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ABSTRACT 

 

               In this thesis paper, I review the basic idea of Homotopy perturbation method 

(HPM), Modified Homotopy perturbation method (MHPM) and Homotopy perturbation 

transform method (HPTM). Then apply these on some higher order non-linear problems. 

Further, I tried to compare the results obtained from Modified homotopy perturbation 

method with HPM using the Sine-Gordon and fractional Klein-Gordon equation 

respectively. Homotopy perturbation transform method is the coupling of homotopy 

perturbation and Laplace transform method. Lastly, I applied the homotopy perturbation 

and homotopy perturbation transform method for solving linear and non-linear 

Schrödinger equations.  

  

Keywords: Homotopy perturbation method, modified homotopy perturbation method, 

homotopy perturbation transform method, Sine-Gordon equation, Klein-Gordon equation, 

fractional Klein-Gordon equation, Linear and Nonlinear Schrödinger equations and He’s 

Polynomials. 
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CHAPTER-1 

 Introduction 

          Most scientific phenomena occur nonlinearly. We know that except a limited number, 

the majority of them don't have exact systematic arrangements. Therefore, these nonlinear 

equations are to be solved using other methods. In recent years, many researchers have 

paid attention to study the solutions of linear and nonlinear differential equations and also 

fractional order differential equation by using various analytical methods. Recently, some 

non-linear analytical techniques for solving non-linear problems have been dominated by 

the perturbation method. Perturbation method is one of the most well-known methods to 

solve nonlinear equations studied by a large number of researchers such as Bellman [2], 

Cole ,3- and O’Malley ,16]. Actually, these scientists had paid more attention to the 

mathematical aspects of the subject which included a loss of physical verification. This loss 

in the physical verification of the subject was recovered by Nayfeh [15] and Van Dyke [20]. 

But, like other non-linear analytical methods, perturbation methods have their own 

particular limitations. 

          Firstly, almost all perturbation methods are based on an assumption that a small 

parameters must exist in the equation. This is so called small parameter assumption greatly 

restricts utilizations of perturbation techniques. As well known, an overwhelming majority 

of nonlinear problems have no small parameters at all. Secondly, the determination of 

small parameters seems to be a special art requiring special techniques. A suitable choice of 

small parameters leads to ideal results. However, an unsustainable choice of small 

parameters results is in bad effects. Thirdly, even if there exist suitable parameters, the 

approximate solutions are obtained by the perturbation methods valid in most cases, only 

for the small values of the parameters. So it is necessary to develop a kind of new non-

linear analytical method which does not require small parameters at all. 

          Since there are some impediments with the common perturbation method, 

furthermore basis of the common perturbation method was upon the existence of a small 

parameter, developing the method for different applications is very difficult. Therefore, 

many different methods have recently introduced some ways to eliminate the small 

parameter, such as artificial parameter method introduced by Liu [12], the homotopy 

perturbation method by Ganji [4,5] and the variational iteration method by He [6,7,8]. 

          Homotopy is an important part of differential topology. Homotopy techniques are 

generally connected to discover all bases of non-linear algebraic equations. The homotopy 

technique, or the continuous mapping procedure, embeds a parameter the embedding 
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parameter    that typically ranges from zero to one. When the embedding parameter is 

zero, the equation is one of a direct framework, when it is one; the equation is the same as 

the first one. So the embedded parameter  [0, 1] can be considered as a small parameter. 

The coupling method of the homotopy techniques is called the homotopy perturbation 

method. 

          The Homotopy perturbation method (HPM) was presented by Ji-Huan He [He, 1999] 

of Shanghai University in 1998 which is the coupling method of the homotopy techniques 

and the perturbation technique. On the other hand, Homotopy perturbation transform 

method (HPTM) is combined form of the Laplace transform method with the homotopy 

perturbation method introduced by Y. khan and Q. Wu. The above methods find the 

solution without any discretisation or restrictive assumptions and avoid the round-off 

errors. The HPM is a special case of the Homotopy analysis method(HAM)[Liao S.,1992] 

developed by Liao Shijun in 1992.The HAM uses a so-called  convergence control 

parameter to guarantee the convergence of approximations series over a given interval of 

physical parameters. 

1.1 Perturbation Theory 

          Perturbation theory comprises mathematical methods which are used to find the 

approximate solution to a problem which cannot be a solved accurately, by starting from 

the accurate solution of a related problem. Perturbation theory leads to an expression for 

the desired solution in terms of a formal power series in small parameter ( )-known as 

perturbation series that quantifies the deviation from the exactly solvable problem and 

further terms describe the deviation in the solution. 

Consider, 

          
      

          Here    be the known solution to the exactly solvable initial problem and      … are 

the higher order terms. For small   these higher order terms are successively smaller. An 

appro imate “perturbation solution” is obtained by truncating series  usually by keeping 

only the first two terms. 

1.2 Regular Perturbation Theory 

          Very often, we cannot be solved a mathematical problem exactly, or if the exact 

solution is available it exhibits such an intricate dependency in the parameters that is hard 

to use as such. It may be the cases however, that a parameter can be identified, say   such 

that the solution is available and reasonably simple for    . Then one may wonder how 

this solution is altered for non zero but small parameter  . 
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1.3 Singular perturbation Theory 

          It concerns the investigation of issues highlighting a parameter for which the 

solutions of the problem at a restricting value of the parameter are different in character 

from the limit of the solution of the general problem. For regular perturbation problems, 

the solution of the general problem converge to the solution of the limit problem as the 

parameter approaches the limit value. 

1.4 Homotopy perturbation method 

          In the homotopy perturbation technique we will first propose a new perturbation 

technique coupled with the homotopy technique. In topology two continuous functions 

from one topological space to another is called “homo-topic”. Formally a homotopy 

between two continuous functions from   and   from a topological space    to a topological 

space    is defined to be a continuous function 

    ,  1-    

Such that 

 (   )   ( )  and   (  1)   ( )        

          The homotopy perturbation method does not depend upon a small parameter in the 

equation. By the homotopy technique in topology, a homotopy is constructed with an 

embedding parameter   ,  1-  which is considered as a small parameter. 

1.5 Riemann-Liouville fractional integral  
 
The Riemann-Liouville fractional integral operator of       is defined as 

 

   ( )  
1

 ( )
∫ (   )   
 

 

 ( )                  

In particular,     ( )   ( ) 

 

For         1.The operator     has the following properties: 

 
(i)      ( )  =       ( ) 

 

(ii)      ( )  =        ( ) 

 

(iii)        
 (   )

 (     )
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1.6 Caputo fractional derivative 

 
The Caputo fractional derivative operator is given by 

 

   ( )          ( )         
1

 (   )
∫ (   )     
 

 

  ( )   

 

Where    1              . It has the flowing properties 

 

(i)    ,   ( )-   ( ) 

 

(ii)    ,   ( )-    ( )  ∑      
   (0) (

  

  
) 

 

1.7 Laplace’s transform  

 
The Laplace transforms of a function  ( ), denoted by F(s), is defined by the equation 

 

 

 ( )   * ( )  +  ∫      ( )  
 

 

 

 

 

∫          
1

1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

NIT, Rourkela, Mathematics Dept. 2015 Page 10 
 

CHAPTER-2 
 

Model of the Problems 

2.1 Linear Schrodinger equation  

Consider the linear Schrödinger equation from A. M. Wazwaz [1] 

                                                                                                                                                  (2.1.1) 

With the initial condition  

                                           (   )  1  cosh (  )                                                                                                                                         (2.1.2) 

Where  (   ) is a complex function and     1 

2.2 Nonlinear Schrodinger equation 

Consider the non-linear Schrodinger equation from A. M. Wazwaz [1] 

                                        
                                                                                               (2.2.1) 

With the initial condition  

                             (   )                                                                                                                   (2.2.2) 

Where        ̅ and  ̅ is the conjugate of    (   ) is a complex function. 

2.3 Sine-Gordon equation 

Consider the sine-Gordon equation suggested by M.J. Ablowitz et al. in [14] 

                                     sin( )                                                                                              (2.3.1) 

With the initial conditions 

                              (   )      ,   (   )   sech ( )                                                                     (2.3.2) 

2.4 Fractional-order Klein-Gordon equation 

Consider the fractional-order cubically nonlinear Klein-Gordon problem 

                              
     

      (   )               (1  -                               (2.4.1) 
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With the initial conditions  

                              (   )        (   )                                                                                       (2.4.2) 

                               (   )   (  1)     (  1)            

2.5 One-dimensional linear inhomogeneous Fractional-order Klein- 

      Gordon equation 

 
Consider the fractional order Klein-Gordon equation 

 

                                   
          6 

     

 (   )
 (   6 )                                                (2.5.1) 

                     

                                            1      

 

With the initial conditions: 

 

                                   (   )=0   ,    (   )                                                                                    (2.5.2) 
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CHAPTER-3 

Analysis and Interpretation 

3.1 Homotopy Perturbation Method 

3.1.1 Analysis of HPM 

              To illustrate the basic concept of this method, we consider the following differential 

equation: 

                                                               ( )   ( )                                                             (3.1.1.1) 

    With boundary conditions: 

                                      .   
  

  
/                                                                  (3.1.1.2) 

Where   is a general differential operator,   is boundary operator,  ( ) is a known 

analytical function and   is the boundary of the domain   . The operator   can be divided 

into two parts    and  , Where   is linear and   is nonlinear. Then equation (3.1.1.1) can 

be written as follows: 

                                                         ( )   ( )   ( )       ,                                             (3.1.1.3) 

By the Homotopy technique, we construct a homotopy structure: 

                                         (   )  (1   ) ,( ( )   (  )-   , ( )   ( )-              (3.1.1.4) 

                                           (   )     ,  1-                                                                (3.1.1.5) 

        Where    ,  1-  is an embedding parameter and    is the first approximation that 

satisfies the boundary conditions. Now the solution of (3.1.1.4) can be written as a power 

series of  , as follows: 

                                                                
                                                              (3.1.1.6) 

and the best   approximation solution is: 

                                                        lim                                                         (3.1.1.7) 

Now for fractional differential equation: 

 

                                
  (   )   (        )   (        )   (   )                    (3.1.1.8)  
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Where   is a linear operator,    is a nonlinear operator,   is a known analytic function and 

  , is the Caputo fractional derivative of order    , where    1      subject to the 

initial conditions: 

 

                              (   )    ( )                 1   3 …    1                                              (3.1.1.9) 

 

Homotopy structure is: 

 

                             
     (        )   (   )   ,  (        ) -                                  (3.1.1.10) 

 

 

                 Or       
     (   )    ,  (        )   (        ) -                                 (3.1.1.11) 

 

Theorem 1: 

              Let  satisfy he Lipschitz condition and then the problem (3.1.1.8) has unique 

solution  (   )  whenever      1. 
 

Theorem 2: 

              Let u (  t)  and u(  t) be defined in Banach space (C,   -     .   ). Then the series 

solution  ∑ u (  t) 
 
   defined by (3.1.1.7) converges to the solution of (3.1.1.8), 

if      1. 

 

Theorem 3: 

              The maximum absolute truncation error of the series solution (3.1.1.7) of the 

problem (3.1.1.8) is estimated to be 

 

                       | u(  t)  ∑ u (  t)
 
    |   

    

   
  u ( )   . 

 

3.1.2   Implementation of the method  

(A)  Linear Schrödinger equation 

         For solving equation (2.1.1) we construct the following homotopy: 

                                   (   )  (1   ) 0 
  

  
   

   

  
 1   0

   

  
  

    

   
 1                               (3.1.2.1) 

         Substituting Eq. (3.1.1.6) into Eq. (3.1.2.1) and equating the same powers of     we 

have: 

                             
    

  
  

   

  
               ,           (   )  1  cosh (  ) 
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       ,     (   ) = 0  

                             
   

  
    

    

   
      ,         (   )    

                       

and so on. Consider   (   )  1  cosh   as a first approximation for the solution that 

satisfies the initial condition. Solving above equations by simple integral we obtained   , 

        and so on. Hence the solution of Eq. (2.1.1) when   1 will be as follows: 

                           (   )  (1  cosh (  ))(1          
  

 
     ) 

                                         1       cosh (  ) 

This is an exact solution. 

(B)   Non-Linear Schrödinger equation 

          For solving equation (2.2.1) we construct the following homotopy:  

                          (   )  (1   ) 0 
  

  
 
    

  
1   0 

  

  
  .

   

   
     ̅/ 1                       (3.1.2.2) 

Substituting Eq. (3.1.1.6) into Eq. (3.1.2.2) and equating the same powers of     we have: 

                     
   

  
   

   

  
                                                            (   )   

   

                    
   

  
   

   

  
   . 

    

   
     

   ̅̅ ̅ /                      (   )     

                   
   

  
   ( 

    

   
   (  

   ̅̅ ̅           ̅̅̅̅ ))            (   )    

and so on. Consider   (   )   
   as a first approximation for the solution that satisfies the 

initial condition. Solving above equations by simple integral we obtained   ,     ,   and so 

on. 

Hence the solution of Eq. (2.2.1) when   1 will be as follows: 

                                                      (   )            +
   

 

  
    … 

                                                                        (   ) 

This is an exact solution. 
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(C) Sine-Gordon equation 

         For solving equation (2.3.1) we construct the following homotopy: 

                                                         (     sin(  ))                                      (3.1.2.3)   

Substituting Eq. (3.1.1.6) into Eq. (3.1.2.3) and equating same powers of   we have: 

                                                           ,                   sech( )   

                                                     ,             (    )        ,     (    )    

                                                      ,             (    )      ,      (    )    

                                                       ,            (    )      ,      (    )                                                              

                                      
  
 

  
         ,          (    )      ,     (    )       

   and so. Solving these equations by simple integral we obtained                and so on. 

    sech( )  
   

3
sech ( )  

   

 
sech ( )  

  sech ( )

     
( 1        6 cosh ( )

      cosh ( )  11  cosh ( ))  
  sech ( )

     
(  3   6     cosh ( )

  31   cosh ( )  16   cosh ( )  cosh ( )) 

This is an approximate solution. 

(D) Fractional-order Klein-Gordon equation 

According to the homotopy (3.1.1.10), we obtain the following set of linear partial 

differential equations of fractional order  

 

                       
                           ,         (   )        ,    (   )    

 

                       
      

      (   ) ,   (   )      ,      (   )    

 

                       
      

                       ,    (   )              (   )                      (3.1.2.4) 

 

                       
      

      
          ,    (   )       ,     (   )    

               and so on.  
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Case-1: (    (1  - and     ) solving (3.1.2.4), we get 

 

                                

 

                                
         

 (   )

 (    )
       

 (    )

 (    )
  

 

                                3   
     

 (    )

 (    )
       

 (   )

 (    )
 

and  so on ,the solution is  

 

                                           

 

Case-2: (    and     (1  - ) solving (3.1.2.4), we get 

 

                                    

 

                                   
         

 

  
  

 

  
 (1   )   

 

                                   
     

 (    )

     (    )
 

 

  
 (1   )   

and so on,  the solution is  

 

                                             

 

Case-3: (both   and    (1  - ) solving (3.1.2.4), we get 

 

                                     

 

                                    
           

 (    )

 (    )
       

 (   ) (   )

 (    )
 

 

                                     
      

 (    )  (    )

 (    )  (    )
     

 (   )  (   )

 (    )
 

                                 

and so on the solution is        
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3.2     Modified Homotopy Perturbation Method 

3.2.1   Analysis of MHPM 

              To illustrate the basic concept of this modification, we consider the following 

differential equation: 

                                             ( )   ( )   ( )    ,                                                            (3.2.1.1) 

With the initial conditions: 

                                              (   )    ( )         1   …                                                          (3.2.1.2) 

Where   is a linear operator,   is a nonlinear operator,   is a known analytic function. 

From homotopy technique, we construct the following homotopy: 

                         
  

  
  ( )   ( )   0

  

  
  ( )1   ,    ,  1-                                                  (3.2.1.3) 

               or      
  

  
    ( )   0

  

  
  ( )   ( )1   ,    ,  1-                                                (3.2.1.4) 

             The homotopy parameter p always changes from zero to unity. In case of      the 

equation (3.2.1.3) becomes the linearized equation: 

                                                
  

  
    ( )   ( ) 

and equation (3.2.1.4) becomes the linearized equation: 

                                                
  

  
   ( ) 

In case of    1, equation (3.2.1.3) or (3.2.1.4) turns out to be the original differential 

equation. Where   ,  1-  is an embedding parameter and    is the first approximation 

that satisfies the boundary conditions. We can assume that the solution of eq. (3.2.1.3) can 

be written as   power series in  , as follows: 

                                                               
                                                               (3.2.1.5) 

and the best approximation solution is: 

                                                       lim                                                          (3.2.1.6) 

Now for fractional differential equation: 

 

                                  
  (   )   (        )   (        )   (   )                    (3.2.1.7)  
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 Where   is a linear operator,   is a nonlinear operator,   is a known analytic function and 

   is the Caputo fractional derivative of order  , where   1        with the initial 

conditions: 

 

                     (   )    ( )                 1   3 …    1                                                       (3.2.1.8) 

 

Homotopy structure is: 

 

                                  
     (        )    (   )   , (        )    (   )-             (3.2.1.9) 

 

                       Or      
      (   )   , (        )   (        )    (   )-           (3.2.1.10) 

 

3.2.2   Implementation of the method 

(A)  Sine-Gordon equation 

        According to modified homotopy perturbation method, we suppose that the solution 

(2.3.1) can be representing in power of    as (3.2.1.5). Then by equating the same powers 

of     and the Taylor series expansion of sin ( ) we get 

                                                   ,      (   )                  (   )    sech( ) 

                                   ,       (   )      ,          (   )    

                                    ,      (   )      ,          (   )    

                                   ,       (   )       ,         (   )    

and so on.   

Solving these equations by simple integral yields                and so on. 

 

     sech( )    
   

3
sech ( )    

   

1 
(   cosh( )) sech ( )  

   sech ( )

1 
   

  

31 
( 6

    cosh(  )    cosh(  )) 

This gives the approximate solution. 

(B)  Fractional-order Klein-Gordon equation 

           For solving the equation (2.5.1), we construct the following homotopy : 

                                          
   6  

    

 (   )
  ,(   6 )        -                               (3.2.2.1) 
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Where      6 
 .

    

 (   )
/        and         ( 

  6 )   

Substituting Eq. (3.2.1.5) and the initial conditions Eq. (2.5.2) into Eq. (3.2.2.1) and 

equating the same power of     we obtain the following equations: 

                 
    6 

     

 (   )
                                ,     (   )                   (  ) (   )    

                
 
   ( 

  6 )   (  )         ,   (   )                   (  ) (   )    

               
 
   (  )                                     ,     (   )                   (  ) (   )    

and so on. Solving these equations by simple integral we obtained             and so on. 

 (   )       

This is the required exact solution. 

3.3     Homotopy Perturbation Transform Method 

3.3.1      Analysis of   HPTM 

                To illustrate the basic concept of this method, we consider the following 

differential equation: 

                                                          (   )     (   )     (   )   (   )                         (3.3.1.1) 

With the initial conditions: 

                                                         (   )   ( )    (   )   ( ) 

 Where   
  

   
 is the second order linear differential operator,   is the differential 

operator of less order than     is the general nonlinear differential operator and  (   ) is 

the source term. Taking the Laplace transform   on both sides of equation (3.3.1.1), we 

have 

                                          ,   (   )-    ,   (   )-    ,   (   )-    ,  (   ) -.          (3.3.1.2) 

Using the differentiation property of the Laplace transform, we obtained 

    , (   )-  
 ( )

 
   

 ( )

  
   

 

  
   ,  (   ) -    

 

  
   ,    (   ) -    

 

  
   ,    (   )-   (3.3.1.3) 

Operating with the Laplace inverse on both sides of equation (3.3.1.3), we have 
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                                        (   )   (   )      [ 
 

  
   ,    (   )       (   ) -]                (3.3.1.4) 

Where  (   ) is the term arising from the source term and the prescribed initial 

conditions.  Now apply the HPM 

                                                (   )  ∑      
 
   (    )                                                              (3.3.1.5) 

and the nonlinear term can be decomposed as  

                                                (   )  ∑     
 
   ( )                                                                (3.3.1.6) 

For some He’s polynomial   ( ) that are given by 

                        (         …    )  
 

   
 
  

   
[  ( ∑     

 
   ) ]

   
      1   3 …              (3.3.1.7)     

Substituting equations (3.3.1.5) and (3.3.1.6) in Eq. (3.3.1.4) we have 

∑      
 
   (   )   (   )   .   [ 

 

  
  ,   ∑       (   )

 
    ∑       ( )

 
   -]/ (3.3.1.8)  

Which is the coupling of the Laplace transform and the HPM using He’s polynomials 

Comparing the coefficient of like powers of   , the following approximation are obtained. 

                                                 (   )   (   ) 

      (   )    
   [ 

1

  
 ,    (   )    ( ) ] 

      (   )    
  [ 

1

  
  ,    (   )    ( ) ] 

      (   )    
   [ 

1

  
 ,    (   )     ( ) ] 

                                         and so on. 

3.3.2 Implementation of the Method 

 (A)   Linear Schrödinger equation 

           Taking the Laplace transform on both sides of Eq. (2.1.1) subject to the initial 

condition (2.1.2), we have 

                                             ,  (   )-   
       (  )

 
 
 

 
    ,     -                                              (3.3.2.1) 

The inverse of Laplace transforms 
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                                         (   )  1  cosh (  )    0
 

 
  ,   -1                                             (3.3.2.2) 

Now applying the HPM, we get 

  ∑      
 
     = 1  cosh    .    [ 

 

 
   ,( ∑      

 
   (   ))   -]/                              (3.3.2.3) 

Comparing the coefficients of same powers of  , we have  

                                                                       

                                              (   )  1  cosh   

                                              (   )    
  [ 

 

 
   ,(  )   -]  (    ) cosh (  ) 

                                              (   )    
  [ 

 

 
   ,(  )  -]   

(    )      (  )

  
 

                                             (   )    
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   ,(  )  -]  

(    )      (  )

  
 

and so on. Therefore the solution  (   )is given by   

 (   )  1  cosh (  )  (    )cosh (  )  
(    ) cosh (  )

  
 
(    ) cosh (  )

3 
   

                  1       cosh (  ) 

This is an exact solution. 

(B)  Non- Linear Schrödinger equation 

          Taking the Laplace transform on both sides of Eq. (2.2.1) subject to the initial 

condition Eq. (2.2.2), we have 

                                        , (   )-   
   

 
  

 

 
    ,       

  ̅]                                                  (3.3.2.4) 

The inverse of Laplace transform implies that 

                                        (   )         0 
 

 
   ,       

  ̅-1.                                             (3.3.2.5) 

Now applying the HPM, we get 

∑     
 
   (   )       .   [

 

 
  ,(∑     

 
   (   ))   ∑     

 
   ( )-]/           (3.3.2.6) 

The first few components of He’s polynomial are given by 
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                                          ( )     
   ̅̅ ̅ 

                                          ( )   (  
   ̅̅ ̅         ̅̅ ̅) 

and so on. Comparing the coefficients of same powers of  , we have  

                                                    (   )   
   

                                                    (   )    
  0

 

 
  ,(  )     ( )-1  (  ) 

   

       (   )    
  [

1

 
  ,(  )     ( )-]   
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      (   )    
  [

1

 
  ,(  )     ( )-]   

(  )    

3 
 

and so on. Therefore the solution  (   )is given by 

                                    (   )      ,1     
(  ) 

  
 
(  ) 

  
  - 

                                                      (   ) 

This is an exact solution. 
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Conclusion 

 

Homotopy perturbation method (HPM) has the advantage of dealing directly with the 

problem without transformations, linearization, discretization or any unrealistic 

assumption and usually a few iterations lead to an accurate approximation of the exact 

solution. It is clear that HPM provides fast convergence to exact solutions. The comparative 

study between homotopy perturbation and modified homoopy perturbation methods show 

that the MHPM is better than HPM because this method can obtain the exact solution only 

in one iteration. So this method is very effective, simple and very fast convergence as 

compared to HPM.In homotopy perturbation transform method (HPTM) the solution 

procedure is simple by using He’s polynomials. It is capable of reducing the volume of the 

computational work as compared to the classical homotopy perturbation method. Also it 

does not require any arbitrary initial guess    and     . Finally ,I observed that the 

Homotopy perturbation transform method is full advantage of all other given methods. 
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