

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

CDM TECHNICAL REPORT: CDM-15-04

SILS MRAT: A Multi-Agent Decision-Support System
for

Shipboard Integration of Logistics Systems

Michael Zang
Jonathan Lee

Joyce Gaoiran

Adam Gray

Jered Gray

Charles Hayek

David Nau

Chad Pond

Michael Rutter

Zachary Speck

CDM Technologies Inc.
2975 McMillan Avenue (Suite 272), San Luis Obispo, California 93401

and
Jens Pohl

Collaborative Agent Design Research Center

California Polytechnic State University, San Luis Obispo, California 93407

Abstract
This report describes work performed by CDM Technologies Inc. on subcontract to
ManTech Advanced Systems International, Inc. (Fairmont, West Virginia), and under
sponsorship of the Office of Naval Research (ONR). The principal aim of the SILS
(Shipboard Integration of Logistics Systems) project is to provide a decision-support
capability for Navy ships that integrates shipboard logistical and tactical systems within
a near real-time, automated, computer-based shipboard readiness and situation awareness
facility. Specifically, SILS is intended to provide the captain of a ship and his staff with
an accurate evaluation of the current condition of the ship, based on the ability of all of its
equipment, services and personnel to perform their intended functions.

The SILS software system consists of two main subsystems, namely: the SILS IE
(Interface Engine) subsystem for information interchange with heterogeneous external
applications, developed by ManTech Advanced Systems International; and, the SILS
MRAT (Mission Readiness Analysis Toolkit) subsystem for intelligent decision-support
with collaborative software agents, developed by CDM Technologies. This report is
focused specifically on the technical aspects of the SILS MRAT subsystem.

The automated reasoning capabilities of SILS MRAT are supported by a knowledge
management architecture that is based on information-centric principles. Such an

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19135383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

architecture utilizes a virtual model of the real world problem situation, consisting of data
objects with characteristics and a rich set of relationships. Commonly referred to as an
ontology, this internal information model provides a common vocabulary and context for
software agents with reasoning capabilities. The concurrent need for incremental
capability increases implies a steadily increasing data load from diverse operational
(dynamic) and historical (static) data sources, ranging from free text messages and Web
content to highly structured data contained in consolidated operational data stores, Data
Warehouses, and Data Marts. In order to provide useful high-level capabilities the
architecture is required to support the transformation of these data flows into information
and knowledge relevant to the concerns and operational context of individual shipboard
users. Accordingly, the system must be capable of not only storing data but also the
relationships and higher level concepts that place the data into context. For this reason, to
manage an increasing number of relationships and concepts over time, the SILS MRAT
subsystem was designed to employ a formalized ontological framework.
There were four additional considerations in the selection of the overall SILS architecture.
First, utility to support a useful level of automated information management (i.e., the ability
to collaboratively analyze data, monitor dynamic operational context, formulate warnings
and alerts, and generate recommendations). Second, flexibility to accommodate
contributions from multiple team members that may employ differing technologies and
implementation paradigms. Third, scalability to allow a progressive increase in the breadth
and diversity of the data sources, the volume of data processed, the number of validated
components, and the intelligence of the tools (i.e., agents). Fourth, adaptability to facilitate
the tailoring of the information management capabilities to different data sources and
existing data environments. The current SILS architecture addresses these desirable
characteristics by partitioning the system into a lower-level data collection and integration
layer, a higher-level information management layer (SILS MRAT), and a translation facility
that is capable of mapping the data schema of the lower layer to the information
representation (i.e., ontology) of the upper layer (SILS IE).
The higher-level information management layer provides a collaborative, distributed
communication facility that supports the development of semi-autonomous modules of
capability referred to as agents. The agents employ the formalized ontology supported by
the communication facility to collaborate with each other and the human users in a
meaningful manner.

Acknowledgements
The work on the SILS MRAT subsystem of the Shipboard Integration of Logistics
Systems (SILS) program, described in this report, was performed under subcontract to
ManTech Advanced Systems International, Inc. and is being sponsored by the Logistics
Program Office of the Office of Naval Research (ONR), Washington (DC).

2

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

SILS MRAT: A Multi-Agent Decision-Support System
for

Shipboard Integration of Logistics Systems

Table of Contents
1. Introduction …………………………………………………………………… 7

2. Overview ……………………………………………………………………… 9

3. Operational Concepts and Typical Scenario ………………………………….. 13

3.1 Typical Mission Scenario ……………………………………………. 14

3.2 The CO Assesses Ship Readiness …………………………………… 15

3.3 The SUPPO Initiates On Board Repairs …………………………….. 16

3.3.1 The 2M Technician Repairs the Circuit Card ……………….. 18

3.3.2 The Ship Technician Repairs the CIWS …………………….. 19

3.3.3 The ASN/SPN-35 is Repaired ……………………………….. 19

3.3.4 The CO Reviews the State of the Ship ………………………. 19

4. Top Level Requirements ……………………………………………………… 21

4.1 Functional Requirements ……………………………………………. 21

4.2 Ancillary Requirements ……………………………………………… 22

5. System Architecture ………………………………………………………….. 23

5.1 Logical View ………………………………………………………… 23

5.2 System Tiers ………………………………………………………… 25

5.2.1 Domain Tier …………………………………………………. 25

5.3 Component View ……………………………………………………. 27

5.4 Process View ………………………………………………………… 28

5.5 Interaction View …………………………………………………….. 28

5.6 Deployment View …………………………………………………… 29

5.6.1 Interface Engine Development and Test Configuration …….. 30

5.6.2 Decision-Support Development and Test Configuration ……. 30

5.6.3 System Integration Configuration …………………………… 30

5.6.4 System Demonstration Configuration ……………………….. 30

6. System Agents ………………………………………………………………… 31

6.1 Rule-Based Agents ………………………………………………….. 32

6.1.1 Mission Capability Agent ……………………………………. 32

6.1.2 Scheduling Agent ……………………………………………. 33

6.1.3 Personnel Agent ……………………………………………. 33

6.1.4 Supply Agent ………………………………………………… 34

3

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

6.1.5 Interface Agent ………………………………………………. 34

6.1.6 The Combat Systems Group of Agent ……………………….. 34

6.1.7 Environmental Protection Agent …………………………….. 34

6.1.8 Environment Agent ………………………………………….. 35

6.1.9 Rules of Engagement (ROE) Agent …………………………. 35

6.1.10 Training and Performance Agent ……………………………. 35

7. Component Functionality …………………………………………………….. 37

7.1 SILS Application Components ……………………………………… 37

7.1.1 Application Tools …………………………………………… 38

7.1.2 Support Tools ……………………………………………….. 46

7.2 SILS Domain Components ………………………………………….. 48

7.2.1 Information Server …………………………………………… 49

7.2.2 Name Server …………………………………………………. 49

7.2.3 Recall Engine ……………………………………………….. 49

7.2.4 Interface Engine ……………………………………………… 50

7.2.5 Agent Engine ………………………………………………… 51

7.3 SILS Data Components ……………………………………………… 51

7.3.1 SILS Database ………………………………………………. 52

7.3.2 SILS Casebase ………………………………………………. 52

7.3.3 SILS Rulebase ………………………………………………. 52

7.3.4 SILS File Server ……………………………………………… 52

8. External Interfaces ……………………………………………………………. 53

8.1 Interface Description ………………………………………………… 53

8.2 Interaction Types ……………………………………………………. 55

8.2.1 Physical Level ……………………………………………….. 55

8.2.2 Information Level ……………………………………………. 55

8.2.3 Data Level …………………………………………………… 56

8.3 System Level Interface ……………………………………………….. 56

8.4 Call Level Interface …………………………………………………. 57

8.5 Logical Domain Interface …………………………………………… 60

8.6 Interface Domain Ontology …………………………………………. 62

8.7 Candidate System Interfaces ………………………………………… 64

8.7.1 Primary Candidates ………………………………………….. 64

8.7.2 Secondary Candidates ……………………………………….. 66

8.7.3 Other Candidates …………………………………………….. 67

8.7.4 Existing Support Candidates ………………………………… 68

9. Future Work ………………………………………………………………….. 71

10. Appendix A: Agent Rule Specifications …………………………………….. 73

10.1 Framework Support Rules …………………………………………… 73

10.1.1 Alert …………………………………………………………. 73

4

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

10.1.2 Initialization …………………………………………………. 74

10.1.3 Observation ………………………………………………….. 75

10.2 SILS MRAT Agent Rules …………………………………………… 77

10.2.1 Combat Systems Agent ……………………………………… 77

10.2.2 HM&E Systems Agent ………………………………………. 78

10.2.3 Interface Agent ………………………………………………. 79

10.2.4 Mission Capability Agent …………………………………… 82

10.2.5 Personnel Agent …………………………………………….. 85

10.2.6 Supply Agent ……………………………………………….. 88

10.2.7 Training and Performance Agent ……………………………. 90

11. Appendix B: Façade Specifications ………………………………………….. 91

11.1 Agent Facades ………………………………………………………. 91

11.1.1 Agent Façade ………………………………………………… 91

11.1.2 Agents Façade ……………………………………………….. 92

11.1.3 Alert Façade …………………………………………………. 92

11.1.4 Observation Façade …………………………………………. 92

11.1.5 TargetFacade Façade ………………………………………… 93

11.2 Comment Facades …………………………………………………… 93

11.2.1 Comment Façade …………………………………………… 93

11.2.2 NewComment Façade ……………………………………….. 93

11.3 Department Façades ………………………………………………… 94

11.3.1 AnchoringLog Façade ……………………………………….. 94

11.3.2 ANOR Façade ………………………………………………. 94

11.3.3 CASREP Façade …………………………………………….. 95

11.3.4 DegradedEquipment Façade ………………………………… 95

11.3.5 Departments Façade ………………………………………… 96

11.3.6 Message Façade ……………………………………………… 97

11.4 Launch Facades ……………………………………………………… 98

11.4.1 About Façade ………………………………………………… 98

11.4.2 Domain Façade ……………………………………………… 98

11.4.3 ExistingCycleValidate Façade ………………………………. 99

11.4.4 Logout Façade ……………………………………………….. 99

11.4.5 NewCycle Façade ……………………………………………. 99

11.4.6 System Façade ………………………………………………. 100

11.5 Location Facades ……………………………………………………. 100

11.5.1 CompleteLocation Façade …………………………………… 100

11.5.2 CompleteLocations Façade ………………………………….. 101

11.6 Message Facades …………………………………………………….. 101

11.6.1 Issue Façade …………………………………………………. 101

11.6.2 Issues Façade ………………………………………………… 102

11.6.3 NewIssue Façade ……………………………………………. 102

11.7 Readiness Facades …………………………………………………… 103

11.7.1 AffectedAreas Façade ………………………………………... 103

11.7.2 HMEArea Façade ……………………………………………. 103

5

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.7.3 InactionOption Façade ………………………………………. 104

11.7.4 JobPersonnel Façade ………………………………………… 104

11.7.5 Person Façade ……………………………………………….. 105

11.7.6 ReadinessArea Façade ………………………………………. 106

11.7.7 ReadinessBias Façade ……………………………………….. 107

11.7.8 ReadinessObservation Façade ……………………………….. 107

11.7.9 ReadinessSystem Façade ……………………………………. 108

11.7.10 ResolutionImpact Façade ……………………………………. 108

11.7.11 ResolutionOption Façade ……………………………………. 109

11.7.12 SilsOverview Façade ………………………………………… 109

11.7.13 Training Façade ……………………………………………… 110

11.8 Scheduling Facades …………………………………………………. 111

11.8.1 NewScheduling Task Façade ………………………………... 111

11.8.2 OpportunityCost Façade …………………………………… 112

11.8.3 ResourceRequirement Façade ………………………………. 112

11.8.4 Schedule Façade …………………………………………….. 112

11.8.5 TaskType Façade ……………………………………………. 114

11.8.6 TaskTypes Façade …………………………………………… 115

12. Appendix C: Object Model Package Specifications …………………………. 117

13. References and Bibliography …………………………………………………. 129

14. Glossary of Acronyms………………………………………………………… 131

15. Keyword Index ………………………………………………………………. 135

6

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

1. Introduction

There is a need for the integration of shipboard logistical and tactical systems within a
near real-time, automated, computer-based shipboard readiness and situation awareness
decision-support facility. Such a facility should be able to provide the captain of a ship
and his staff with an accurate evaluation of the current condition of the ship, based on the
ability of all of its equipment, services and personnel to perform their intended functions,
and an overall assessment of the ability of the ship to undertake any given mission.

With a view of satisfying this need, the concept of SILS (Shipboard Integration of
Logistics Systems) was conceived by Dr. Phillip Abraham of the Office of Naval
Research. The prime contractor, ManTech Advanced Systems International, Inc.
(Fairmont, West Virginia), in conjunction with CDM Technologies, Inc. (San Luis
Obispo, California), Thomas Galie (NSWCCD, Philadelphia, Pennsylvania), and Chris
Neff (CINCPACFLT, Hawaii), developed this concept into a project focused on the
analysis and demonstration of agent-based decision-support software technology.

PackageName: SILS MRA

<< program >>

PackageName: CDM

<< responsiblity >>

PackageName: ManTech

<< responsiblity >>

SILS MRAT

<< subsystem >>

ICDM

<< library >>

MOXIE

<< library >>

SILS IE

<< subsystem >>

Existing Systems

<< external >>

Figure 1: Development responsibilities

ManTech Advanced Systems International, Inc. was responsible for providing the SILS
Interface Engine (SILS IE), a subsystem for information interchange between
independently developed external systems. The SILS Interface Engine is a domain
specific configuration based on a generic core known as the ManTech Object eXchange
Interface Engine (MOXIE). The SILS Interface Engine is a key component of SILS as it
is intended to provide most of the information upon which the decision-support activities
are dependent. This top-level executable is generically described as the Interface Engine
in the SILS Architectural Design Report (CDM 2001c). As a subcontractor to ManTech,
CDM Technologies was responsible for providing the SILS Mission Readiness Analysis

7

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Toolkit (SILS MRAT) an ICDM-based toolkit for collaborative decision-support. These
development responsibility interrelationships are schematically depicted in Figure 1.

The Integrated Cooperative Decision Making (ICDM) toolkit provides a software
development framework that facilitates the design and production of distributed, multi-
agent, decision-support applications. Over the past several years, the evolving ICDM
framework has been used with great success by CDM Technologies, Inc. and others for
the design and development of large-scale applications for military customers. Apart
from SILS MRAT for the US Navy, examples include the Integrated Marine Multi-Agent
Command and Control System (IMMACCS) for the US Marine Corps, and the logistical
ICODES and SEAWAY systems for the US Army and US Navy, respectively.

The core component of an ICDM-based application is a virtual representation of the real
world entities and relationships that define the context of the application domain, in the
form of an internal information model (i.e., ontology). The representation of information
(i.e., data and relationships) allows the construction of software modules, referred to as
agents, capable of performing tasks that require reasoning capabilities. Examples of such
tasks include: the monitoring of events in dynamically changing situations; the detection
of conflicts; the triggering of warnings and alerts; the formulation and evaluation of
alternative courses of action; and, the collaborative assessment of situations. Typically,
in ICDM-based applications the agents collaborate with each other and the human users
in their monitoring, planning, and evaluation activities.

At the top level, SILS MRAT is comprised of: a collaborative, distributed, object-serving
communication facility that houses a collection of executable domain object models; an
agent engine housing a collection of collaborative agent federations; and, an end-user
interface. These top-level subsystems and executable components (processes) are
described in the SILS Architectural Design Report (CDM 2001c).

In summary, the essential objective of the SILS project is to provide responsive near real-
time decision-support to a commanding officer and his principal department heads. It is
also intended to demonstrate the capability of an information-centric, collaborative agent,
software architecture to integrate existing systems deployed by the U.S. Navy and thus
contribute to reducing the interoperability problems currently experienced by the Navy.
Finally, SILS will act as a pilot for subsequent development of a deployable ‘readiness
node’ at the ship level and as a basis of a more comprehensive, integrated fleet decision-
support and readiness evaluation system.

8

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

2. Overview

The objective of SILS is to provide a comprehensive, near real-time decision aid to the
commanding officer and the senior staff of a ship. Its general focus is on the planning and
allocation of ship-related mission resources and the identification of changes in readiness
status. More specifically SILS:

1.	 Provides agent-based shipboard decision-support to the commanding officer
and senior enlisted personnel.

2.	 Allows users to view and develop the operational schedule and relate tasks to
their required resources.

3.	 Provides users with agent-generated alerts and change notifications in
response to changes in readiness status.

4.	 Allows users to customize and extend the status reporting features and
mechanisms.

5.	 Integrates with shipboard information, control, and monitoring systems.

As a subset of SILS, MRAT is intended to serve two primary purposes. First, to assist
the ship’s captain and his officers with the logistically ship preparations for deployment.
Second, upon deployment, to collaboratively assist in identifying the readiness levels and
associated risks of major ship systems. The top-level goals of SILS MRAT therefore
include the following:

1.	 Integrate information in a manner that will allow the captain to intuitively
relate SILS information to his mission.

2.	 Present the captain with top-down readiness assessments of ship systems,
schedules and personnel.

3.	 Provide ‘at a glance’ the current status and readiness posture of the ship.

4.	 Assist the captain in developing alternative courses of action.

Furthermore, SILS MRAT demonstrates the contributions that a collaborative decision-
support system could make in assessing the readiness of a ship to perform a particular
mission or task, by integrating information across individual ship information systems
and personnel. In concept, SILS MRAT receives information from:

1.	 Sources internal to the ship such as the personnel, maintenance, logistics,
supplies, and engineering readiness aspects of a ship's posture. Information
sources can include embedded sensors, inputs from key personnel (e.g., the
engineering officer), official ship performance characteristics, official usage
data of various types, and the captain’s instructions.

2.	 Sources external to the ship such as the environmental conditions, the ship’s
mission, and availability of logistical support and supplies.

Utilizing a hierarchal representation of the ship as a system of systems, software agents
reason about this information. As mission discrepancies and/or potential failures are

9

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

noted, the agents generate alerts, implication statements, projections, and/or alternatives.
While these outputs will often identify a specific problem within a particular system, the
system will also attempt to interpret the incoming information more broadly to support
decision-making tasks related to the assessment of whether the ship is ready to perform a
particular mission. Current and planned SILS MRAT agents include the following:

•	 Mission Capability Agent: Identifies high-level problems that affect the
ship’s overall ability to perform a mission.

•	 Training and Performance Agent: Identifies training and performance
deficiencies.

•	 Combat Systems Agent: Monitors the health of the ship’s combat systems.

•	 HM&E Systems Agent: Monitors the health of the ship’s hull, as well as its
mechanical, and electrical systems.

•	 Navigation and Communication Agent: Monitors the health of the ship’s
navigation and communication systems.

•	 Damage Control Agent: Monitors the damage status of the ship and the
health of the ship’s damage control systems.

•	 Supply Agent: Monitors the supply status of the ship.

•	 Personnel Agent: Monitors the manning status of the crew.

•	 Environment Agent: Monitors the external physical environment for
conditions that may affect the mission.

•	 Environmental Protection Agent: Monitors the impact of operations on
environmental regulations.

•	 Rules of Engagement Agent: Monitors operations for compliance with
published rules of engagement.

•	 Interface Agent: Monitors the health of interfacing decision-support and
information systems.

Top-level mission readiness assessments are presented with symbols providing
immediate visibility of a ship’s readiness status biased by mission type.

Fully Mission Capable: All major equipment and systems are fully
capable of performing all required functions without reservations.

Mission Capable – All major equipment and systems are capable of
performing all required functions with some reservations.

Marginally Mission Capable: All major equipment and systems are
capable of performing all required functions with major reservations.

Not Mission Capable in Selected Areas: Not capable of performing
selected major functions in a primary mission area.

10

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Not Mission Capable: Major discrepancies exist in one or more key
functional areas, making the ship incapable of accomplishing a primary
mission.

The SILS MRAT interface is composed of a collection of application tools, primary
among these is the Mission Readiness Assessment Tool depicted in Figure 2. This tool
consists of a collection of panels and toolbars that contain views of the ship status and
readiness conditions, and provide alerts, messages, and notifications to ship officers. The
interface is designed to facilitate rapid assessment of problem conditions and assist in the
decision-making process by exposing interrelated dependencies caused by seemingly
disparate problems and providing facilities to assist in the development of appropriate
courses of actions.

Figure 2: Main screen of the Mission Readiness Assessment Tool (MRAT)

11

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

12

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

3. Operational Concepts and Typical Scenario

The SILS shipboard decision-support system has a significant logistics component
integrated into a comprehensive decision aid for the ship’s captain. The system is
designed to support: planning and allocation of scarce mission resources; scheduling and
integration of readiness-related activities; identification of opportunity costs; and,
maintain a desirable level of distributed situation awareness among the ship’s captain and
senior enlisted personnel. In the latter role, this information-centric decision aid will
essentially function as an intelligent integration facility for the principal existing data-
centric shipboard systems that contribute to mission readiness.

Among the most important decisions made by the captain of a ship are those that
determine the readiness of the ship for war. The captain is singularly responsible for
executing this responsibility, which includes planning all preparations, allocating the
finite resources under his control, requesting and justifying external resources,
supervising the process, and continually assessing the ship’s status to ensure that
appropriate levels of readiness are attained and maintained.

The relative role that decision-support plays in the execution of these responsibilities will
differ in the various phases of the deployment process. During pre-deployment (i.e.,
work up), while still under the Type Commander, the principal role of decision-support is
in planning deliberate resource allocation. This includes evaluating the likely results of
“shorting” some element of the mission in favor of fully allocating resources to another
mission element. Such considerations will eventually lead to a command decision to
accept shortfalls and/or to use some form of consequence analysis as support and
justification in a request for external assistance. In as much as it is designed to be a
distributed system, it may prove feasible to use SILS as a means of submitting the request
with necessary justification and illustration.

Once the ship deploys to an operational area, the situation changes significantly. Here,
external assistance is likely to be much more restricted and always subject to extended
delays. Under these circumstances, it is vital to accurately characterize the elements
involved in shifting resources and then weigh the consequences of the shift in a timely
manner. This is a principal responsibility of command. Before deployment SILS will
provide decision-support to the captain, and to a lesser extent the ship’s officers, with the
overall objective of characterizing the relationship between resources and mission
performance on the one hand and likely consequences on the other hand.

A mission is a broad military tasking designed to accomplish a specified objective. As
such, missions are composed of elements, which in turn consist of specific tasks to be
performed to established standards. Ships can be judged to be fully “mission capable”
(i.e., ready to perform all elements of the mission adequately) or “mission capable with
exceptions”. In the latter case, an exception results from one or more tasks that cannot
currently be performed to standard. The assessment of the resources required to reach an
acceptable performance level in the deficient areas, highlighting the potential to “under
resource” another mission area, and identifying consequences in terms of the mission, are
the focus of SILS.

A mission typically comprises phases and alternative methods of executing each phase.
Decision assistance is desirable and appropriate for both mission phase planning and

13

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

mission phase execution. Each phase has requirements based on where the phase will be
executed and what elements will be utilized. Phase requirements can be broken down
into training, supply, maintenance preparation, and so on. Each of these requirements
can be characterized in terms of system readiness to complete the phase.

SILS is designed to link resources-to-tasks-to-mission elements during the formal
resource planning and readiness work-up process, by first linking tasks to nominally
required resources and then linking these to mission elements. Thereafter, rankings are
drawn from the captain’s mission analysis and assigned to the mission elements. In the
case of the supply requirement, a decision-support advisor could consider the on-board
assets, compare these to the required phase assets, and discover an asset delta (i.e.,
shortfall). The delta could be met in a number of ways. For example, it could be ignored
or it could be satisfied by utilizing an external assets. On the other hand, it might be
possible to change the training program or institute new procedures. Each of these
options has risk levels associated with it.

The process will change when the ship is deployed. During work-up prior to deployment,
the decision process is more formal, more deliberate, and without the urgency that
pertains once the ship is deployed.

While, during work-up the ship might have been able to wait for a particular repair, once
deployed a long delay could seriously impact the mission. A related factor in SILS
decision-support is the system’s role in nominating “best of feasible options”, while the
ship is deployed. The options available to a deployed ship usually differ significantly
from those available while the ship is in port. Hence, useful decision-support will
propose “best of feasible” solutions. The ranking will be a function of the captain’s
decision of which variable is most important (e.g., immediate fix, cheapest fix, etc.) and
his assessment of the risks inherent in each option.

SILS is capable of identifying the risk involved in trading off the performance of one or
more mission elements by shifting resources to improve performance elsewhere. Such a
trade-off may be accomplished by characterizing the risk in terms of the effect that the
resource shift exerts on the tasks associated with that particular mission element. This
task-resource connection is a fundamental relationship within SILS. The kinds of
resources that SILS is capable of taking into account during trade-off analysis include:
time (i.e., for training, repair, etc.); funds and personnel (i.e., quantity, correct NEC,
training status, etc.); and, outside assistance (i.e., supplies, services, etc.).

SILS is designed to automatically perform this type of analysis and offer the
corresponding decision-support services while each phase of a mission is underway. As it
detects shortfalls and deficiencies, it generates alerts and provides advice based on the
assessment of conditions. In addition, SILS is able to support user-initiated, explicit
requests for information on the status of specific mission elements and the feasibility
assessment of a particular course of action.

3.1 Typical Mission Scenario
While performing distance support communications for the USS Peleliu of an
Amphibious Readiness Group (ARG) in the North Arabian Sea, a routine inspection
reveals a problem with the close-in air traffic control radar (AN/SPN-35B). This problem

14

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

results in the suspension of all air operations. A technician on board the ship generates a
maintenance action form (4790-2K) in the OMMS-NG system and a supply part
requisition in the R-Supply (1250) system to initiate the repair procedure.

The ship receives notification to be prepared to conduct amphibious operations within the
next 96 hours. This results in pre-mission checks, which determine that the Close-In
Weapons System (CIWS MT 21) is not fully operational and requires a circuit card
replacement. A maintenance technician generates a maintenance action form (4790-2K)
and supply part requisition (1250) to replace the faulty circuit card.

The Supply Officer (SUPPO) receives notification of the part requisition for the CIWS
repair and sees that the part is not on board, but is available on USS Comstock. While
investigating the possible acquisition of the part from USS Comstock, he notes that all air
operations have been suspended due to a pending repair. This unfortunately prevents any
part requisition from arriving by air. The SUPPO then notices that the part may be
repairable on board through the Gold Disk Program (2M/MTR). He checks the personnel
roster and sees that the ship has a 2M technician on board with the correct NEC to
perform the repair.

The circuit card is delivered to the 2M technician who generates the appropriate 4790-2K
maintenance action form, performs the repair, and has the part delivered to the ship
technician responsible for the CIWS system repair. The ship technician installs the card,
verifies that the CIWS is operational, completes maintenance action form (4790-2K), and
informs the 2M technician of the successful repair. The latter then completes the
appropriate maintenance action form (4790-2K) for the circuit card repair.

The SUPPO notes the parts requisition for the close-in air traffic control radar (AN/SPN-
35) repair and sees that the part is on board. He has the part taken to the ship technician
responsible for the AN/SPN-35 repair, who then performs the repair and subsequently
completes the required maintenance action form (4790-2K).

The Commanding Officer (CO) reviews the state of the ship biased for the pending
amphibious assault. Noting that he apparently has no pending readiness issues, he checks
the operational schedule and verifies that all pre-mission checks have been completed and
that all prerequisite maintenance activities have been performed.

This scenario demonstrates the collaboration between agents and key ship personnel
while showcasing the readiness assessment capability provided by SILS. It involves two
concurrent system failures, namely the AN/SPN-35B air control radar and the CIWS MT
21 air defense system. The AN/SPN-35B failure effects the repair options of the more
critical CIWS MT 21 failure.

3.2 The CO Assesses Ship Readiness
A routine PMS inspection reveals a problem with the AN/SPN-35B close-in air traffic
control radar. A ship technician generates a 4790-2K Maintenance Action Form for
AN/SPN-35 in the OMMS-NG maintenance system aboard ship and a 1250 Supply Part
Requisition in the R-Supply system. These actions are automatically recorded by the
SILS Interface Engine (i.e., due to the standing, source independent, agent subscriptions
for maintenance actions and supply requisitions). The Interface Engine gathers the

15

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

appropriate details from the source systems and posts them to the SILS MRAT Interface
Domain, which in turn triggers the SILS MRAT Interface Agent to translate the posted
information to the core Problem Domain for agent analysis. Shortly thereafter the CO
receives notification that he is to be prepared to conduct amphibious operations within
the next 96 hours.

The CO goes to a conveniently located computer workstation to check on the current
state of his ship. He uses his personally configured SILS Dashboard (Figure 3) for his
initial assessment and notes that the Overall Status Indicator is ‘red’, indicating ‘not
mission capable’. In the Mission Status pane he can see that there are major readiness
issues related to amphibious warfare. Additionally, the Department Status Pane indicates
that the amphibious warfare problems are associated with the Air and Combat
departments.

Figure 3: Commanding Officer’s SILS Dashboard

The CO decides further investigation is warranted and launches the SILS Mission
Readiness Assessment Tool (MRAT) from his Dashboard, displayed in Figure 4. In the
toolbars across the top of the application the CO selects “Amphib Warfare” in the
Mission Bias toolbar and the “Air and Combat” departments in the Department Bias
Toolbar. Then he selects the “Maintenance Mission Area” on the right.

These selections impart a two level bias on the Readiness Observation Pane just below
the Mission Area Pane, to narrow the information to show only those readiness
observations related to Maintenance on Air or Combat department equipment that affect
amphibious operations. The CO drills down the hierarchically categorized readiness
observation tree and notes that the close-in air traffic control radar is down. He then
checks the Problem Presentation Space to the left of the Readiness Observation Pane to
review contextual information associated with the selected readiness observation. In the
graphical Ship View he notes that the flight deck is depicted in yellow indicating
associated agent alerts. He directly clicks on the graphical depiction of the flight deck to
obtain a context sensitive menu from which he elects to display the alerts associated with
the flight deck.

This action prompts the display of the “Alerts by Area” dialog. This shows an agent
recommendation to suspend air operations due to the failure of the AN/SPN-35B radar.
The CO concurs with the recommendation and elects to suspend air operations.

3.3 The SUPPO Initiates On Board Repairs
Through pre-mission checks in anticipation of an amphibious assault the Supply Officer
(SUPPO) has determined that the CIWS MT 21 close-in weapons system is not fully
operational. The ship technician generates a 4790-2K Maintenance Action Form for

16

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

CIWS in the OMMS-NG system and a 1250 Supply Part Requisition in the R-Supply
system to replace the faulty circuit card. At his desk in the supply department, the
SUPPO notes a Supply Agent state change on his personally configured SILS MRAT
Dashboard.

Figure 4: Commanding Officer’s Assessment Tool

The SUPPO opens the Supply Agent Supply Information Dialog directly from the
Dashboard by clicking on the Dashboard Supply Agent icon resulting in the display
depicted in Figure 5. He launches the Assessment Tool, notes the Supply Agent state, and
clicks on the Supply Agent to view the alert report. The report indicates two pending
supply part requisitions. He looks at both issues and decides to focus first on the CIWS
repair, as it represents a critical ship defense capability.

The SUPPO drills down the Maintenance Readiness Area hierarchy to the CIWS
readiness issue, which he selects as a means of further biasing the problem presentation
space in respect to his immediate concerns.

Subsequently the SUPPO returns to the SILS Dashboard, selects the “Resolution” tab and
launches the Resolution Tool to review suggested approaches to resolving the CIWS
problem. In the Resolution Tool, he clicks on the “Suggested Approaches” option to
observe the possible impact of each alternative approach. Finally, closing the Resolution
Tool, the SUPPO returns to the Assessment Tool, reviews the “View-Space Supply”

17

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

view, and notes that the required part is not aboard ship but is available from the USS
Comstock at a cost of $7,203.

The SUPPO looks at the “View Space-Ship” view, double-clicks on the “Flight Deck”,
selects “Alerts”, and notes that air operations have been suspended. Next, the SUPPO
looks at the “View Space-Job” view and notes that the required 1591 Gold Disk NEC is
available on board. Given the high price and current problems with air operations the
SUPPO decides to initiate on board repairs.

Figure 5: Supply Officer views the Supply Agent’s report

3.3.1 The 2M Technician Repairs the Circuit Card

The CIWS circuit card is delivered to the 2M technician, who generates the appropriate
4790-2K maintenance action form, performs the repair, completes the 4790-2K
maintenance action form for the circuit card repair, and has the part delivered to the
appropriate work center.

Thereafter the CO returns to the Dashboard, selects the “Scheduling” tab, launches the
scheduling tool, reviews the scheduled tasks, and closes the “Scheduling Tool”.

18

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

3.3.2 The Ship Technician Repairs the CIWS

The ship technician sees that the part is now available at the work center. He picks up the
card and installs it in the CIWS, verifies that the CIWS is operational, and completes the
4790-2K maintenance action form for system repairs.

The SUPPO now checks the “View-Space Supply” view, biased by the CIWS readiness
observation, and sees that the part is now available. He immediately notifies the ship
technician, who performs the repair.

The CO checks the Assessment Tool, right clicks on the “Maintenance Readiness
Summary”, and notes that the “Close-in Weapons System (CIWS MT 21) is not fully
operational” notice is no longer displayed.

3.3.3 The AN/SPN-35 is Repaired

The SUPPO notes the parts requisition for the AN/SPN-35 repair and sees that the part is
on board. He has the part taken to the ship technician responsible for AN/SPN-35
repairs. The designated ship technician performs the repair and completes the required
4790-2K maintenance action form.

The CO notes that the ship is fully mission capable for all missions and re-establishes air
operations.

3.3.4 The CO Reviews the State of the Ship

The CO reviews the state of the ship biased for the pending amphibious assault. He first
notes that he has no pending readiness issues, and then checks the operational schedule to
verify that all pre-mission checks have been completed and that the prerequisite
maintenance activities have been performed.

19

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

20

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

4. Top Level Requirements

Succinctly stated, the design goals of SILS were aimed at increasing the situation
awareness, responsiveness, and programming productivity of the captain and his
command staff. The approach taken by the SILS project team to achieve these goals
involved the development of a generic ontological model capable of representing the
principal shipboard readiness factors and supporting collaborative agents with automatic
reasoning capabilities.

4.1	 Functional Requirements
The functional requirements of SILS were defined by members of the potential user
community in terms of the following five assistance areas:

1. Portrayal and development of the operational schedule.

1.1	 Provision for drilling down within the operational schedule to
identify sub-tasks.

1.2	 Provision for relating tasks to sub-tasks and sub-tasks to resources.

1.3	 Provision for portraying the operational schedule in terms of
primary mission activities and supporting preparatory activities.

1.4	 Provision for designing proposed missions and integrating them
into an existing operational schedule.

1.5	 Provision for providing the operational schedule in a format
accessible to non-SILS users.

1.6	 Provision for presenting estimated completion percentages for
parent-level tasks.

2. Provision of extensible status reporting features and mechanisms.

2.1	 Provision for users to dynamically change the format of the
consolidated assessments within their status reports.

2.2	 Provision for users to establish new assessment requirements,
implementing protocols, and supporting phenomena.

2.3	 Provision for scheduling, executing, and recording readiness status
updates.

2.4	 Provision for individual departments to generate and post
departmental status reports.

2.5	 Provision for individual users, particularly commanding officers,
to develop consolidated ship status reports emphasizing particular
areas of concern.

2.6	 Provision for tracing overall combat readiness assessments to their
constituent components.

21

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

2.7	 Provision to provide status reports in a format accessible to non-
SILS users.

3. Provision of decision-support to the commanding officer and primary users.

3.1	 Ability to use the assessment capabilities to project readiness
status.

3.2	 Ability to evaluate proposed missions in terms of key material and
training requirements.

3.3	 Ability to relate readiness assessments to required actions.

3.4	 Ability to relate mission preparations to required actions.

3.5	 Ability to coordinate and access resources for related actions.

3.6	 Ability to relate standard assessment requirements to any of the
principal missions.

4.	 Generation of alerts and change notifications.

4.1	 Ability to automatically alert users of significant changes in
readiness status.

4.2	 Provision for users to filter alerts to reflect their particular
interests.

5.	 Interaction with existing shipboard systems.

5.1	 Ability to establish, manage, and maintain connections to existing
systems.

5.2	 Provision for accessing data affecting ship readiness in existing
systems and mapping those data to the information model used by
SILS.

5.3	 Provision for translating information held in the SILS information
model to the data schema of existing systems, and pushing these
data to those external systems.

4.2	 Ancillary Requirements
In addition to the above functional requirements, the following desirable characteristics
were established.

1.	 Free the captain and his officers from time-consuming tasks.

2.	 Provide the ship’s officers with distributed and tailored situation awareness,
and convenient access to information.

3.	 Enhance the knowledge levels of inexperienced officers through enhanced
situation awareness.

4.	 Support of on-board training of selected personnel via an archival system.

22

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

5. System Architecture

The overview of the architecture of the SILS system provided in this section is based on
the formal specifications provided by a system design model that was constructed at the
beginning of the SILS development effort. This development artifact utilizes the Unified
Modeling Language (UML) to provide a more concise, compact, and maintainable
specification than can be achieved with ad hoc diagrams and English text.

One of the more powerful aspects of UML is that the graphical notations it employs are
built on an underlying formal grammar. This supports the development of design views
and diagrams to show specific aspects of the system, while contributing to an underlying
self-consistent model that is much too complex to depict in any one picture. The
approach allows software architecture specifications to exist at the multitude of different
scopes and levels typically required. The main body of this document is organized
around the top-level diagrams of the primary views that the design model uses to specify
the various design aspects of the system.

The system design model leverages extensively on the large body of published software
engineering patterns. Many of the concepts conveyed by a particular design diagram are
indicated by a pattern reference. Readers unfamiliar with the pattern may wish to consult
the associated reference material (Buschmann et. al. 1996; Buschmann et. al. 2000;
Fowler 1997) for a full understanding of the design. Software engineering patterns
provide a useful means for capturing proven solutions to software engineering problems
in a generic system-independent manner.

A well-documented pattern provides a unique descriptive name, describes a software
engineering problem in regard to a specific context, and presents a well-proven generic
scheme for its solution. Patterns in software engineering are mostly associated with
lower-level software design through the classic reference design patterns of the Gang of
Four who introduced the software development community to the pattern concept
(Gamma et al. 1994). However, design patterns are equally applicable across the
spectrum of scale and abstraction within the discipline.

5.1 Logical View
The logical view provides the structure to manage and comprehend the source level
artifacts used to develop the system. The topmost level of the logical design specifically
targets the issues of code reuse across families of similar systems by providing a structure
that allows the core technology to be identified, captured, and evolved, independently of
any particular project or software system. For this purpose, the source level design
artifacts are partitioned into four interdependent layers, as specified by the Relaxed
Layers pattern depicted in Figure 6. The unique aspects of a specific system design are
grouped into the ICDM System layer. The artifacts contained in this layer leverage the
subsystems and service libraries provided by the underlying ICDM Framework layer and
must be considered in relation to the framework, to be fully understood.

The general design artifacts applicable to a wide-range of decision-support systems have
been abstracted from existing systems over the years into the ICDM Framework, ICDM
toolkit, and ICDM guidelines. The toolkit provides the development and build

23

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

environment including the code generators, which transform ICDM System layer artifacts
into the subsystem targets specified in the ICDM Framework layer. The ICDM guidelines
provide informal descriptions of the ideal characteristics of a sound decision-support
system and capture the overarching vision. They serve as a backdrop against which
system design decisions may be evaluated.

ICDM System

<< systemModel >>

ICDM Framework

<< framework >>

External Support

Platform

<<architectural pattern>>

Relaxed Layers

ICDM Toolkit

<< import >>

inputs

<< import >>

outputs

ICDM Conventions

Figure 6: System layers

The Relaxed Layers pattern (Buschmann 1996) indicates that the call-level dependencies
between the ICDM System layer and the ICDM Framework layer should be only in the
system to framework direction. The framework contains many high level subsystems
that are indirectly dependent on the system layer to provide domain specific context. The
subsystems work with these elements at the meta-level and therefore do not violate the
call-level dependencies. These elements are often specified in a high-level form, such as
UML, that is abstracted from any particular implementation.

The External Support and Platform layers group the externally developed elements of the
system. It is important to identify external design elements at the architectural level. The
external design elements are relatively static and may limit the flexibility of the system to
evolve over time. They may also have associated runtime issues such as licensing fees
and runtime validation problems.

The Platform layer is distinguishable from the External Support layer in that it groups the
relevant external elements provided by the computing infrastructure of the client
enterprise. These elements need to be distinguished from other external elements
because their configurations and upgrades are outside the control of the system
developers.

24

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

5.2 System Tiers
The system specific design is further structured into three distinct tiers as described by
the Information System pattern (Fowler 1997) as depicted in Figure 7. The Domain Tier
provides a direct executable model of the system domain that is independent of any
particular application or source data model. It represents the active core of the system
and provides the central focus for the development effort. The Application Tier provides
local applications to support the domain interactions of specific user groups. The Data
Tier provides for the persistent storage of the data that underlies the information
represented by the domain model.

PackageName: ICDM System

Application Tier Domain Tier Data Tier

Information System

<<architecture pattern>>

Figure 7: System tiers

The Information System pattern was selected to address the fundamental decision-support
system requirements for providing concurrent collaborative support to multiple users, a
high-level objectified model of the domain that constitutes the necessary context in
support of agent-based reasoning, and interoperability with existing data-centric systems
within the system domain.

5.2.1 Domain Tier

The core of the SILS system architecture is the Domain Tier. The Information System
pattern assigns the responsibility for saving and restoring the associated domain model to
and from the Data Tier to the Domain Tier. This responsibility is typically addressed by
providing the individual domain model objects with the capability to save and restore
themselves, which is reasonable for simple stand-alone systems that have the complete
freedom to specify the storage format of their persisted elements. Unfortunately, real-
world systems are rarely this simple, especially those geared toward decision assistance.
Decision-support systems must interact with existing systems, taking feeds as necessary,
and dealing with the fact that many systems with varying representations (i.e., relational,
hierarchical, flat files, etc.) may have to be accessed to maintain the integrated picture
required to provide the desired level of assistance.

25

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The code required to implement this type of external system interaction is substantial. It
will pollute the purity of the domain model by masking its initial intent and limiting its
utility in other contexts. This dilemma is addressed by partitioning the responsibilities of
the Domain Tier between a Data Interface Tier and a Representation Tier as shown in
Figure 8. The Domain Tier representation provides the executable model of the domain,
while the Domain Tier data interface assumes the responsibility for moving information
between the Representation Tier and Data Tier. This level of indirection also provides
the system with the additional flexibility required to more easily adapt to Data Tier
changes over time, or to adapt due to local variations at different deployment locations.
The ‘Data Broker’ pattern (Fowler 1997) describes the internal structure and dynamic
behavior of the Data Interface.

PackageName: Domain Tier

PackageName: Application Interface PackageName: Data InterfacePackageName: Representation

Agent Logic

Ontology

Case Logic

<<architecture pattern>>

Facade

<<architecture pattern>>

Data Broker

Figure 8: Domain Tier

The Domain Tier must also provide an interface for the various applications within the
domain. The pure representational model is not ideally suited for this purpose due to the
complex interrelationships and high-level domain-specific specifications. It also does not
address the transactional nature of the interactions between the user applications and the
domain. In order to address these deficiencies an additional façade-based (Fowler 1997)
sub-tier tailored to the needs of the system’s applications is inserted into the Domain
Tier. This application interface is responsible for all accesses to the domain
representation and does no processing other than that specifically required for the user
interface presentations of the Application Tier. The addition of this layer also favored the
development process since it allowed the design of the user interface and the domain
model to occur in parallel more or less independently of each other.

Within the context of this architecture, an information system utilizes a class-based object
model to represent the domain. Classes represent the types of entities (i.e., objects)
within the domain, and may be generalized or specialized to relate similar types. They
serve as templates for the creation of objects that specify individual characteristics in

26

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

terms of attributes, behavior in terms of operations, and context in terms of associations.
A decision-support system can be thought of as a value added extension to a traditional
information system. Within the context of such a system, the internal information model
(i.e., object model) is referred to as the ontology. The latter provides the domain
vocabulary upon which the agent logic is specified in the form of expert system rules.
This logic is used to express the business rules of the domain, maintain high-level derived
information, and generate alerts and statements of implication.

From the perspective of the developer, the rule-based representation of the agent logic is
very flexible in dealing with dynamic changes. However, since the rules are compile-time
entities they do not provide this same flexibility to the users of the system during
execution. This is where the case logic is particularly useful, because it uses a fixed
compile-time model composed of problems, questions, actions, and their
interrelationships. The domain specific nature of the case logic is therefore represented
in the form of object instances rather than model classes. This allows the case logic to be
dynamically extended or modified during execution, either directly or indirectly (e.g.,
through embedded system learning processes) by system users. The case logic is also
expressed in a form that serves as an appropriate basis for an English language form of
interactive dialog between the system and the system users to formulate appropriate
courses of action. The current version of the SILS proof-of-concept system does not
incorporate case logic. It is included in the design because it is recognized at this time as
being necessary for the long-term success of SILS.

5.3 Component View
The component view exists at a level of abstraction above the logical view. It defines
versioned chunks of software compiled from the source level artifacts represented in the
logical view. Components are runtime entities that are hosted on the client hardware of
the deployed system. They are loaded by the system as needed to execute specific
functionality. The internal details of the individual components within the component
model are beyond the intended scope of this document, however, brief descriptions of the
high-level components provided directly by ICDM are listed Table 1.

Table 1: Component descriptions

Name Description
CAD Viewer A full-featured application-oriented subsystem designed to view and

manipulate CAD drawings in three-dimensions.
GIS Viewer A full-featured application-oriented subsystem designed to view and

manipulate maps and geographic information.
Speech Interface An application-oriented plug-in component that allows users to control

application functionality by voice and provides a means for applications to
respond to users with sound.

Reporting
Interface

A full-featured application-oriented subsystem for displaying, printing, and
manipulating information displayed in tables or forms.

System Interface An application-oriented subsystem for performing basic system functions
such as account management and login.

Embeddable Web
Browser

An application-oriented subsystem that provides a lightweight constrainable
Web browser within an application process.

27

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

OML A programmatic interface to the object-serving communication facility
employed by ICDM-based systems.

5.4 Process View
The process view exists at a level of abstraction above the component view. At the top-
level, it defines the directly executable processes that collaborate in a distributed fashion
to implement the system requirements. The top-level processes of the SILS proof of
concept system fall into four functional groupings: client applications; domain servers;
domain clients; and, data servers. Processes are typically more system specific than the
components existing in the underlying abstraction layer. They usually embed and
configure selected higher-level components to provide the system specific capabilities for
which they are responsible. The core processes are depicted in Figure 9 and are discussed
in more detail in Section 7.

PackageName: SILS Proof of Concept

PackageName: Applications PackageName: Domain Clients PackageName: Data Servers

SILS Agent Engine
PackageName: System Data Servers

SILS Shipboard DSS Interface SILS Data Broker SILS File Server

SILS Recall Engine SILS Data Base

SILS Scenario Driver

PackageName: Domain Servers

SILS Case Base

SILS Object Viewer

SILS Name Server

SILS Information Server

External Data Sources

Figure 9: SILS process model

5.5 Interaction View
The interaction view describes how the pieces of the system collaborate to perform the
capabilities that the system implements. At the top-level, it describes the overall pattern
of interaction among the primary system processes. This interaction is best described by
the Blackboard Pattern. This classic architecture pattern has been employed successfully
by the Artificial Intelligence (AI) community since the early 1970s as an approach to
problems for which no deterministic solution strategies are known. The name blackboard
was chosen because the approach parallels the situation in which human experts sit in

28

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

front of a classroom blackboard and work together to solve a problem (Buschmann
1996).

The blackboard architecture employs a collection of independent programs (i.e.,
knowledge sources) that work cooperatively on a common data structure (i.e.,
blackboard). Each program is specialized for solving a particular part of the overall task,
and all programs work together on the solution. The specialized programs are completely
independent of each other. They do not call each other and there is no predetermined
sequence for their activation. The direction taken by the system is primarily determined
by the current state of the solution. This type of data directed control facilitates
experimentation with different types of algorithms and allows experimentally derived
heuristics to control processing.

Within the context of the SILS design, the Information Server plays the role of the
blackboard while the domain clients play the role of knowledge sources as depicted in
Figure 10. The manager within the agent engine instance provides control over the
application of knowledge to the solution being developed by the associated agent
federation. The human users, through their client applications, provide an additional
source of knowledge and control.

<<Architectural Pattern>>

Blackboard

Information Server

<<executable>>

Agent Engine

<<executable>>

Recall Engine

<<executable>>

Data Broker

<<executable>>

Client Application

<<executable>>

Control/Knowledge Source Blackboard

Control/Knowledge Source

Knowledge Source

Knowledge Source

Figure 10: SILS process interaction

The incorporation of one or more human users distinguishes this architecture from
traditional blackboard implementations that were designed to solve problems for users,
rather than collaboratively with them. The partnership between human users and the
software agents (i.e., knowledge sources) is employed to eliminate the control problems
often associated with blackboard architectures. Humans can keep the developing solution
on track and provide the stimulus to resolve conflicts when stalled. The same data-driven
features that provide for the interaction of diverse independent software agents may also
be employed to simultaneously link spatially distributed human users into a collaborative
environment; - thereby realizing an information age version of the conceptual stimulus
for which the blackboard pattern is named.

5.6 Deployment View
The deployment view is an abstraction layer built on top of the abstraction provided by
the process view. At the top level, it defines the different hardware configurations that
will be supported by the system and the ways in which the system processes will be
distributed on hardware. At lower levels of the deployment model the versioned identity

29

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

and installed locations of the underlying components that support the resident processes
on each computer within a given configuration are defined. In the context of the proof-
of-concept system, four primary configurations need to be defined for the development,
integration, and demonstration of the proof-of-concept system.

5.6.1 Interface Engine Development and Test Configuration

The Interface Engine Development and Test Configuration defines the installation of
components necessary to support the SILS system processes that are required for the
development and testing of the SILS Interface Engine. These include: the SILS Object
Viewer; the SILS Information Server with the SILS Interface Domain; the SILS Name
Server; the SILS Interface Engine; and, any simulated or actual external system data
servers and their associated scripted drivers.

5.6.2 Decision-Support Development and Test Configuration

The Decision Support Development and Test Configuration defines the installation of
components necessary to support the SILS system processes that are required for the
development and testing of the agent-based decision-support aspects of the system,
independently of the existing system interfaces. These include: the SILS Shipboard DSS
Interface; the SILS Scenario Driver; the SILS Object Viewer; the SILS Information
Server with all domains; the SILS Name Server; the SILS Agent Engine; and, the SILS
Data Servers.

5.6.3 System Integration Configuration

The System Integration Configuration targets the joint verification and error correction of
the two separately developed subsystems of the proof-of-concept system. This
configuration defines the installation of components necessary to support the integrated
system partitioned across a minimum of two sets of networked machines. The first set
includes the following processes: the SILS Interface Engine; and, any simulated or actual
external system data servers and their associated scripted drivers. The second set
includes all of the processes within the Decision Support Development and Test
Configuration.

5.6.4 System Demonstration Configuration

The System Demonstration Configuration targets the final demonstration of the proof-of-
concept system. This configuration defines the installation of all components necessary
to support the planned demonstration scenarios for the integrated system. The System
Demonstration Configuration differs from the System Integration Configuration in that
the components are distributed across multiple machines in a manner more suitable for
demonstration and more similar to the installation configuration that might be used
aboard ship. For this configuration, one or more client machines are used with
components necessary to execute the client applications, one or more domain machines
are used with components necessary to execute the domain server and domain client
processes, and one or more data machines are used with components necessary to execute
the data server processes.

30

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

6. System Agents

The agents employed by ICDM are software processes, components, or modules that
have the ability to perceive the external environment and autonomously act on it in
collaboration with other agents. Agents act in a manner conducive to achieving the
individual and collective goals of the system and its users. The external environment in
which an agent is situated is both bounded and defined by the ontology the agent employs
to interact with it. The ontology provides a vocabulary to describe the external
environment that is constrained in accordance with the underlying principles operating in
the environment, such as the physical laws that constrain our own real world
environment. In this respect, the ontology allows agents to express their specific interests
in an environment, communicate their thoughts about it, specify actions to be executed in
it, and record knowledge about it.

The level of perceived agent intelligence is coupled to and bounded by the specialized
depth (i.e., the number of concepts) and richness (i.e., the number of associations) of the
ontology. Effective agent collaboration requires unambiguous communication, which is
related to the level of orthogonality provided by the ontology. The ICDM framework
employs the standardized Unified Modeling Language (UML) to formally specify the
types of physical and conceptual entities within the target domain, and the types of
relationships between them. The ICDM Toolkit code generation utilities operate on this
specification to implement a distributed ontological framework for the specific
architectural configuration(s) and platform(s) targeted for deployment. In this manner, the
generated ontological framework provides an enabling foundation upon which the rest of
the application is implemented.

ICDM-based software employs two major categories of agents: subscription-based
agents; and, rule-based agents. Subscription-based agents are individual processes or
components that operate at the architectural level of the system. Rule-based agents
correspond to modules within an expert system shell environment each of which contains
a rule-set targeted to encode a particular area of expertise within the application domain.
Both categories of agents are proactive in that they automatically act in response to
changes in the virtual representation of the external environment and therefore do not
have to be explicitly told to act, as is typically the case in traditional procedural
paradigms.

Subscription-based agents use the standardized Common Object Request Broker
Architecture (CORBA) services that ICDM provides along with a proprietary
subscription service to register their individual interests within the domain. The ICDM
Subscription Service alerts individual subscribers to changes in the collection of
distributed objects used to represent the domain, which satisfy their registered interests
by pushing the changes to the corresponding subscriber. This capability allows the
individual subscribers (i.e., agents) to collaboratively interact in an efficient and scalable
fashion, without any prior knowledge of each other.

Subscription-based agents may in turn contain rule-based agents that operate in modules
within the parent process or component. Rule-based agents utilize specialized declarative
languages to precisely specify a state in the external environment and the action that

31

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

should be performed when the specified state is observed. They work at a much lower
level of granularity than that employed by subscription-based agents. This level of
granularity requires specialized data structures and algorithms to efficiently match on the
states of the external environment. To date the required level of efficiency is only found
in expert system shells that are based on the RETE algorithm (Forgy 1982).

The traditional problem with expert system shells is that they are stand-alone
development environments that do not interoperate with the general-purpose
environments required for graphical user interface (GUI) development or for relational
database interaction. Interoperability with expert system shell environments is a core
technological feature of ICDM-based applications. This interoperability is provided
through proprietary adaptations to existing expert system shell environments that enable
them to seamlessly operate as plug-in clients to the distributed ICDM Object Serving
Communication Facility that houses the virtual representation of the external
environment. Additional extensions have also been created to better manage the
distribution of processor time between the resident agent rule sets.

All processes within the system that are above the service level (i.e., distributed CORBA
services that support the SILS MRAT Information Server) are implemented as
subscription-based agents. This allows them to proactively react to changes in the state
of shared objects and thereby ensure a more efficient use of network bandwidth, since
only the changes in the state of interest of the individual processes need to be
communicated across the network. The current subscription-based agents include: all of
the core application tools and a majority of the support tools; the Agent Engine; the
Recall Engine; and, the Interface Engine.

6.1 Rule-Based Agents
As is typical with systems of this nature, the development of the system architecture and
the domain representation comprise the bulk of development at the beginning of the
project. The specialized expertise embodied within a particular agent is most efficiently
implemented on top of a stable core ontology and information system. To date, the
primary focus within the agent area has been to support a range of test scenarios with the
objective of improving the agent infrastructure and reasoning facilities. As the project
transitions from proof-of-concept to prototype development, the focus will shift first to
the implementation of agent expertise that operates on the high-level generalized portions
of the ontology, and subsequently to the implementation of specialized expertise that
operates on those portions of the ontology that are specific to SILS MRAT. The current
and planned capabilities of the SILS MRAT rule-based agents are depicted in Figure 11
and described in the following subsections.

6.1.1 Mission Capability Agent

The Mission Capability Agent is responsible for continuously maintaining an assessment
of the mission readiness of the host ship. A hierarchical assessment tree is maintained for
each individual mission type associated with the ship, for each of the individual
departments onboard the ship. This agent is the key to being able to provide dynamically
responsive graphical views of readiness to different users with different biases. Since this
agent is continuously working in the background to calculate the readiness picture across

32

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

all bias combinations the information is already available when requested by users (i.e., it
does not have to be generated at the time the request is registered.

PackageName: SILS MRAT Agents

Mission CapabilityScheduling Navigation and Communication

Personnel Combat Systems Environmental Protection

Interface HM&E Systems Training and Performance

Supply Damage Control Environment Rules of Engagement

Figure 11: SILS MRAT agents

6.1.2 Scheduling Agent

The Scheduling Agent is responsible for identifying resource issues with scheduled
activities and resource conflicts between scheduled activities. This agent utilizes a few
simple rules that operate on the ontology at a generic level and provide for functionality
that predicts possible conflicts by comparing current schedules with proposed activities.
For example, the Scheduling Agent would generate an alert if a scheduled event with
associated tasks and resource requirements is planned to occur when there are inadequate
resources for the event. The value of this agent is associated with large complex
schedules created by many different personnel, with competing interests and limited
resources, rather than simple schedules created by a single person.

6.1.3 Personnel Agent

The Personnel Agent is responsible for monitoring the manning status of the crew,
identifying levels of shortfalls, and providing assistance in locating personnel for tasks
requiring individuals not specified in the ships manning document. It also assists in
identifying and locating appropriate human resources to perform or support specific
activities. In addition, the Personnel Agent notifies appropriate departments of the arrival
and departure status of personnel.

6.1.4 Supply Agent

33

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The Supply Agent is responsible for monitoring the supply status of the ship, alerting
appropriate departments of their order status, aggregating order requests, and identifying
and locating appropriate supply items for a given repair task.

6.1.5 Interface Agent

The Interface Agent is responsible for monitoring the status of the external system
interfaces required to provide up-to-date accurate information to the users and for alerting
users to potential problems or changes of state. It also manages the swap space employed
for collaboration with the SILS Interface Engine. It is the purpose of the swap space to
isolate the core object model that supports agent reasoning from the demands of the
existing system interfaces that often impede the natural evolutionary growth of the
model. The types of objects contained within the swap space are defined by the interface
domain model that is composed of simple non-overlapping model fragments, which
correspond to the conceptual blocks of information sourced within external systems.
Swap space management consists of mapping the information fragments to and from the
core problem domain, which is a task ideally suited to a declarative rule-based
implementation.

6.1.6 The Combat Systems Group of Agents

This group of agents includes the HM&E Agent, the Damage Control Agent, the
Navigation Agent, and the Communication Agent. They are responsible for monitoring
the status of the systems within the corresponding system category in order to alert users
to potential problems or changes of state. In particular, these Agents are intended to
estimate the resultant degradation of affected systems and provide these results for use by
other system level agents such as the Mission Capability Agent. Agents in this group are
critically dependent on links to automatic monitoring systems and access rules that enable
the high-level analysis of the implications of data received. At the time of writing this
report, the data feeds and subject matter expertise necessary to enable these agents have
yet to be identified.

6.1.7 Environmental Protection Agent

The initial proof-of-concept implementation of this agent was little more than a concept
of an agent that advises on environmental issues. This was primarily due to the difficulty
in identifying and obtaining applicable automated data feeds without which the agent
could be little more than a browser for text-based instructions. The US Navy Pollution
Discharge Restrictions (OPNAVINST 5090.1) has recently been brought to the attention
of the development team. This document deals with regulations regarding the dumping
of materials at sea and has been identified as a useful area for agent-based support within
the SILS MRAT application.

Implementation of a subset of the instructions contained in the OPNAVINST 5090.1
document, to determine whether a given category of material can be dumped at sea given
the current distance from shore, is currently under investigation. These explorations focus
on the possible objectification of information within Digital Nautical Chart (DNC) maps
to automatically determine the distance from shore given the current geographic
coordinates of the ship. DNC maps embed data, distinguishing land from sea, which can

34

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

be used to precisely determine the current distance to land. This is accomplished by an
algorithm that systematically searches for the nearest map data element that the
objectification scheme indicates as land and converting this element to the appropriate
distance units.

6.1.8 Environment Agent

The Environment Agent will be responsible for monitoring the external physical
environment for conditions that may affect the ship in regard to the types of missions it is
designed to perform. While this agent has not yet been implemented, it is expected that
its rules will require access to weather and tide information and other external
environmental influences. It will then be necessary to quantify impact of these external
influences on mission, mission tasks, ship equipment, and crew.

6.1.9 Rules of Engagement (ROE) Agent

The Rules of Engagement Agent (ROE) is responsible for monitoring the operations of
the ship and the associated shipboard activities for compliance with the published rules of
engagement. In addition to Navy-wide standards, the agent should provide a
customization capability that allows it to support applicable portions of the commanding
Officer’s standing orders.

6.1.10 Training and Performance Agent

The Training and Performance Agent is responsible for identifying training deficiencies
in regard to published standards and measured performance. Knowledge acquisition
interviews for the SILS MRAT project indicate a perceived need by training officers
aboard ship for support in this area.

35

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

36

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

7. Component Functionality

The focus of this section is to provide an overview of the functionality provided by each
of the top level SILS MRAT components. These components are divided into two
categories within the SILS MRAT system: Graphical User Interface (GUI) components
that provide functionality directly to human users; and, Application Interface components
that provide functionality to other components through an application interface (API).

The top-level SILS MRAT components consist of directly executable processes that
collaborate in a distributed fashion to implement the system requirements. These
processes are typically more system specific than the components existing in the
underlying abstraction layer. They embed, configure, and supplement selected ICDM
components to provide the system-specific capabilities for which they are responsible.

The top-level components fall into three functional groupings: Application; Domain; and,
Data. The Domain components provide an executable model of the system domain that
is independent of any particular application or source data model. This model also
includes active objects known as agents and the domain business rules that control their
activities. It represents the active core of the system and provides the central focus of the
development effort. The Application components provide local tools to support the
domain interactions of specific user communities, and the Data components provide for
the persistent storage of the data that underlie the information represented by the domain
model. These component categories are depicted in Figure 12.

PackageName: SILS MRAT Components

Application Domain Data

Figure 12: SILS MRAT component categories

7.1 SILS Application Components
The Application Components provide user-specific interfaces to the shared domain
representation, software agents, and services provided by the Domain Components. The
Application Components are grouped into two categories: Application Tools; and,
Support Tools. Application Tools are the client-side applications through which the end-
users, such as the ship’s captain and his department heads, interact with the SILS system.
Support Tools, on the other hand, are geared towards system developers, testers, or
advanced users. They provide functionality useful for testing, demonstrating, and
diagnosing the system. The application tool categories are depicted in Figure 13.

37

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

PackageName: Application Components

Application Tools Support Tools

Figure 13: SILS MRAT Application Component Categories

7.1.1 Application Tools

The SILS MRAT client application takes the form of a suite of application tools that
allow users to collaboratively interact with each other and the domain-specific software
agents via the shared ontology-based object model. The tools within the collaborative
suite are completely decoupled from each other, but may work in close collaboration
using the same mechanisms that allow remotely distributed users to collaborate. The
application tools may be used independently or with the suite controller that allows them
to work in close conjunction with one another, and allows users to seamlessly switch
from on application tool to another. The Application Tools are depicted in Figure 14.

PackageName: Application Tools

Assessor Scheduler Administrator

Reporter Resolver Trainer

Controller

dependsdepends

GUI Components Application Components

Figure 14: SILS MRAT Application Tools

The Application Tools share an application framework and embed many of the same
ICDM components. These components either provide common GUI elements, underlying
code-level APIs, or frameworks for structural similarity and compatibility.

38

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The Common GUI Components are used by all of the Application Tools. The component
capabilities are in turn exposed to the Application Tool users through the provided GUIs.
This approach leverages the functional overlap between the individual Application Tools
and helps provide a common look-and-feel across the suite of tools. The common GUI
components are depicted in Figure 15.

PackageName: Common GUI Components

Speech Interface

Report Interface

System Interface

Agent Interface

Figure 15: The Common GUI Components

The Speech Interface works in conjunction with the Application Framework to allow the
GUI elements of an Application Tool to be controlled by voice and to allow for spoken
audio prompts.

Current Capabilities

1. Displays the element currently in focus.
2. Displays all possible commands for the GUI element currently in focus.
3. Allows GUI element focus to be controlled by voice.
4. Allows commands to be selected by voice
5. Supports input of free text by voice.
6. Provides an internal API that accepts text strings to be spoken to the user.

Proposed Future Capabilities

1. Settings to tailor voices for specific types of spoken output.
2. Settings to turn spoken output on and off.

The System Interface provides basic password encrypted login security and system
reporting features to the Application Tools.

Current Capabilities

1. Prompts for and processes user login and password.
2. Provides system information such as version and build numbers.

Proposed Future Capabilities

1. Support for changing passwords.
2. Tool and component level information, versioning, and build number.
3. End-user level system status reporting.

39

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The Report Interface provides common generic functionality for all graphical displays of
forms, tables, and trees within the system.

Current Capabilities

1.	 Preference selection of displayed attributes, by individual report, and by
individual user.

2.	 Preference selection of the order of displayed attributes, by individual
report, and by individual user.

3.	 Preference selection of table column widths by individual report and by
individual user.

4.	 Preference selection of attribute value formats. Where applicable, by
individual report and by individual user.

5.	 Preference selection of attribute value justification (right, center, left) by
individual report and by individual user.

6.	 Preference selection of multiple filter constraints on a per displayed
attribute basis per individual user.

7.	 Remembering and utilizing last used preferences for each report per
individual user.

8.	 Saving report preferences by logical name on a per user basis.

9.	 Restoring report preferences by logical name on a per user basis.

10.	 Restoring pre-configured system preferences by individual report on a per
user community basis.

11.	 Support for preset system configurations.

12.	 HTML generation.

13.	 Printing support for all reports with print preview.

14.	 Support for aggregate reports that allow preset combinations of form,
table, and/or tree reports to be configured, displayed, and printed.

Proposed Future Capabilities

1.	 Unit support with user selection, runtime conversion, and preference
support.

2.	 Enhanced attribute value (i.e., field) representation invariant (i.e., form)
constraints.

3.	 Intelligent handling of view, add, edit, and delete permissions at the
generic report level.

The Agent Interface is the primary means by which users directly interface with the
software agents associated with a particular application tool.

Current Capabilities

1.	 Generic common display for all direct agent output.

40

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

2.	 Graphical display of violation, activity, and acknowledgement state for
each agent.

3.	 Detailed view dialog that provides running chronological list of alerts for
all agents associated with a given application tool.

4.	 Individual alert dialogs for each agent that in turn provides detailed
information about a specific alert.

5.	 Roll-up of alerts by primary alert target (e.g., typically a mechanical or
human asset) for each agent.

Proposed Future Capabilities

1.	 Settings to toggle individual agents on or off.
2.	 Settings to toggle individual logical agent rules on or off.
3.	 Settings to adjust the severity of individual alerts.
4.	 Individual user acknowledgement of specific alerts.

The Common Application Components are used by all the Application Tools. As for the
Common GUI Components, the Application Component capabilities are exposed to the
Application Tool implementations through the provided APIs (Figure 16).

PackageName: Common Application Components

Application Framework

Dashboard API OML

Figure 16: The Common Application Components

The Dashboard API provides the Application Tools with a standard interface, primarily
intended for use by the Dashboard Controller to query the installed object code-base of an
individual Application Tools for the properties and capabilities it supports.

Current Capabilities

1.	 Ability to query for available indicators.

2.	 Ability to query for available instruments.

3.	 Ability to bring up a particular instrument independent of the parent
Application Tool

41

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The Application Framework constrains application elements to a specific architectural
paradigm and consolidates common functionality useful for most Application Tool
implementations.

Current Capabilities

1.	 Maintains a menu of open dialogs or windows for easy access.

2.	 Remembers the size and location (i.e., last used) for each dialog on a per
user basis, and brings it up the same way next time it is accessed.

3.	 Cleanly separates the application logic from the corresponding GUI,
thereby providing for architectural flexibility, sharing, and reuse of
application logic components.

4.	 Supports standardized GUI spacing constants for a consistent look and feel
across GUI elements for all Application Tools.

5.	 Provides intelligent subscription management.

Proposed Future Capabilities

1.	 A consistent generic framework for dealing with exceptional conditions
and user dialogs.

The OML (Object Management Layer) provides code-level APIs for accessing and
manipulating the collaboratively shared distributed objects that represent the system
domain.

Current Capabilities

1.	 Object level add, edit, and delete capabilities.
2.	 Object level constrained queries.
3.	 Constraint-based subscriptions.
4.	 Local object caching and cache management.

5.	 Support for object servers of different type through an abstract server API
that allows applications to plug into new types of servers.

6.	 Simultaneous support for multiple object servers.

The Controller Application Tool implements a digital dashboard paradigm that allows the
other tools in the suite to be controlled and monitored from a single unobtrusive interface.

Current Capabilities

1.	 Display of icons for available Application Tools.
2.	 Launching of a specific Application Tool from a displayed icon.
3.	 Display of selected Application Tool status indicators.
4.	 Display of selected Application Tool instruments.

5.	 Launching of the Application Tool functionality corresponding to a
particular instrument.

42

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

6.	 Provision of control by voice.

Proposed Future Capabilities

1.	 Creation of custom named tabs with which to organize controller displays.

2.	 Ability to query installed Application Tools for available indicators and
instruments.

3.	 Allow selected indicators and instruments to be added to a named tab.

4.	 Allow the layout of an instrument or indicator to be customized based on
user preferences.

5.	 Automatically bring up the controller as configured the last time it was
used.

6.	 Allow for name controller configurations to be saved and loaded on
demand.

7.	 Support context sensitive help facilities.

The Assessor Application Tool provides an explanation of the current readiness
assessment of the ship.

Current Capabilities
1.	 Displays mission-biased and department-biased readiness status.
2.	 Traces combat readiness assessments to their constituent components.
3.	 Infers readiness issues from supporting observations.
4.	 Display the causal inference chain for each readiness issue
5.	 Displays details of the individual observations within an inference chain.
6.	 Displays the impact of a readiness issue on readiness assessment.

7.	 Displays information associated with the context and resolution of a
particular readiness issue.

8.	 Provides a vectored graphical view of the ship that supports pan, zoom,
tilt, rotate, and other similar functions.

9.	 Provides direct interaction with the graphical entities in the objectified
ship view.

10.	 Allows reports to be brought up on ship areas directly from the graphical
view.

11.	 Allows objectified ship areas to be colored, based on the violation state.

12.	 Provides a vectored graphical view of the map for the area of operations
(supports pan and zoom).

Proposed Future Capabilities

1.	 Provides for typed hierarchical commentary.
2.	 Allows incidents to be defined that relate issues and actions.

43

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

3.	 Allows overlays on ship and map views that can be collaboratively
marked-up.

The Reporter Application Tool is the primary means by which users may directly enter
information into the system. It is also intended to allow users to create custom reports for
printing, publishing, or posting on a Web server.

Current Capabilities
1.	 User customizable content, layout, and format for formalized reports.
2.	 HTML translation capability for Web-based distribution.

3.	 Automated objectification of user-supplied content for the purpose of
agent reasoning.

4.	 Published report repository with browsing support.

Proposed Future Capabilities
1.	 Provides typed hierarchical commentary with which to annotate published

reports.

2.	 Supports the automated incorporation of designated external system
information.

3.	 Provides ability to build and publish custom reports and to subscribe to
features of interest within the periodic publications of others.

4.	 Supports the automatic notification of changes within periodic
publications based on registered interests.

The Scheduler Application Tool provides a comprehensive environment for developing,
maintaining, and presenting the operational schedule of a ship.

Current Capabilities

1.	 Calendar and Gantt Chart presentations.

2.	 Generates plans for day, week, and month time periods, at arbitrary levels
in the hierarchy.

3.	 Supports hierarchical displays, based on organizational structure.

4.	 Provides intelligent scheduling assistance based on accrued knowledge of
standard operating procedures and resource dependencies.

5.	 Supports the automatic identification of scheduling conflicts.

Proposed Future Capabilities

1.	 Generates task lists for specific people or organizations.
2.	 Supports task rollup and inter-task dependencies.

3.	 Provides the ability to display operational schedules in terms of primary
mission activities and supporting preparatory activities.

44

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

4.	 Allows the design of proposed missions or activities and incorporates
them into the existing operational schedule.

5.	 Provides for a typed hierarchical commentary.

6.	 Supports the automatic notification of scheduled events based on
registered interests.

7.	 Provides automated assistance to coordinate conflict resolutions.

The Resolver Application Tool provides assistance in the development of options and
impacts to address the readiness issues indicated by the assessment component.

Current Capabilities

1.	 Provides fixed model-based options to resolve a particular issue.
2.	 Provides fixed model-based opportunity costs for each particular option.

Proposed Future Capabilities

1.	 Provides a ‘lessons learned’ repository for use in future situations.
2.	 Provides a conversational resolution dialog for human operators.

3.	 Supports the automated extraction, collection, and collation of cases (i.e.,
problems and their resolution) from the current operational context.

4.	 Applies the case-based reasoning approaches developed in the COACH
application (CDM 2000).

5.	 Utilizes a GOTS case-based reasoning library developed in conjunction
with the Naval Research Laboratory, Washington (Aha et al. 2002).

The Administrator Application Tool will provide the capability to administer the server-
side components of the installed application.

Proposed Future Capabilities

1.	 Ability to reset the entire distributed software system to the original
installed state.

2.	 Ability to gracefully shutdown the entire distributed software system.
3.	 Ability to startup the entire distributed software system.

4.	 Ability to backup the current state of the entire distributed software
system.

5.	 Ability to restore the state of the entire distributed software system from a
backup.

The Trainer Application Tool provides the means to develop, initiate, and control mock
scenarios for the purpose of training exercises, gaming strategies, and software testing
and evaluation. Scenarios are controlled by scripts based on a simple text-based
command language in conjunction with the domain specific vocabulary provided by the
object model in order to manipulate the state of the domain at playback. Scripts may be

45

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

hand written, generated by recording specific interactions performed by other clients to
the domain, or built from existing pieces using the script development capabilities of the
tool.

Current Capabilities

1.	 Stores scenarios and supporting data in a persistent repository.
2.	 Constructs new scenarios from existing scenario fragments.
3.	 Loads specific scenarios and associated data sets for execution.
4.	 Initiates and dynamically controls loaded scenarios.

5.	 Records scenario results and compares them to previous runs of the same
scenario.

Proposed Future Capabilities

1.	 Ability to graphically display and manipulate the timing of scenario
elements.

7.1.2 Support Tools

The Support Tools differ from the Application Tools in that they work outside the client
application framework and are therefore not supported by the Dashboard Controller.

PackageName: Support Tools

ICDM Object Viewer Java Help Browser

ICDM Agent Engine Front End

ICDM Dribble File Viewer

ICDM Data Management System

Figure 17: SILS MRAT Support Tools

The ICDM Object Viewer is a development and administration application that provides users
with a graphical interface to perform basic object management services. Examples include the
creation, destruction, modification, or association of objects. Query by example (template)
functionality is also provided. This tool primarily targets system developers, but may also prove
useful to administrators of fielded ICDM systems. Key high-level capabilities of the ICDM
Object Viewer include:

1.	 Domain ontology self-discovery capabilities.
2.	 Ontology browsing capabilities.
3.	 Object view, add, edit, and delete capabilities.
4.	 Object association view, add, and remove capabilities.
5.	 Object query by example capabilities.

46

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

The Help Browser employed in SILS is the standard Java help browser configured to
work with the SILS application toolset. This COTS component provides the following
functional support features to the SILS application toolset:

1.	 Hyperlinked table of contents.
2.	 Hyperlinked index.
3.	 Consolidation of installed components into integrated help presentations.
4.	 Support for context sensitive help facilities.
5.	 Search support.
6.	 XML-based help content.

The ICDM Agent Engine Front End is a comprehensive run-time agent engine diagnostic
tool that is used to look inside of an executing agent session to tune performance
characteristics, and diagnose problems. This tool primarily targets system developers,
but may also prove useful to administrators of fielded ICDM systems. Key high-level
capabilities of the ICDM Agent Engine Front End are as follows:

1.	 View facts.
2.	 View rules.
3.	 Browse the ontology.
4.	 View the activation list.
5.	 View partial matches.
6.	 Watch rule firings.

The ICDM Dribble File Viewer is an agent engine diagnostics tool that complements the
Agent Engine Front End. While the Agent Engine Front End is designed to look inside
an ICDM Agent Engine during execution, the Dribble File Viewer is designed to assist
users in examining Agent Engine log files and productively use the large volume of data
that the Agent Engine is capable of logging. These capabilities assist developers in
attempting to retroactively determine the cause of an ‘exception’ condition within an
ICDM Agent Engine. The Agent Engine Front End can be used only to detect
‘exceptions’ when they occur, while the Dribble File Viewer must be used after-the-fact.
This tool primarily targets system developers, but may also prove useful to administrators
of fielded ICDM systems. Key high-level capabilities of the ICDM Dribble File Viewer
include the following:

1.	 Support for JESS, CLIPS, COOL, and Eclipse expert system shell syntax.

2.	 Ability to selectively turn the various categories of information found in
expert system log files on or off.

3.	 Ability to collect and collate facts that match a particular rule pattern.

The ICDM Data Management System (DMS) may be categorized as an ontology
configuration, versioning, and instance management tool. The generic base ontology
employed by ICDM is extended in SILS to more specifically apply to US Navy ships,
and their operation and readiness conditions. The precompiled ontology is still generic in
regard to ship type (class and series) and ship, but may be configured during runtime to
address specific ship types and ships with a knowledge instance model. The size of

47

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

knowledge instance models in the current version of SILS MRAT range from 3,000 to
8,000 objects, and will likely double or triple in size for a fully deployed system.

The primary use of the DMS in SILS is to manage the SILS knowledge instance models
that tailor the generic ICDM ontologies to the SILS domain, and in turn tailor the SILS
domain model first to a particular Navy ship type and then to a specific Navy ship. There
can be much overlap between knowledge instance models for different ships. The DMS
manages persisted data from which knowledge instance models for particular ships,
scenarios, or development purposes can be generated. These data are not static and will
require regular update to address changes in Navy policies, procedures, and equipment.
This tool primarily targets system developers. Key high-level capabilities of the ICDM
Data Management System include:

1.	 Logging of changes in the ontology model.
2.	 Generation of table schemas from XMI representations of the ontology.
3.	 Named logical tagging of data records.

4.	 Semantic Net Object Restore (SNOR) file generation for a set of logical
tag names.

5.	 Semi-automated updating of existing data to new ontology versions
utilizing the ontological model change log.

7.2 SILS Domain Components
The SILS Domain Components constitute the shared core of the system that provides
users (as accessed through their Application Tools) a common operational picture of the
domain, expert assistance in the form of software agents, and the means for effective
collaboration with other system users.

PackageName: Domain Components

Information Server Name Server

Agent Engine Recall Engine Interface Engine

Figure 18: SILS MRAT Domain Components

The domain components are implemented with proprietary generic subsystems that are
tailored by means of generated code, interpreted text files (such as agent rules and
ontology translation maps), and properties. Together these components house the data,
information, and knowledge that essentially model the physical world within the confines
of the targeted system domain. This virtual model in turn may grow to service (in whole

48

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

or part) the needs of many user communities at many levels of the military hierarchy,
both afloat and ashore. The SILS MRAT Domain Components are depicted in Figure 18.

7.2.1 Information Server

The Information Server is responsible for managing the executable information model
that represents the system domain for the SILS MRAT users and software agents. This
model consists of shared distributed objects that may physically reside on many different
machines across the network. In this respect, the Information Server is a conceptual
entity that is physically implemented by a collection of semi-autonomous distributed
services that may also reside on many different machines across the network. These
services work together in a collaborative fashion to manage the distributed domain
objects, and provide client applications, such as the Application Tools, with convenient
means to access and manipulate them. Access to the services underlying the Information
Server is encapsulated by the interfaces provided by the OML component. The services
provided by the Information Server include the following:

1. Persistence Service
2. Query Service
3. Event Notification Service
4. Constraint Based Subscription Service
5. Factory Service
6. Association Service

7.2.2 Name Server

The Name Server provides the system with two key features. First, it provides the means
to uniquely identify objects by working in conjunction with the object factories spawned
by the individual information servers to generate a unique key for each newly created
object. Second, it provides location transparency. Clients need only know where the
Name Server is and need not be concerned with the physical location of the object being
requested. By separating this functionality from the ICDM Information Server
functionality (i.e., the generic core of the SILS Information Server) it can be used in
conjunction with a data transport facility and network infrastructure to link multiple
Information Servers together into a single object-serving communication facility as
conceptually described in a previous SILS Framework paper (CDM 2001b). The SILS
MRAT Name Server implementation is provided by a COTS software product with the
following key capabilities:

1. Location transparency
2. Object identity
3. Standardized interface

7.2.3 Recall Engine

The Recall Engine provides the SILS MRAT system with a lower level reasoning facility
to house the case-based logic of the system and complement the rule-based reasoning
facility provided by the ICDM Agent Engine. The Recall Engine concept was developed
and successfully demonstrated in the context of the Collaborative Agent Based Control
and Help system (COACH). COACH was the result of ONR sponsored research into the

49

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

application of collaborative agent-based decision-support systems to the diagnosis and
repair of naval systems and equipment (CDM 2000).

A collaborative effort between CDM Technologies and the Navy Center for Applied
Research in Artificial Intelligence at the Naval Research Laboratory (NRL) has been
underway for over a year. This effort has adapted two NRL developed case-based
reasoning engines, namely the Naval Conversational Decision Aids Environment
(NaCoDAE) and the Taxonomic Case Reasoning System (TCRS), for use as generic
components that may be embedded within the processes of a larger more general-purpose
system. It is currently planned that this work will serve as the core of the next generation
of the Recall Engine concept that was pioneered in the COACH project. This effort is
intended to provide a facility to software agents and human users (i.e., through the
Resolver Application Tool) for the development of courses of action to resolve current
issues based on the collective experience captured and collated over time in the casebases
of the Recall Engine. The objective of this work is to provide the following key
capabilities:

1.	 Storage provisions for cases that capture problems, situational context, and
courses of action.

2.	 Computational mechanisms for determining the similarity between current
incidences and stored cases.

3.	 A mechanism for retrieving stored cases, based on similarity.

4.	 Mechanisms to probabilistically associate observational phenomena to
individual cases that can be used to strengthen or weaken the correlation
of individual cases to the existing situation.

5.	 Mechanisms to adjust the values of probabilistic associations over time,
based on newly accrued information and user input.

6.	 Mechanisms to merge accrued casebases from ships of similar type.

7.	 Mechanisms to associate multiple courses of action with stored cases.

8.	 Mechanisms to probabilistically associate the observational phenomenon
characteristic of the observed results of a particular course of action.

7.2.4 Interface Engine

The Interface Engine provides the SILS MRAT system with the capability to interface
with the existing systems aboard ship. The Interface Engine also serves as the conduit for
information passed between SILS MRAT installations at the various levels of the military
hierarchy. This component is being designed and developed by ManTech Advanced
Systems International. Some of the key capabilities proposed for the Interface Engine are
as follows:

1.	 Ability to translate information from external system ontologies to a
system-neutral internal ontology.

2.	 Ability to translate information to external system ontologies from a
system-neutral internal ontology.

50

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

3.	 Ability to access external information regardless of the storage format or
interfacing standard provided by the external system.

4.	 Ability to synchronize logical information fragments across multiple
interfacing systems.

5.	 Support of constrained queries for logical information.

7.2.5 Agent Engine

The ICDM Agent Engine provides a proactive data-driven reasoning facility for use by
the agents operating in the system. Incorporating an adaptation of the Jess expert system
shell (Sandia National Laboratories 1997) the Agent Engine has been extended to allow it
to seamlessly operate as a plug-in client to the SILS Information Server. Extensions have
also been created to better manage the distribution of processor time between the resident
agent rule-sets. The resulting agent operating environment provides an inference engine
based on the efficient RETE algorithm (Forgy 1982) and a high-level language for rule
specifications. Some of the key capabilities of the Agent Engine are listed below.

1.	 Efficient pattern matching for rule-based inferencing.
2.	 Support for truth maintenance.
3.	 Support for focus management.

4.	 Ability to directly access Java implemented functional capabilities from
the action portions of an agent rule.

5.	 Easily embedded within any Java process.

The generic ICDM Agent Engine manages the rule-based implementations of the SILS
MRAT specific agents. These agents are depicted in Figure 11 and discussed in the
following subsection.

7.3 SILS Data Components
The SILS MRAT Data Components are explicitly designed to support the persistent
storage needs of the system. Access to these data is typically provided indirectly through
the SILS Information Server. Direct access to the data is not desirable, as it will
encumber changes to the structure of the data if optimizations need to be made to
enhance the performance of the persistence mechanisms of the system. The Data
Components are depicted in Figure 19 and described in the following subsections.

PackageName: SILS MRAT Data Components

Case Base Rule Base Database File Server

Figure 19: SILS MRAT Data Components

51

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

7.3.1 SILS Database

The SILS Database is designed to provide persistent storage for the objects resident
within the individual Information Server Domains. A COTS relational database
management system (RDBMS) that supports standard SQL interfaces is employed for
this purpose. A uniform object to relational mapping is provided for by the ICDM
Persistence Service (see Section 7.2.1). The ICDM Toolkit supports database schema
generation directly from the XMI representation of the system ontology.

7.3.2 SILS Casebase

The SILS Casebase provides for the persistent storage of the cases and the associative
memory indexes used by the Recall Engine (see Section 7.2.3). Each casebase is
conveniently stored in a standardized XML-based file format.

7.3.3 SILS Rulebase

The SILS Rulebase provides for the persistent storage of the agent rules managed at
runtime by the Agent Engine (see Section 7.2.5). Each agent has a rulebase associated
with it, and each rulebase consists of an ASCII file containing individual rule
specifications in the format required by Jess.

7.3.4 SILS File Server

The SILS File Server is implemented with a standard commercial Web server, to provide
the SILS system and other external systems with remote access to files utilizing the
Universal Resource Locator (URL). The files available through the File Server can be
partitioned into two distinct groups implemented as root nodes by the server. The User
Reports Group will contain reports generated by SILS for publication to applicable non-
SILS users. The System Group will contain files necessary to support the systems that
are not normally directly accessible by the users of SILS MRAT (e.g., ship-drawing files,
geographical map files, and files used to support access to the implementation of the
Name Server).

52

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

8. External Interfaces

8.1 Interface Description
The SILS software development project is set in the broader context of a vision for a
system of systems, with the objective of preparing and supporting ship readiness through
enhanced decision-support in logistic, supply, and budgetary matters. The key to the
realization of this overarching SILS concept lies in those mechanisms that link new and
existing shipboard information systems and decision-support systems into a suite of
seamlessly integrated systems. In the approach taken by this initiative, these mechanisms
will be encapsulated within the SILS Interface Engine (IE), designed and developed by
ManTech Advanced Systems International, Inc. (Fairmont, West Virginia).

When considering the myriad of existing ship systems that may not all be amendable to
code changes, the mechanisms employed by the SILS IE must assume the primary
responsibilities for integration and thus incur most if not all of the intersystem
dependencies as well. The systems that are required to be integrated, their installed
versions, and their configurations may vary greatly across the range of ships and ship
types that may employ a SILS system. It is expected that participating systems will
typically have distinct and independently developed representations (i.e., largely data
schemas as opposed to information models) of their individual, potentially overlapping,
areas of concern. They are also likely to have differing interfacing mechanisms based on
a wide variety of implementation technologies.

SILS Interface EngineSILS MRA

System NSystem N-1System 2System 1

Figure 20: System dependencies

The extensive set of architectural and functional requirements associated with the SILS
IE are likely to rival or exceed those of the majority of the systems it is intended to
integrate. In this regard, the SILS IE should be thought of as a core system in its own
right, with the context of its utility spanning beyond the SILS project concept as it
directly targets the system integration problem that has become a central issue for the
military services in recent years. This document reflects the view of the SILS Interface
Engine as seen from SILS MRA (Mission Readiness Analysis). The SILS MRA view of
the SILS IE as a simple ‘black box’ component can be misleading. It is likely that

53

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

MOXIE (the generalized base for SILS IE) will develop into a distributed multi-user
system framework that employs a variety of intelligent agents, end user applications, and
development tools.

This report is concerned only with the interface between SILS IE and SILS MRA. For
the most part the relationship between SILS IE and SILS MRA is the same as that
between SILS IE and the existing systems with which it intends to interface. The primary
difference will be in the typical direction of information flow. The majority of the
existing shipboard systems, depicted as System 1 through System N in Figure 20,
targeted for inclusion within the SILS confederation of systems may be classified as
stand-alone information systems or information system families. By definition, these
types of systems should primarily be considered as information providers designed to
manage, store, and share information for a multi-user community. By definition,
collaborative decision-support systems such as SILS MRA should primarily be
considered as information consumers designed to provide an integrated picture of the
domain from multiple information sources, and to provide mechanisms for experimenting
with and evaluating different courses of action in a collaborative fashion with other
decision makers and supporting software agents. In this regard, the initial focus of SILS
IE is to target the flow of information from existing information systems to the SILS
MRA decision-support system.

From the perspective of SILS MRA, the SILS IE component is just another client to the
Object Serving Communication Facility; however, the nature of the interactions with the
server varies between the three clients under discussion. The nature of interaction for the
three clients is discussed in the following paragraphs and summarized in Table 2.

User interfaces typically have a varying but low volume of subscription traffic, primarily
associated with open dialogs or views in the graphical user interface (GUI) presentation.
They also typically have a relatively small rate of object creations, deletions, and
modifications. This is due to both the nature of decision-support clients that primarily
display information to the user, and the relatively slow speeds with which human users
interact with the interface as compared to automated clients.

The Agent Engine client has a large but relatively constant subscription profile, as the
internal domain information model it maintains is in essence a synchronized microcosm
of that maintained within the object serving communication facility. The primary
responsibility of the Agent Engine is to infer new information from that provided by the
other information sources and to remove inferences as they become invalid due to
changing source data. This is commonly referred to as truth maintenance. The number of
inferences created and maintained by the Agent Engine is relatively small when
compared to the number of objects from which the inferences are derived.

The IE must maintain a small constant subscription profile of object instances used to
represent data driven requests for service. In addition, a varying profile must be
maintained that is based on the volume, variance, and type of client requests. The results
returned from information requests may be categorized as static or dynamic. A static
result provides a snapshot of the requested information as represented by the source
provider(s) at the time the result was assembled. A dynamic result is maintained by the
Interface Engine to reflect changes that may occur to the source information after the
information request is processed and the results returned. Static results will not add to the

54

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

subscription profile but may result in a large number of object creations, and indirectly in
deletions, depending on the size of the result set. Dynamic results will not typically
involve large numbers of creations and deletions after the initial request is processed, but
may result in a large number of object modifications if the requested information is
subject to a great deal of change in the information provider(s). Dynamic results will
only incur additional subscriptions if the information can be modified directly in SILS
and is to remain synchronized with the source data (i.e., changes must be propagated
back to the source providers).

Table 2: Client Object interaction profiles

Object
Subscriptions

Object
Creations

Object
Deletions

Object
Modifications

User Interface Low Low Low Low
Interface
Engine

Low to Medium High High Medium

Agent Engine High Low Low Low

8.2 Interaction Types
SILS MRAT is able to post standing requests for logical information sets to SILS IE,
which is able to pull the requested information from one or more external systems and
pass it to SILS MRAT. SILS IE is able to keep this information synchronized by
monitoring the information for changes in both SILS MRAT and in the corresponding
external systems, then propagate the noted changes to or from SILS MRAT. The
following subsections describe three levels at which the prototype version of SILS
MRAT may interact with external systems.

8.2.1 Physical Level

At the physical level of interaction, SILS MRAT interfaces to an actual physical
deployment of an existing system through SILS IE through the interface provided by the
external system developer. This level of interaction requires some sort of formal
agreement between the SILS MRA program management office and the program
management office of the external system. It also requires in-house installation of the
existing system for development, testing, and demonstration purposes at both CDM
Technologies and ManTech Advanced Systems International. Likely, some level of
support from the existing system developer will be required to interpret the data
dictionary, solidify the ontology mappings, and understand any proprietary interfaces.

8.2.2 Information Level

At the information level of interaction, SILS MRAT interfaces to typical data sets
resident in the existing systems via the ontological model employed by the system but not
directly to the system itself. The data is instead resident in a database controlled by the
SILS IE component. Interaction at this level requires existing system data dictionaries
along with data dumps of typical data sets for the specific vessel platforms targeted by
SILS MRAT. This level of interaction validates the capability of the SILS Interface

55

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Engine to translate from the actual external system ontologies to that required for SILS
MRAT and is a step along the way toward the physical level of interaction. It also allows
the development of SILS MRAT to continue while the political, contractual, and
implementation details of interaction at the physical level are being worked out with the
program management office of a particular existing external system. Some level of
support from the external system contractor is expected to be provided to interpret the
data dictionary and to solidify the ontology mappings.

8.2.3 Data Level

At the data level of interaction, SILS MRAT interfaces to fragmented data sets available
in one or more existing external systems by the most convenient format for generation
and use, via SILS IE as determined by the external system developer. This level of
interaction applies to data sets deemed useful for SILS MRAT users and agents. Such
data sets would most likely be sourced by an external system that may not yet have been
identified or is not yet available for access at the physical level. Data level interactions
allow data and information targeted to be sourced by external systems to be completely
partitioned from data to be sourced within SILS MRAT. The loose coupling provided by
SILS IE allows this sort of interaction to easily migrate toward the information level and
then to the physical level, given the initial partitioning.

8.3 System Level Interface
The system level interface addresses the architectural level mechanisms by which client
applications may interact with the ICDM Object Serving Communication Facility that
provides the generic core of the SILS MRA subsystem. Given that SILS IE must incur
the majority of dependencies in regard to the systems it integrates, the ICDM System
Level Interface also defines the interface between SILS MRA and SILS IE.

From the perspective of physical clients, the ICDM Object Serving Communication
Facility provides a number of domain ontologies and the Object Management Layer
(OML) interface library as a convenient way of interacting with them. Clients incur a
compile time call dependency on OML as OML methods are directly invoked by client
code to interact with the objects resident within the Information Server. They also incur
logical dependencies on the domain ontologies of interest as the ontologies provide the
domain terminology that identifies object classes and attributes. OML works with
domain specific ontologies at the meta-object level in order to obviate the need for
compile time dependencies on system specific ontology definitions. This allows client
applications to be free from system specific compile time dependencies.

As a means of eliminating these dependencies, the arguments of many OML methods
include the textual representation (i.e., name) of entities from the terminology provided
by the ontology. This introduces a logical dependency on the ontologies with which a
client application interacts. The logical dependency manifests itself at runtime in two
ways. The Information Server variant targeted to support the SILS system is based on
the Common Object Request Broker Architecture (CORBA). CORBA provides client
applications transparent access to remote objects through the corresponding client side
proxy objects. Whenever a client manipulates a particular object through the OML
functionality running within its process, OML instantiates and accesses the appropriate

56

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

client side proxy. The direct and transitive client dependencies under discussion are
depicted in Figure 21.

Information Server

<<Process>>

OML

<< Library >>

Domain X

<< Ontology >>

Domain Client

<<Process>>

Domain X Client Proxies

<<Library>>

<<depends>>
<<calls>> <<calls>>

Figure 21: Client dependencies

The call-level and logical dependencies associated with the SILS MRA interface by SILS
IE are described in more detail in the following sections. The specific top level interface
dependencies incurred by the primary clients in SILS are depicted in Figure 22.

<< subsystem >> << subsystem >>

SILS MRA

Object Serving Communication Facility

<< Library >>
OML

<< Library >>

OML

<< Library >>
OML

<< Ontology >>
interface

<< Ontology >>
interface

<< Ontology >>

Interface

<< Ontology >>
problem

<< Ontology >>
problem

User Interface

Agent Engine

<< Ontology >>
system

<<call>> <<depend>> <<depend>> <<depend>>

<<call>> <<depend>> <<depend>>

<<call>>

<<depend>>

Figure 22: Interface dependencies

SILS Interface Engine

8.4 Call-Level Interface
The call-level interface to the SILS MRA Object Serving Communication Facility is
provided by the OML class library. OML provides general functionality for the complete
life-cycle management of objects, their attributes (characteristics) and associations
(relationships). Interaction with object instances is simplified using simple strings with
attribute value constraints handled internally. Association management is also provided

57

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

internally alleviating the requirement (and complexity) for ensuring referential integrity
by the using application. Management of interests are also provided and implemented
internally. They are exposed to using applications through the standard Java event model.
Interests may also be constrained using conditions. Condition satisfaction checking is
performed utilizing an inference engine. Additionally, support is provided for accessing
multiple servers simultaneously and transparently. The primary application of this library
is envisioned to be for use by applications requiring little to no prior knowledge of the
object domain model. Internally, the required management and information is provided
through runtime reflection and properties. Good examples of such applications are user
interfaces where a hard coded notion of the domain is expensive to both develop and
manage.

An object-oriented representation of information necessarily incurs a requirement for
managing objects and their associations. OML was designed to simplify client application
object management functionality. The design of OML centers on the Template, POW
(proxy object wrapper), and Attribute classes. Figure 23 presents a class diagram showing
these classes and their relationships. The POW class adds generic functionality to the
object model classes to aid in object manipulation and, in particular, association
management.

BoolAttrAggregation

StructAttrNumAttrEnumAttrAssociation

Template

Attribute

POW

Figure 23: OML classes

Association management is encapsulated in the set, add, remove and delete methods of
the POW class. For example, when a call is made to add an object reference to an
association (referred to by the role name defined in the object class) the POW class adds
the appropriate object reference to the other end of the association. In the process, the
POW class verifies the existence (and therefore validity) of the associated object.
Additionally, if a call is made to remove an association and the associated object is an
aggregate part of the object then the associated object is also deleted. It should be noted
that object creation, deletion and attribute modification transactions are queued locally

58

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

and will not be reflected in the object server instance store until a call is made to the
POW post method.

The Template class implements functionality to support attribute constraints and
validation. Additionally, it contains support for class constructor and access method
determination through runtime class reflection and properties. A Template instance is
created for each class, as required, with each class represented through the defined
hierarchy. The associated Attribute class and its subclasses provide constraints on
attribute values. One of the benefits incurred with the POW class is the fact that all
attribute values are entered and obtained as strings. The constraints on attribute values are
handled internally to the Attribute classes. The benefit from a user interface point of view
is that specialized attribute value management becomes unnecessary, or is at least greatly
simplified since only strings need be accommodated.

The POW and Template classes also include methods for managing both instance and
class-based interests. The implementation of these methods follows the design pattern
specified by the Java event model. Specifically, instances of the POW and Template
classes are event producers and contain methods defined for registering listeners (i.e.,
instances of classes that implement an appropriate listener interface). When a POW or
Template instance fires an event, methods defined by the listener interface are invoked
and passed in the event as an argument. Subscriptions registered with the object server
are managed internally through calls to these listener registration methods.

Additionally, conditions may be defined which provide for complex constraints on
interest satisfaction. By providing runtime definable conditions, within the OML
framework, client applications are not required to filter incoming events to enable
specialized interests. This capability allows general client application use in very
specialized environments without specialized code support. OML supports the definition
of conditions for interests on classes of objects and on individual object instances.
Condition satisfaction checking is performed using a rule-based inference engine. The
inference engine provides high-level mechanisms for specifying complex conditional
patterns, a complete full-featured environment for managing the associated rules, and
efficient, scalable mechanisms for identifying satisfied conditions and triggering the
appropriate action.

A generic interface is provided in the OML framework to support client interaction with
object servers. Each implementation of an object server interface may provide access to
servers based on different architectures. There are only three requirements, as follows: (1)
the object interaction must take place through client-side instance methods; (2) the client-
side classes must adhere to a prescribed pattern; and, (3) the interest notification must be
event-based. Object server interfaces are tied to unique domains (i.e., class namespaces).
Objects that are remotely serviced by an object server provide for a
distributed/collaborative framework, however, the use of purely local objects (i.e. objects
that are not maintained outside of the local client application environment) provides
additional flexibility. Examples include objects whose characteristics are all derived (e.g.,
facades/views), objects that implement behavior alone (e.g., private agents), or client-side
user-interface objects (i.e., objects that interact directly with client-side functionality).

By providing an object server interface to local objects, interaction with these objects
may take place through the same client interface (i.e., OML). Both the POW and

59

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Template classes make use of the Object Factory class that provides the central interface
to the object server interfaces. Since each domain is associated with a single server
interface, the Object Factory can determine which server interface to use through class
identification within a domain. Therefore, interaction with objects and classes (through
POW and Template instances) is transparently handled without any direct domain
specification by the client application.

Startup and shutdown methods are also provided to allow for specific initialization and
cleanup of the object server interfaces. The Attribute class and its subclasses (i.e.,
Association, Aggregation, etc.) provide specialized management functionality for various
attribute types. Additional management classes may be added by extending the
appropriate Attribute subclass. These additional classes may be used to replace or add to
existing management classes.

OML does not provide direct access to general methods defined for objects. However,
indirect access to the methods that provide for instantiation and the retrieval/setting of
attribute values is provided through the constructor and get/set methods. Therefore, for
example, implementing derived attributes and accessing them is simply a matter of
implementing the appropriate access method (i.e., a method whose name reflects the
attribute name and has no parameters). The body of these methods may contain calls to
other methods that are directly accessible from the calling environment. Hence, if these
methods are implemented in client-side classes (i.e., local classes) calls to any available
client-side functionality are possible (including calls to OML methods, the graphical user
interface environment, etc). Likewise, if these methods are implemented in server-side
classes, calls to any server-side functionality are possible (i.e., direct database access,
centralized common services, etc).

8.5 Logical Domain Interface
The generic call-level interface that OML provides does not directly address the system
specific needs of particular client applications. These needs are instead indirectly
addressed through system specific ontology definitions that are referenced by arguments
in the applicable OML methods that have been discussed in previous sections. In regard
to the interface between SILS MRA and SILS IE, the supporting definitions can be
characterized as belonging to one of three possible groups, namely: export definitions;
import definitions; or, service requests. From the perspective of the SILS MRA
subsystem, export definitions are those ontological elements that are designed to present
information to external clients as opposed to import definitions, which are designed to
receive information. These groups may have overlapping membership. In many respects,
the amount of overlap is representative of the degree of coupling between the subsystems.
However, it should be noted that this abstract concept is not so easily defined as the
number of definitions in total. Service requests are different in that they incur aspects of
both of the other two groupings.

In order to support the desired one-way dependency between SILS IE and the systems it
connects the Interface Engine must know the specific interface services desired by each
individual system that it is targeted to support. This knowledge does not have to be hard
coded. It can be implemented by configurable properties that are loaded at startup to
configure the engine to the targeted domain. While this approach can support the

60

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

continuous synchronization (i.e., either real-time or periodic) of data elements across
differing system ontologies, it cannot address demand driven services such as a query for
external information whose result set is temporary and will be discarded after use. For
this type of interaction the SILS MRA subsystem must assume the role of a client to SILS
IE, thereby incurring a dependency on the Interface Engine. Note that by definition
those systems requiring information from the Interface Engine (i.e., information resident
in one or more external systems) assume the role of a client while those that provide
information assume the role of a server.

In this regard, the existing systems initially targeted for interaction with SILS IE are
classified as information providers since they were designed to operate in a stand-alone
mode (i.e., as individual systems or system families) without the benefits that are
associated with the Interface Engine concept. It is also acceptable for the clients of the
Interface Engine to incur a minor dependency on a narrow interface for service requests,
because only those that are designed after the implementation of SILS IE would be
designed in a manner that require its services.

Within the context of the blackboard-like interaction model employed by the SILS MRA
subsystem (CDM 2001c), the service request interface takes the form of an ontology-
based logical dependency rather than the call-level style of interface typically employed
to support interactions between systems. Since the underlying core of SILS IE (i.e.,
MOXIE) has a broad range of applicability independent of the SILS MRA subsystem, it
can be argued from a longer-term point of view that it should provide a call-level
interface in addition to or in lieu of the logical interface currently being discussed. This
consideration is particularly pertinent since the typical systems currently being produced
lack the collaborative mechanisms necessary to support a blackboard-like interaction
model. However, at this stage of the SILS project a blackboard style of interaction is
appropriate since it facilitates the kind of experimentation likely to be required in this
ambitious endeavor. After the experimental phase of the project has focused in on a
suitable implementation design, the logical ontology-based representation of system
dependent interactions utilized by the blackboard paradigm is easily converted to a call-
level interface.

Given the blackboard style of interaction currently provided by the ICDM core of SILS
MRA, the ontological models involved in the interface to the Interface Engine must be
both acceptable to and designed in conjunction with the developers of the SILS Interface
Engine due to the required dependency. This is a design decision with issues for both of
the top-level subsystems being discussed.

Without providing a detailed ontological model for interaction, the ontological elements
of the model can still be broadly characterized. Export elements may be either directly
exposed from the core problem domain and/or the system domain partitions to the SILS
MRA object model (discussed in the SILS Architectural Design Report (CDM 2001c)),
or exposed indirectly through interface facades. Interface facades simplify the model
according to the needs of the clients and shield the clients from the inevitable changes to
the core model in much the same way as a ‘view’ does in a relational system. Currently
there is no requirement for export elements in the context of the initial proof-of-concept
system. However, it may be beneficial to devise a minimal set of export elements in order
to flush out the issues and test the machinery of the Interface Engine.

61

+ attributeValue : string
+ attributeName : string

RequestConstraint
{Imported}

+ period : long = 0
+ status : silsInterface::ServiceRequestStatus = posted
+ type : silsInterface::ServiceRequestType = once
+ dataSetName : string

ServiceRequest
{Imported}

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Import elements have the issue of external players directly modifying the instances of the
system’s core model, which is not desired if the model implementation cannot ensure the
integrity of its state. In the context of the current SILS MRA design these model
elements reside in the interface domain partition as well as those used to represent service
requests. The specific types and nature of the import elements and service requests are
dictated as much by the capabilities of SILS IE and the information available in the
external systems it can interact with, as by the needs of the SILS MRA subsystem.
Service requests are related to import elements in that the result sets returned and
maintained by the corresponding Interface Engine service are captured in the SILS MRA
process space as import element. Service request must also have a relatively small export
element or set of export elements to provide parameters to the request specifying its
configurable features.

8.6 Interface Domain Ontology
The SILS Interface Domain is a SILS specific implementation of the generalized concept
of an interface domain. An interface domain serves as a ‘swap’ space for the exchange of
information with external systems. It defines simple and easy to understand information
sets without the complexities found in the core problem domain model. It also provides a
layer of isolation between the problem domain and the interfaces with external systems,
thereby ensuring the flexibility to evolve the core model over time. The domain is
implemented as a Java based CORBA package.

request request

1 1
RequestConstraints

constraints

RequestResults 0...

results ServiceResult
{Imported}

0...

Figure 24: Service Request framework

The two primary classes within the package are the Service Request class and the Service
Result class. These two classes provide a framework for the interface domain, as
depicted in Figure 24. Service Request objects are typically posted by the system agents.
They are picked up by SILS IE, which then queries the appropriate external information
systems to post the corresponding Service Result objects. The Interface agent picks up
additions, deletions, or modifications to Service Result objects and then translates them
into the core problem domain for use by the rest of the system. The results that

62

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

correspond to a Service Request object can be constrained by associating Request
Constraint objects. If more than one constraint is specified, then the constraints are
combined by a logical and construct.

The data set name attribute of the Service Request class specifies the type of information
being requested. The permitted values correspond directly to the class names of concrete
classes deriving from the Service Result class. The currently supported data set names
are as follows:

1.	 Machinery Problem - correlates a uniquely identifiable domain asset to a

specific phenomenon.

2.	 Part Availability - returns information about available parts such as cost

and location.

3.	 Part Order - returns current information about a specific part order as

identified by the requisition number.

4.	 Maintenance Activity - returns results on the individual maintenance
activities scheduled to be performed onboard ship.

5.	 External System Down - returns results of external systems that are

currently down.

6.	 Personnel Training – returns information about the training status of

individual crewmembers.

7.	 Personnel Availability – returns information about the availability of

personnel by NEC.

8.	 Personnel Gain and Loss – returns information about arriving and

departing crewmembers of the ship.

9.	 Temporary Personnel Assignment – returns information about temporary
duty assignments of individual crewmembers.

10.	 ANOR – returns information about equipment that is anticipated to be not

operational ready.

11.	 CASREP – returns information about equipment casualties.

12.	 Degraded Equipment – returns information about degraded equipment.

The type attribute indicates the manner in which the request should be updated. The
supported types are as follows:

1.	 Once - fulfill the request but do not continue to update.

2.	 Refresh - update the results of an existing request.

3.	 Periodic - update the request every x milliseconds (where x is the value of the
period attribute).

4.	 Continuous - update the request whenever the corresponding external information
changes.

The status attribute defines the values that may be used to indicate the current state of the
request results. Status values are as follows:

63

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

1.	 Posted - result processing has not begun and any results currently associated to
the request should be considered invalid.

2.	 Processing - the Interface Engine is currently responding to the service request.

3.	 Completed - the request was processed successfully.

4.	 Failed - the request could not processed due to an error.

The following subsections consist of a list of digital information systems with which
interfaces to SILS MRAT may provide benefits to: the users of SILS MRAT; the users of
the external system; or, to the US Navy as a whole. This list was created on the basis of
knowledge acquisition interviews aboard USS Fletcher (ManTech 2001a), USS
Comstock (ManTech 2001b), and USS Peleliu (ManTech 2001c). A few additional
candidate systems that were identified at briefings or discussions with client
representatives have also been placed on the list. The systems have been preliminarily
grouped into three categories (i.e., Primary, Secondary, and Other) based on the relative
value to be obtained in interfacing with them (based on the judgment of SILS MRAT
development team).

8.7 Candidate System Interfaces
8.7.1 Primary Candidates

The primary candidates are those digital information systems that are currently being
considered as having the highest relative value. These systems are initially targeted for a
physical level interface (see Section 8.2.1) with SILS MRAT.

NTCSS: The Naval Tactical Command Support System (NTCSS) is an integrated suite
of systems (i.e., OMMS-NG, R-Supply, and R-Admin) that together perform ship and
aviation maintenance management, material and financial management, as well as
medical and other related administrative management.

OMMS-NG: The Organizational Maintenance Management System – Next Generation
(OMMS-NG) targets ship and aviation maintenance management. It tracks all
maintenance and repair jobs aboard ship by Job Serial Number (JSN), and maintains
records of the configuration and location of every piece of equipment on the ship along
with corresponding equipment reference information such as: blueprints; drawings; flow
charts; and, diagrams. The OMMS-NG system interfaces with R-Supply to provide such
data as: part numbers; part order status; and, part availability aboard ship. It provides on-
line automated management of: CSMP, APL, and COSAL as described in the following
subsections. When a part has been ordered through OMMS-NG it is automatically
moved to R-Supply.

CSMP: The Current Ships Maintenance Project (CSMP) provides a list of maintenance
actions and other outstanding work to be performed. Jobs must be created in this system
before a part can be ordered. The system lists all parts required for purchase and
schedules when maintenance work will be completed by assigning work completion
dates. It provides shipboard maintenance managers with a consolidated listing of

64

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

deferred corrective maintenance so that they can manage and control its eventual
accomplishment of all required maintenance work.

APL: The Allowance Parts List (APL) provides schedules of parts required for
maintaining shipboard equipment and a set of easy-to-use applications that facilitate the
processing of parts and supply research needs. These products are offered as part of an
annual subscription service, include monthly or quarterly updates on CD-ROM, and are
continuously updated when accessed on-line. The subscription services include Navy
specific spare parts, equipment and repairable items associated with Naval shipboard and
aviation equipment, and also provide access to detailed information on more than 30
million NSN/NICN items within the Navy Supply Catalog system.

COSAL: The Coordinated Shipboard Allowance List (COSAL) is both a technical and a
supply document prepared for an individual ship. It is the basic source of information on
repair parts and materials needed for a job. The COSAL lists the equipment and
components that a ship requires to perform its operational mission, and the material
required for support of all installed and portable equipment aboard ship such as: the
repair parts; the special tools required; the overhaul and repair equipment; and, the
miscellaneous portable items necessary for the care and upkeep of the ship. The type,
number, and ordering data are provided for the equipment and supplies that should be
aboard ship. It provides information on such items as the name of a system (e.g., engine,
pump, ejector, etc.), the manufacturer’s name and the identification number (e.g., General
Motors Corporation #3255), the technical manual number for the system, the
manufacturer’s drawing numbers, and the Allowance Parts List (APL) numbers for
related systems (e.g., governors, starters, transmissions, etc.). It also provides specific
information about the National Stock Number (NSN), unit of issue, cost, and the number
of items needed. It may also include lists of part numbers and the Federal Stock Number
(FSN) for cross-over checks.

R-Supply: The Relational Supply System (R-Supply) is the part of the NTCSS suite that
targets the ordering, receiving, tracking, and issuing of supplies and material. It also
maintains the financial records associated with the operational target (OPTAR) for the
ship. It has the requisite interfaces required to communicate information throughout the
ship and to other activities afloat or ashore. After a part has been ordered through
OMMS-NG, it is moved to R-Supply.

R-Admin: The Relational Administration System (R-Admin) targets personnel and
manpower management. The functions of R-Admin include: absences; addresses;
advancements; awards; berthing/stateroom assignment, career information management,
command training, Division Officer’s Notebook; lifeboat assignment; Personnel
Qualification Standards (PQS); Quarterdeck Management; Security Clearance; Visitor
Control; and Watch Bills. It provides ratings of enlisted personnel in the form of
Personnel Qualification Standards. Personnel Management functions include: information
about prospective gains and losses; entitlements; classifications; and, the capability to
quickly find a person’s records. Manpower management functions include records of the
billets required and authorized for the command in the Activity Manpower Document.
R-Admin records and monitors deployments and other personnel absences, special

65

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

qualifications and certifications listed, produces training muster sheets, and a record of
training for the service record. It manages Navy training courses and can assign
personnel to them. It also identifies and assigns qualified personnel to watches and
produces watch bills associated with identified conditions, evolutions, watch stations,
duty sections, and watch teams. R-Admin is also available for use on a PDA for
recording class and muster attendance, to be uploaded to R-Admin.

TRMS: The Type Commander (TYCOM) Readiness Management System (TRMS) is
used to document and plan the crew training for a ship. TRMS ensures that the
standardized basic, intermediate, and advanced evolutions are completed once during
each 24-month work-up and deployment cycle. The system tracks M-Ratings in each
mission area and reports on the completion of each evolution (e.g., exercises, inspections,
and training). The combined ratings of pertinent evolutions provide a single rating in
each mission area. When workup starts, every area has a M-Rating of M-5 with a C-
Rating of C-5. The goal is to have a rating of M-1 in each mission area by the
deployment phase. An M-Rating can be overwritten by Training Readiness Capping,
which identifies specific areas that alone can decrease the M-Rating in a mission area if
not complete. Data from TRMS is submitted to SORTS upon significant change or once
a month.

MRDB: The Material Readiness Data Base (MRDB) is a Data Warehouse managed by
the Corona division of the Naval Surface Warfare Center. It is used along with other data
collected by Corona to create reference data sets such as the Equipment Breakdown
Model, the Equipment Operational Capability (EOC), and the Material Condition Model.
These models would be very useful to SILS MRAT in support of its readiness assessment
capability.

8.7.2 Secondary Candidates

The secondary candidates are those digital information systems that are currently
considered as not having the highest relative value, but as potentially useful across a wide
variety of ships and individual departments. These systems are initially targeted for
information level interfaces with SILS MRAT.

ICAS: The Integrated Condition Assessment System (ICAS) automatically monitors
selected mechanical systems aboard ship through remote sensors or automated feeds from
PDAs. It provides: a better understanding of a given system’s operation; the
simultaneous use of multiple predictive technologies; the ability to detect minute failures;
the ability to predict overall process performance; and, a paperless engineering log.

SORTS: The Status of Resource and Training System (SORTS) provides general status
information for a ship such as: major equipment; special capabilities; and, the mission
readiness of the crew. It contains the Mission Essential Personnel List by NEC, and
tracks the M-Ratings and C-Ratings for the ship.

Logistics Toolbox: The Logistics Toolbox provides supply officers with access to the
Defense Logistics System that is connected to the shore-side supply systems of each of
the DoD services. It allows users to order supplies then track the shipment and delivery of

66

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

the order. The Logistics Toolbox links to logistic information based on the type of
information desired through four individual applications that assist in the identification,
location, acquisition, and tracking of the supply item under consideration. It also provides
training and desk guides to several other logistics systems.

PMS: The Planned Maintenance System (PMS) strives to reduce complex maintenance
to simplified procedures that are easily identified and managed at all levels. It defines the
minimum planned maintenance required to schedule and control PMS performances, and
the methods and tools to be used. Specifically, PMS: provides for the detection and
prevention of impending casualties; allows for the forecasting and planning of manpower
and material requirements; supports the planning and scheduling of maintenance tasks;
facilitates the estimation and evaluation of material readiness; and, assists in detecting
areas requiring additional personnel training and improved maintenance techniques to
ensure the readiness of the ship.

SKED: The SKED system is designed to track and schedule equipment maintenance on
a weekly and quarterly basis, and to assign maintenance responsibilities. It provides
maintenance schedules marked to show what has been completed, rescheduled, or not
accomplished.

GCCS-M: The Global Command and Control System-Maritime (GCCS-M) aids the war
fighting capability and decision making of operational commanders by receiving,
retrieving, and displaying information relative to the current tactical situation. It
receives, processes, displays, and manages data on the readiness of neutral, friendly, and
hostile forces in order to execute the full range of Navy missions in near real-time.

8.7.3 Other Candidates

The other candidates are those digital information systems that are currently considered
as being useful only for select ship types or departments or as having only a limited
amount of information that would be useful to SILS MRAT. These systems are being
initially targeted for data level interfaces with SILS MRAT.

SAMS: The Automated Medical System (SAMS) is used by the Medical Department
aboard ship. It is used to track: medical supplies; crew immunizations; hearing
examinations; and, physical examinations. The basic functions are: appointments;
treatment; immunizations; and, general administration. It has interfaces available for use
on a PDA to track environmental conditions and inventory management to directly input
into the SAMS system. R-Supply and SAMS are required to be updated manually to
synchronize shared information.

FSM: The Food Service Management (FSM) system supports food services with:
automated menu production: receipt of inventory: and, issue and accounting processing.
It provides Web-based data including: subsistence prime vendor catalogs; standard
menus; HACCP guidelines; nutrition; and, cost analysis. It is available for use on a PDA
for creating breakout lists (i.e., shopping lists).

67

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

CSCS: The Combat Systems Casualty Control Computer System (CSCS) integrates
combat system procedures, operational states, and alarm conditions.

IBFT: The Integrated Battle Force Training (IBFT) database identifies training
requirements in the areas of communications, information systems, and networking. It
enables training officers aboard ship to assign and track personnel training requirements
and their fulfillment. Targeted users include: C4I-SR Training Officers and their staff,
CO, XO, OPS Officers, and TYCOM/CINC training representatives. IBFT shows which
personnel are required to go to C4ISR training based on assigned job and training
requirements for all C4ISR systems.

NTFS: The Navy Training Feedback System (NTFS) allows Navy activities and
personnel to identify, report, and validate training related deficiencies, such as: an
individual has not been trained in specific required skills; an individual has been trained
in required skills but cannot perform them; the required training is not available; the
training provided is outdated; and, the training or the discrepancy involves other broader
issues.

NAVFIT98: The NAVFIT98 system provides users with the capability to create, store,
organize, and print fitness, counseling, and evaluation reports.

TRIMS: The Technical Risk Identification and Mitigation System (TRIMS) supports
technical risk management. It is designed to provide early indication of potential
problems, identify areas of risk, and track program goals and responsibilities.

WECAN: The Web Centric Anti-Submarine Warfare Net (WECAN) provides fleet-wide
enhanced situational awareness for detecting and prosecuting enemy submarines. It has a
near real-time capability to disseminate and collaborate information on a 24-hour basis,
and allows users to watch unfolding events regardless of their current location.

8.7.4 Existing Support Candidates

The existing support candidates are systems, processes, or manuals that may have
information of value to SILS MRAT.

PERA: Planning and Engineering for Repairs and Alterations (PERA) is a program for
improving the advance planning, integration, and control procedures associated with ship
availabilities. The primary objective of the PERA program is to provide intensive
management for the accomplishment of effective, efficient, orderly, and timely ship
availabilities. The PERA program develops a complete and integrated ship availability
planning work package that is usable by an overhaul activity with minimum additional
planning.

BUPERS: The Bureau of Naval Personnel System (BUPERS) is designed to provide
accurate, reliable and readily accessible personnel information to fleet personnel.

IBS: The Integrated Bar Code System (IBS) provides the capability to quickly scan
received items.

68

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

CMP: The Continuous Monitoring Program (CMP) ensures that supply departments are
consistently meeting force standards in critical readiness areas by tracking pulse points
such as stock validity (i.e., how often requests can be found on-hand). Pulse points are
graded as green, yellow, or red based on supply system or force standards.

CART: Command Assessment of Readiness (CART) is a process to ensure mission
readiness. It consists of a review of personnel qualifications and inspection of areas in
two phases (CARTI and CARTII).

EDVR: The Enlisted Distribution Verification Record (EDVR) is used for manning and
assignment decisions. Distributed on a monthly basis by EPMAC (Enlisted Personnel
Management Center), it is organized into eight sections as follows: Sections 1 to 3 list
members who are expected to report, are detached, or are in a duty or temporary duty
status; Section 4 contains the total personnel account of the activity; Sections 5 to 8
contain statistical and authorized billet information, such as on board count ratings, NEC
codes, distribution NECs, and projected losses and gains.

69

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

70

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

9. Future Work

Commencing with the 2004 fiscal year the SILS project will transition from a research
program under the Office of Naval Research to an operational program under the
Distance Support Program of NAVSEA, where it will be known as the Mission
Readiness Assessment System Next Generation (MRAS-NG). The objective of the
distance support effort is to develop tools that assist in reducing shipboard workloads,
increasing readiness, and improving feedback and reach-back capabilities. The general
focus of MRAS-NG under the Distance Support Program is to field a fully operational
and sustainable decision-support system for individual ships.

The SILS proof-of-concept system with its integrated SILS IE and SILS MRAT
subsystems demonstrated the viability of applying an agent technology to the problem of
mission readiness assessment. However, within the current state-of-the-art of software
science technology, and especially software agent technology, significant risks still exist
in ensuring that this type of application can be designed to operate without degradations
within the current constraints of shipboard network bandwidth, information security, and
information assurance. In addition, significant risks also exist in the anticipated high costs
associated with both the initial roll-out of the MRAS-NG software application to the
Fleet and the life cycle costs to sustain it in the Fleet. The primary two areas of risk are in
the design and recurrent maintenance of the system and context unique decision
processes and data resources for each of the hundreds of systems that comprise the nine
Ship Work Breakdown Structures (SWBS) for each of the 30 currently operational ship
classes that constitute the Fleet.

In order to mitigate these risks, the SILS prototype system architecture must be re-
designed to function within the shipboard network processing capacity, information
security and assurance requirements, database systems interfaces, available systems
mission capability knowledge, and mission decision processes that currently exist.
Furthermore, this re-design of the prototype system architecture must also minimize the
cost and lead-time associated with adding unsupported or new systems, database
interfaces, mission capability knowledge, and mission decision processes as they are
introduced into the Fleet. The fundamental new design requirement is that MRAS-NG
must be designed as a software shell application package.

In the near term, the MRAS-NG development team will focus on the redesign of the
architecture for compatibility with the new environment, the development of a set of Web
browser-based user development and application tools, and fielding of an initial MRAS-
NG version for sea trials. The MRAS-NG team will then incorporate additional data
sources and assessment tools to progressively extend the information source domain, the
analysis domain, and the automatic inferencing services. Government acceptance tests of
the redesigned prototype are anticipated to begin in June 2004 with sea trials scheduled
for September 2004. Complete implementation of MRAS-NG is planned in four phases
spread over 60 months.

In the first phase, using feedback from NSWCCD and Distance Support (DS) program
personnel, the MRAS-NG team will redefine and modify the existing MRAS architecture
and implementation of a domain specific (rich client) application to that of a generalized

71

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

software shell (thin client) application. The software shell concept is borrowed from the
expert system shell concept, and refers to the ability to delete the specific application
domain content from an expert system and utilize the remaining framework and inference
engine for another application domain. This phase will culminate with a prototype
demonstration and deliverable at a hosted design review.

During the second phase, the MRAS-NG team will continue to develop MRAS-NG using
an iterative build and test process with frequent design and demonstration reviews. This
effort will culminate in an MRAS-NG system that is limited to Government selected
missions and equipment. The MRAS-NG software will demonstrate the maturity level
required prior to deployment to the operational environment. It will go through Factory
Acceptance Testing at ManTech facilities, Acceptance Testing at NSWC Crane facilities,
and then through Certification Testing for verification and validation that the software is
“ready” to install on a ship. Once the maturity level has been demonstrated, the system
or incremental version will be base-lined, and a methodical and synchronized deployment
plan will be implemented for the applicable locations.

The goal of this development phase will be to locate the appropriate data within the data
available from the shipboard Distance Support Database and watch for changes in the
SLQ32 radar system and the Allison 501-K34 Electrical Power Generation System.
Changes to these systems will be collected by the Interface Engine (IE) and passed to the
intelligent agents of the Mission Readiness Analysis Toolkit (MRAT). The agents will
examine the data and decide if the equipment is operational or not. The results of this
operation will be displayed to the user. This simple starting point will allow all parties to
validate the results of the system as it expands. While the MRAS-NG system will be
designed to help with managing the status of the ship, the results of the system will only
be as good as the input data. One critical task that will have to be immediately
undertaken is to gain a complete understanding of the available data sources. While the
currently collected SORTS and Casualty Report (CASREP) data will be made available
by the Distance Support program, it is not immediately clear that all of the required data
are currently collected by the available external systems.

In the third phase, MRAS-NG will be installed and tested on a DDG-51 class ship.
Appropriate ship personnel will be trained and given mechanisms for providing feedback
on its operation and use. Development and refinement of MRAS-NG will continue, as
will installations on additional ships.

In the fourth and succeeding phases, the Navy will have full responsibility for the
acquisition and support of the MRAS-NG application. Additionally, enhancements to the
functionality and capabilities of MRAS will continue.

72

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

10. Appendix A: Agent Rule Specifications

10.1 Framework Support Rules
10.1.1 Alert

Purpose: Contains rules and functions regarding alert creation and modification.

Alert Rule Set: Event Dependencies and Subsequent Actions

Condition 1:	 An observation.GeneralObservation exists whose
type is the target concept of a
ruleBasedAgent.AlertType.

Action 1:	 A ruleBasedAgent.RuleBasedAlert is created and
associated to the observation.GeneralObservation.

Condition 2:	 A ruleBasedAgent.AlertType exists without its
default attribute types set.

Action 2:	 The ruleBasedAgent.AlertType’s default attribute
types are set.

Condition 3:	 A ruleBasedAgent.RuleBasedAlert exists whose
targetObservation has a different endTime.

Action 3:	 The ruleBasedAgent.RuleBasedAlert’s endTime is
set to the targetObservation’s endTime.

Condition 4:	 A ruleBasedAgent.RuleBasedAlert exists whose
targetObservation is nil.

Action 4:	 The ruleBasedAgent.RuleBasedAlert is deleted.

Condition 5:	 A ruleBasedAgent.AlertType exists without its
interestedAgentType association set.

Action 5: The ruleBasedAgent.AlertType's
interestedAgentType association is set to its
ruleBasedAgent.RuleSetType's agentType

Resulting Alerts: None

Alert Attribute Rule Set: Event Dependencies and Subsequent Actions

Condition 1:	 An alert’s message attribute does not have the
correct value

Action 1:	 The message attribute is correctly set.

Condition 2:	 An alert exists with no alert attribute for a given
alert attribute type

Action 2:	 An alert attribute object is created from the
appropriate attribute of or association to the alert

73

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 3:	 A ruleBasedAgent.AlertAttributeType exists
without its interestedAgentType association set.

Action 3:	 The ruleBasedAgent.AlertAttributeType's
interestedAgentType association is set to its
ruleBasedAgent.RuleSetType's agentType.

Resulting Alerts: None

10.1.2 Initialization

Purpose: Contains general rules and functions necessary for agent initialization.

Agent Status Rule Set: Event Dependencies and Subsequent Actions

Condition 1: A ruleBasedAgent.AgentStatus object does not exist
for a framework.View object

Action 1: A ruleBasedAgent.AgentStatus object is created for
the given framework.View

.
Condition 2: A ruleBasedAgent.PlanningTime object does not

exist for a framework.View object.
Action 2: A ruleBasedAgent.PlanningTime is created and

associated to the given framework.View.

Condition 3:	 ruleBasedAgent.AgentStatus exists with its
requiredAgentsInstantiated attribute set to FALSE
and agent initialization is complete.

Action 3:	 The ruleBasedAgent.AgentStatus
requiredAgentsInstantiated field is set to TRUE.

Resulting Alerts: None

Operating Entity Rule Set: Event Dependencies and Subsequent Actions

Condition 1:	 A system.GeneralSystem exists and there is no
associated system.Domain for a framework.View.

Action 1:	 A system.Domain object is created for the given
system.GeneralSystem and framework.View.

Condition 2:	 A ruleBasedAgent.RuleBasedAgentType exists in
which its behaviorType attribute is set to required
and there is no ruleBasedAgent.RuleBasedAgent
instance for a framework.View.

Action 2:	 A ruleBasedAgent.RuleBasedAgent instance is
created for the given
ruleBasedAgent.RuleBasedAgentType and
framework.View.

Condition 3:	 A ruleBasedAgent.RuleSetType exists in which its
behaviorType attribute is set to required and there is

74

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

no ruleBasedAgent.RuleSet instance for a given
framework.View.

Action 3: A ruleBasedAgent.RuleSet instance is created for
the given ruleBasedAgent.RuleSetType and
framework.View.

Resulting Alerts: None

10.1.3 Observation

Purpose: Contains rules regarding observation creation and modification.

Observation Rule Set: Event Dependencies and Subsequent Actions

Condition 1:	 A general observation exists with %<type>% flags
in its label

Action 1:	 Replaces each %<type>% flag with applicable
primary of supporting subject label. Also sets the
general observation’s objectName to the new label.

Condition 2:	 A projected task exists whose task protocol is
associated to a phenomenon with superType task
protocol planned concept category

Action 2:	 An observation of phenomenon with superType task
protocol planned concept category is created

Condition 3:	 An observation of phenomenon with superType task
protocol planned concept category exists but
corresponding task has been implemented

Action 3:	 The end time of the observation is set to the current
planning time

Resulting Alerts: 	None

Collection Observation Rule Set: Event Dependencies and Subsequent Actions

Condition 1:	 Observation that corresponds to a collection concept
exists and no AndCollection ObservationFact has
been created yet

Action 1:	 Creates a new AndCollection ObservationFact
containing all of the subjects held within the
observation

Condition 2:	 Observation that belongs in an
AndCollectionObservationFact but has not yet been
included exists

Action 2:	 Adds the newly found observation and its
corresponding information to AndCollection
ObservationFact

75

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 3:

Action 3:

An observation which is listed as lacked by a
CollectionConcept exists and corresponds to an
already created AndCollectionObservationFact
Adds the newly found lacked observation and its
corresponding information to an
AndCollectionObservationFact, and creates a new
LackedFact

Condition 4:

Action 4:

A lacked observation is discovered to have been
altered due to it’s times being different than its
corresponding LackedFact and it is contained within
an AndCollectionObservationFact
This rule updates the lacked times contained in the
AndCollectionObservationFact

Condition 5:

Action 5:

Collection observation found which is not
associated to an AndCollectionObservationFact but
should be
Collection observation is added to And
CollectionObservationFact’s collections at the
correct position corresponding to it’s start and end
time

Condition 6:

Action 6:

AndCollectionObservationFact with correct number
of observations contained exists
Creates collection observations around lacked
observations or modifies ones that need to have
their times changed

Condition 7:

Action 7:

Observation exists which relates to an or type
collection concept
Creates a collection observation and associates it to
it’s observations

Condition 8:

Action 8:

Collection observation exists which is a supporting
collection for an observation concept
Creates an observation and associates it to the
collection observation

Condition 9:

Action 9:

A collection observation exists whose end time is
greater than the earliest end time of its supporting
observations
Sets the collection observation’s end time to the
earliest end time of its observations

76

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 10:	 Observation exists whose start time does not equal
its supporting collection start time

Action 10:	 Sets the start time of the observation to the start
time of its supporting collection

Condition 11:	 Observation exists whose end time does not equal
its supporting collection end time

Action 11:	 Sets the end time of the observation to the end time
of its supporting collection

Resulting Alerts: 	None

10.2 SILS MRAT Agent Rules
10.2.1 Combat Systems Agent

Purpose: Contains rules that allow SILS MRAT to monitor the health of the ship's
combat systems.

Combat Systems Task Requirement: Event Dependencies and Subsequent Actions

Condition 1:	 task.Task to fix existing Combat Systems problem
has all task.ResourceRequirements allocated and
received

Action 1:	 observation.Observation of task has all required
assets allocated and received is created

Condition 2	 task.Task to fix existing Combat Systems problem
has status set to implemented or completed and
observation.Observation of task has all required
assets allocated and received is current.

Action 2:	 observation.Observation of task has all required
assets allocated and received has endTime set to the
current planning time.

Resulting Alerts: 	None

Combat Systems Machinery Problem: Event Dependencies and Subsequent Actions: None

Resulting Alerts: Alert 1: Machinery Problem – Warning
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Material Asset
6. Problem

Alert 2: Machinery Problem – Violation
Severity: Violation

77

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Attributes:
1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Material Asset
6. Problem

10.2.2 HM&E Systems Agent

Purpose: Contains rules that allow SILS MRAT to monitor the health of the ship's hull,
mechanical and electrical systems.

HM&E Task Requirement: Event Dependencies and Subsequent Actions

Condition 1:	 task.Task to fix existing H,M & E problem has all
required assets allocated and received.

Action 1:	 observation.Observation of task has all required
assets allocated and received is created

Condition 2	 task.Task to fix existing H, M & E problem has
status set to implemented or completed and
observation.Observation of task has all required
assets allocated and received is current.

Action 2:	 observation.Observation of task has all required
assets allocated and received has endTime set to the
current planning time

Condition 3:	 A silsInfo.CASREP for an existing H, M & E
problem has status set to isComplete.

Action 3:	 observation.Observation of CASREP repaired
CASCOR should be issued is created.

Resulting Alerts: Alert 1: Task Has All Required Assets Allocated and Received
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Task

Alert 2: CAREP Repaired CASCOR should be issued
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. CASREP

78

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

HM&E Machinery Problem: Event Dependencies and Subsequent Actions: None

Resulting Alerts: Alert 1: Machinery Problem – Warning
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Material Asset
6. Problem

Alert 2: Machinery Problem – Violation
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Material Asset
5. Problem

10.2.3 Interface Agent

Purpose: Contains rules that allow SILS MRAT to monitor the health of interfacing
decision support and information systems and process incoming feeds from
those systems.

Process Machinery Problem: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.MachineryProblem.

Action 1:	 An observation.Observation with concept and
primarySubject specified by the interface object is
created.

Condition 2:	 An external system and/or translator removes an
existing silsInterface.MachineryProblem.

Action 2:	 observation.Observation correlating to
silsInterface.MachineryProblem has its endTime set
to the current planning time.

Resulting Alerts: 	None

Process Asset Problem: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.ANOR.

Action 1:	 A silsInfo.ANOR that mimics the
silsInterface.ANOR is created.

79

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 2: An external system and/or translator posts a
silsInterface.CASREP

Action 2: A silsInfo.CASREP that mimics the
silsInterface.CASREP is created.

Condition 3: An external system and/or translator posts a
silsInterface.DegradedEquipment object.

Action 3: A silsInfo.DegradedEquipment object that mimics
the silsInterface.DegradedEquipment is created.

Condition 4: Existing silsInterface.AssetProblem’s endTime is
modified.

Action 4: Correlating silsInfo.AssetProblem has endTime set
to the new value.

Condition 5: Existing silsInterface.AssetProblem’s repair status
is modified.

Action 5: Correlating silsInfo.AssetProblem has repair status
set to the new value.

Resulting Alerts: None

Process Maintenance Activity: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.MaintenanceActivity.

Action 1:	 A task.Task with protocol and target specified by
silsInterface.MaintenanceActivity is created.

Condition 2:	 An external system sets existing
silsInterface.MaintenanceActivity’s status to
complete.

Action 2:	 Correlating task.Task has status set to completed.

Resulting Alerts: 	None

Process Part Order: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.PartOrder.

Action 1:	 A task.AllocatedAsset for the
task.ResourceRequirement correlating to the
silsInterface.PartOrder is created. An
observation.Observation of required part scheduled
to arrive is created.

Condition 2: An external system and/or translator sets
silsInterface.PartOrder’s received flag to TRUE

Action 2: Correlating task.AllocatedAsset’s received flag is
set to TRUE.

80

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Resulting Alerts: None

Process Temporary Personnel Assignment: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.TemporaryPersonnelAssignment object
with an NEC correlating to a
task.ResourceRequirement.

Action 1:	 A task.AllocatedAsset correlating to the
silsInterface.TemporaryPersonnelAssignment is
created. An observation.Observation of required
person scheduled to arrive is created.

Condition 2:	 Existing
silsInterface.TemporaryPersonnelAssignment has
arrived attribute set to TRUE

Action 2:	 task.AllocatedAsset correlating to the
silsInterface.TemporaryPersonnelAssignment has
its received flag set to TRUE

Resulting Alerts: None

Process Personnel Gain And Loss: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.PersonnelGainAndLoss object in
which a person is lost.

Action 1:	 A silsInfo.PersonChange object is created with
incumbentPerson set to the person who is leaving.

Condition 2:	 An external system and/or translator posts a
silsInterface.PersonnelGainAndLoss object in
which a person is gained.

Action 2:	 The silsInfo.PersonChange object has its
replacementPerson association set to the sils.Person
who is being gained.

Condition 3:	 An external system and/or translator posts a
silsInterface.PersonnelGainAndLoss object in
which a person is gained and is associated to a
NEC.

Action 3:	 A humanAsset.PersonAbilityPeriod is created
which ties the gained sils.Person to the NEC.

Condition 4:	 A silsInterface.PersonnelGainAndLoss object that
specifies a loss has arrivalTime attribute modified.

Action 4:	 Correlating silsInfo.PersonChange object has its
incumbentPerson's departureDate set to the new
arrivalTime.

81

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 5:	 A silsInterface.PersonnelGainAndLoss object that
specifies a gain has arrivalTime attribute modified.

Action 5:	 Correlating silsInfo.PersonChange object has its
replacementPerson's arrivalTime set to the new
arrivalTime.

Resulting Alerts: None

Process Personnel Training Request: Event Dependencies and Subsequent Actions

Condition 1:	 An external system and/or translator posts a
silsInterface.PersonnelTrainingRequest object.

Action 1:	 An observation.Observation of training scheduled
is created.

Resulting Alerts: None

Process External System Down: Event Dependencies and Subsequent Actions

Condition 1:	 A system.ExternalSystemDown object exists.
Action 1:	 An observation.Observation with concept of

external system down's description and with
primary subject of the external system down's
identifier of the downed system is created.

Resulting Alerts: Alert 1: External System Down
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. External System

10.2.4 Mission Capability Agent

Purpose: 	 Contains rules that allow SILS MRAT to identify high-level problems that
affect the ship’s overall ability to perform a mission

Readiness: Event Dependencies and Subsequent Actions

Condition 1:	 A readiness.ReadinessAreaType exists without any
correlating readiness.ReadinessArea for a given
framework.View..

Action 1:	 A readiness.ReadinessArea is created and
associated to the readiness.ReadinessAreaType and
framework.View.

Condition 2:	 A readiness.ReadinessArea exists without a
readiness.ReadinessLevel for an existing
readiness.ReadinessClass.

82

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Action 2:	 The readiness.ReadinessArea’s
readiness.ReadinessLevel is set for the
readiness.ReadinessClass to the
readiness.ReadinessLevel with the highest rank.

Condition 3:	 A readiness.ReadinessObservation exists which has
not been processed.

Action 3:	 The readiness.ReadinessArea the
readiness.ReadinessObservation is on and all
parent readiness.ReadinessAreas are updated to the
lowest readiness.ReadinessLevel between the
readiness.ReadinessArea’s current level and the
level specified by the
readiness.ReadinessObservation.

Condition 4:	 A readiness.ReadinessArea exists whose
readiness.ReadinessLevel is not correct based on its
sub readiness.ReadinessArea
readiness.ReadinessLevels and any
readiness.ReadinessObservations currently on it.

Action 4:	 The readiness.ReadinessArea and all its parent
readiness.ReadinessAreas are associated to their
correct readiness.ReadinessLevels.

Condition 5:	 A readiness.ReadinessObservation’s endTime has
been set to a time less than or equal to the current
planning time.

Action 5:	 The readiness.ReadinessArea the
readiness.ReadinessObservation is on and all its
parent readiness.ReadinessAreas have their
readiness.ReadinessLevels set to the correct value
not influenced by the out-of-date
readiness.ReadinessObservation.

Condition 6:	 An observation.CollectionObservation with
supported concept corresponding to a
readiness.ReadinessConcept exists.

Action 6:	 A readiness.ReadinessObservation associated to the
observation.CollectionObservation is created.

Condition 7:	 A readiness.ReadinessRequirement for an NEC
exists but no person with that NEC is on the ship.

Action 7:	 A readiness.ReadinessObservation with type
readiness.ReadinessRequirement is created.

83

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Condition 8:	 A humanAsset.PersonAbilityPeriod for required
NEC exists.

Action 8:	 readiness.ReadinessObservation endTime is set to
the humanAsset.PersonAbilityPeriod startTime.

Condition 9:	 A readiness.ReadinessRequirement for a
materialAsset.MaterialAssetType exists but no
materialAsset.MaterialAsset of that type is on the
ship.

Action 9:	 A readiness.ReadinessObservation with type
readiness.ReadinessRequirement is created.

Condition 10: Required materialAsset.MaterialAsset is on the
ship.

Action 10:	 readiness.ReadinessObservation endTime is set to
the materialAsset.MaterialAsset activationDate.

Resulting Alerts: None

Air Operations: Event Dependencies and Subsequent Actions

Condition 1:	 An observation.CollectionObservation has been
created which infers an observation.Observation of
recommended air operations suspension.

Action 1:	 An observation.Observation of recommended air
operations suspension is created.

Condition 2:	 A silsInfo.Message object exists whose type is
suspend air operations message type.

Action 2:	 An observation.Observation of air operations
suspended is created.

Condition 3:	 A silsInfo.Message object whose type is suspend air
operations message type has its endTime attribute
changed.

Action 3:	 The observation.Observation correlating to the
silsInfo.Message object has its endTime and
applicableEndTime attributes set to the endTime of
the silsInfo.Message.

Resulting Alerts: Alert 1: Recommended Air Operations Suspension
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Problem

Alert 2: Air Operations Suspended

84

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity

10.2.5 Personnel Agent

Purpose: 	Contains rules that allow SILS MRAT to monitor status of the manning status
of the crew.

Personnel Task Requirement: Event Dependencies and Subsequent Actions

Condition 1:	 A task.ResourceRequirement for a
humanAsset.HumanAsset with no
task.AssetRequest exists.

Action 1:	 A task.AssetRequest object corresponding to the
task.ResourceRequirement is created.

Condition 2:	 A task.AssetRequest for a humanAsset.HumanAsset
with no task.AllocatedAsset exists.

Action 2:	 An observation.Observation of resource
requirement has no allocated asset is created.

Condition 3:	 A task.AllocatedAsset exists for a
task.AssetRequest associated to a current
observation.Observation of resource requirement
has no allocated asset.

Action 3:	 observation.Observation’s endTime and
applicableEndTime are set to the current planning
time.

Condition 4:	 A task.AssetRequest in which the available
complete flag is set to FALSE exists.

Action 4:	 task.AvailableAsset objects are processed and
associated to the task.AssetRequest if applicable.
task.AssetRequest availableAssetsComplete flag is
set to TRUE. If no task.AvailableAsset objects are
located on ship then an observation.Observation of
required person not on ship is created.

Condition 5:	 task.AllocatedAsset corresponding to required
person in observation.Observation required person
scheduled to arrive has received flag set to TRUE.

Action 5:	 observation.Observation of required person
scheduled to arrive has endTime set to the current

85

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

planning time and an observation.Observation of
required person arrived is created.

Condition 6:	 task.Task with task.ResourceRequirement of a
humanAsset.PersonType has status set to
implemented or completed.

Action 6:	 observation.Observation of required person
arrived’s endTime is set to current planning time.

Resulting Alerts: Alert 1: Required Person Not On Ship
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. NEC Type
6. Task

Alert 2: Required Person Schedule To Arrive
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Person
6. Task
7. Expected Arrival Date

Alert 3: Required Person Arrived
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Person
6. Task

Alert 4: Resource Requirement Has No Allocated Asset
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. NEC Type
6. Quantity

86

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

7. Task

Personnel Loss: 	Event Dependencies and Subsequent Actions

Condition 1:	 A silsInfo.PersonChange object exists in which the
incumbentPerson is the last person with a required
NEC.

Action 1:	 observation.Observation of losing all personnel with
required NEC is created.

Condition 2:	 A humanAsset.Person with the required NEC will
be on the ship past the departureDate of the
transferring person.

Action 2:	 The observation.Observation of losing all personnel
with required NEC has its endTime set to current
planning time.

Resulting Alerts: Alert 1: Losing All Certified Personnel
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. NEC
6. Transfer Date

Alert 2: Crewman is Transferring
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Crewman
5. Transfer Date

Personnel Transport Scheduling: Event Dependencies and Subsequent Actions: None

Resulting Alerts: Alert 1: Inefficient Use of Transport Resources
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Task 1
6. Task 1 Start Time
7. Task 1 End Time
8. Task 2
9. Task 2 Start Time

87

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

10. Task 2 End Time

10.2.6 Supply Agent

Purpose: Contains rules that allow SILS MRAT to monitor the supply status of the ship

Supply Task Requirement: Event Dependencies and Subsequent Actions

Condition 1:	 A task.ResourceRequirement for a
materialAsset.MaterialAsset with no
task.AssetRequest exists.

Action 1:	 A task.AssetRequest object corresponding to the
task.ResourceRequirement is created.

Condition 2:	 A task.AssetRequest for a
materialAsset.MaterialAsset with no
task.AllocatedAsset exists.

Action 2:	 An observation.Observation of resource
requirement has no allocated asset is created.

Condition 3:	 A task.AllocatedAsset exists for a
task.AssetRequest associated to a current
observation.Observation of resource requirement
has no allocated asset.

Action 3:	 observation.Observation’s endTime and
applicableEndTime are set to current planning time.

Condition 4	 A task.AssetRequest in which the
availableAssetsComplete flag is set to FALSE
exists.

Action 4:	 task.AvailableAsset objects are processed and
associated to the task.AssetRequest if applicable.
task.AssetRequest availableAssetsComplete flag is
set to TRUE. If no task.AvailableAsset objects are
located on the ship then observation.Observation of
required person not on ship is created.

Condition 5:	 task.AllocatedAsset corresponding to required
material asset has received flag set to TRUE.

Action 5:	 observation.Observation of Required part scheduled
to arrive has endTime set to the current planning
time and an observation.Observation of required
asset arrived is created.

Condition 6:	 task.Task with required material asset has status set
to implemented or completed.

Action 6:	 observation.Observation of required part arrived’s
endTime is set to the current planning time.

88

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Resulting Alerts: Alert 1: Required Part Not On Ship
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Part Type
6. Task

Alert 2: Required Part Schedule To Arrive
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Part
6. Task
7. Expected Arrival Date

Alert 3: Required Part Arrived
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Part
6. Task

Alert 4: Resource Requirement Has No Allocated Asset
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Material Asset Type
6. Quantity
7. Task

Supply Transport Scheduling: Event Dependencies and Subsequent Actions: None

Resulting Alerts: Alert 1: Inefficient Use of Transport Resources
Severity: Warning
Attributes:

1. Context Start Time
2. Context End Time

89

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

3. Message
4. Severity
5. Task 1
6. Task 1 Start Time
7. Task 1 End Time
8. Task 2
9. Task 2 Start Time
10. Task 2 End Time

10.2.7 Training and Performance Agent

Purpose: Contains rules that allow SILS MRAT to identify training and performance
deficiencies.

Mandatory Officer Training: Event Dependencies and Subsequent Actions

Condition 1:	 humanAsset.Person exists whose arrivalDate is after
the startTime of a task.TrainingTask that has that
humanAsset.Person as a trainee..

Action 1:	 An observation.Observation of officer will miss
mandatory training is created.

Condition 2:	 observation.Observation exists of officer will miss
mandatory training however the specified
sils.Person has an expected arrivalDate before the
task.TrainingTask startTime

Action 2:	 The endTime of the observation.Observation is set
to the current planning time.

Resulting Alerts: Alert 1: Officer Will Miss Mandatory Training
Severity: Violation
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Officer
6. Mandatory Training

Alert 2: Training Scheduled
Severity: Information
Attributes:

1. Context Start Time
2. Context End Time
3. Message
4. Severity
5. Officer
6. Start Time
7. End Time

90

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11. Appendix B: Façade Specifications

The façades provide a very convenient way of providing an application with an
application-specific view of the model. Façades interact with the logic layer and the
model. They isolate the logic layer from changes in the model and essentially keep the
knowledge of how to acquire data from complicating the logic. Following the
specification of the façade API, the logic can be implemented. This improves parallel
development.

The façades are separated into eight packages. The Agent Interface Facade package
contains façades that provide interaction with the SILS MRAT agents. The Comment
Façade package contains facades that provide information on comments made by users.
The Department Facade package contains façades that provide functionality for viewing
information pertaining to a specific ship department. The Launch Façade package
contains the facades used during application startup. The Location Facade package
contains façades that provide information about locations within the ship. The Message
Façade package contains the facades pertaining to issues entered within SILS MRAT.
The Readiness Facade package contains façades that provide the user with information
about readiness, and the Scheduling Facade package contains façades that provide
interaction with the ship’s scheduled tasks.

11.1 Agent Facades

11.1.1 Agent Façade - Provides information about an agent.

agentId Field
Provides the name of the agent.

animate Field
Provides the length of time that the agent should animate after this animate field is
set.

isActive Field
Provides whether the agent is active and operating.

status Field
Provides the numeric state value of the worst alert currently registered by the
agent.

name Field
Provides the displayable full name of the agent.

targets Association
Provides a link to facades representing all objects that are targeted by an alert
from this agent. The facades are guaranteed to have a displayable name field, and
an alerts association.

alerts Association
Provides Alert façades for all alerts that were created by this agent.

comments Association
Provides Comment façade for all comments targeting this agent.

issues Association
Provides an Issue façade for all issues targeting this agent.

91

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.1.2 Agents Façade - Provides access to all agents in the system.

agents Association
Provides all agents in the system as Agent façade objects.

11.1.3 Alert Façade - Provides access to alerts posted by an agent on one or more
objects.

ack Field
Provides whether the alert has been acknowledged, and allows a user to
acknowledge an alert by setting this field to TRUE.

alertType Field
Provides the name of the rule that found this alert.

attributeLabels and attributeValues Fields
Provides two parallel tab-delimited lists containing alert attributes and their
corresponding values. These are all the alert attributes for this alert.

message Field
Provides the message created by an agent describing this alert.

ruleSet Field
Provides the rule set for this alert.

severity Field
Provides the severity of this alert as a number (0-6, 6 being the worst).

time Field
Provides the time that the alert was created.

name Field
Provides the name of the alert.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.1.4 Observation Façade - Provides information concerning an observation.

name Field
Provides the name of the observation.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

92

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

issues Association
Provides a link to all issues targeting the source object.

11.1.5 TargetFacade Façade - Provides a representation of an alert’s target not
already represented by another façade.

name Field
Provides a displayable name representing the source object.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.2 Comment Facades

11.2.1	 Comment Façade - Provides a comment created by a user upon an object
represented by one or more façades.

comments Association
Provides comments upon this comment.

message Field
Provides the contents of the message contained within this comment.

timePosted Field
Provides the time when the user created this comment.

user Field
Provides the full name of the user that posted this comment. An example of this
field would be “Zachary Speck”.

userName Field
Provides the login name of the user that posted this comment. An example of this
field would be “zspeck”.

11.2.2	 NewComment Façade - Allows a new comment to be created on the
object whose objectKey is targetObjectKey.

message Field
Entered by the user, this is the message of the comment.

targetObjectKey Field
Entered by the user, this is the objectKey of the target of this comment.

createFacade Field
Set by the user to create the new comment.

93

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

createFacadeFailed Field
Returned by the façade following createFacade being set to true and being posted.
If the createFacadeFailed is set to true then the problemFacadeFields field should
be checked.

checkFacadeFields Field
Set by the user before createFacade to check if there are problems with any of the
façade fields.

problemFacadeFields Field
Returned by the façade following createFacade or checkFacadeFields being set to
true. This will be empty if there were no problem fields in the façade.

11.3 Department Facades
11.3.1	 AnchoringLog Façade - Provides information about current anchoring

log.

anchor Field
Provides information on which anchor was dropped.

bottomType Field
Provides information on the ocean floor where the anchor was dropped.

depth Field
Provides information on the distance to the ocean floor.

scope Field
Provides information on the number of shots required.

time Field
Provides information on the time at which the anchor was dropped.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.3.2	 ANOR Façade - Provides information on a specific ANOR.

daysToFailure Field
Provides information on the number of days expected until the item fails.

nomenclature Field
Provides information on the nature of the problem.

reported Field
Provides the time at which this ANOR was reported

requisitionNumber Field
Provides the requisition number for this ANOR.

94

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

status Field
Provides the current status of the ANOR

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.3.3 CASREP Façade - Provides information about a specific CASREP.

casrepNumber Field
Provides the casrep’s number.

daysToFailure Field
Provides information on the number of days expected until the item fails.

nomenclature Field
Provides information on the nature of the problem.

reported Field
Provides the time at which this CASREP was reported

requisitionNumber Field
Provides the requisition number for this CASREP.

status Field
Provides the current status of the CASREP

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.3.4	 DegradedEquipment Façade - Provides information about a specific
Degraded Equipment.

estimatedTimeUntilRepair Field
Provides the estimated amount of time until the item is repaired.

jsn Field
Provides the job serial number of the degraded equipment.

nomenclature Field
Provides information on the nature of the problem.

reported Field
Provides the time at which this CASREP was reported

95

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

requisitionNumber Field
Provides the requisition number for this CASREP.

status Field
Provides the current status of the CASREP

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

Department Façade
Provides information about a specific Department in the system.

anchoringLog Association
Provides access to all current anchoring log reports for this department.

anors Association
Provides access to all ANORs in this department.

casreps Association
Provides access to all CASREPs in this department.

degradedEquipment Association
Provides access to all the degraded equipment reports in this department.

messages Association
Provides access to all messages affecting this department.

personnel Association
Provides access to all the personnel staffing this department.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.3.5	 Departments Façade - Provides access to all the departments in the
system.

members Association
Provides access department facades, each representing a specific department.

currentUsersDepartment Field
Provides information on the department the currently logged in user belongs to.

currentShip Field
Provides information on the current ship.

96

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.3.6	 Message Façade - Provides information on a message posted into a
department.

description Field
Provides a description of the message type.

dtg Field
Provides information on the time at which the message was posted.

message Field
Provides the text of the message.

nextDue Field
Provides the time at which the next message is due.

serialNumber Field
Provides the message’s unique serial number identification.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

Personnel Façade
Provides information on a specific person in a department.

comingOnBoard Field
Provides information on the expected arrival date of the person.

incumbant
Provides information on the incumbant person this person is replacing.

nec Field
Provides a tab-delimited string of this person’s nec values.

rate Field
Provides information on the rate of this person.

required Field
Provides information on whether or not this person is required for deployment.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

97

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.4 Launch Facades

11.4.1 About Façade - Provides general information about the application.

applicationDescription Field
Provides a general description of the application, generally the full name behind
the acronym.

applicationName Field
Provides the displayable name of the application, typically an acronym.

companyName Field
Provides the name of the company that implemented the application.

contract Field
Provides the displayable name of the contract for which the application was
developed.

contributor and contributorDescription Fields
Provides two parallel tab-delimited fields that contain the name of each
contributor to the project and their position.

copyright Field
Provides the copyright information protecting the application.

sponsor Field
Provides the sponsor of the application’s development.

version Field
Provides the version of the application.

11.4.2	 Domain Façade - Represents a system.Domain object and is used to
constrain its members to only those that apply to the this domain.

agents Association
Association of agentfacade.Agent facades constrained to only those agents which
apply to this domain.

ExistingCycles Façade
Provides all existing cycles.

members Association
Provides all existing sessions as existingCycle façades.

ExistingCycle Façade
Provides information about an existing cycle.

endTime Field
Provides the time in milliseconds since the epoch (January 1, 1970, 00:00:00
GMT) when the cycle will end.

name Field
Provides the name of this cycle.

ship Field
Provides the name of the ship used in this cycle.

startTime Field
Provides the time when the cycle began (in milliseconds since the epoch).

98

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.4.3	 ExistingCycleValidate Façade - Provides a mechanism for the user to
select a cycle to use for this session.

cycleObjectKey Field
Entered by the user, this is the sourceObjectKey of the existingCycle façade to be
used by the user for this session.

valid Field
Returned by the façade, indicates whether the cycleObjectKey is a valid cycle to
be used for this session.

Login Façade
Provides a mechanism for a user to login to SILS MRAT.

loginName Field
Entered by the user, this is the login name of the user, such as “zspeck”.

password Field
Entered by the user, this is the user’s encrypted password.

valid Field
Returned by the façade, this indicates whether the login name is valid and the
password is valid for the login name.

11.4.4 Logout Façade - Provides a mechanism for a user to logout of SILS
MRAT.

logout Field
Set to true when the user wishes to logout of SILS MRAT.

11.4.5 NewCycle Façade - Allows a new cycle to be created by a user.

create Field
Set by the user to create a new cycle with this façade’s values.

endTime Field
Entered by the user, this is the end time for the cycle in milliseconds since the
epoch.

existingCycleNames Field
Provides a tab-delimited list of all currently existing cycle names.

name Field
Entered by the user, this is the name of the new cycle.

newCycleObjectKey Field
Provides the objectKey of the new cycle after the cycle has been created.

99

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

ship Field
Entered by the user, this is the name of the selected ship as provided in the ships
field.

ships Field
Provides the names of ships this cycle can be based on.

startTime Field
Entered by the user, this is the start time for the cycle in milliseconds since the
epoch.

type Field
Entered by the user, this is the selected cycle type name.

types Field
Provides a tab-delimited list of names for all cycle types. This list corresponds to
types.

typeDescriptions Field
Provides a tab-delimited list of descriptions for all cycle types. This list
corresponds to types.

11.4.6	 System Façade - Maintains the state of the façades and allows the façades
to be shutdown.

shutdown Field
Set by the user, this will shutdown the façade system services. This should be
called before closing the application.

user Field
Provides the login name of the user currently logged into the system.

session Association
Provides the source object of the currently selected session.

11.5 Location Facades

11.5.1 CompleteLocation Façade - Provides information regarding a location.

alertLevel Field
Provides the numeric severity level of the worst alert on any objects located at this
location.

alertLevelName Field
Provides the displayable name of the severity level of the worst alert on any
objects located at this location.

hasCasreps Field
Provides whether this location has CASREPs on any objects located at this
location.

locationId Field
Provides the location identifier of this location as found in CDMDFJ3D drawings
of the ship.

name Field
Provides the displayable name of this location.

100

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

casreps Association
Provides CASREP façades for all the CASREPs on any objects located at this
location.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.5.2	 CompleteLocations Façade - Provides a link to all locations represented
by CompleteLocation façades.

completeLocations Association
Provides a link to CompleteLocation façades representing all locations.

11.6 Message Facades

11.6.1	 Issue Façade - Provides information concerning the issue with the
objectKey entered in sourceObjectKey.

acknowledged Field
Provides TRUE if the issue has been acknowledged and FALSE if the issue has
not been acknowledged.

affectedUsers Field
Provides a list of users affected by this issue.

message Field
Provides the message of this issue as entered by this issue’s creator.

resolutionMessage Field
Provides the message entered by the party that resolved this issue, or N/A if this
issue has not been resolved.

resolutionStatus Field
Provides the status of this message, whether or not it has been resolved. Values
are “Resolved” and “Unresolved”.

resolutionTime Field
Provides the time when the issue was resolved.

resolutionUser Field
Provides the login name of the user who resolved this issue, such as “jdoe”.

resolutionUserName Field
Provides the full name of the user who resolved this issue, such as “John Doe”.

timePosted Field
Provides the time when the issue was created.

user Field
Provides the login name of the user who created this issue.

101

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

userName Field
Provides the full name of the user who created this issue.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.6.2	 Issues Façade - Provides all the issues for the selected cycle that are created
or targeted to the current user.

createdIssues Association
Provides all issues created by the user.

targetedIssues Association
Provides all issues targeted to the user.

issues Association
Provides all issues created or targeted to the user.

11.6.3	 NewIssue Façade - Allows a new issue to be created.

availableRespondents Field
Provides a tab-delimited list of names for all users available to respond to a new
issue.

startTime Field
Not used.

endTime Field
Not used.

message Field
Entered by the user, this is the message of the issue.

primarySubject Field
Entered by the user, this is the primarySubject of the issue. This field is optional.

selectedRespondents Field
Entered by the user, this is a tab delimited list of users who can respond to the
issue.

status Field
Entered by the user, this is the status of the new Issue.

createFacade Field
Set by the user, this creates the new issue when set to true.

createFacadeFailed Field
Returned by the façade following createFacade being set to true and being posted.
If the createFacadeFailed is set to true then the problemFacadeFields field should
be checked.

102

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

checkFacadeFields Field
Set by the user before createFacade to check if there are problems with any of the
façade fields.

problemFacadeFields Field
Returned by the façade following createFacade or checkFacadeFields being set to
true. This will be empty if there were no problem fields in the façade.

11.7 Readiness Facades
11.7.1	 AffectedAreas Façade - Groups all areas of the ship that affect the

selected readiness element.

name Field
Not used.

hme Association
Link to HMEArea façades representing all HME areas affected in the source
object or it’s sub-areas or observations.

personnel Association
Link to JobPersonnel façades representing all personnel allocations for the source
object or it’s sub-areas or observations.

supplies Association
Link to Supply façades representing all supply allocations for the source object or
it’s sub-areas or observations.

training Association
Link to Training façades representing all training tasks being performed for the
source object or it’s sub-areas or observations.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.2	 HMEArea Façade - Represents an HME system.

location Field
Provides the physical location of the HME Area.

name Field
Provides a displayable name for this HME Area.

dependentSystems Field
Provides a link to other HME Area facades representing systems that depend upon
this HME Area.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

103

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.3	 InactionOption Façade - Represents the option of not taking action to
resolve a readiness problem.

description Field
Provides a description of the option of inaction.

rating Field
Provides a rating of how favorable the inaction option is.

name Field
Provides a label for the inaction option.

impacts Association
Provides a link to ResolutionImpact facades representing all the impacts
associated with this option.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.4 JobPersonnel Façade - Represents a Job or NEC that needs to be filled.

department Field
Provides the department of the needed JobPersonnel if applicable.

division Field
Provides the division of the needed JobPersonnel if applicable.

job Field
Provides the position of the needed JobPersonnel if applicable.

personnelOnHand Field
Provides the number of personnel on the ship that meet the criteria.

personnelPresent Field
Provides the number of personnel on the ship that meet the criteria.

personnelRequired Field
Provides the number of personnel required for the task or requirement.

personnelSpecified Field
Provides the number of personnel specified for the task or requirement.

presentRequiredSpecified Field
Provides the number personnel present, required, and specified for the task or
requirement.

104

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

workcenter Field
Provides the workcenter of the needed JobPersonnel if applicable.

name Field
Provides the name of the position or NEC needed.

specificPersonnel Association
Provides a link to Person facades that fill this personnel need.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.5 Person Façade - Represents a specific person filling an NEC or a Job.

certificationStatus Field
Provides the status of the certifications held by this person, with regards to
whether those certifications are current. Possible values are: "all", "none", "N/A",
and "Some - ". “All” implies that all certifications are current. If only some
certifications are current, certifications will be listed as "Some - " followed by a
comma delimited list of the persons current certifications. None implies the
person has certifications but none are current. N/A implies that the person has no
certifications.

department Field
Provides the name of this person’s department.

division Field
Provides the name of this person’s division.

dueInOutStatus Field
Provides the status of whether this person is due in or out. "In" implies they are
not on the ship. "Out" implies they are on the ship.

dueInOutTime Field
Provides the time that the person is due in or out. In implies they are not on the
ship. Out implies they are on the ship.

dueInOutTimeAndStatus Field
Provides a single field combining the information in the dueInOutTime field and
the dueInOutStatus field.

job Field
Provides the name of the person’s position.

missionCritical Field
A comma delimited list of the missions for which this person is mission critical.
If this person is not aboard, these missions cannot occur.

nec Field
Provides a tab delimited list of the NECs held by this person.

105

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

rate Field
Provides the person’s rate.

workcenter Field
Provides the workcenter to which the person belongs.

name Field
Provides the person’s name.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.6 ReadinessArea Façade - Represents a readiness view of a ship system.

selected Field
Set by the user to select this ReadinessArea for use as the source object of the
affected areas façade.

status Field
Displayable readiness status of this ReadinessArea.

statusRank Field
Numeric readiness status of this ReadinessArea.

name Field
Full name of this ReadinessArea.

allReadinessObservations Association
All ReadinessObservations that are sub-areas of this ReadinessArea.

problemReadinessObservations Association
All ReadinessObservations that are sub-areas of this ReadinessArea that have a
readiness problem.

allSubReadinessAreas Association
All ReadinessAreas that are sub-areas of this ReadinessArea.

problemSubReadinessAreas Association
All ReadinessAreas that are sub-areas of this ReadinessArea that have a readiness
problem.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

106

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.7.7	 ReadinessBias Façade - Provides a representation of a mission biased
readiness. Provides information about that mission bias and its readiness.

abbreviation Field
Provides an abbreviation to represent this ReadinessBias.

exclusive Field
Provides whether this bias can only be exclusively selected.

status Field
Provides a displayable readiness status of this ReadinessBias.

statusRank Field
Provides a numeric readiness status of this ReadinessBias.

name Field
Provides a name for this ReadinessBias.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.8 ReadinessObservation Façade - Represents an observation of a
readiness problem.

selected Field
Set by the user to select this ReadinessObservation for use as the source object of
the affected areas façade.

status Field
Displayable readiness status of this ReadinessObservation.

statusRank Field
Numeric readiness status of this ReadinessObservation.

name Field
Full name of this ReadinessObservation.

resolutionOptions Association
ResolutionOption facades for all options to resolve this readiness observation.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

107

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.7.9	 ReadinessSystem Façade - Represents a readiness view of a system of the
ship.

abbreviation Field
Provides an abbreviation to represent this ReadinessSystem.

selected Field
Set by the user to select this ReadinessSystem for use as the source object of the
affected areas façade.

status Field
Provides a displayable readiness status of this ReadinessSystem.

statusRank Field
Provides a numeric readiness status of this ReadinessSystem.

name Field
Full name of this ReadinessSystem.

allAreas Association
All ReadinessAreas that are sub-areas of this ReadinessSystem.

problemAreas Association
All ReadinessAreas that are sub-areas of this ReadinessSystem that have a
readiness problem.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.10	 ResolutionImpact Façade - Represents the impact of implementing a
resolution option or the impact of inaction.

description Field
Provides a description of this impact.

rating Field
Provides a rating of how favorable this impact is.

name Field
Provides a label for this impact.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

108

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.7.11	 ResolutionOption Façade - Represents an option to resolve a readiness
problem.

description Field
Provides a description of the option.

rating Field
Provides a rating of how favorable this option is.

name Field
Provides a label for the resolution option.

impacts Association
Provides a link to ResolutionImpact facades representing all the impacts
associated with this option.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.12	 SilsOverview Façade - Provides a representation of the top-most level of
readiness.

selectAllReadinessAreas Field
Entered as true by the user to select all readinessAreas.

availableBiases Association
Provides ReadinessBias facades for all available mission biases.

availableSystems Association
Provides ReadinessSystem facades for all available readiness systems.

selectedBiases Association
Associated by the user to select biases to use in biasing the readiness levels of the
ReadinessSystems, the ReadinessAreas, and the ReadinessObservations.

selectedSystems Association
Associated by the user to select ReadinessSystems for viewing.

Supply Façade
Represents a needed supply.

daysToFailure Field
Provides the days until the asset fails.

estimatedCost Field
Provides the estimated cost of purchasing the repair item.

estimatedRepairTime Field
Provides the estimated repair time of the item, including the estimated time
required to receive the part from its current location.

jsn Field
Provides the job serial number of the supply.

109

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

neededFor Field
Provides the name of the task or requirement for which the supply is needed.

ordered Field
Provides whether the supply has been ordered.

quantityAvailable Field
Provides the number of items that are currently available for use.

quantityNeeded Field
Provides the quantity of this supply that is needed.

received Field
Provides whether the supply has been received.

repairCapability Field
Provides the ability of the ship to repair the item. The possible values are:
“Unknown”,"Internal", "BattleGroup", and "External"

replacementLocation Field
Provides the location of the supply or equipment item in question. If the item is
aboard ship, then the text "OB-" plus the location on the ship is displayed. If the
item is in the Battle Group, then the text "BG-" plus the name of the ship on
which the item is located is displayed. If the item is on shore, then the name of
the warehouse or distributing location which has the item is displayed (i.e. DLA
Tracy).

requisitionNumber Field
Provides the requisition number of the ordered item.

name Field
Provides the name of the supply.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.7.13 Training Façade - Represents training needs.

hoursRemaining Field
Provides the hours remaining to complete this training.

hoursRequired Field
Provides the hours required to complete this training.

hoursSpent Field
Provides the hours spent to complete this training.

hoursSpentRemainingRequired Field
Provides the hours spent, remaining, and required to complete this training.

phase Field
Provides the phase during which the training is performed.

110

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

name Field
Provides the name of this training.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues targeting the source object.

11.8 Scheduling Facades

11.8.1	 NewSchedulingTask Façade - Allows a user to create a new scheduling
task.

creator Field
The creator of this task.

dependeeObjectKeys Field
These are the tasks that this task depends upon.

dependentObjectKeys Field
These are the tasks that depend upon this task to be completed before they begin.

endTime Field
The time at which this task ends.

identifier Field
Unique identifier used to identify this task.

label Field
Identifier used for display on the screen.

missionImportance Field
A tab-delimited String where the first 'element' is the mission name, and the
second 'element' is the rank, repeating for each mission and rank.

name Field
The name of the task.

parentTaskObjectKey Field
The objectKey for the parent task of this newly created task.

percentComplete Field
The percentage of this task that has been completed.

responsibleParty Field
Not used.

startTime Field
The time at which this task is scheduled to begin.

subTaskObjectKeys Field
Tab-delimited String of objectKeys for tasks which will be sub-tasks of this new
task to be created.

111

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

targetObjectKey Field
objectKey of the target of this task.

taskTypeObjectKey Field
objectKey of the type of task that this new task will belong to.

11.8.2	 OpportunityCost Façade - Provides information on an opportunity cost
associated with performing a task.

description Field
Provides a description of the opportunity cost.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.8.3	 ResourceRequirement Façade - Provides information on a resource
required to perform a task.

description Field
Provides a description of the resource requirement.

quantity Field
Provides information on the quantity of the resource that is required.

quantityUnit Field
Provides information on the unit type for the quantity that is required.

resource Field
Provides information on the resource that is required by the task.

resourceArea Field
Provides information on the resource area of the resource requirement. An
example would be ‘personnel’.

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.8.4	 Schedule Façade - Provides access to all the scheduled tasks, effectively the
ship’s schedule.

tasks Association
Provides access to the tasks assigned to this schedule.

112

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

SchedulingTask Façade
Provides information on a specific task assigned to a schedule.

department Field
Provides information on which department this task is assigned to.

dependees Association
Provides access to the tasks upon which this task depends.

dependents Association
Provides access to the tasks which depend on this task for completion

endTime Field
Provides the time at which this task will end.

equipmentRequirements Field
Provides information on the requirements for the equipment aspect of this task.

equipmentToComplete Field
Provides information about whether the equipment needed to complete this task
exists.

extEquipmentToComplete Field
Provides information about whether the external equipment needed to complete
this task exists.

extMoneyToComplete Field
Provides information about whether the necessary external money exists to
complete the task.

extPersonnelToComplete Field
Provides information about whether the necessary external personnel exist to
complete this task.

extSupplyToComplete Field
Provides information about whether the necessary external supplies exist to
complete this task.

moneyRequirements Field
Provides information on the money requirements necessary for this task.

moneyToComplete Field
Provides information about whether the money necessary to complete this task
exists.

parentTask Association
Provides access to the parent task of this task.

percentComplete Field
Provides information about the current percentage of completion of this task.

personnelRequirements Field
Provides information on the requirements for the personnel aspect of this task.

personnelToComplete Field
Provides information about whether the personnel required to complete this task
exist.

startTime Field
Provides information on the time at which this task will begin.

subTasks Association
Provides access to the sub-tasks of this task.

113

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

supplyRequirements Field
Provides information on the requirements needed for the supply aspect of this
task.

supplyToComplete Field
Provides information about whether the supplies necessary to complete this task
exist.

missionImportance Field
Provides information on the mission importance of this task. (Primary, Secondary,
Support).

missionImportanceRank Field
Provides a numeric representation of the mission importance of this task. (1, 2, 3).

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

11.8.5 TaskType Façade - Provides information on the type of a specific task.

description Field
Provides a description of the task type.

opportunityCosts Association
Provides access to the opportunity costs associated with performing this type of
task.

resourceRequirements Association
Provides access to the resource requirements associated with performing this type
of task.

subTaskTypes Association
Provides access to the sub-task types that make up this task type.

missionImportance Field
Provides information on the mission importance of this task. (Primary, Secondary,
Support).

missionImportanceRank Field
Provides a numeric representation of the mission importance of this task. (1, 2, 3).

sourceObjectKey Field
Entered by the creator of this object, this is the objectKey of the source object
used to derive this façade’s fields.

alerts Association
Provides a link to all alerts that have been assigned to the source object.

comments Association
Provides a link to all comments that have been made on the source object.

issues Association
Provides a link to all issues created by users with this session.

114

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

11.8.6	 TaskTypes Façade - Provides access to all the types of task that can exist,
and access to all of the currently active tasks in the system.

taskTypes Association
Provides access to all the task types that can exist.

tasks Association
Provides access to all the currently active tasks in the system.

115

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

116

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

12. Appendix C: Object Model Package Specifications

PACKAGE DEFINITIONS

action
Package Name: action

Description:
The focus of the classes in the action package is to record the actions carried out in the
domain and to specify the types of actions that may be performed. Instances of the
Operational Level classes are used to record specific actions within the domain, while
those from the Knowledge Level are used to record the common prototypical actions that
are commonly referred to as an standard operating procedures of an Organization. An
action may use links Protocol, via the inherited type association, to precisely define what
was or is to be done in terms of the standard operating procedures. The Activity class
extends the Action class to provide support for independently recording both the planning
and execution phases of an Action

Members:

1. GeneralAction - Class
2. ProtocolDependency - Class
3. ActivityStatusType - Class
4. Activity - Class
5. Protocol - Class
6. ActivityDependency - Class
7. AbstractProtocol - Class

asset
Package Name: asset

Description:
The focus of the classes in the asset package is to provide an abstract framework to
record and represent the individual physical entities within the domain and their types.
Two subclasses or asset are provided: discrete item and inventory for representing either
specific, uniquely identifiable assets, or a quantity of indistinguishable assets of a
particular type. The logical type of thing represented by an asset object is specified by
association to the appropriate Asset Type object in the Knowledge Level. Asset Types for
a specific domain are specified as instances. This allows the same model to be configured
for different domains and at runtime. It allows provides for the implementation of

117

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

dynamic classification and can be modified to support multiple classification schemes.

Members:

1. GeneralAsset - Class
2. AssetType - Class
3. Inventory - Class
4. DiscreteItem - Class

configuration
Package Name: configuration

Description:
The purpose of the configuration package is to allow persistence of customizable
attributes within a configurable report. Each ConfigurableReport object must contain a
DefaultConfiguration and may contain any number of SystemConfigurations. The User
object corresponds to a UI user and may be associated to any number of
UserConfigurations. A Configuration object contains a number of BaseFields, which
correspond to Columns in a table type report and Fields in any other type of report. The
attributes within Configuration, Column and Field objects specify how the report has
been customized within that configuration.

Members:

1. Field - Class
2. FilterInfo - Class
3. Column - Class
4. ReportConfiguration - Class
5. User - Class
6. BaseField - Class
7. DefaultConfiguration - Class
8. ConfigurableReport - Class
9. SystemConfiguration - Class

10.eSortType - Class

11.eFilterType - Class

12.eColumnFormatType - Class

13.QuantityTypeColumn - Class

14.GeneralConfiguration - Class

15.eFilterRelationshipType - Class

16.StringTypeField - Class

17.IntegerTypeField - Class

18.DateTypeField - Class

19.AssociationTypeField - Class

118

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

20.BooleanTypeField - Class

21.EnumerationTypeField - Class

22.FloatTypeField - Class

23. UserConfiguration - Class

framework
Package Name: framework

Description:
The focus of the classes in the Framework package are to provide on overarching
structure for the object model as a whole. All the classes in all other packages are
extensions from a class in this package with some minor exceptions. The framework
primarily provides containment and classification for classes in derived packages. The
containment is provided by the View and Session classes and is primarily targeted to
support systems with the dual roles of operational support and training/gaming support.
The containment provided by the Agent View class supports tailored views for individual
agent engines and their associated community of agents. The classification provided by
the other classes in the package further support the dual operational gaming roles of the
system, provide rudimentary support for temporal systems, and provide for a formalized
partitioning of the domain into operational and knowledge levels. Objects in the
Operational Level record the day-to-day events of the domain while Knowledge Level
record the general rules that govern the configuration of objects in the Operational Level,
and type knowledge (encyclopedic knowledge) shared by multiple Operational Objects.

Members:

1. AgentView - Class
2. Session - Class
3. View - Class
4. OperationalObject - Class
5. PlanningObject - Class
6. ResourceObject - Class
7. DomainObject - Class
8. Comment - Class
9. Type - Class

10.AbstractType - Class

11.KnowledgeObject - Class

12.SessionType - Class

13. CommentType - Class

humanAsset
Package Name: humanAsset

119

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Description:
The Human Asset package defines an abstract Human Asset class from which the
concrete classes Organization, Position, and Person derive. The Operational Level
hierarchy is duplicated in the Knowledge Level to allow dynamic runtime typing in
addition to the static compile time typing that can be added by derived classes. By
defining a common base class for Organization, Person, and Position, this simple
hierarchy provides a very powerful abstraction as surprisingly many things relate to
Human Asset rather than Person, Organization, or Position. All may have phone numbers
and addresses, bills and debts, responsibilities and actions, and so on. The package
provides specific mechanisms to define temporal relationships between Person objects,
Organization objects, and Position objects. Additional types of relationships may be
defined as required with Accountabilities, which provide an extensible and generic
mechanism for specifying domain specific relationships between Human Assets.

Members:

1. Position - Class
2. Person - Class
3. Organization - Class
4. PersonType - Class
5. PositionType - Class
6. OrganizationType - Class
7. OrganizationBase - Class
8. PositionTypeAllocation - Class
9. Ability - Class

10.AbilityType - Class

11.HumanAssetType - Class

12.AbstractOrganizationType - Class

13.OrganizationPositionPeriod - Class

14.PositionPersonPeriod - Class

15.PersonAbilityPeriod - Class

16. GeneralHumanAsset - Class

location
Package Name: location

Description:
The focus of the classes in the location package is to record and represent locations.

Members:

1. StructureElement - Class

120

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

2. StructuredLocation - Class
3. Place - Class
4. PlaceType - Class
5. LocationType - Class
6. StructuredLocationType - Class
7. GeneralLocation - Class

materialAsset
Package Name: materialAsset

Description:
The Material Asset package extends the Discrete Item and Asset Type classes of the
abstract asset framework defined in the Asset package to specifically represent physical,
non-human related assets. The package defines the Material Asset class that represents a
specific physical item that can be uniquely identified. It also allows assets to be
hierarchically decomposed into subcomponents that are themselves Material Assets. The
Knowledge Level parallels the structure of the Operational Level by defining types of
assets and their hierarchical decomposition into possible subcomponent types. It
additionally defines the Material Asset Class, which can be used classify Material Asset
Types into higher level groups such as vehicles, bombs, or missiles.

Members:

1. MaterialAssetType - Class
2. ShutdownType - Class
3. Shutdown - Class
4. MaterialAssetTypeStructureElement - Class
5. ConveyanceType - Class
6. Conveyance - Class
7. AbstractMaterialAsset - Class
8. GeneralMaterialAsset - Class

observation
Package Name: observation

Description:
The focus of the classes in the Observation package is to record and represent both
qualitative and quantitative observations within the domain. Observations extend action
and therefore have all the characteristics of a standard action. An Observation may be
designated a hypothesis, projection, or active observation. Three subtypes of observation
are defined to represent Measurement Observations, Rejected Observations and Category
Observations. Measurement Observations record a quantity of some Phenomenon Type.
Category Observations record the absence or presence of an Observation Concept and

121

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

capture the evidentiary observations that lead to it. In the Knowledge Level, Observations
concepts are sub-typed into a hierarchy in a manner that allows Presence Observations to
propagate up the tree while Absence Observations propagate down the tree. The
Knowledge Level also indicates those Observation Concepts that may be used as
evidence for a particular Observation Concept.

Members:

1. ObservationType - Class
2. RejectionObservation - Class
3. Measurement - Class
4. CategoryObservation - Class
5. Phenomenon - Class
6. GeneralObservation - Class
7. ObservationProtocol - Class
8. CollectionObservation - Class
9. CalculatedMeasurement - Class

10.MeasurementProtocol - Class

11.CalculationProtocol - Class

12.SourceProtocol - Class

13.Method - Class

14.Query - Class

15.AbstractConcept - Class

16.CollectionConcept - Class

17.eConceptCollectionType - Class

18.PhenomenonType - Class

19.CollectionSupport - Class

20. ObservationConcept - Class

quantity
Package Name: quantity

Description:
The focus of the classes in the Quantity package is to record and represent abstract
quantities. A quantity groups a numerical value with a unit of measure. The package
defines standard quantities such as length, weight, time, pressure, velocity, acceleration,
and temperature. The capability to specify a range for a given Quantity is also provided.
The framework for defining specific Unit systems, and their associated units of measure
including both atomic and compound units are captured in the Knowledge Level. The
Knowledge Level also captures the information necessary to convert between compatible
units. The notion of complex and simple units presented here is similar to ideas presented
in Fowler's Analysis Patterns, except that this uses a simple unit that can be composed of
other simple units, whereas Fowler uses an atomic unit that cannot be broken down, and

122

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

he does not allow compound units to be expressed in terms of other complex units. This
system allows a joule to be expressed as a newton-meter. Because this system differs,
different names than Fowler uses have been selected. These complex units can be
dynamically created as necessary. Also differently than Fowler, this moves the
knowledge of unit relationships to the unit's type. This decreases the necessary objects
that would be required to relate units of the same type. It also allows generalized
relationships between types of units to be made, such as Force = Mass * Acceleration.

Members:

1. SimpleUnit - Class
2. UnitType - Class
3. GeneralQuantity - Class
4. QuantityRange - Class
5. UnitSystem - Class
6. UnitTypeRelation - Class
7. Prefix - Class
8. ComplexUnit - Class
9. UnitRelation - Class

10.Unit - Class

11.UnitTypeReference - Class

12.NumericQuantity - Class

13. StatisticalQuantity - Class

readiness
Package Name: readiness

Description:
The readiness package contains classes relating to the mission readiness. The
ReadinessClass represents the missions, while ReadinessArea and ReadinessAreaType
represents the areas affecting readiness. Other classes related to readiness are included in
this package.

Members:

1. Option - Class
2. ReadinessWeight - Class
3. ReadinessState - Class
4. ReadinessLevel - Class
5. ReadinessConcept - Class
6. ReadinessObservation - Class
7. ReadinessClass - Class
8. ReadinessEffect - Class

123

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

9. ReadinessArea - Class
10.AbstractReadinessAreaType - Class
11.ReadinessAreaType - Class
12.AbstractReadinessArea - Class
13.ReadinessRequirement - Class
14.Solution - Class
15.ResponsibleParty - Class
16.ReadinessBias - Class
17. ReadinessBiasEntity - Class

ruleBasedAgent
Package Name: ruleBasedAgent

Description:
The focus of the classes in the Rule Based Agent package is to provide a common
framework for the representation of the rule based agents within the system. The package
provides a Rule Based Agent class from which individual agents may be created or
classes representing the individual types of agents should derive. Agents associated with
a set of classes to represent the private information within its domain should be
represented in their own package. The package also provides the means to represent the
logical rules of an agent, and the capability to turn off individual agents and/or rules. An
alert class is also provided that allows agent alerts to be posted within the context of a
Session, and allows for the posting of user comments on alerts.

Members:

1. AlertType - Class
2. RuleSetType - Class
3. ResponseType - Class
4. AlertAttributeType - Class
5. PlanningTime - Class
6. eAlertSubjectRole - Class
7. eAlertAttributeType - Class
8. eAgentBehaviorType - Class
9. Response - Class

10.RuleBasedAccountabilityAlert - Class

11.RuleBasedAlert - Class

12.AlertAttribute - Class

13.RuleSet - Class

14.GeneralRuleBasedAgent - Class

15.RuleBasedAgentType - Class

16.AlertSeverity - Class

124

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

17. AgentStatus - Class

sils
Package Name: sils

Description:
This package provides classes specific to SILS.

Members:

1. DeploymentCycle - Class
2. Ship - Class
3. ShipType - Class
4. Person - Class
5. NEC - Class
6. Phase - Class
7. PhaseType - Class
8. SILSView - Class
9. Issue - Class
10.Resolution - Class
11.IssueConcept - Class
12.ResolutionConcept - Class
13.Acknowledgement - Class
14.AcknowledgementConcept - Class
15.NECType - Class
16.ExternalSystem - Class
17. ExternalSystemType - Class

silsInfo
Package Name: silsInfo

Description:
Used to fill the department summary, these are a collection of the observations pertinent
to each department within SILS. These are all observations and are specific to SILS.

Members:

1. AnchoringLog - Class
2. Message - Class
3. PersonChange - Class
4. GeneralSILSInfo - Class
5. DegradedEquipment - Class

125

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

6. ANOR - Class
7. CASREP - Class
8. AssetProblem - Class
9. UpdatedAssetProblem - Class
10.RepairStatus - Class
11.PersonChangeType - Class
12. SILSInfoType - Class

silsInterface
Package Name: silsInterface

Description:
The SILS Interface package is a SILS specific implementation of the generalized concept
of an interface domain. An interface domain serves as a swap space for the exchange of
information with external systems. It defines simple easy to understand information sets
without the complexities found in the core problem domain model. It also provides a
layer of isolation between the problem domain and the interfaces with external systems;
thereby, ensuring the flexibility to evolve the core model over time. The two primary
classes within the package are the Service Request class and the Service Result class.
Service Request objects will typically be posted by the system agents. Service Requests
will be picked up by an external interface broker, which will then query the appropriate
external information systems to post the corresponding Service Result objects. The
Interface Agent picks up additions, deletions, or modifications to Service Result objects
then translates them into the core problem domain for use by the rest of the system.

Members:

1. ServiceRequest - Class
2. ServiceResult - Class
3. MachineryProblem - Class
4. PartAvailability - Class
5. PartOrder - Class
6. PersonnelAvailability - Class
7. TemporaryPersonnelAssignment - Class
8. PersonnelGainAndLoss - Class
9. ScheduleStatus - Class

10.MaintenanceActivity - Class

11.PersonnelStatus - Class

12.Personnel - Class

13.NEC - Class

14.ErrorResult - Class

15.PositionType - Class

16.ServiceRequestType - Class

126

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

17.ServiceRequestStatus - Class
18.ANOR - Class
19.CASREP - Class
20.AssetProblem - Class
21.DegradedEquipment - Class
22.AssetRepairStatus - Class
23.PersonnelTraining - Class
24.ExternalSystemDown - Class
25. RequestConstraint - Class

system
P a c k a g e N a m e : s y s t e m
Description:
The purpose of the classes in system are to represent information specific to the
encapsulating system. The system package provides support for user accounts, access
permissions, and basic system properties.

Members:

1. Contributor - Class
2. UserAccountType - Class
3. GeneralSystem - Class
4. UnionGroup - Class
5. UserGroup - Class
6. Group - Class
7. DifferenceGroup - Class
8. IntersectionGroup - Class
9. OperatingEntity - Class

10.Domain - Class

11. User - Class

task
Package Name: task

Description:
The task package provides classes providing information about a task. The operational
level of the task package is mirrored by the Knowledge level of the task package. This is
evident from the two primary classes of the task package: Task and TaskProtocol. They
are defined by their subTypes and also by their ResourceRequirement/RequestedAsset
and TaskMissionImportance. The knowledge level of this package provides extra
knowledge information not found on the operational level.

127

CDM Technologies, Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Members:

1. TransportTask - Class
2. TransportTaskProtocol - Class
3. TrainingTask - Class
4. TrainingTaskProtocol - Class

time
Package Name: time

Description:
This package contains classes related solely to time. The purpose of this package is to
objectify time so that it can be modeled so that two events share a deadline.

Members:

1. Deadline - Class
2. DeadlineType - Class
3. Period - Class
4. PeriodType - Class
5. AdjustablePeriod – Class
6. FixedPeriod – Class

128

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

13. References and Bibliography

Aha, David W. and Gupta, Kalyan Moy (2002), Causal Query Elaboration in
Conversational Case-Based Reasoning; Proceedings of FLAIRS’02.

Bancilhon F, C. Delobel and P Kanellakis (1992); Building an Object-Oriented Database
System; Morgan Kaufman.

Booch, Grady and Ivar Jacobson and James Rumbaugh (1999); The Unified Modeling
Language User Guide; Addison Wesley.

Buschmann Frank, Douglas Schmidt, Hans Rohnert, and Michael Stal (1996); Pattern-
Oriented Software Architecture: A System of Patterns; Vol. 1, John Wiley and Sons, New
York, New York, 1996.

Buschmann, Frank, Hans Rohnert, Douglas Schmidt and Michael Stal (2000); Pattern-
Oriented Software Architecture Volume 2, Patterns for Concurrent and Networked
Objects; John Wiley and Sons.

CDM Technologies (2000); Collaborative Agent Based Control and Help (COACH)
Project Report, ARES Team, CDM Technologies, Inc., San Luis Obispo, California.

CDM Technologies (2001a); SILS (Shipboard Integrated Logistics System) Concept
Paper; SILS Project, ARES Team, CDM Technologies, Inc., San Luis Obispo, California.

CDM Technologies (2001b); SILS (Shipboard Integrated Logistics System) Framework
Report; SILS Project, ARES Team, 5 July 2001, CDM Technologies, Inc., San Luis
Obispo, California.

CDM Technologies (2001c); SILS (Shipboard Integrated Logistics System)
Architectural Design Report; SILS Project, ARES Team, 27 Sept 2001, CDM
Technologies, Inc., San Luis Obispo, California.

CDM Technologies (2001d); SILS (Shipboard Integrated Logistics System) Integration
Report; SILS Project, ARES Team, 28 Nov 2001, CDM Technologies, Inc., San Luis
Obispo, California.

CDM Technologies (2001e); SILS MRAT Data Source Integration Report; SILS Project,
ARES Team, 20 Aug 2002, CDM Technologies, Inc., San Luis Obispo, California.

Forgy C. (1982); ‘Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem’; Artificial Intelligence, Vol.19 (pp.17-37).

Fowler, Martin (1997); Analysis Patterns, Reusable Object Models; Addison Wesley
Longman.

129

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

Fowler, Martin and Kendall Scott (1997); UML Distilled, Applying the Standard Object
Modeling Language; Addison Wesley Longman.

Gamma, Erich and Richard Helm and Ralph Johnson and John Vlissides (1994); Design
Patterns, Elements of Reusable Object-Oriented Software; Addison Wesley.

Hay, David C. (1996); Data Model Patterns, Conventions of Thought; Dorset House.

Hayes-Roth F,D. Waterman and D. Lenat (1983); Building Expert Systems; Addison-
Wesley.

Kleppe, Anneke and Jos Warmer (1999); The Object Constraint Language, Precise
Modeling With UML; Addison Wesley.

ManTech Advanced Systems International (2001a); Trip Report - Visit to Headquarters
CINCPACFLT and USS FLETCHER; CINCPACFLT Headquarters and USS
FLETCHER, DD-992, Pearl Harbor Hawaii; March 29-March 31, 2001, ManTech
Advanced Systems International, Inc., Fairmont, West Virginia.

ManTech Advanced Systems International (2001b); Trip Report - Visit to USS
COMSTOCK; USS COMSTOCK, LSD-45, San Diego, Ca; May 22-May 23, 2001,
ManTech Advanced Systems International, Inc., Fairmont, West Virginia.

ManTech Advanced Systems International (2001c); Trip Report - Visit to USS
PELELIU; USS PELELIU, LHA-5, San Diego, CA; July 10, 2001, ManTech Advanced
Systems International, Inc., Fairmont, West Virginia.

Mowbray T, and R Zahavi (1995); The Essential CORBA: Systems Integration Using
Distributed Objects; John Wiley.

NASA (1992); CLIPS 6.0 Reference Manual; Software Technologies Branch, Lyndon B
Space Center, Houston Texas.

Orfali R, D Harkey and J Edwards (1996); The Essential Distributed Objects Survival
Guide; John Wiley.

Pohl J (1997); Human-Computer Partnership in Decision Support Systems: Some Design
Guidelines; in Pohl J (ed.), Advances in Collaborative Design and Decision Support
Systems, focus symposium; InterSymp-97, International Conference on Systems
Research, Baden-Baden, Germany.

Sandia National Laboratories (1997); The Java Expert System Shell;
http://herzberg.ca.sandia.gov/jess; Ernest J. Friedman-Hill Distributed Computing
Systems.

130

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

14. Glossary of Acronyms

AI Artificial Intelligence

AN/SPN (marshalling air traffic control radar used on Navy ships)

API Application program Interface

APL Allowance Parts List

ARG Amphibious Ready Group

ASCII American Standard Code for Information Interchange

BUPERS Bureau of Naval Personnel System

C4I-SR Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance

CAD Computer-Aided Design

CART Command Assessment of Readiness

CASREP Casualty Report

CD-ROM Compact Disk – Read Only Memory

CINCPACFLT Commander in Chief US Pacific Fleet

CIWS Close-In Weapons System

CLIPS C Language Integrated Production System

CMP Continuous Monitoring Program

CO Commanding Officer

COACH Collaborative Agent Based Control and Help system

COOL CLIPS Object Oriented Language

CORBA Common Object Request Broker Architecture

COSAL Coordinated Shipboard Allowance List

COTS Commercial Off The Shelf

CSCS Combat Systems Casualty Control Computer System

CSMP Current Ships Maintenance Project

DMS Data Management System

DNC Digital Nautical Chart

DS Distance Support

EDVR Enlisted Distribution Verification Record

EOC Equipment Operational Capability

EPMAC Enlisted Personnel Management Center

131

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

FSM Food Service Management

GCCS-M Global Command and Control System-Maritime

GIS Geographic Information System

GUI Graphical User Interface

HACCP Hazard Analysis and Critical Control Point

HM&E Hull, Mechanical, and Electrical

HTML Hypertext Markup Language

IBFT Integrated Battle Force Training

IBS Integrated Bar Code System

ICAS Integrated Condition Assessment System

ICDM Integrated Cooperative Decision Making framework

ICODES Integrated Computerized Deployment System

IE Interface Engine

IMMACCS Integrated marine Multi-Agent Command and Control System

JESS Java Expert System Shell

JSN Job Serial Number

MOXIE ManTech Object eXchange Interface Engine

MRA Mission Readiness Analysis

MRAS-NG Mission Readiness Assessment System - Next Generation

MRAT Mission Readiness Analysis Toolkit

MRDB Material Readiness Data Base

NaCoDAE Naval Conversational Decision Aids Environment

NAVSEA Naval Sea Systems Command

NEC Navy Enlisted Classification

NICN Navy Item Control Number

NRL Naval Research Laboratory

NSN National Stock Number

NSWCCD Naval Surface Warfare Center, Carderock Division

NTCSS Naval Tactical Command Support System

NTFS Navy Training Feedback System

OML Object Management Layer

OMMS-NG Organizational Maintenance Management System – Next Generation

ONR Office of Naval Research

132

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

OPNAVINST Office of Chief of Naval Operations Instruction

OPS Operations

OPTAR Operational Target

PDA Personal Digital Assistant

PERA Planning and Engineering for Repairs and Alterations

PMS Planned Maintenance System

POW Proxy Object Wrapper

PQS Personnel Qualification Standards

R-Admin Relational Administration System

R-Supply Relational Supply System

RDBMS Relational Database Management System

RETE (fast pattern matching algorithm devised by Charles Forgy in 1979)

ROE Rules of Engagement

SAMS Automated Medical System

SILS Shipboard Integration of Logistics Systems

SNOR Semantic Net Object Restore

SORTS Status of Resource and Training System

SQL Standard Query language

SUPPO Supply Officer

SWBS Ship Work Breakdown Structures

TCRS Taxonomic Case Reasoning System

TRIMS Technical Risk Identification and Mitigation System

TRMS TYCOM Readiness Management System

TYCOM Type Commander

UML Unified Modeling Language

URL Universal Resource Locator

WECAN Web Centric Anti-Submarine Warfare Net

XMI XML Metadata Interchange

XML eXtensible Markup Language

XO Executive Officer

133

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

134

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

15. Keyword Index

A
About Façade 98
Abraham, Dr. Phillip 7
acronyms 131-134
action 73-90
adaptability 2
AffectedAreas Façade 103
agent alerts 9, 16, 73, 77, 78, 79, 82, 84, 86, 87, 89, 90
Agent Engine 47, 51, 54
Agent Façade 91
Agent Facades 91-92
agents 21, 31-36, 51, 54, 124
Agents Façade 92
Aha, Dr. David 45
Alert Façade 92
alerts 9, 16, 73, 77, 78, 79, 82, 84, 86, 87, 89, 90
Amphibious Readiness Group (ARG) 14
AN/SPN-35B 14, 15, 19
AnchoringLog Façade. 94
ancillary requirements 22
ANOR Façade 94
API 37, 42, 91
APL 64, 65
application components 37-47
Application Tier 25, 26
application tools 37, 38-45
ASCII 52
assessments 10, 22

B
Bibliography 129-130
Blackboard 28-29
Browser 27, 47
BUPERS 68
Buschmann 23, 24, 29

CAD 27
CART 69
CASCOR 78
casebase 52

135

C

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

CASREP 72, 78, 80, 95, 96, 100, 101
CASREP Façade 95
CDM Technologies 1, 7, 45, 49, 50, 61
CINCPACFLT 7
CIWS MT 15, 18-19, 21
CLIPS 47
CMP 69
COACH 45, 49
Combat Systems Agents 10, 34
commanding officer 9, 15, 18-19
Comment Façade 93
Comment Facades 93-94
CompleteLocation Façade 100
CompleteLocations Façade 101
component view 27
condition 73-90
COOL 47
CORBA 31, 56, 62
COSAL 64
COTS 47, 49, 52
CSCS 68
CSMP 64

D
Damage Control Agent 10
Dashboard 16, 18, 41, 42, 46
data broker 26
data level 56
Data Mart 2
data schema 22
data sources 9, 37, 55
Data Warehouse 2
database 52
data-centric 13
decision-support 13, 27
DegradedEquipment Façade 95
Department Façades 94-97
Departments Façade 96
deployment view 29-30
design patterns 23
Distance Support 71
domain components 48-51
Domain Façade 98
Dribble File Viewer 47

136

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

E
Eclipse 47
EDVR 69
encryption 39, 99
engineering readiness 9
Environment Agent 10, 35
Environmental Protection Agent 10, 34
EOC 66
EPMAC 69
existing assessments 16
ExistingCycleValidate Façade 99

F
flexibility 2
Forgy 32, 51
Fowler 23, 25, 26
FSM 67
functional requirements 21

G
Galie, Thomas 7
Gang of Four 23
Gantt Chart 44
GCCS-M 67
GIS 27
Glossary 131-134
GOTS 45
GUI 38-39, 54, 118

H
HACCP 67
HM&E Systems Agent 78, 103
HMEArea Façade 103
HTML 40, 44

IBFT 68
IBS 68
ICAS 66

137

I

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

ICDM 8, 23-24, 27, 31, 46-48, 52, 56
ICODES 8
IMMACCS 8
InactionOption Façade 104
information 8, 55-56
information level 55
Information Server 49, 51
information-centric 8, 13
interaction view 28
Interface Agent 10, 34
Interface Engine 7, 15, 50, 53-57, 61, 71
interoperability 8
Issue Façade 101
Issues Façade 102

J
Java 51
JESS 47, 51
JobPersonnel Façade 104
JSN 64

K
knowledge management 2, 117, 119

L
Launch Facades 98-100
Location Facades 100-101
logical view 23-24
Logout Façade 99

M
maintenance 9
ManTech 1, 7, 50, 53
Marine Corps 8
Message Façade 97
Message Facades 101-103
mission 13
Mission Capability Agent 10, 32
mission readiness 10, 123
Mission Readiness Assessment Tool, 10

138

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

MOXIE 7, 54, 61
MRA 53-54
MRAS-NG 71

N
NaCoDAE 50
Name Server 49
Navigation and Communication Agent 10
NAVFIT98 68
NAVSEA 71
NEC 66, 69, 83, 86, 87, 105
NewComment Façade 93
NewCycle Façade 99
NewIssue Façade 102
NewScheduling Task Façade 111
North Arabian Sea 14
NRL 45, 50
NSWC 72
NSWCCD 7, 71
NTCSS 64
NTFS 68

O
object model specifications 117-128
Object Serving Communication Facility 54
objects 48
Observation Façade 92
Office of Naval Research (ONR) 1, 7, 49, 71
OML 42, 49, 56, 57-50
OMMS-NG 15, 64
ontology 2, 8, 27, 46, 48
OpportunityCost Façade 112
overview 9-12

P
password 39
PDA 66, 67
PERA 68
Person Façade 105
personnel 9, 22, 96, 104, 120
Personnel Agent 10, 33
phase 13-14
PMS 67

139

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

POW 58-60
process view 28

R
R-Admin 65
RDBMS 52
Readiness Facades 103-111
ReadinessArea Façade 106
ReadinessBias Façade 107
ReadinessObservation Façade 107
ReadinessSystem Façade 108
Recall Engine 49-50
References 129-130
Relaxed Layers 24
requirements 21-22
ResolutionImpact Façade 108
ResolutionOption Façade 109
ResourceRequirement Façade 112
RETE 32, 51
risk 14, 71
R-Supply 15, 64, 65
rulebase 52
Rules of Engagement (ROE) Agent 35, 10

S
SAMS 67
scalability 2
scenario 14-20
Schedule Façade 112
Scheduling Agent 33
Scheduling Facades 111-116
Scheduling Tool 18
SEAWAY 8
SilsOverview Façade 109
SKED 67
SNOR 48
software shell 71
SORTS 66, 72
SQL 52
subscription 59
Supply Agent 34, 10, 17
supply officer 15, 16, 18-19
support tools 46-47

140

CDM Technologies Inc., San Luis Obispo, California: Technical Report (CDM-15-04), January 2004

SWBS 71
system architecture 23-30
system components 37-52
System Façade 100
system tiers 25-26

T
TargetFacade Façade 93
TaskType Façade 114
TaskTypes Façade 115
TCRS 50
Training and Performance Agent 35, 10
Training Façade 110
TRIMS 68
TRMS 66
TYCOM 66

U
UML 23, 31
URL 52
USS Comstock 15, 18
USS Peleliu 14
utility 2

W
Web 2, 27, 44, 52
WECAN 68

X
XMI 48, 52
XML 52

141

