53 research outputs found

    Design methods for microwave filters and multiplexers

    Get PDF
    This thesis is concerned with developing synthesis and design procedures for microwave filters and multiplexers. The core of this thesis presents the following topics. 1) New classes of lumped lowpass prototype filters satisfying generalized Chebyshev characteristics have been investigated. Exact synthesis procedures are given using a relatively new technique termed the alternating pole synthesis technique to solve the accuracy problem. The properties of these filters and their practical advantages have been discussed. Tables of element values for commonly used specifications are included. 2) A new design procedure has been developed for bandpass channel multiplexers connected at a common junction. This procedure is for multiplexers having any number of Chebyshev channel filters, with arbitrary degrees, bandwidths and inter-channel spacings. The procedure has been modified to allow the design of multi-octave bandwidth combline channel filter multiplexers. It is shown that this procedure gives very good results for a wide variety of specifications, as demonstrated by the computer analysis of several multiplexers examples and by the experimental results. 3) A compact exact synthesis method is presented for a lumped bandpass prototype filter up to degree 30 and satisfies a generalized Chebyshev response. This prototype has been particularly utilized in designing microwave broadband combline filters. 4) Different forms of realization have been discussed and used in design and construction of different devices. This includes a new technique to realize TEM networks in coaxial structure form having equal diameter coupled circular cylindrical rods between parallel ground planes. Other forms of realization have been discussed ranging from equal diameter posts, direct coupled cavity waveguide filters to microwave integrated circuits using suspended substrate stripline structure. The experimental results are also given. In addition, the fundamentals of lumped circuits and distributed circuits have been briefly reviewed. The approximation problem was also discussed

    Microwave Filters in Planar and Hybrid Technologies with Advanced Responses

    Full text link
    [ES] La presente tesis doctoral tiene como principal objetivo el estudio, diseño, desarrollo y fabricación de nuevos dispositivos pasivos de microondas, tales como filtros y multiplexores con respuestas avanzadas para aplicaciones de alto valor añadido (i.e. comerciales, militares, espacio); orientados a distintos servicios, actuales y futuros, en sistemas inalámbricos de comunicación. Además, esta investigación se centrará en el desarrollo de filtros encapsulados de montaje superficial y con un elevado grado de miniaturización. Para ello, se propone investigar distintas técnicas que consigan respuestas muy selectivas o con unas características exigentes en rechazo (mediante la flexible introducción de ceros de transmisión), así como una excelente planaridad en banda (aplicando técnicas tales como la mejora del Q o el diseño de filtros con pérdidas, lossy filters), obteniendo de este modo respuestas mejoradas, con respecto a soluciones conocidas, en los componentes de microondas desarrollados. De forma general, la metodología seguida se iniciará con una búsqueda y conocimiento del estado del arte sobre cada uno de los temas que se acometerán en esta tesis. Tras ello, se establecerá un procedimiento de síntesis que permitirá acometer de forma teórica los objetivos y especificaciones a conseguir en cada caso. Con ello, se establecerán las bases para iniciar el proceso de diseño, incluyendo co-simulación circuital/electromagnética y optimización que permitirán, en última instancia, implementar la solución planteada en cada caso de aplicación concreto. Finalmente, la demostración y validez de todas las investigaciones realizadas se llevará a cabo mediante la fabricación y caracterización experimental de distintos prototipos.[CA] La present tesi doctoral té com a principal objectiu l'estudi, disseny, desenvolupament I fabricació de nous dispositius passius de microones, com ara filtres i multiplexors amb respostes avançades per a aplicacions d'alt valor afegit, (comercials, militars, espai); orientats a oferir diferents serveis, actuals i futurs, en els diferents sistemes sense fils de comunicació. A més, aquesta investigació es centrarà en el desenvolupament de filtres encapsulats de muntatge superficial i amb un elevat grau de miniaturització. Per a això, es proposa investigar diferents tècniques que aconsegueixin respostes molt selectives o amb unes característiques exigents en rebuig (mitjançant la flexible introducció de zeros de transmissió), així com una excel·lent planaritat en banda (aplicant tècniques com ara la millora de l'Q o el disseny de filtres amb perdues, lossy filters), obtenint d'aquesta manera respostes millorades, respecte solucions conegudes, en els components de micrones desenvolupats. De forma general, la metodologia seguida s'iniciarà amb una recerca i coneixement de l'estat de l'art sobre cadascun dels temes que s'escometran en aquesta tesi. Després d'això, s'establirà un procediment de síntesi que permetrà escometre de forma teòrica els objectiusi especificacions a aconseguir en cada cas. Amb això, s'establiran les bases per iniciar el procés de disseny, amb co-simulació circuital / electromagnètica i optimització que permetran, en última instància, implementar la solució plantejada en cada cas d'aplicació concret. Finalment, la demostració i validesa de totes les investigacions realitzades es durà a terme mitjançant la fabricació i caracterització experimental de diferents prototips.[EN] The main objective of this doctoral thesis is the study, design, development and manufacture of new passive microwave components, such as filters and multiplexers with advanced responses for commercials, military and space applications; oriented to other different services, in current and future wireless communication systems. In addition, this research will focus on the development of surface-mounted encapsulated filters with a high degree of miniaturization. With this purpose, it is proposed to investigate different techniques that achieve highly selective responses or with demanding characteristics in rejection (through the flexible introduction of transmission zeros), as well as an excellent in-band planarity (applying techniques such as the Q enhancement or lossy filters), thus obtaining improved responses, with respect to known solutions, in the developed microwave components. In general, the followed methodology will begin with a search and knowledge of the state of the art on each of the topics addressed in this thesis. After that, a synthesis procedure will be established, which will allow the achievement of the objectives and specifications in a theoretical way, for each case. With this, the bases will be established to start the design process, with circuital and electromagnetic co-simulations and optimizations that will allow, ultimately, to implement the proposed solution, in every application case, specifically. Finally, the demonstration and validity of all the investigations will be carried out through the manufacture and experimental characterization of different prototypes.Marín Martínez, S. (2022). Microwave Filters in Planar and Hybrid Technologies with Advanced Responses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18894

    High aspect ratio transmission lines and filters

    Get PDF
    There are a significant number of microwave applications, where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. have attracted much research interest. In order to meet these requirements, new technologies can be actively involved in fabrication of microwave components with improved characteristics. One such fabrication technology is called LIGA (a German acronym with an English translation of lithography, electroforming, and moulding) that allows fabrication of high aspect ratio (tall) structures, and only recently is receiving growing attention in microwave component fabrication. The characteristics of high aspect ratio microstrip and coplanar waveguide (CPW) transmission lines are investigated in this thesis. Very low impedance high aspect ratio CPW transmission lines can be realized. A high aspect ratio microstrip folded half wavelength open loop resonator is introduced. Effective configurations for external and bypass gap coupling with open loop resonators are given. Filters with transmission zeros in the stopband, consisting of high aspect ratio single mode open loop resonators are presented to demonstrate the advantages of high aspect ratio structures in realizing lower external quality factors or tight coupling. The transmission zeros are created by novel coupling routings. Some of the filters are fabricated and the filter responses are measured to validate high aspect ratio coupling structures. High aspect ratio diplexers with increased channel isolation are also designed by appropriately combining filters with transmission zeros. A wideband bandpass filter design method, based on the electromagnetic bandgap (EBG) concept is introduced in this thesis. The wideband filters are miniaturized as a result of using the EBG concept in design. An EBG based wideband filter consisting of unit cells that are realized by using high aspect ratio CPW stepped impedance resonators is also presented. The main advantage of this approach is that the high aspect ratio CPW structures make short unit cells practically realizable, resulting in compact filter structure

    Design and synthesis of lossy microwave filters

    Get PDF
    The design of microwave filters starts from the derivation of a defined lowpass prototype network. A general lossy synthesis method is given which can 1) derive the reflection function from the transfer function when the unitary condition is not satisfied; 2) find the expressions for the complex admittance parameters and 3) synthesize the lossy coupling matrix (CM) with prescribed loss distributions. Two special cases are discussed for solving the refection function from a prescribed transfer function. An alternative approach to cope with loss is studied. In a transversal array, some resonators can be replaced by their low-Q alternatives to reduce the manufacture cost as well as the cavity size. The exact values for the dissipations of resonators or couplings can be determined analytically or by methods of gradient based optimizations. A method of CM synthesis with non-ideal load is given which can be used in designing diplexers or multiplexers. Filter networks matching to complex load impedances can be found by renormalizing reference impedances. An iteration method is introduced which can deal with frequency variant load and can deliver the required reflection zeros. A method for the synthesis of directional filters is presented which can be used for designing combiners. While each section of directional filters provides a 1st order response, more complex filter characteristics can be realized by cascading those single sections. By proper transformations, directional filter networks can be realized using normal resonators and couplings. An example utilizing coaxial resonator is given. A method for the analysis of 2-D lumped element networks is presented. The method is based on the general telegrapher’s equations of multi-wire transmission lines. A 2-D lumped element network is equivalent to a combination of sub-networks which support single mode propagations. The method can be applied to the analysis of metamaterials and can be used for the design of waffle-iron filters

    E-plane parallel coupled resonators for waveguide bandpass filter applications

    Get PDF
    High skirt selectivity and extended out-of-band rejection is a major challenge for the successful progress of in-line microwave filters. This thesis presents novel filter realizations with improved performance, compatible with the standard single thin all-metal insert in a split-block housing and therefore maintaining the low-cost fabrication characteristics. In addition, significant filter performance improvement is achieved. The synthesis procedure implemented for the filter concept consists of a few steps. Some preliminary steps are a rigorous characterization of a double-ridge coaxial waveguide, and the modelling of an equivalent circuit model for the parallel coupled ridge waveguide devised in the filter concept. From these elements, a full wave electromagnetic analysis shows that parallel-coupled asymmetric ridge waveguides produce strongly dispersive coupling which introduces a transmission zero. Later on this property is extended to parallel-coupled asymmetric ridge waveguide resonators, where it is demonstrated that it is possible to independently control the coupling coefficient and the frequency of the transmission zero. This allows the realization of pseudo-elliptic narrowband in-line bandpass filters in E-plane technology. A general synthesis procedure for high order filters is outlined and numerical and experimental results are presented for validation. The elements employed for the synthesis procedure of the bandpass prototypes are also applied to investigate structures suitable for different applications. In particular, stopband and dual stopband filters are presented with numerical and experimental results. Finally, the study of a microwave chemical/biochemical sensing device for the characterization and detection of cells in chemical substances and cells in solution in micro-litre volumes is also reported.Engineering and Physical Sciences Research Council(EPSRC

    Improved method of reactive loading for miniaturisation of transmission lines with minimal degradation in performance

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163918/1/mia2bf01667.pd

    Single- and dual-carrier microwave noise abatement in the deep space network

    Get PDF
    The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given

    Miniaturised bandpass filters for wireless communications

    Get PDF
    The wireless industry has seen exceptional development over the past few decades due to years of sustained military and commercial enterprise. While the electromagnetic spectrum is becoming increasingly congested, there is a growing tendency to strive for higher bandwidths, faster throughputs, greater versatility, compatibility and interoperability in current and emerging wireless technologies. Consequently, an increasingly stringent specification is imposed upon the frequency utilization of wireless devices. New challenges are constantly being discovered in the development and realization of RF and microwave filters, which have not only sustained but fuelled microwave filter research over the many years. These developments have encouraged new solutions and techniques for the realization of compact, low loss, highly selective RF and microwave bandpass filters. The theme of this dissertation is the realization of planar compact performance microwave and RF bandpass filters for wireless communication systems. The work may be broadly categorised into three sections as follows. The first section presents a novel compact planar dual-mode resonator with several interesting and attractive features. Generally, planar microwave dual-mode resonators are known to half the filter footprint. However, it is found that the proposed resonator is capable of achieving further size reductions. In addition the resonator inherently possesses a relatively wide stopband as the lowest spurious harmonic resonance is observed at thrice the fundamental frequency. Properties of this resonator, such as these and more are explored in depth to arrive at an accurate electrical equivalent circuit, which is used as the basis for high order filter design. The application of these resonators in the design of bandpass filters is the subject of the second section. A general filter design procedure based on the equivalent circuit is presented to assist the design of all-pole filters. Alternatively, it is shown that generalised Chebyshev filters with enhanced selectivity may be developed with cross coupled resonator topologies. The discussions are supplemented with detailed design examples which are accompanied by theoretical, simulated and experimental results in order to illustrate the filter development process and showcase practical filter performance. The third section explores the possibility of employing these resonators in the development of frequency tunable bandpass filters. Preference is given to varactor diodes as the tuning element due to the numerous qualities of this device in contrast to other schemes. In particular, interest is paid to center frequency tuned filters with constant bandwidth. Tunable filters constructed with the dual-mode resonator are shown to have a relatively wide tuning range as well as significantly higher linearity in comparison to similar published works. In line with the previous section, experimental verification is presented to support and supplement the discussions

    New design approach of antennas with integrated coupled resonator filters

    Get PDF
    In the majority of microwave receiving and transmitting systems, a requirement is to have a filter immediately adjacent to the antenna or antenna array. This thesis presents a new methodology for antenna design where a filter is either fully or partially integrated with the antenna elements. The design of this antenna-filter follows the well-established coupled-resonator filter design theory, in which each resonator can not only be used as a filter element but also as a radiator. In order to verify the concept, a two-port bandpass filter designed using dipole antennas is the first work in this thesis to verify the use of dipole antennas as resonators. The coupling matrix has been used to obtain the filter response. One port antenna-filters made out of one, two and three dipoles. The method has also been utilised to implement X-band waveguide components which consist of an antenna-filter, antenna power divider and an antenna-diplexer. The calculation, simulation and measurement results are in good agreement. These proposed components has been designed, simulated, fabricated and measured. They have provided verification of the method, showing the antenna and filter theories and can be applied to miniaturise these components for use in the wireless communication and radar systems
    • …
    corecore