463,371 research outputs found

    Benchmarking VisualStudio.NET for the development and implementation of a manufacturing execution system

    Get PDF
    The focus of this thesis is to show the utility of Microsoft\u27s\u27 .NET framework in developing and implementing a MES system. The manufacturing environment today, more than ever, is working towards achieving better yields, productivity, quality, and customer satisfaction. Companies such as DELL are rapidly outgrowing their competition due to better management of their product lifecycles. The time between receiving a new order to the time the final product is shipped is getting shorter. Historically, business management applications such as Enterprise Resource Planning (ERP) systems and Customer Relationship Management (CRM) systems have been implemented without too much importance given to the operational and shop floor needs. The fact is that these business systems can be successful only when they are properly integrated with real-time data from the shop floor, which is the core of any manufacturing set-up. A Manufacturing Execution System or a MES is this link between the shop floor and the top floor. MESA international defines MES as Systems that deliver information enabling the optimization of production activities from order launch to finished goods Thus, a MES provides the right information to the right people at the right time in a right format, to help them make well-informed decisions. Thus, a necessity for an efficient MES is high capability of integration with the existing systems on the operational level. This is where Microsoft\u27s\u27 VS.NET fits in. Microsoft defines .NET as A set of software technologies for connecting information, people, systems and devices . The vision of .NET is to enable the end user to connect to information from any place at anytime, using any device and in a manner that is independent of the platform on which the service is based. The building block of the .NET framework is the Common Language Runtime or CLR, which is capable of converting data from its original format into a format understandable to .NET and then use that format to interface with its client. This feature that .NET provides holds the key in the context of a MES development and implementation. The aim of this applied research is to design a MES using VS.NET to control the working of a Flexible Manufacturing System (FMS) namely CAMCELL. The architecture used for the MES will then be gauged against an MES implementation done previously using a Siemens\u27 PC-based automation technology and Visual FoxPro. This study will integrate the Siemens\u27 technology with the .NET framework to enhance the resulting MES efficiency. The shop floor details or the real-time data collection will be done using the databases from WinCC and data aggregation and manipulation will be done within the .NET framework. The software architecture used for this study will achieve vertical integration between the CAMCELL ERP layer, the MES layer and the Control layer. The study will demonstrate how the data stored in a high level ERP database can be converted into useful information for the control layer for process control and also how real-time information gathered from the control layer can be filtered into useful information up to the ERP layer to facilitate the decision making process. VS.NET user interface screens will be proposed to support these activities. The performance of the proposed architecture will be compared to that from previous studies, thus benchmarking VS.NET for the implementation of the MES

    SILS MRAT: A Multi-Agent Decision-Support System for Shipboard Integration of Logistics Systems

    Get PDF
    This report describes work performed by CDM Technologies Inc. on subcontract to ManTech Advanced Systems International, Inc. (Fairmont, West Virginia), and under sponsorship of the Office of Naval Research (ONR). The principal aim of the SILS (Shipboard Integration of Logistics Systems) project is to provide a decision-support capability for Navy ships that integrates shipboard logistical and tactical systems within a near real-time, automated, computer-based shipboard readiness and situation awareness facility. Specifically, SILS is intended to provide the captain of a ship and his staff with an accurate evaluation of the current condition of the ship, based on the ability of all of its equipment, services and personnel to perform their intended functions. The SILS software system consists of two main subsystems, namely: the SILS IE (Interface Engine) subsystem for information interchange with heterogeneous external applications, developed by ManTech Advanced Systems International; and, the SILS MRAT (Mission Readiness Analysis Toolkit) subsystem for intelligent decision-support with collaborative software agents, developed by CDM Technologies. This report is focused specifically on the technical aspects of the SILS MRAT subsystem. The automated reasoning capabilities of SILS MRAT are supported by a knowledge management architecture that is based on information-centric principles. Such an architecture utilizes a virtual model of the real world problem situation, consisting of data objects with characteristics and a rich set of relationships. Commonly referred to as an ontology, this internal information model provides a common vocabulary and context for software agents with reasoning capabilities. The concurrent need for incremental capability increases implies a steadily increasing data load from diverse operational (dynamic) and historical (static) data sources, ranging from free text messages and Web content to highly structured data contained in consolidated operational data stores, Data Warehouses, and Data Marts. In order to provide useful high-level capabilities the architecture is required to support the transformation of these data flows into information and knowledge relevant to the concerns and operational context of individual shipboard users. Accordingly, the system must be capable of not only storing data but also the relationships and higher level concepts that place the data into context. For this reason, to manage an increasing number of relationships and concepts over time, the SILS MRAT subsystem was designed to employ a formalized ontological framework. There were four additional considerations in the selection of the overall SILS architecture. First, utility to support a useful level of automated information management (i.e., the ability to collaboratively analyze data, monitor dynamic operational context, formulate warnings and alerts, and generate recommendations). Second, flexibility to accommodate contributions from multiple team members that may employ differing technologies and implementation paradigms. Third, scalability to allow a progressive increase in the breadth and diversity of the data sources, the volume of data processed, the number of validated components, and the intelligence of the tools (i.e., agents). Fourth, adaptability to facilitate the tailoring of the information management capabilities to different data sources and existing data environments. The current SILS architecture addresses these desirable characteristics by partitioning the system into a lower-level data collection and integration layer, a higher-level information management layer (SILS MRAT), and a translation facility that is capable of mapping the data schema of the lower layer to the information representation (i.e., ontology) of the upper layer (SILS IE). The higher-level information management layer provides a collaborative, distributed communication facility that supports the development of semi-autonomous modules of capability referred to as agents. The agents employ the formalized ontology supported by the communication facility to collaborate with each other and the human users in a meaningful manner

    Service oriented architecture (SOA) implementation framework for heterogeneous information systems integration

    Get PDF
    Heterogeneous information systems (IS) creates difficulties to automatically integrate data in different IS environment. These situations have increased operating and maintenance costs as well as wasteful data storage, which is caused by data redundancy. Since the emerging of Service Oriented Architecture (SOA), the latest trend in IS development, many researchers have proposed various SOA conceptual models and frameworks. The main objective behind these efforts was to provide a guideline for a successful SOA adoption. In Malaysia, higher learning institutions have taken some initiatives to implement SOA-based systems to improve the quality of IS performance. However, most of the existing SOA frameworks available are still lacking of good design to support an integration of heterogeneous IS. In order to fill this gap, this study was conducted to seek for an opportunity to enhance the existing SOA implementation frameworks of heterogeneous IS integration. A consolidation of the existing related frameworks and consensus from experts yield a new SOA framework. A case study approach in a Malaysia public university was applied to test and validate the framework by conducted prototyping experiments with the focus on several student information systems. The evaluation from the users shows that the proposed framework has met SOA criteria like service based, data update in real time and accessibility. This finding has been proven with successful prototype experiments. With the findings and results of this study, an enhancement of SOA implementation framework was fulfilled by focusing on integrating heterogeneous IS. This is a new contribution SOA domain in the context of heterogeneous IS integration in Malaysia public universities

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computation”, “Embodiment”, and “Biology” to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computation”, “Embodiment”, and “Biology”. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural design”. These three major topics will be introduced in this Summary.   “Computation”, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form” has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form” in architecture as a continual “information processor” rather than the result of information processing. In other words, “Form” should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formation”. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities?   “Embodiment” in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension” (McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs” (Gilles Deleuze and Félix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology” proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities.   “Biology”, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural process”. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complex”, “Geometric Information Distribution”, and “On/Off Switch and Trigger.” The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential System based approach from the “Simple to Complex” principle of Evo-Devo B. Extract the idea of “Collective Intelligence” from “Geometric information Distribution” principle of Evo-Devo C. Extract the principle of “Assembly Regulation” from “On/Off switch and trigger” principle of Evo-Devo The “HyperCell” research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBody”. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell” will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures

    Software architecture knowledge for intelligent light maintenance

    Get PDF
    The maintenance management plays an important role in the monitoring of business activities. It ensures a certain level of services in industrial systems by improving the ability to function in accordance with prescribed procedures. This has a decisive impact on the performance of these systems in terms of operational efficiency, reliability and associated intervention costs. To support the maintenance processes of a wide range of industrial services, a knowledge-based component is useful to perform the intelligent monitoring. In this context we propose a generic model for supporting and generating industrial lights maintenance processes. The modeled intelligent approach involves information structuring and knowledge sharing in the industrial setting and the implementation of specialized maintenance management software in the target information system. As a first step we defined computerized procedures from the conceptual structure of industrial data to ensure their interoperability and effective use of information and communication technologies in the software dedicated to the management of maintenance (E-candela). The second step is the implementation of this software architecture with specification of business rules, especially by organizing taxonomical information of the lighting systems, and applying intelligencebased operations and analysis to capitalize knowledge from maintenance experiences. Finally, the third step is the deployment of the software with contextual adaptation of the user interface to allow the management of operations, editions of the balance sheets and real-time location obtained through geolocation data. In practice, these computational intelligence-based modes of reasoning involve an engineering framework that facilitates the continuous improvement of a comprehensive maintenance regime

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computationâ€, “Embodimentâ€, and “Biology†to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computationâ€, “Embodimentâ€, and “Biologyâ€. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural designâ€. These three major topics will be introduced in this Summary. “Computationâ€, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form†has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form†in architecture as a continual “information processor†rather than the result of information processing. In other words, “Form†should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formationâ€. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities? “Embodiment†in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension†(McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs†(Gilles Deleuze and Félix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology†proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities. “Biologyâ€, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural processâ€. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complexâ€, “Geometric Information Distributionâ€, and “On/Off Switch and Trigger.†The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential Systembased approach from the “Simple to Complex†principle of Evo-Devo B. Extract the idea of “Collective Intelligence†from “Geometric information Distribution†principle of Evo-Devo C. Extract the principle of “Assembly Regulation†from “On/Off switch and trigger†principle of Evo-Devo The “HyperCell†research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBodyâ€. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell†will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures

    Spatial Pyramid Context-Aware Moving Object Detection and Tracking for Full Motion Video and Wide Aerial Motion Imagery

    Get PDF
    A robust and fast automatic moving object detection and tracking system is essential to characterize target object and extract spatial and temporal information for different functionalities including video surveillance systems, urban traffic monitoring and navigation, robotic. In this dissertation, I present a collaborative Spatial Pyramid Context-aware moving object detection and Tracking system. The proposed visual tracker is composed of one master tracker that usually relies on visual object features and two auxiliary trackers based on object temporal motion information that will be called dynamically to assist master tracker. SPCT utilizes image spatial context at different level to make the video tracking system resistant to occlusion, background noise and improve target localization accuracy and robustness. We chose a pre-selected seven-channel complementary features including RGB color, intensity and spatial pyramid of HoG to encode object color, shape and spatial layout information. We exploit integral histogram as building block to meet the demands of real-time performance. A novel fast algorithm is presented to accurately evaluate spatially weighted local histograms in constant time complexity using an extension of the integral histogram method. Different techniques are explored to efficiently compute integral histogram on GPU architecture and applied for fast spatio-temporal median computations and 3D face reconstruction texturing. We proposed a multi-component framework based on semantic fusion of motion information with projected building footprint map to significantly reduce the false alarm rate in urban scenes with many tall structures. The experiments on extensive VOTC2016 benchmark dataset and aerial video confirm that combining complementary tracking cues in an intelligent fusion framework enables persistent tracking for Full Motion Video and Wide Aerial Motion Imagery.Comment: PhD Dissertation (162 pages

    DiVA: A Distributed Video Analysis framework applied to video-surveillance systems

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. C. San Miguel, J. Bescós, J. M. Martónez, and Á. García, "DiVA: A Distributed Video Analysis Framework Applied to Video-Surveillance Systems", in WIAMIS '08. Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, Klagenfurt (Germay), 2008, pp. 207 - 210.This paper describes a generic, scalable, and distributed framework for real-time video-analysis intended for research, prototyping and services deployment purposes. The architecture considers multiple cameras and is based on a server/client model. The information generated by each analysis module and the context information are made accessible to the whole system by using a database system. System modules can be interconnected in several ways, thus achieving flexibility. Two main design criteria have been low computational cost and easy component integration. The experimental results show the potential use of this system.This work is supported by Cátedra Infoglobal-UAM for “Nuevas Tecnologías de video aplicadas a la seguridad”, by the Spanish Government (TEC2007-65400 SemanticVideo), by the Comunidad de Madrid (S-050/TIC-0223 - ProMultiDis-CM), by the Consejería de Educación of the Comunidad de Madrid and by The European Social Fund
    corecore