution for t = 0.1s.

In order to demonstrate some form of convergence on the VIM algorithm, we looked

at the solution for t = 0.03s. The VIM and FDM showed good results in relation to

the analytical solution found using the HAM. The results are shown in Table 4.6 and

graphically in Figure 4.7 below.
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Table 4.6: Comparison of the HAM, VIM and FDM solution for t = 0.03s.

HAM VIM FDM

x ~ = −0.33 λ = −1.0

0.00 0.0000000 0.0000000 0.0000000

0.10 0.2206276 0.2178745 0.2195648

0.20 0.4227149 0.4179439 0.4207804

0.30 0.5885362 0.5825809 0.5859436

0.40 0.7021776 0.6953957 0.6990543

0.50 0.7508569 0.7432256 0.7472499

0.60 0.7266016 0.7183243 0.7226016

0.70 0.6281162 0.6200544 0.6240387

0.80 0.4623707 0.4558789 0.4588610

0.90 0.2451743 0.2415497 0.2430855

1.00 0.0000000 0.0000000 0.0000000

Time (s) 16.786 103.450 0.09

No. of steps 7 5 240/20

We now move onto the Bratu test problems.
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Figure 4.7: Burgers equation: HAM solution vs. VIM solution vs. FDM solution for

t = 0.03s.

4.3 The solution to the Bratu equations

There are two different problems which will be solved by the HAM and VIM and

thereafter compared to the analytical solutions for each method. Since the analytical

solutions exist and our study is geared towards analytical methods, the FDM will not

be computed for the Bratu equations. The purpose behind using the Bratu problem

is to test which method will perform better when measured against the same number
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of iterations. This test is also limited by the processing limitations of the computer

hardware used to generate the analytical solutions.

4.3.1 The solution for γ = −π2

The problem to be solved is as follows

∂2u

∂x2
− π2 eu = 0 ,

u(0) = u(1) = 0 .

(4.8)

The solutions generated using the VIM and HAM will be compared to the exact

solution, Wazwaz [106],

ue = − ln

(
1 + cos

[(
1

2
+ x

)
π

])
(4.9)

The initial condition is chosen as,

u0(x) = π x

which was obtained from Wazwaz [106] and the region chosen for the analysis was

x ∈ [−0.4, 0.4] due to the fact that the exact solution (4.9) has an infinite value at

x = 0.5. The HAM and VIM with second and fifth order Taylor approximations were

run for 1 iteration. The error curves using the 5th order Taylor approximation on

HAM are shown in Figure 4.8 below.
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Figure 4.8: Bratu equation (λ = −π2): HAM error curves at different values of ~

after 1 iteration.

The best ~ value was found as ~ = −1.10. The main region where the solution

diverged was near the critical value at x = 0.5. This is expected as the polynomial

form of the solution cannot grow as rapidly as the exact solution which consists of

logarithmic and cosine functions. The summarized results are shown in the Table 4.7

below.
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Table 4.7: Bratu’s equation (λ = −π2): Comparison of the HAM and the VIM

solution.

Exact HAM HAM VIM VIM

x Solution Taylor 2nd Taylor 5th Taylor 2nd Taylor 5th

-0.4 -0.6683710 -0.6376255 -0.6614144 -0.6938993 -0.7155256

-0.3 -0.5927836 -0.5712503 -0.5771403 -0.6049983 -0.6103528

-0.2 -0.4623401 -0.4495198 -0.4503319 -0.4657742 -0.4665125

-0.1 -0.2692765 -0.2651145 -0.2651411 -0.2695731 -0.2695973

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.3696400 0.3745730 0.3746026 0.3690809 0.3691078

0.2 0.8862108 0.8980690 0.8990691 0.8735463 0.8744554

0.3 1.6555708 1.6206674 1.6286989 1.5590138 1.5663152

0.4 3.0170890 2.6032626 2.6390838 2.4808421 2.5134068

Time (s) 0.000 0.000 0.000 0.000 0.000

No. of steps 0 1 1 1 1

The results can be see graphically in Figure 4.9 below.
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Figure 4.9: Bratu equation (λ = −π2): HAM solution vs. VIM solution vs. exact

solution.

The results after 1 iteration is in good agreement with the exact solution. The

absolute error is is shown in the Table 4.8 below.
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Table 4.8: Bratu’s equation (λ = −π2), Comparison of the HAM and the VIM

absolute error.

HAM HAM VIM VIM

x Taylor 2nd Taylor 5th Taylor 2nd Taylor 5th

-0.4 0.0307455 0.0069566 -0.0255283 -0.0471545

-0.3 0.0215333 0.0156433 -0.0122147 -0.0175692

-0.2 0.0128203 0.0120083 -0.0034341 -0.0041723

-0.1 0.0041620 0.0041354 -0.0002966 -0.0003208

0.0 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.0049330 0.0049626 -0.0005592 -0.0005323

0.2 0.0118582 0.0128583 -0.0126646 -0.0117554

0.3 -0.0349034 -0.0268719 -0.0965570 -0.0892557

0.4 -0.4138265 -0.3780053 -0.5362470 -0.5036822

The absolute error shows that the HAM solution is a better approximation

for the Bratu equation for γ = −π2 after 1 iteration than the VIM solution.

Further iterations would result in the analytical solution being obtained as shown

by, Wazwaz [106], Jin [62] and Noor and Mohyud-Din [90] but require further

computational resources.

We discuss the solution for γ = −2 next.
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4.3.2 The solution for γ = −2

The problem to be solved is as follows

∂2u

∂x2
− 2 eu = 0 ,

u(0) = u(1) = 0 .

(4.10)

The solutions generated using VIM and HAM will be compared to the exact solution,

Wazwaz [106], is

ue = −2 ln(cos x) (4.11)

The initial condition was chosen as

u0(x) = 0

and the region chosen for the analysis was x ∈ [−0.5, 0.5]. Two iterations were

performed for each method and the optimal auxiliary parameter, ~, was determined

by trial an error for the HAM. The error curves are shown in Figure 4.10 below.
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Figure 4.10: Bratu equation (λ = −2): HAM error curves at different values of ~

after 2 iterations.

The summarized results are shown in Table 4.9 below.
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Table 4.9: Bratu’s equation (λ = −2): Comparison of the HAM and the VIM solution.

Exact HAM HAM VIM VIM

x Solution Taylor 2nd Taylor 5th Taylor 2nd Taylor 5th

-0.50 0.2611685 0.2617000 0.2617006 0.2609375 0.2609617

-0.40 0.1644580 0.1670914 0.1670915 0.1644032 0.1644072

-0.30 0.0913833 0.0938176 0.0938176 0.0913743 0.0913747

-0.20 0.0402695 0.0416428 0.0416428 0.0402688 0.0402688

-0.10 0.0100167 0.0104027 0.0104027 0.0100167 0.0100167

0.00 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.10 0.0100167 0.0104027 0.0104027 0.0100167 0.0100167

0.20 0.0402695 0.0416428 0.0416428 0.0402688 0.0402688

0.30 0.0913833 0.0938176 0.0938176 0.0913743 0.0913747

0.35 0.1250859 0.1278041 0.1278041 0.1250623 0.1250637

0.40 0.1644580 0.1670914 0.1670915 0.1644032 0.1644072

0.45 0.2097277 0.2117112 0.2117115 0.2096112 0.2096215

0.50 0.2611685 0.2617000 0.2617006 0.2609375 0.2609617

Time (s) 0.000 0.015 0.015 0.016 0.016

No. of steps 1 2 2 2 2

The results in Table 4.9 show minor differences between Taylor second and fifth

order approximations. A graphical comparison of the HAM and VIM using fifth
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order Taylor approximation alongside the exact solution is show in Figure 4.11 below.

Figure 4.11 shows that after 2 iterations that convergent solutions are obtained for
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Figure 4.11: Bratu equation (λ = −2): HAM solution vs. VIM solution vs. exact

solution.

both the HAM and VIM. Similarly as shown for γ = −π2, the exact solutions can be

determined after further iterations and can be found in Wazwaz [106], Jin [62] and

Noor and Mohyud-Din [91].
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Chapter 5

Conclusion

The purpose of this study was to apply analytical techniques to solve linear and

nonlinear partial differential equations. We compared two particular techniques, the

homotopy analysis method(HAM) and the variational iteration method(VIM) on

three test problems. The comparison was focussed on accuracy, speed of convergence

and computational efficiency. The test problems were identified as they displayed

severe non-linearity which may pose problems for even the most robust techniques.

A summary of the findings for each problem is given below.

In Chapter 4.1, we solved the one dimensional heat equation. This was an

introductory problem which provided the basic conceptual understanding needed

for Burgers equation. The problem is linear in nature and afforded us the

opportunity to test each method to ensure that the codes were operating efficiently.
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We also introduced the method of finite differences (FDM) to provide contrast

between the analytical schemes and to show that even ’old’ fashioned methods can

provide accurate solutions. The HAM solution with optimum auxiliary parameter,

~ = −0.95, converged after 8 iterations of the algorithm at t = 0.1s in Maple. The

VIM performed marginally slower converging to the exact solution after 10 iterations.

The FDM also converged to the exact solution after a tedious 240 steps in t and

20 steps in h. The HAM definitely stood out as the superior method for the heat

equation as it provided an accurate solution compared to the exact solution and

converged the fastest. From a computational efficiency side, all three schemes were

able to compile almost instantly with out any additional resources being required.

In Chapter 4.2, we solved the Burgers equation subject to two different boundary

conditions obtained from the literature. In Chapter 4.2.1, the first boundary

condition was chosen as it contained an easily computable exact solution which

provided additional guidance to the convergence of the analytical solutions. The

HAM solution converged to order 6 after 5 iterations of the algorithm at t = 0.1s,

with the optimal ~ = −1.00. The VIM algorithm provided fourth order convergence

after 4 iterations but was not able to compile further due to limited computational

resources. The HAM solution after 4 iterations was also compared to the VIM

solution and was found to be more accurate and did not require a large amount of

computer processing power to obtain the solution.
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In Chapter 4.2.2, the more common initial condition was used. We used the HAM

algorithm to obtain the analytical solution consistent with the literature. The FDM

method was also applied to determine a numerical approximation. Convergence of

the HAM was achieved after 7 iterations at t = 0.1s, with ~ = −0.33. We then

compiled the VIM to compare if any changes were found in convergence rate and

we found that the algorithm was unable to converge after 5 iterations and became

tedious to compute with successive runs taking up to 10 minutes. To provide some

form of convergence for the VIM scheme we looked at the solution at t = 0.03s and

compared that to the FDM and the exact solution generated by HAM. It was clearly

evident that for Burgers equation the HAM algorithm was more accurate, converged

faster and required less processing power to provide analytical solutions.

In Chapter 4.3, we studied the solutions of the Bratu equations for γ = −π2 and

γ = −2. The analytical solutions were known in the literature, thus we decided

to test the HAM and VIM against each other at a common point rather than

seeking the complete closed forml solution. The purpose of this decision was based

on which method is likely to perform faster in solving problems without known

solutions. There was also an underlying issue in computation of the Bratu equations

due to integration of the exponential function which required immense amounts of

processing power which was not available.
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In Chapter 4.3.1, the solution when γ = −π2 was examined after just one iteration.

In order to assist integration, second and fifth order Taylor approximations were

applied to the exponentials in each algorithm. The HAM solution using the fifth

order Taylor approximation provided up to second order accuracy compared to the

VIM which just managed first order. In terms of computational efficiency both

methods compiled quickly for one iteration. It must be noted though that the

HAM and VIM did require more processing power for further iterations due to the

evaluation of double (HAM) and single (VIM) integrals in the higher orders.

In Chapter 4.3.2, the solution when γ = −2 was examined after two iterations. A

similar trend was seen with the HAM providing up to third order accuracy while

the VIM lagged behind with second order accuracy. It was clear at this point the

HAM algorithm was more accurate and faster converging for the Bratu equations.

However, it did require additional resources to provide higher order iterations.

In summary, the purpose of the study was to find and compare analytical solutions

generated by the HAM and VIM. The HAM proved to be the more robust method

and this is attributed to the freedom to control the auxiliary parameter, ~. The HAM

and the VIM have shown to be robust analytical methods and can be applied to

severely nonlinear systems with ease. The FDM also reminded us that discretization
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methods still can be used to solve nonlinear problems but do not converge as rapidly

as the HAM.

However, purely analytical methods do have their shortfalls as discussed earlier

in Chapter 2. In this study even further shortfalls were seen mainly due to the

large requirements of computer hardware to perform higher order iterations. These

shortfalls have been mitigated by methods like SHAM which use numerical schemes

to solve the higher order iterations.
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