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SUMMARY.
This thesis is concerned with developing design 

procedures for filters and diplexers. Its object is to 
present methods which the practicing engineer can use to 
design high-performance devices without necessarily- 
being familiar with the technical details of circuit 
theory.

The basics of circuit and filter theory are reviewed 
and then several design methods for bandpass filters 
are examined. These include a new design procedure for 
single-sideband crystal filters.

Next, the thesis reviews the existing methods of 
diplexer design. Particular attention is given to those 
methods which use directly-interacting filters. These 
all share the disadvantage that only contiguous designs 
are possible.

A new method of designing non-contiguous bandpass 
diplexers is then developed. Computed and experimental 
results demonstrate the high performance possible with 
the new technique. Finally, the basic theory of the new 
method is applied to some other problems in diplexer and 
filter design.
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Symbols and Abbreviations.
Algebraic quantities are defined as they arise 

in the text. The following special symbols occur in 
some of the derivations:

"A implies B"
"The set of elements a^', the a^ in this 
case being a set of real frequencies with 
special significance for the networks 
being considered.

These abbreviations are used for labelling the 
ordinates of graphs of filter and diplexer performance 
L.R. Return Loss (measured in decibels)
I.L. Insertion Loss (measured in decibels).

A B
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CHAPTER 1. Introduction.

1.1 Electric Filters.
In electrical engineering, a FILTER is a circuit, 

generally with two access ports, which will pass energy 
between the ports in one or more well-defined frequency 
bands. Power at other frequencies will not be transmit
ted, or at any rate will be much attenuated.

The development of filters was strongly influenced 
by the needs of telecommunications, and in particular 
of frequency multiplex transmission over a common bear
er. For example, modern high-capacity frequency-division- 
multiplex (f.d.m.) communication links, which are the 
backbone of trunk telephony, are entirely dependant on 
the existence of filters meeting extremely stringent 
specifications.

Even before inventing the telephone, Alexander Gra
ham Bell experimented with tone-multiplex telegraphy E - f l  

using tuned reed resonators. However, the development 
of successful filters awaited the coming of the therm
ionic valve, when devices such as oscillators and mod
ulators became common and f.d.m. systems possible. Today, 
filter theory is in a. highly developed state, and is an 
almost unique example of a highly mathematical subject 
of enormous practical power.

Being so mathematical, filter theory is a subject 
somewhat inaccessible to the practicing engineer. Fil
ter design has become an area for specialists, and this 
is unfortunate, since the communication engineer should 
have a knowledge of what it is and is not possible to 
expect of a filter. Thus, design methods which he can



easily understand and apply, without sacrificing the opt
imum in performance, are very important. The ideal form 
of such a method is a set of explicit formulae which 
translate the initial specification into a physical de
sign. This will be called a direct design method. It can 
be distinguished from a method which requires a special 
knowledge of network theory, and which might involve a 
synthesis or difficult transformation procedure.
1.2 Filter Specifications.

The typical form of a filter specification is shown 
in figure 1.1. This defines the required transmission loss 
through the filter in various
frequency bands. For the moment the filter is assumed to 
be a two-port, and to be operating in a controlled imp
edance environment, such as a coaxial system.

The full line in the figure is a typical filter res
ponse which just meets the specification. The requirements 
specify the variation in transmission allowed in the 
PASSBAND, between f., and f2, and the attenuation to be 
exceeded in the STOPBAND. In the case shown, another
communication channel is supposed to exist between f„4
and ft-, which supplies the main stopband constraint. Theo
possibility of the filter exhibiting spurious passbands 
has to be considered too, and a permissible limit on 
their transmission imposed.

Some of the power incident on the filter within the 
passband may be reflected. Many system components, such 
as amplifiers, are somewhat intolerant of reflecting 
loads on their output, and such considerations limit the 
permissible reflection from the filter. Thus a limit is 
set on the passband return loss (broken line).

2
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FIGURE 1-1 F ilter Spec ¡fie a tion.



Given the specification, a mathematical function of 
frequency has to he found which will satisfy it. This is 
known as the approximation problem. The function has to 
do more than merely meet the specification. For one, it 
has to be realisable as the loss function of a real el
ectric circuit using a finite number of elements.

Since the design has to be as cheap to make as poss
ible, the number of elements has to be a minimum. This 
puts a premium on approximations which are known to be 
optimum in the sense of having the least number of deg
rees of freedom. However, some "over-design" may be al
lowed in order to give some tolerance against initial 
manufacturing errors and component drift in use.
1.3 Group Delay.

As well as having a selective amplitude response, 
filters delay signals passing through them. A convent
ional filter's group delay varies considerably over its 
passband and this variation may severely distort certain 
types of signal (for example, angle-modulated carriers). 
Measures have to be taken to "equalise" the variation 
with a separate network or design a special filter which 
does not exhibit the group delay variation. The latter 
approach has received a great deal of attention in rec
ent years. Conventional filters have only a single path 
through which energy can flow and their responses are 
minimum-phase. New types of filter have been developed 
which use multipath structures and have non-minimum 
phase response. These can be designed to give good amp
litude selectivity and nearly constant group delay. The 
design of this type of filter is rather specialised and 
is not "direct" in the sense discussed before. Further



discussion of this type of filter is beyond the scope of 
this thesis.
1•4 Outline of Thesis.

The aim of this thesis is to develop direct design 
methods for some type of bandpass filters and for band
pass diplexers.

Chapters two and three are concerned with the basis 
of circuit theory and with the development of the ideas 
of approximation, and the important notion of the low- 
pass prototype. Chapter four then derives some direct 
design procedures for bandpass filters. The filters
considered are a type of lumped element filter, trans
mission line filters of the interdigital and combline 
type, direct-coupled cavity waveguide filters, and fin
ally a new design procedure for high-performance crystal 
single-sideband filters.

Chapter five begins the study of diplexers. It rev
iews the main existing methods, in particular those which 
use interacting filters. Chapter six presents the main 
original material of the thesis, a new design procedure 
for asymmetric bandpass diplexers. Computed results are 
given for some trial designs which demonstrate the high 
performance possible with the new technique. Chapter seven 
considers the application of the design method to wave
guide diplexers. Experimental results are given which 
show that the method is simple and direct to apply to 
narrow-band designs. Also, computed results show that it 
should be applicable to broadband designs.

Finally, chapter eight applies the basic theory of 
the method to another form of bandpass diplexer,lowpass- 
highpass diplexers,andto developing an improved design



method for broadband bandpass filters. Concluding com 
ments and suggestions for future work are in chapter 
nine. Six appendices contain listings of various com 
puter programs used in the research.
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CHAPTER 2

FUNDAMENTALS OF LINEAR CIRCUIT THEORY

This review of linear circuit theory establishes the basic 

properties of electric circuits and the elementary methods of synthesis, 

as a basis for the review of filter theory in the next chapter. The 

material covered here is basic to all circuit theory, and references 

to proofs in existing literature are given where approriate. A 

complete development of circuit theory from first principles would be 

a volume in itself. Thus a basic set of principles and concepts is 

assumed, and the object of this chapter is to establish the most 

important ideas behind filter theory and network synthesis. Certain 

concepts, such as the ideas of ideal voltage and current sources, 

resistive sources, insertion loss, and the basic theory of transmission 

lines, are assumed and appear in the text without comment.

There are a number of texts on circuit theory available and 

for convenience most of the references are to the treatment given by 

Scanlan and Levy [2.lJ, [2.4],

2.1

Let a stimulus function s(t) be applied to an electric circuit, 

and a response r(t) result. Then the networks of interest generally 

satisfy the following constraints [2.1];

Linearity If s^t) ("leads to") r^t)

and (t) -> r2(t)

then as1(t) + bs2(t) -> ar^t) + br2(t)

Time Invariance s(t + t ) r(t + V)

Passivity If s(t) is considered to be a driving point

voltage v(t), and r(t) the resulting current 

i(t), thenjjassive networks only absorb or store 

energy, and thus v(t) and i(t) satisfy the condition



5
t v(r) i(r) d 'v  >, o— co

Causality For a linear circuit, if

s(t) = 0, -ex» < t < tQ

= S - ^ t ) ,  t  >/ t Q,

then

r(t) = 0, - co < t < tQ

= r^t), t > tQ

Real Time Function If s(t) = s^t) + j s2(t)

r(t) = rx(t) + j r2(t) 

then

s2(t) = 0 -> r2(t) = 0

2 .2

The fundamental quantities of interest in an electric network 

are voltages and currents. The fundamental rules they obey are 

called Kirchoff's lau/s. They are:

The algebraic sum of all current entering the junction of two 

or more circuit elements is zero.

The algebraic sum of all the voltages in any closed loop of an 

electric circuit is zero.

2.3

The elements of an electric circuit, of the class considered 

here, are shown in Figure 2.1(a). They are characterised by the 

relationships between their terminal voltages and currents

Resistor: v(t) = R{(t) (2.1)

Inductor: v/(t) = L at (2.2)

Capacitor: v ( t )  = -r f t  L(V) dVL J  —  oo (2.3)

Ideal transformer: v i ( t )  = n v (t) "I
2 , \ (2.4)

* l ( t )  = i 2( t ) / n  J

Mutual inductances have been excluded since they are not used in the
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circuits considered. They can be accommodated by admitting negative 

inductor values [2.2].

2.4 Laplace Transforms

The Laplace Transform of a function f(t) is denoted F(p), 

p - d + jo), and is defined by

F(p) = f(t) e ^  dt (2.5)

F(p) and f(t) form a Laplace Transform pair, indicated 

f(t) <=> F(p)

The Laplace Transform has the following properties [2.3]« 

Linearity af^t) + bf2(t) <=) aF^(p) + bF^Cp)

Scaling f(at) <=> 7  F(f-)a a
Shift f(t) exp(-at) <=> F(p + a)

Differentiation

dt f(t) = p F(p)

Integration

j  - 00
f(t)dt <=> - L F (p ) f(t) dt

J  -  00

( 2 . 6 )

(2.7)

( 2. 8)

(2.9)

( 2. 10)

(2.9) and (2.10) allow the elemental relationships (2.l)-(2.4) to be 

written in the Laplace Transform domain, thus:

Resistor V/(p) = R.l(p) _ (2.11)

Inductor V(p) = Lp.l(p) (2.12)

Capacitor .(assuming i(t) = 0, t { 0)

(2.13)

(2.14)

v( p )

Ideal transformer

^(p) = nV2(p) 

ij(p) = I2(p)/n

The expressions (2.11) to (2.13) allow the generalisation of the 

concept of "resistance" to "impedance". Thus the impedance of an 

inductor of L henries is pL and of a capacitor of C farads l/pC.



The dual of resistance is "conductance": of impedance, "admittance", 

and the admittances of an inductor and capacitor are l/pL and pC.

Similarly with circuits, consider the series RLC network of 

Figure 2,1(b). The current and voltage in this circuit are related 

by the integro-differential equation

Ri(t) + L —  i(t) +
■  CO

c - v(t)

Assuming that v(t) and i(t) are zero for t < 0, taking the Lapla 

transform of this equation gives

ce

R + PL + I(p) = V/(p)

Thus the impedance of the RLC circuit, which by generalisation of 

(2.11) is just U(p)/I(p) is given by

Z(p) = R + PL + ¿ c

2.5 Nodal Analysis

The properties of electrical networks can be deduced from 

general node or mesh analysis. Only nodal analysis will be considered 

here, to develop the properties of driving point and transfer functions. 

The corresponding development in terms of mesh analysis is given in 

[2.4].

Refer to the general nodal analysis network of Figure 2,2. Each 

node except one is excited by s constant-current source of value 

I (p), and there are (n+l) nodes. One node has been arbitrarily givenK

the index z b t o  and is used as a reference node. The nodal voltages 

relative to the reference node, are v^, v^, .*., v . Each node K is 

connected to the £'th node by a mutual admittance y , and in generalr K-O
each node is connected to every other. The self admittance of the k'th 

node is defined as

ykk “ yk,o + yK,l + yk,k-l + yk,k+1 + + y.k,n
It is clear that the node voltages and currents are related by the
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set of equations

yll V1 " yi2 v2 " —  - yln Vn = h  
"  y12 V1 +  y22 U2 .............................................................................................. I2

- y, - y0 Vo - ... + y v = i7ln 1 2n 2 7nn n n
or in matrix form:

(2.15) can be written compactly as;

[YJ.(v ) = (I) (2.15)

where [y] is known as the nodal admittance matrix.

Inverting (2.16), the column vector of node voltages can be 

found, i.e.

(v) = [y]“1 (I)

and by the definition of the inverse of a matrix,

A l l  A 1 2

= T  1 * A  —
^ln

+ A
In

^ ln  _ + I
A  ^ A. n

s determinant of Y, and ^ l s the cofactor of - y, .K</
; is assumed here that [y] is symmetrical, which is the

case if the network is composed of the elements considered.

2.6

Consider that one current source

Then the resulting node
Ak,l
A kI,., -6 = -T y 2, ...,

1̂, is finite and all the others 

voltages are 

n

set to zero



Let the pair of terminals formed by node m and node zero be defined

as port m. Then the impedance formed by looking into port k is

"kk
Akk

A
(.17)

and is known as the open-circuit driving-point impedance at port k.

,The quantities z^, l / k, are known as the open circuit transfer 

impedances and

-M A
(2.18)

From mesh analysis the quantities and Y^, known as the 

short-circuit driving-point and transfer admittances are defined [2.4].

2.7

A general admittance in Figure 2.2 can always be decomposed into

a parallel combination of a resistor, inductor, and capacitor.

If not, extra nodes can always be introduced into the network until

the decomposition is possible. Thus, the general admittance y cankv
bo written

= P cke + Gk* + ^

p Lkl Ckl + plM  gm  + 1 (2.1*0
pLk£

In (2.19), is the reciprocal of the resistor R^.

Since the expressions for Z^k and Z ^  (2.17) and (2.18) were 

ratios of determinants, and the determinants are calculated by 

multiplying and adding rational functions of p of the form of (2.19), 

the determinants are themselves rational functions, as are their ratios.

Thus the driving-point and transfer impedances (and admittances) 

are rational functions in the complex variable p, i.e. the ratio of two 

polynomials in p. Since ail the coefficients in (2.19) are real, the 

coefficients of each polynomial must also be real. The n’th degree 

polynomial has by the "fundamental theorem of alg ebra", exactly n roots,



and hencs the Z ^ can be written ;

'M
kip-Zĵ ) (p-z2) (...) (p-zn)

(p-P-l)' (p-P2) (•••) (P“Pm)
( 2 . 20 )

The points {ẑ ,} in complex p-plane, where = 0, are called zeros 

of the function, while the points (p^ where Z ^  = czoare called poles 

of the function. Since the coefficients of the numerator and denomin

ator polynomials of (2.20) are real, the poleiand zeros must be on the 

real axis or occur in complex-conjugate pairs.

2,8 Properties of Driving Point Immittances

A Driving Point Immittanoe may be an Impedance or adfilITTANCE.

The driving point admittance of a network, Y^(p), is the reciprocal 

of its driving point impedance. The main properties of a driving 

point impedance can be seen by considering one port of a network 

excited by a unit impulse of current, as shown in Figure 2.3. The 

transform of the unit impulse is just unity, so the Laplace transform 

of the resulting current waveform is simply 2^(p). how Z (p) being 

of the form (2.20) can be expanded as a partial fraction, and since each 

pole of (2.20) may in fact be multiple, the partial fraction expansion

about one pole Pj of order k Pill be a series of the form

V p) = I t  ~iJ r=l (p-Pj)
( 2. 21)

From [2.5], the inverse Laplace transform of (2.21) is

k A
V XTTTT.' tr_1 exp(Pjt) (2.2 2)

From the passivity restrictions, v^(t) must decay to zero as t^ °°e

If the pole p is given by

p . = cr.+joo.J J J

then, if w and o. are zero (pole at the origin), r must be equal tovj •
• If or is zero (pole on the imaginary axis), r must againone or zero



¡b

be equal to or less than unity. must be negative for a decaying

v,(t), and if o', and w. are both finite, the pole can be of any order, J J * J
i.e. r can have any positive value. This follows because

L. tr_1 e j t = 0  lm

f or
t-̂ 00 

< °-
By considering the excitation of the network by a unit-impulse 

voltage source, the same properties can be shown to hold for the zeros

of 2.20, which are the poles of Y^Cp). To summarize:

A. The poles and zeros of an immittance function are either real

or occur in complex conjugate pairs

B. All the poles and zeros must lie in the left half plane or on

the joo-axis

C. Poles and zeros on the jw-axis are of multiplicity at most one

D. As a corrolary to C, the numerator and denominator of an

immittance function differ by at most one, or there will be 

a non-simple pole at infinity.

2.9

In [2.6] it is further shown that the driving point immittance of 

a real network has the property of being POSITIVE REAL, and fulfils 

the conditions that:

R Z^ip) > 0 for R (p) > 0 e 11 r e
Z1]L(p) real for p real

These conditions apply also to Y-^ip). The necessary and sufficient 

condition that a function Z(p) be realisable as the input impedance 

of a physical network is that Z(p) be positive real.

In addition to the properties of 2.8 A-D, positive real functions 

(p.r.f. ) have the following properties:

E. The residues at any (simple) poles on the jov-axis are positive

real
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F. If Z(p) is a p.r.f. then

R (Z(p)) = . 0 for R (p) = 0 0 e
G. If Z(p) is a p.r.f«, then the function

2k
Z ^ p )  = Z(p) -  -y  ■ P~...2

P *  « ,

is also p.r., if and only if Z(p) has poles at p = - jcoQ udth 

residues k', with k' >, k.

A positiv/e real function is analytic in the right-half-plane.

If it further has no poles on the jw-axis, then its real and imaginary 

parts are related through the Hilbert Transform [2.13], Thus, if the 

real part is, say, R(u>), then the imaginary pert is given by

K®) = “ 7
An impedance function 

an admittance function

■°° R(u)du 
oo-u- oo

with this property is said to be IY1INIIY1LHY1 REACTIVE, 

, miNimum SUSCEPTIVE.

2.10
Turning now to the properties of transfer impedances, the restric

tions on a transfer impedance are not as stringent as on e driving- 

point impedance. Taking a function Z12(p) as a typical case, no 

physical meaning can bo attached to Z^2 (p)» and hence, though passivity

restricts the poles of Z^2(p) t>° the left half plane, there is no such 

restriction on the zeros. However, note that poles on the jaj-axis must 

be again simple, and hence the degree of the numerator of Z12(p) cannot 

exceed the denominator by more than one. To sum up:

H, The poles and zeros of z12(p) are real or occur in complex

conjugate pairs.

I. All the poles of Z12(p) lie in the left half plane, including the

jci>-axis

3. Poles on the jeo-axis are simple
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K. As a corrollary of 3, the degree of the numerator of Z^2(p) exceeds 

'the degree of the denominator by, at most, one.

2.11
Of interest when calculating the response of a network to a real 

excitation is the response when the forcing function is a pure sinusoid, 

represented by the time function 

v = cos(a)Qt)

The response of a network for p = jo) is then of interest. For p = ju>, 

a network function F(p) can be written 

F(jco) = E(w) + jO(w)

where E and 0 are even and odd functions of w, respectively, i.e.

E(w) = E(-co)

0(-w)= -0(w)

This property follows from conditions A and H.

Furthermore, if F(p) is a driving point function, then

E(o>) >, 0

2.12

A polynomial in p which has no zeros in the right-half p-plane is 

called HURU/ITZ. Thus, a p.r.f. is the ratio of two Hurwitz polynomials. 

Not all ratios of Hurwitz polynomials are p.r.f. They must also 

satisfy the condition that

■R (Z(p)) > 0 for R0(p) = 0 

If a function Z(p) is p.r. and, further,

Z(p) + z ( - p )  = 0

then Z(p) is a REACTANCE function, and must obviously be the ratio of 

an even to an odd polynomial, or vice-versa.

Since Z(p) is p.r., it has no poles or zeros in the right-half 

p-plane. Also, Z(-p) has no left-half p-plane poles or zeros. Thus,

since Z(p) = -Z(-p), Z(p) has no left- or right-half plane poles or zeros



Thus, all th8 poles and zeros lie on the imaginary axis, and must there 

fore be simple.

2.13

If Z(p) is a reactance function, so that Z(p) can be written

(or Y(p) can), since all the poles and zeros lies on the joo-axis, Z(p) 

can be expanded in a partial fraction of the form

Ao r 2Ai P Z(p) = A® p + + l. . 2 2 1=1 p + 00̂
(2.23)

where Z(p) is of degree 2r + 2. For p = joo, it is clear that 

Z( joo) = jX(w),

A r 2A. oo 
X(w) = Acoo) - + £ — |oo , 2 21=1 oo.  -  oo

Differentiating with respect to u>,
2 2A r 2A.(oo. + oo )

dX(oo) „ „„ . V 1__i_______— —L = Aoo + o + L , 2  2 2
^  oo i=1 (oô  - to )

Since all the {A^} are positive (2.8E), the derivative is also positive, 

and thus it can be shown that the poles and zeros interlace along the 

imaginary axis.

The partial fraction expansion (2.23) is the key to the synthesis 

of the reactance function in the form shown in Figure 2.4(a), when it 

is recognised that the impedance of the i'th resonant circuit is

p/c.
Z*(P) =  ̂ J  —p + 1/UC.ĵ

From this the element values are as shown for the single inductor and 

capacitor, and
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The dual form in Figure 2.4(b) can realise the admittance

v(p) =zfer

These networks are known as the FOSTER forms for the driving-point 

immittance, and are CANONICAL in that they may realise any reactance 

function, and MINIMAL in that they use the minimum possible number of 

elements.

2.14

An alternative realisation of a reactance function follows from 

the form of (2.23). If the pole at infinity is removed by extracting 

series inductor of value A , the remaining function Z'(p) has a zero at 

infinity, and is also positive real by 2.9G. The reciprocal of Z'(p) 

thus has a pole at infinity which can be removed by extracting a shunt 

capacitor, leaving a function with a zero at infinity, also positive 

real. The process can be continued until the remainder function is 

zero, resulting in the Ladder structure shown in Figure 2.6(a). If 

the original Z(p) has no pole at infinity, the first inductor will be 

absent.

An alternative form results by successively removing the poles 

at the origin, resulting in the network shown in Figure 2.6(b). Note

that the input impedance of the first network can be written

Z(p) = pL1 +_1___________ __________

pc2 +_1_______________
P 4  ± J -----------



and the input impedance of the second

1

These forms are known as CONTINUED FRACTIONS, and the associated 

networks are the CAUER FORfflS.

2.15

Two-port networks are of gsneral importance in filter theory.

A two-port network can be characterised by its port voltages and 

currents and by a set of two-port parameters. Various sets of parameters 

can be used: (Ve-fer ^

A number of other parameter sets can be used, and one, the scattering 

parameters, will be dealt with later. The transfer parameters are 

very useful in dealing with problems of cascading networks, since it is 

easily shown that if two networks are cascaded, the overall transfer 

matrix is given directly by the product of the individual transfer 

matrices.

It is important to note that both ths [y] and [z] matrices are 

symmetrical about the leading diagonal, i.e.

Admittance

Impedance

Transfer

Y12 = y2l’ Z12 = Z21
and the networks are thus termed reciprocal Reciprocity is a
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consequence of the elements used being bilateral. A non-reciprocal 

circuit will be briefly considered in Chapter 5.

The admittance parameters y ^  and y22 are the short-circuit 

driving point admittances of the network, while z ^  and z ^  are the 

open-circuit driving-point impedances. It is clear from the form of 

the matrix equations that
. - 1

* 1 1 y 1 2 \ II ( Zl1 Z 1 2

y 1 2 y 2 2  ' U 12 Z 2 2

Considering the [z] matrix, if the network N is lossless, that is, 

contains only L, C, and ideal transformers, then z  ̂and must be 

reactance functions. This case is particularly important because 

most filter circuits are essentially lossless. In this case, the 

poles of z^2, that is the transfer impedance, are restricted, as 

proved in [2.7],

L. All poles df z12 are poles of z ^  and z22# Poles of z ^  and 

Z22 n°^ Poles 2n  arB called PRIVATE, and can be removed 

by a series Foster-like network. The resulting network,

HI.
where z^, z12, z22 all have the same poles, is called COMPACT, 

if kn , k12, k22 are the residues at a particular pole, of zn ,

Z12’ Z22 respectively, then 
2

“ll k22 k12~ >, 0
The sign of k^2 is thus irrelevant.

These conditions are necessary and sufficient for a given [z] 

matrix, with z ^  and z22 reactance functions, to be realisable as a 

two-port LC network.

2.16 Darlington’s Theorem [2.8]

Any positive real function can be realised as the driving-point

impedance of a resistively-terminated lossless two-port network.

If ideal transformers are admitted into the network, the value of the



termination may always be one ohm

Associated with the theorem is a synthesis technique which permits 

the realisation of a p.r.f. in this form. Proof of the theorem is 

beyond the scope of this thesis and the technique is not explicitly 

required, so the theorem is merely quoted.

2.17 Scattering Parameters

The immittance parameters considered in section 2.15 are most 

useful for calculation when the networks being considered have their 

ports terminated in open- or short-circuits. In many practical cases, 

resistively terminated networks are important, especially when 

transmission-line systems are considered. In such cases the 

SCATTERING parameters are useful. A review of the scattering theory 

approach to networks is given by Carlin and Giordano [2.9],

Consider the general n-port network shown in Figure 2.7, with the 

port voltages and currents as defined. Let

(v) (i)

in

(v) and (i) are related through theimmittance equation:

(i) = [Y] ( v ) (2.24)

Now a set of "normalising numbers", R̂ , R2, ..., R^ is defined for the 

network, the R's being positive and (for present purposes) real. Now 

two new sets of port variables are defined:
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(a) = /ai\ =

\a' n '

and (b) = x
2

Rl"* 0 0 0 0 0 (v/)
0
•

R2 ^
0

•
♦
•

•
00

m
0

0 0 0 R 2 n

V o 0 (i)'
0
• R2*.# •

•
• ►

•0
0

0 0 0 R  ̂n J >

V * □ 0 (v)
0
• «

1CMcr •
•
0

•
•
0

•
0

0 0 0

XR 2 n J
r  x
V 0 0 0 0 (i)’
0
• 0

«
•
•
0

►
•
•_0

•

• • • R  ̂n J >

For future reference, let

[r] = diagfr^, R^ .....

so that
-1

(2.25)

(2.26)

[r]"1 = diag[R1’ ,̂ R^t • ••> R

Now (a) and (b) are tuio linearly independent vectors, which can be 

related through the matrix expression 

(b) = [S] (a)

where [s] = "s n S12 •** crH
cn

f z i S22 S2n
0 0 0 0

K i 0 0 0 Snn-

is called the SCATTERING MATRIX of N. 

Adding (2.25) and (2.26),

(a) + (b) = IXT1 (v),



thus (vi) = M  [(a) * (b)J

= [R] [[ll ♦ [>]] (a)
where [i] is the unit matrix.

Similarly, (i) = IX] 1 £ [l] - [s] (a)

But, ( i )  = [y] ( v )

thus [rJ_1 [ [i] - [s]> L'y] [r] [ [i] + [s]]

and rearranging gives

[s] = [[i] - W W W ]  [[I] * W W W ] - 1 (2.27)

The product [R][Y]| R] is an interesting object. The operation of pre-

and post-multiplying |y | by |r | effectively multiplys the k’th row and
X

column of [y] by R^2, anc* the product is thus effectively a normalised 

admittance matrix,

A number of different expressions are possible for [s], similar

to (2.27), in terms of different sets of immittance parameters.

These are useful since one or more sets of immittance parameters may

not exist. The particular importance of the [s] matrix can perhaps be

shown by considering the network shown in Figure 2.8, The n-port

admittance matrix of this circuit is clearly
■ 1

[Y] =

0 . « «
-1R„

I -1 n j

and hence the term [R][y][r] in (2.27) reduces to [l], Hence [s] is 

identically zero. Thus it can be seen that the vectors (a) and (b) 

can be considered as incident and reflected waves cn a set of trans

mission lines of characteristic impedances (R , R , . . .  r ), if the1 2  n
input impedance at the r'th port of a network is R , then the reflectedr
wave is zero, and the port is said to be WATCHED.

Scattering parameters have several important properties, proved 

in [2,9]. For the purposes of this thesis, the most important are:
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The scattering matrix of every linear, passive, time invariant

network exists.

The scattering matrix of a reciprocal network is symmetrical.

(UJhen l\l of Figure 2.7 is reciprocal, and Y exists, this 

follows from (2.27)),

If a network is terminated with resistors equal to its port normal

ising numbers, then the modulus square of the off-diagonal term 

is the transducer power gain of the network between 

ports k and £.

It can be shown that, if all ports of a network are terminated 

with real loads, or real resistive sources, and an incident 

wave vector (a) excites the network, then the condition 

(a){ [[i] - [s][s]]}(a) X 0

or, if

[» ] = [ I ]  -  Is ] [s ]

where [s] is thB complex conjugate of the transpose of [s I, 

(a) [q] (a) >, 0

guarantees the passivity of the network. [q] is then a 

Hermitian matrix. If it satisfies the condition without 

the "equals" sign, [q] is called positive definite, if with 

the equals sign positive semi-definite. If the network is 

lossless,

[q] = [o],

and then [s] is said to be UNITARY. For a unitary [s], 

[S] [S] = [ i]

and thus

[s] = [s]“1

In the particular case of a lossless, reciprocal two-port 

network with the scattering matrix



this results in the important condition

For a lossless network there is thus a complementary relation

ship between the power transmitted through the network and 

that reflected, and thus between the insertion loss and the 

return loss. This is of particular importance in filter 

theory since most filters, being effectively lossless, reflect 

the power they do not transmit. Thus, the insertion loss of 

a filter in its passband is usually very low and difficult to 

measure, while the return loss is very high, and thus a 

sensitive indication of the filter’s performance.

S. If the driving-point impedance at the k'th port of a network, all 

other ports being matched, is Z^(p), and this port is excited 

from a generator of internal resistance R^, then the value of 

Skk(p) is given by

zk(p) " Rk
Skk(p) = Zk(p) + Rk

Furthermore, if z^(p ) is positive real, then $kk(p) satisfies 

the conditions [2.10]:

S, . (p) is real for p real kk'K/
0 < Iskk(P)| < I, r b(p ) > 0 

and ^kk(p) is called BOUNDED REAL.

2.18 Synthesis of Singly-Terminated Networks

Consider the resistively-terminated lossless two-port network N

of Figure 2.9. Simple analysis gives
2

Z12Z . = Z.. .. -  7T-------------in 11 1 + z22

The output quantity of interest is the voltage U , and the excitation
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is by the current 1̂ , and hence

1, V  zl2
-21 - I, .1 + z22 (2.28)

Since N is lossless, z^, z12, z22 are odd functions of p. Consider 

the function

2Ev(Zin(p)) = Zin<p) * Zin(-p)

-  *u ( p ) -
z122(p)
1 + z22(p) + zll<-p>

"12 '( -P )

1 + Z22(-P)

••• 2Ev(Zin(p))
2z12 ^

1 " *22 ^
= 2Z21(p) Z21(-p) (2.29)

Note that for p = jco, the right-hand side of (2.28) is just
O

2]Z (jco)| . Thus (2.29) shows that the zeros of transmission of N 

are the zeros of the even part of the input impedance.

UJhen the transfer function Z (p) is knoujn* is of the form

2 = E i 2 L ^ o r -n 2 l E U21 m(p) + n(p) m(p) + n(p)

where E(p), m(p) are even, 0(p), n(p) odd functions. The numerator of 

Z21^p  ̂ a^so numerator of z^2i ant̂  hence must be pure even or pure 

odd. The denominator of Z2^(p) must also be a Hurwitz polynomial.

Taking the first case,

E(p )7 -XM, E (p )/n (p )
21 ~ m(p) + n(p) 1 + m(p)/n(p)

By comparison with (2.28), this can be realised by a lossless network 

with

Z22 = Sfe} > z12 “ E(p,/"(p) <2-30>

Corresponding to the second case,

0(p)/m(p)
"21

22

1 + n(p)/m(pT

s fe }  ’  z12 ■ 0 (p) /m(p) (2.31)
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An exact synthesis for z22 and Z2i then always possible if the zeros

of 2^ lie at the origin or infinity. In that case, z22 is synthesised

as a ladder network in one of the Cauer forms, and it can easily be

shown (by induction) that the procedure simultaneously realises in

the prescribed form. This is the most important case in filter theory,

as will emerge in the next chapter.

In many cases, the network has to be synthesised from the prescribed 
2form of |Z12(jco)| , that is, the magnitude response for real frequencies.

2
In this case, |Z J  can be written

I Z„, ( jco) | 2 = (2.32)
D(w )

assuming an even numerator of Z2^(p). The corresponding odd case

follows similarly.

Now (2.32) can be written

Z21(>) z (-J®) = 2 * ( P , 2
x m (p) - n (p) p = JO)

2 2where m and n are even and odd respectively. Ilfriting -p for <x>

in (2.32)

Z21(p) Z21("P)

Thus, the numerator of Z2  ̂

denominator

_ e2(p )
" D(-p2)

(p) is known directly, while for the

m2(p) - n2(p) = D(“p )

Since the denominator must be Hurwitz, m(p) + n(p) must have only
2

left-half-plane zeros. Thus D(-p ) can be factorised, and the left- 

half-plane zeros assigned to the function m(p) + n(p). The synthesis 

of the network then follows as before.

2.19 Synthesis of Doubly-Terminated Networks

Doubly-terminated networks are generally synthesised by Darlington's
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metbod referred to before in section 2.16. The response of interest 

is the modulus of the-scattering transfer coefficient, | S^2(joo) J, 

specified on the real-frequency axis.

Consider Figure 2.10, which shou/s a lossless network embedded 

between a resistive source and load. For real frequencies, the power 

absorbed from the source is

Pin . 111( j<o) [2 * * E„(Zin< » )

= i I^jw) I1(-jco) [zin(jco) + Zin(-j0))]

"o2 CZlr,(>) -
= 2(R1 + Zin(jw) (R1 + Zin("jco)

Replacing jco by p, the input power can be written

VJ _E.<Zin<p>)
Pin = (Ri ♦ Zln(p) * Zin(-P))

Now, since N is assumed lossless, all the input power is delivered to

the load. Thus it can easily be shown that the transducer power gain
2

of the network, and hence |S^2(ju))i » Just

? 4R1 Ev(Zin(jw))
l S12( ja ) ) i  = ( Rx + Zi n ^ w)) (R i  + Zin("jco)) ( 2 * 33)

From (2.33), the transmission zeros of S12(p) are the even-part zeros of 

Zin(p), plus any poles of Z^n(p). Since these poles are simultaneously 

poles of Z(-p), they must lie on the ju)-axis.
2

The procedure for synthesising a specified |S-̂ 2(jw)| is then as 

follows:
2

a) Provided that |S^2(jw)| S 1 for the response can be
2

realised by a physical network. Then |S^(jco)| can be formed 

because, if the resulting network is to be lossless its

scattering matrix must be unitary. Thus, form

|Sn (j«o)|2 = 1 - |S12(jco)|2



33
2 2b) Replace joo by p, or -oo by p > to give S^(p) S-^(-p). Then

Sn(p) can be found by factorising the denominator of 

S-^p) S11^"P  ̂and assi9nin9 the left half-plane zeros to 
the denominator of S^p). The zeros of the numerator of 

Sn(p) can be assigned to either half-plane

c) In most cases a network with a one-ohm source resistance is

required. In that case, Z^n(p) can be found from 2.17S by

rearranging as

1 + S (p)
Zin(p) = 1 - Sn (p)

and if the factorisation has been carried out so that S^(p) 

is bounded real, Z^(p) will be positive real,

d) Z. (p) is synthesised by Darlington's method as a lossless

network terminated in a resistor, incorporating an ideal 

transformer if necessary if the resistor must be unity.

In the case where all the zeros of transmission of the network must 

be at the origin or infinity, a realisation as a ladder network is again 

possible,

2 .20

This completes the survey of basic network theory. A final topic 

which will prove of importance in the next two chapters is the problem 

of the circuit properties of transmission lines.

The circuit elements of basic circuit theory, resistance, 

capacitance, and inductance, are all LUMPED, that is, they are 

implicitly considered to have zero extension in space. All real 

circuit elements are DISTRIBUTED, but at low frequency the lumped 

approximation is sufficiently valid for the lumped theory to be used 

for analysis and synthesis.

At "high" frequencies, that is, frequencies where the wavelength 

of propagation is significant compared to the size of the circuit, the
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distributed nature of real elements becomes important, and at sufficently 

high frequencies, purely distributed elements are the only ones whose

real behaviour can be predicted sufficiently accurately for filter design.

The properties of transmission lines as circuit elements can be 

deduced by considering the ideal lossless uniform line shown in 

Figure 2.11, of distributed inductance and capacitance L and C per unit 

length. Various text books show that the voltage and current at any 

point z along the line are related through the "telegraphists 

equations" [2.1l]:

8v(t,z) _ 8i(t,z)
dz at (2.34)

(2.35)

Differentiating (2.34) w.r.t. distance and (2.35) w.r.t. time, and

di(t,z) _ _ c dv(t,z) 
dz at

combining gives the wave equation

a2v ( t , z ) ___1 a2v(t ,z)
2 = 2 2 dz v at

(2.35)

where v = 1//LC.

It can be shown that these equations are satisfied by any pair of 

functions f^ and f^, in the variables t - z/v and t + z/v respectively, 

f^ represents a wave travelling in the positive, and f^ in the negative 

z-direction. The solution for the voltage and current can then be 

written

v(t,z) = fx(t - y) + f2(t + ~) 

i(t,z) = yi [fx(t - f) - f2(t + ~)

(2.37)

(2.38)

where = y/l/c , which must have the dimensions of resistance, is

called the CHARACTERISTIC IMPEDANCE of the line.

(Equations (2.37) and (2.38) immediately demonstrate the physical 

basis of the definition of the scattering variables in (2.25) and (2.26).)

For the purposes of synthesis, the properties of the transmission 

line in the p-plane are required, and they can be obtained by Laplace
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transforming (2.37) and (2.38). Using the shift property immediately 

gives

V(p,z) = F^(p) exp(pz/v) + F2(p) exp(-pz/v) (2.39)

I(p,z) = —  [f i (p ) exp(pz/v) - F2(p) exp(-pz/v)] (2.40)
o

In fact, only the terminal properties of the line are important, 

and thus it is necessary to specify the current and voltage at the 

accessible ports shown in Figure 2,12, The quantities of interest are 

V  1̂ , V , I2, and they are conveniently related by the transfer matrix

with \

►

y

(2.41)

It is a straightforward matter to apply the boundary conditions (2.41) 

to (2.39) and (2.40), to obtain the matrix elements A, B, C, D. The 

resulting matrix is;

cosh(pT ) Z sinh(pT) o (2.42)
Yq sinh(pT) cosh(pT)_

where Y = Z and T = I/m is the one-way delay along the line. In o o
contrast to lumped networks, where the matrix elements are rational 

functions of p, the elements here are transcendental functions. For 

convenience, it is usual to assume that T is normalised to unity, so 

the matrix can be written

(cosh(p) 2q sinh(p) \

Yq sinh(p) cosh(p) /

Using identities between thB hyperbolic functions it can be established
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that the transfer matrix can be written in terms of the single variable 

t = tanh(p), as

of leluy
The transmission linej[is the basic element in distributed network theory, 

called the UNIT ELEMENT. Also interesting are one-ports made of unit 

elements short- or open-circuited at their output ports, as shown in 

Figure 2.12, It is easily shown that

Z(t) = Z t  ' o
and Y(t) = Y t

Thus these elements, the short- and open-circuit STUBS, correspond to 

inductors of value Zq and capacitors of value Yq, in the t-plane.

The variable t is called RICHARDS' variable, and Richards [2.12] has 

shown that networks composed of unit elements and stubs all with the 

same one-way delay (i.e. COMMENSURATE) have driving-point immittances 

which are positive real functions of t and of p. Conversely, positive 

real functions in the variable t are realisable as driving-point immit

tances of transmission line networks. However, the complexities of 

distributed network theory are not necessary for the purposes of this 

thesis.

2.21 Conclusions

This chapter has presented a brief summary of the principles of 

linear circuit theory. It has reviewed the realisability conditions 

under which a network with a given response can be synthesised, and 

referred to appropriate synthesis techniques.

From the point of view of filter theory, the key property of 

networks is Darlingtons' theorem, which permits the realisation of a 

two-port lossless network terminated with a resistor, with the required 

insertion-loss characteristics. Filter design then reduces to the

BWViRSint UBHARY LfcLOS
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determination of a positive-real driving-point impedance function 

which will yield the required transfer response when realised as a 

resistively-terminated lossless network.

The properties of two-port, or in general n-port, resistively 

terminated networks which are to be fed from sources with finite 

interval resistance can be characterised conveniently using the 

scattering matrix. In the particular case of two-port lossless filter 

networks this leads to the convenient complementary relationship between 

reflected and transmitted power.

Finally, the terminal properties of transmission lines can be 

described by transcendental functions of the Laplace transform variable 

p, particularly in terms of the variable 

t = tanh(p)

Thus the properties of commensurate distributed networks can be 

described in terms of rational functions of the variable t. However, 

such techniques are not required for the distributed filters described 

in later chapters, and the technical details have not been fully 

explored here.



CHAPTER 3

FUNDAMENTALS OF FILTER DESIGN

3.1 Introduction

The last chapter considered the constraints a network must satisfy, 

and the basic methods of synthesis used in filter design. Given that 

the required network function is | z12( jco) | or ¡S12(joo)|, the methods 

generate the network functions (z^ip), z12(p), 2in(p)) corresponding 

to a realisable network, giving the required modulus, and provide 

techniques of network synthesis. For the particular case where the 

zeros of transmission are all at the origin or infinity, the resulting 

network is a lossless, resistively terminated ladder.

The response of a filter is necessarily an approximation to some 

infinitely selective ideal. The ideal, lowpass filter response is 

shown in Figure 3.1, and is defined by 

|H(jo>) = l.|a)| v<

= 0 |w| >

If the phase response of the filter is also important, then the 

ideal response also satisfies 

arg|H(j(o) | = - T̂  to

It i s  wbI I  known that this response is not realisable by a physical 

network, being non-causal. All real filters have a response which 

approximates this ideal in a more or less optimum fashion. This thesis 

is particularly concerned with filters which are further restricted in 

that only the amplitude response is approximated, and all the transmission 

zeros of the filter occur at <o =oo.

Finding a function which approximates the ideal response is called 

the APPROXIMATION problem. The resulting function must be in a form 

which can be realised as a network function, generally by a network of 

degree n. Since the magnitude response is important, it is convenient



FIGURE 3 .2  Approximation to Idea l Response.

FIGURE 3.3 Maximally Elat Response .



to consider the function F (x), wheren
Fn (w2) = |S12( joo) | 2 = | Z12( jco) | 2

The response of a real network is symmetrical about the origin, and

Only the lowpass filters response will be considered; all other 

filter responses (where amplitude only is important) are obtainable by 

frequency transformation. It is assumed that the response is normalised 

to a band-edge frequency of unity, and the maximum value of transmission 

in the passband is unity. That is (referring to Figure 3.2)

Two particular types of response will be considered, the WAXIMALLY- 

FLAT and CHEBYSHEV (or EQUIRIPPLE) response. The approach used 

follows closely that adopted by Rhodes [3.l],

3.2 Hflaximally-Flat Response

The fflaximally-Flat (m.f.) response is characterised by being 

monotonic in both pass and stop bands, as shown in figure 3.3, and has 

the maximum possible number of derivatives of the response zero at both 

the origin and infinity. Let
2 4 2n-2+ .. • + a+ a .0) n-1

2n
(3.1)

1 + b̂ oo + ... n
2n-l derivatives can be set to zero at the origin and infinity. 

From (3.1),

F > 2) - 1 '

(3.2)

If (3.2) is to be zero, and its first 2n-l derivatives, at the origin, 

then its power series expansion around to = 0 must be of the form



which immediately gives

a. = b., i = 1 ■» n-1 x x
To enforce the m.f. condition at <o = oo, numerator and denominator

2nof (3.1) are divided by œ , to give
-2 -4

V i "  * y  2“ *Fn (® ) = -------------------
a 2-2n -2n+ a co + co

(3.3)
. . -2 -2nb + b ,<o + ... + con n-1

To be maximally-flat about co =oo, 3.3 must have a power series expansion 

of the form
d d .n n-1
2n 2n+2co co

which gives

a. = 0, i = 1 -» n-1l
and hence

Then

b^ = 0, i = 1 -* n-1

'fn(« ) =
1 + b co n

2n

and the coefficient b can have any convenient value. Usually b is setn n
equal to unity, so that

r / 2v 1Fn (co ) = ---- (3.4)
i 2n1 + CO

The insertion-loss response of the corresponding filter is
2 nLft(co) = 10 log^g (1 + co ) dB (3.5)

and is always equal to 3dB for co = 1. As co tends to infinity,

L^(w) io log^g (ŵ n ) dB (3.6)
y

To construct S12(p) or Z19(p) from Fn (co ), the left-half plane•12

poles of Ffi(p) F (-p) have to be selected. From (3.4), replacing co



1

by (-p ) gives

rn (P) Fn ( - P) = , / A n1 + ( - p  )

The poles of ^(p) Fn (-p) then occur for

(-P ) = - 1
2Let -p = exp (jO)

llle require

exp(jnO) = -1

= exp [(2r-l )x], r = 1*2,3 . ..

Thus nG = (2r-l)%

or -p = exp[(2r-l)j^/n]

Thus the poles occur u/hen

p = exp[(2r-l+n)j7c/2n]

Thus the n left-half-plane poles of Fn(p) are equally spaced around the 

unit-semicircle as shown in Figure 3.4.

Note that, in the synthesis of doubly-terminated networks,

ls12(j«)l2=

thus

and

|Sn (ju>)| =

|Sii(p)Sn(-p)=

2n1 + CO

-2n00
2n1 + CO

(
2,n

-P. .)

1 t 2V + (-P )

Thus all the zeros of S.^(p) are at the origin. S^ip) has the left11'

half plane roots derived above, and thus ^ n(p) can be formed explicitly.

3.3 Chebyshev Response

The Chebyshev response is an equiripple approximation to unity

in the passband, and is maximally flat to zero in the stopband, as shown 

in Figure 3.5 for case n = 7,



FIGURE 3.5 Equiripple Response.
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Thus 1 >/ Fn (co2 ) >, l / ( l  + e )» iwl < 1

Also, for n odd, Fn (oo2) is unity for to = 0, and Fn (0) = l/(l + £2) for 

n even. For both cases,

F (1) =
1 + e

2Sines Fn (w ) is rnaximally-f lat to zero at infinity, it can be written

F (c/) = n . u 2 . 2n1 + b., to + ... + b (D 1 n

(3.7)

A is equal to unity for n odd, or l/(l + £ ) for n even.
2Now, the equiripple response is defined such that F (to ) touchesn

the boundary rectangle at the maximum number of points in the interval 

0 £ (jo < 1. Thus all the maxima and minimum lie on this boundary

rectangle. Now
dF (to2) n'

doo
2

is a function of degree (n-l) in to , thus there are a maximum of (n-l)

maxima and minima which can touch the boundary apart from the one at
2to=0, which touches it anyway. Also since Fn(to ) is of degree n,

2
one more degree of freedom exists to make F (to ) pass through 

2 2(l,l/(l + e )). This suggests that F̂ ito ) is written in the form
r  t 2 \ 1 ___F (to ) = 2 2
n 1 + e2Tn2(co)

The function Tfi(to) has the form shown in Figure 3.6 for n = 4.

Tn(to) clearly has turning points where the function is equal to

- 1, except for to = i 1. Thus, if {tô } are the points where

T (to ) = 1 1, nv r ’

T (to ) = 0 dco n r
Since the turning points occur when Tn(to) = 1, except for to = 1, and 
Tn(to) = -1, except for to = -1, dTn(to)/dto has the factors (l + T^to))/
(l + w) and (1 - Tn(to))/(l - <o). However, dTn(to)/dto is of degree (n-l),



¿-f (?

while the combined degree of the factors is (2n ^)» and thus T̂ (co)

satisfies the differential equation

•2— T (co) = C dco n n
'l - T (̂co)

1 -  CO
(3.7)

Separating the variables,
dT (co) n = C dco

/ (1 - Tn (<o)) "/( 1 - co )

and noting that

- 1 /---— — = - cos-x(x),
J 7(1 - x' )

cos-'*'[T (co)] = C cos-J'(co)L n J n

The constant of integration must be zero, since T̂ (co) is either odd or

-1,

even. Thus

• T (to) = cos[c cos 1(<o)l n n J
If co is written "cos0", then

T (co) = cos(C 0) n n
For co =co, 0 = joo, for only then 

co = cos joo 

= cosh co

and T n (co) = co

and thus all the polos of Tn(co) are at infinity. Thus Tn(co) is 

analytic in the finite plane (i.e., entire).

The zeros of T (co) occur when CnQ is an odd multiple of 7c/2, i.e, 

= (2r-lK

or

Ch6

co

, r — 1>2, ...

= cos 2C

The required polynomial has n distinct zeros for [co| < 1, and for

this to be so, Cn must have the value n. Thus



T (o>) = cos(n cos’"1«) = cosh(n cosh~1(co)) (3.8)
n

and it remains to b8 shown that Tn(u>) is of exact degree n. Note that 

To(u>) = cos(O)

= 1

T-̂ (co) = cos(cos-1co)

= co

T ,(co) = cos( [n + l] cos '*'co) n+1 ^Also

(3.9)

(3.10)

= cos(n cos’"1«) cos(cos xco) - sin(n cos x«) sin(cos xco)

T ,(») = cos(n cos-1«) cos(cos ’*’co) + sin(n cos 1co) sin(cos ĉo) n-1

-1 -1 -1

Thus

W " ’ *Tn-l<B) - 2“Tn<“>
so that T .(co) = 2coT (co) - T .(to) (3.11)n+1 n n-1
The recurrence relation (3.11) with the initial conditions (3.9) and 

(3.10) show that T (co) is a polynomial of exact degree n in co.

Thus the equiripple response is given by

Fn.<“2) 2t 2i 1e T (oo) n
(3.12)

The equiripple response is important because it has certain fundamental 

optimum properties. These can be appreciated by considering Figure 

3.7. This shows an equiripple response curve of degree n which just 

satisfies a passband ripple and a minimum stopband attenuation speci

fication. ‘ The question often arises; can a better approximation be

found which has less deviation in the passband and greater attenuation
2in the stopband, with a lower degree than Fn (co )? Let this better 

2function be Fm'(co ), with degree m  ̂n, satisfying the specification, 

and let

F • (co2) = -----------m . .,2,. 2, »1 + Y U (co)

Now, the function Fn (co ) has n maxima and minima in the interval



7 Equiripple function.
2  'More optimum' function .

FIGURE 3.7



In addition,0 a) 4: 1 , and these are joined by (n-l) line segments.
1M D

1 + £

so that there are in all n line segments of F (o> ) in the interval
2

0 v< in ,< 1 joining the points luhere Fp (w ) touches the defining rectangle.
2 2Thus the more optimum response F 1 (u> ) crosses ) n times in that

interval, and once more in the interval 1 < 00 < co . Thus the functionc

F (co2) - F '(co2) = n m 1 + e2Tn2(u>) 1 + Y2Um2(w)

Y2Um2(oo) - e2Tn2(u>)

= (1 + e2Tn2(W))(l + Y2Um2(co))

has, in all, (n+l) zeros in co < co. But, the denominator of the function
2 2 2 2is entire, and hence the degree of Y (co) - £ Tn (00) is (n+l). Thus, 

either Um(co) = Tn(oo), or m > n, contradicting the initial assumption. 

Notice that this property of equiripple, or more properly IKIINIfflAX, 

approximations, results in their being the best approximations even if 

the form of the specification does not demand an equirippls function. 

Thus the response shown in Figure 3.8 is of the optimum form for the 

specification given.

Tn(co) is the n'th degree Chebyshev Polynomial of the first kind,

and the response is commonly referred to as "Chebyshev". The

Insertion-Loss response is of the form

La (w ) = 10 log1Q(l + e2Tn2 (u>)) dB (3.13)

For very large w, the Chebyshev loss function tends to 10 log1 Q(u)2n) +
2

10 log^gic ) + 6(n~l) dB, and thus the ultimate improvement over the 

m.f. case is approximately

10 log10(e2) + 6(n-l) dB

Normally the passband specification is quoted as a maximum passband 

insertion loss, LftR, normally of the order of 1 dB or less (0.01 dB
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FIGURE 3.8 Minimax, but no t Equiripple .

FIGURE 3.9 Poles of Chebyshev Response .
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being not uncommon). Thus from (3,13),

“AR ID log1Q(l + e )

or 2 lnLflf/10 - 1
E  = 1 0

(3.14)

For the synthesis of singly-terminated networks, |Z12(jw)| =
2Fn (w ), and the synthesis can proceed as in section 2.18,

In the case of doubly-terminated networks, 

312*|S19(joo)|2 = Fn (o)2)

so that

I Sn (  jt°) I = 1 1 + e2Tn2(co)

Thus Si;L(p) Sn (-p) =11'

e2Tn2(to)

1 + e2T 2(w) n

e2Tn2(p/j)

1 + e2Tn2(p/j)
(3.15)

To fotm S^^ip), both numerator and denominator of (3.15) must be 

factored. Taking the denominator first, the roots occur when 

Tn(p/j) = - j/e 

or

Let

p/j = cosh 

cosh-^(i 1) = x + jy

±  cosh’l l

so that cosh(x +jy) = - ^

= cosh x cos y + j sinh x sin y 

Equating real and imaginary p8rts: 

cosh x cos y = 0
•  i • + 1sinh x sin y = - — e

These equations are only satisfied for y an odd multiple of %/2, i.e.

y = (2r-l)%/2, r = 1,2,3, ...



when

Thus

Thus

sin y =

x + jy =

1 1

P = j cosh 

j cosh

1 (2r-1)
(7 ) + J -- 2

+ 1 sinh "*■ (±)n e

+ 1 
n sinh”'1' <7>

n

2n " 

'(2r-l )7i‘
cos 2n

- j sinh + 1 . , -1,1/ - — smh (— ) n ve sin
(2r-l)Tt
2n

= sin
(2r-lH'
2n sinh 1 • u - M \— smh (— )n e

+ j cos
(2r-l)7i:
2n cosh — sinh (— )In £ J (3.16)

In (3.16) the - sign has been omitted, since both cases can be

generated by a sufficient range of r.

Letting the r’th root pr of (3.16) be

p = o' + jco ,Kr r J r

w
then 2 — sinh '*'(— ) T 2 1 .sinh cosh —  sinh[n £ J Ln a <7!

= sin 

= 1

”(2r-l)7/ 2 •(2r~l)7if
2n + COS 2n

and thus the poles of lie on an ellipse as shown in

Figure 3.9, and the poles of 1(p) are the left-half-plane poles.

S2L

For this unity-gain case, the zeros of S ^ p )  are the zeros of

or
n

n cos

T„(p/j) = 0

1(p/j)= cos“1(D) 

(2r-l)-ft
r = ls2,3, ...2 »



S3

Thus p = j cos
'(2r-lK

2n (3.17)

All the zeros of S^Cp) thus lie on the (jo>)-axis, in the interval

|w| < 1.

At this stage it is instructive to consider the return-loss response 

of the Chebyshev filter. From above, the zeros of S^Cp) occur for n 

distinct frequencies in the interval | co| < 1, and, assuming a source 

resistance of one ohm, the input impedance of ths filter must be one 

ohm at this set of frequencies, and the return loss therefore infinite. 

This set of frequencies, denoted {otx}, is of fundamental importance in 

the diplexer theory presented in Chapter 6.

The minimum return loss in the passband occurs when the insertion 

loss is maximum. From before,

2
|S I21 ll'max 1 + e

and thus the minimum value of return loss is

lr = 1 0 103io<:
11'

= ID log1Q(l + — )
F.

This leads to an alternative form for e , in terms of the minimum pass- 

band return loss;

, 2 Lf/10l/e = 10 ^ - 1

The form of the return-loss response is then shown in Figure 3.10.

3,4 Synthesis of the Filter Networks
2

U/ith the poles and zeros of Fn(<o ) determined, Z^2(p) 

and Sn (p), Z12(p) and Si;L(p) are known to within a constant multiplier. 

For the maximally-flat and odd-degree Chebyshev cases, the multipler 

can be determined from the condition that

Fn(0) 1
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FIGURE 3.11 Prototype Ladder Networks .



and for the even-degree Chebyshev case that

Fn(0) = — -— j 
1 + e

Zi2(p) and S^ip) being known, the corresponding networks can be 

synthesised. Since the transmission zeros for both cases lie at 

infinity, the filters can be realised as ladder networks, of the general 

form shown in Figure 3.11, for singly terminated and doubly terminated 

networks. For the odd-degree Chebyshev cases, the terminating 

resistors are unity, for the even-degree cases the terminating resistors 

differ from unity. Such networks, which can form the basis of any 

type of filter, are known as low-pass-prototype networks, and tables 

for their element values have been widely published (e.g. [3,2]), 

Explicit formulae for the element values have also been derived, and 

ar8 discussed later.

3.5 The Admittance Inverter

The Admittance Inverter is a useful two-port network concept 

introduced first by Cohn [3.3] in the design of bandpass filters, and 

later widely applied. Its main use is in the design of prototypes for 

bandpass or bandstop filters, as broadband realisations of the inverter 

do not exist.

The admittance (or impedance, or sometimes immittance) inverter

is a two-port network defined by the transfer matrix 
[0 j/K\

^  \jK 0 /

where K is called the "characteristic admittance" of inverter. If the 

output port of the network is terminated in an admittance Y, then the 

input admittance is clearly given by

Thus, for example, the input admittance of the network in
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Figure 3.12(a) is given by the continued fraction;

Y.m Y1 + 12
Y2

+ K . “n-l,n
Y + n n

Similarly, if the K's are now the characteristic impedances of the 

inverters in Figure 3.12(b), then

Zin ' 21 * hi.__

Z2 *

Thus, the circuit of Figure 3.12(a) can have an identical input 

admittance to that of a ladder network using shunt capacitors and 

series inductors, but only using shunt capacitors. Similarly,

Figure 3.12(b) can have the same input impedance as a ladder, but using 

only series inductors. Introduction of the inverters has no effect 

on the transfer magnitude response, and also allows internal impedance

scaling within the filter.

3.6 Explicit Formulae for Element Values

Explicit formulae for the element values in m.f, and Chebyshev 

ladder networks have been found by Orchard [3.4] and Takahasi [_3»b], 

amongst others. Much of this thesis will be concerned with the design 

of bandpass filters, for which the alternative forms given by Rhodes 

[3.1] are more appropriate. The corresponding prototype circuits use 

shunt capacitors or series inductors coupled through admittance 

inverters, as shown in Figure 3.13(a) and (b). One consequence is that 

the end termination is always unity, because of the impedance scaling
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possible using the inverters, While the original doubly terminated 

ladder prototype networks shou/n in Figure 3,11 were symmetric or anti- 

metric depending on the degree (odd/even), the networks including 

inverters are symmetric.

The first step in designing a prototype filter is to determine 

the degree required to meet the given stopband rejection specification 

given the permissible passband ripple, (in many cases, the permissible 

ripple is determined by the minimum return loss acceptable in the 

system.) If the required ripple is d8, and the response has to 

meet or exceed dB at a frequency u>c in the stopband, then, from

(3.14),

and

Hence

e2 = 10
lar/1d

1

2, 2 ,10 log10(l + e Tp [wj ) >/ L

2„ 2 i L/10
e T [w ] >/ 10 n c

n cosh  ̂ [» J  >-' cosh (—

- 1

r L
10

/10
- 1

3 r l o/ i° i
12

n >, cosh(— £ 10 - 1 )

cosh""̂  loo !CJ
(3.18)

Given n and e, the element values for the doubly-terminated filter 

are given by (3.20) and (3.21) below

q = sinh 

2 .g = —  sxn

1 . .-1/1\ — sinh {—)

f(2r-lK
2n r = 1 -» n

Kr,r+l “ '/(■Vf sin2[r7i;/n] ) r = 1 n-1

*r+l = 1

(3.19)

(3.20)

(3.21)

(3.22)

For some purposes an alternative form is useful, which occurs 

frequently in the design of bandpass fibers:



s*1

q = — sin
° a

2L.
2n

i} + sin (m/n) 
<r»r+l ~ J  2 [cos(7t/n) - cos (2rVn)] ’ 1 ■» n-1

(3.23)

(3.24)

where the expression for  ̂is derived from (3,2G)and (3.21), and

K , k _ -/..r.?r.t.1
r>r*1

For singly-terminated filters, the expressions given by Orchard 

[3.4] can be adapted to correspond to the network form of Figure 3.13, 

and are given in equations (3.25) to (3.28) below. Calculate

r(2r-l)-Ki
a = sin r 2n

o Op o
d = (r̂  + sin [r7t/2n] ) cos (r7i/2n), r = 1 -> n-1

, r = 1 -» n

Then
a a

r r r-1 
r = d ,C r = 2 -» n

r-1 r-1

and g = C , , r = 1 -> n*r n+l-r ’

Kr,r*l = 1 . r • 1 ■* n-1

9r+l = 1 » (r odd) 
1

Jr+1 1 + Z
(r even)

(3.25)

(3.25)

(3.27)

(3.28)

The element values for the m.f. filter are obtainable by a limiting 

process from the Chsbyshev form, and are, for the doubly-terminated 

filter,

g = 2 sin r
(2r-l )-x

2n r = 1 -» n (3.29)

K . = l.r = 1 n-1r,r+l >
Correspondingly,

g = 2 sin 3o
71
2n

(3.30)

(3.31)



(3.32)rfr+l “ v/(2[̂ cos(7i;/2n)-cos(2r7i;/n)] ) 

and for the singly-terminated case:

~(2r-l)%
a = sinr

d = r
2,nrCOS (—

Then C1 = al

P — arar-lL =r d .C r-1 r-

and 9r = c in+l-r

2n , r = 1 -» n

2 -> n

, r = 1 n

K . = 1 r, r+1

9 , = 13r+l

(3.33)

(3.34)

3.7 Distributed Low-pass Prototype

The circuit of the basic distributed low-pass prototype filter 

is shown in Figure 3.14, and consists of tandem unit elements coupled 

through admittance inverters. UJhen the inverters are scaled out of the 

circuit, the resulting filter is the stepped impedance filter. The 

distributed low-pass filter is important since it forms the prototype 

for both broadband waveguide and interdigital filters.

Because the elements of the filter are transmission lines it is 

convenient to discuss the behaviour of the filter in terms of the elec

trical length of the lines, Q, when

q -  Z L l_2 f  ’
°

f being the real frequency at which the lines are a quarter-wavelength 

of propagation.

In terms of the variable t, where t = tanh(p),

S12(t) = D (t) n
with D (t) a Hurwitz polynomial. (For real frequencies, t = jtanQ.) n
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Thus, |s12( j 0 )
1 + Fn(sin 8) 

where Fn is an n’th degree polynominal, and 

Fn(x) >/ 0, 0 s< x s< oo 

The particular equiripple solution is

i s 12( j i » r «
, 2„ 2/SinQ v1 + e T -n— Jn sin8o

where 8 is the cut-off frequency. This response is clearly periodic 

in 6, as shown by Figure 3,15, Although equiripple in the passband, 

the response is not maximally flat about 8 = 7t/2 , since only one 

derivative is zero at 8 = tc/2. Nevertheless, it can be shown that 

the response is still optimum in the sense of the equiripple approxi

mations considered in section 3,3,

No closed-form explicit element value expressions have been found 

for the stepped impedance filter. However, Rhodes [3,1, p 139] 

derives explicit formulae in the form of a power series in the variable 

a = sin a>o. Since u>o is usually less that -ti/4, these formulae are 

sufficiently accurate for most practical purposes,

3,8 Frequency Transformations

Returning to lumped filter theory, the design of lowpass, high- 

pass, bandpass and bandstop filters proceeds by applying various 

frequency transforms to the basic lowpass prototype of Figure 3,13 

a) Lowpass

The prototype lowpass filter has its cutoff frequency at unity.

If the required cutoff frequency is the corresponding 

frequency transform is

co OJ
U)

Hence the reactance of an inductor, X = qjL is transformed by



(oS

coL -> toL
0)

so that

b)

c)

L -> co

and similarly

c - , c<oo
Hiqhpass

The highpass transform is chosen so that the point of required

infinite attenuation in the highpass filter, i.e. zero

frequency, is transformed to infinity for the prototype.

The required form of the highpass response is shown in

Figure 3.16, and the transform used is 
co

« -» - <o

Thus a prototype inductor of reactance cot is transformed by

<oL -» -
co L o
co

which is a capacitor of value l/cô L, while a capacitor trans

forms to an inductor of value l/co C.

Bandpass

The bandedges of the bandpass filter are co and ay as shown in 

Figure 3,17. The transform required has to map the points 

0,- ay ay °o in the "bandpass plane" to the points -<*>, -1, +1, 

+ co in the lowpass plane.

The transformation used is of the form

co B (■
co
(04 (3.33)

Obviously this transforms the points co = 0,oo in the right way.

From the other conditions,



FIGURE 3.17 Bandpass Filter Response .
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Adding:

0 = B

ton to
(-i - -*>'too i

to0 to
( ~ - - )w0'too 2

f +
1 2

U)

Thus 0 =
+ w2
to CO,o 1 2

u/hich is satisfied if 
2

W  w2 J

t  (wl + W2)

- oo

00

00 W1 °V

Under (3.33), a prototype capacitor of susceptance coC is 

transformed as

coC -> BC(
oo
-  )00

which is the shunt connection of a capacitor of value BC/ooo

and an inductor of value 1/ ooqBC. Similarly, an inductor of

value L is transformed into the series connection of an

inductor of value BL/o) and a capacitor of value l/w BL.u o
d) Bandstop

The bandstop transform can be obtained through a similar process 

to the bandpass, mapping the points 0, ®^, 00 to 0, -1, +1, 0,

with 00̂  = mapping to op However, this is equivalent to

applying, first the lowpass— ohighpass, then highpass— "»bandpass 

transforms to the lowpass filter. The resulting transform is

w -1
<0

B(— - - —  )'to w o



(o &

with, again, coq =

6 =
co

W2 “ “l

3.9 Frequancy Independent Reactances

Some of the design procedures developed later involve prototype 

filters which contain elements with reactances of the form 

X = jK

with K independent of frequency. Such reactances are not realisable 

by any physical component, but are nevertheless useful in prototypes 

for relatively narrow band bandpass structures.

The driving-point immittances of circuits involving frequency- 

independent reactance are positive functions of p, i.e.

R [Z(p)3 >/ 0 for R (p )  > 0 0 8
but not necessarily positive real.

Frequency-independent reactances usually occur in conjunction 

with real reactances such as shown in Figure 3.18(a). Considering the 

first case shown, this can be approximately realised in the bandpass 

case by a series tuned circuit, over a relatively narrow band, using 

the reactance slope technique.

The reactance of the first circuit shown in Figure 3.18(a) is 

X = coL + K

Under the lowpass— bandpass transform, this becomes
co

X ’ = K + BL(~- - ~ )  (3.35)
o

Now the magnitude and first derivative of the reactance of the circuit 

of Figure 3.18(b) are equated to the magnitude and first derivative of

(3.35) at w = cô .

Thus oo L - — = Ko o  co C o o
LB _
2wo

1
(0

and L + o



Solving for Lq and Cq gives:

Lo = h- ^  - f >  ■o

C = 1
° C-B - |)

A similar procedure can be adopted, using a parallel resonant circuit, 

to realise the second circuit of figure 3.18(a).

UJhere a frequency-invariant reactance occurs in isolation, a 

narrow-band bandpass realisation is possible using an inductor or 

capacitor, according to its sign.

3.10 Conclusions

This chapter began by considering the problem of approximations 

in lowpass filter design, and derived the standard maximally-flat and 

equiripple approximations, in each case with all the zeros of the 

response lying at w = <?°. (Such approximations are often called "all

pole", and the corresponding filters are minimum phase.) The 

locations of the poles of the transfer functions, and for the doubly- 

terminated Chebyshev case, of the reflection zeros, were then 

derived.

After the introduction of the concept of the admittance inverter 

the explicit element value formulae for the equally-terminated 

Chebyshev and Butterworth prototype filters, as derived by Rhodes, 

were quoted without proof. Also given were Orchard’s formulae for 

the elements in singly-terminated filters. Then, the distributed low 

pass prototype filter was introduced, and the approximate, explicit 

formulae for its elements, derived by Rhodes referred to.

The frequency transforms for the design of lowpass, highpass,

bandpass and band-stop filters were derived, and the effect on the 

lowpass prototype of applying the transforms considered.



Finally, the significance of frequency-invariant reactances, which 

appear in some prototype design procedures for bandpass structures, 

was considered, and the "realisation" of such elements through the 

reactance-slope-parameter method introduced.



CHAPTER 4

DESIGN OF COUPLED-RESONATOR BANDPASS FILTERS

4.1 Introduction

This Chapter deals with the design methods available for bandpass 

filters of relatively narrow bandwidth, which can be designed from an 

appropriate lowpass prototype. The techniques are illustrated by 

deriving direct design formulas for the five types of bandpass filter 

shown in Figure 4.l(a)-(e).

The filter in (a) uses lumped, shunt-resonant circuits coupled by 

capacitors, and is suitable for use from low frequencies to VHF for 

bandwidths up to about ten percent. A design procedure based on the 

concept of admittance inverters was first given by Cohn [4.ij; the method 

here uses a substantially different procedure and is believed to be 

original.

In (b) is shown the interdigital filter, first described by 

Matthaei [4.2]: and improved design procedure was given by Cristal 

[4.14[. Physically, the device consists of parallel metal bars, 

forming transmission lines, symmetrically disposed between parallel metal 

ground plates. The bars are a quarter-wavelength long at the centre 

frequency of the filter, and shorted to the ground plates at alternate 

ends. For narrow and moderate bandwidths, the structure can be 

designed from a lumped prototype. The procedure given here is signi

ficantly different from lilatthaei's and is implicit in techniques given 

by Rhodes [4.3] [4.4]. A similar method has also been considered by 

Pang [4.5],

The comblina filter of 4(c) [4.2] uses a similar physical 

structure to the interdigital, except that the lines are all shorted 

to the ground plates at the same end. The lines are shorter than a 

quarter-wavelength at the passband centre, and are tuned by lumped 

capacitors at the open-circuit end. The design procedure given here
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It

was essentially derived by Sayer [4.6], using similar techniques to 

those used for the interdigital filter.

Both the interdigital and combiine filters are useful for UHF and 

low microwave frequencies: the iris-coupled cavity waveguide filter of 

4.1(d) is useful from low microwave through to 20 GHz or even higher.

The cavities are formed in a length of standard rectangular waveguide, 

most conveniently by metal posts inserted perpendicular to the broad- 

wall at roughly half-wavelength intervals. Cohn [4.1| gave a narrow- 

band design procedure, which has been generalised by Levy [4.7] for 

more-or-less arbitrary bandwidths. Levy's design is based on the 

distributed low-pass prototype, and reduces to Cohn's method for 

narrow bandwidths. When the design is carried out on a programmable 

calculator or computer, using explicit formulae for the prototype 

elements, it is convenient to use Levy's method, which is given here.

Finally, techniques of filter design and the derivation of 

frequency transformations are conveniently illustrated by the single

sideband (SSB) crystal filters of 4(e). These circuits were first 

described by (ilason [4.8] and later considered by Sykes [4.9], A 

modern-network-theory design method has been given by Dishal [4.10], 

but is somewhat complex, and is also not direct, in the sense that a 

number of trial solutions have to be investigated to find the degree 

and ripple level needed to meet a given specification. The method 

given here is based on the use of a frequency transform originally 

introduced in the design of active quadrature phase-shift networks 

[4.11], and also similar to Rhodes methods in [4.12]. The resulting 

procedure is extremely simple and direct, and the resulting filter 

circuits should have some advantages compared with existing methods 

of crystal filter design.

All the methods of design here are based on the transformation 

of a lowpass prototype network of the form given in Figure 3.13.



However, in most practical bandpass filters it is desirable to make all 

the resonators identical, and a modified form of the prototype is 

convenient, in which all the shunt capacitors or series inductors have 

the same value, in this case equal to "g^" of the conventional prototype 

This can be achieved by nodal admittance scaling of all the 

internal nodes of the filter. Referring to Figure 3.13(a), using the 

definition of the admittance inverter (section 3.5) the nodal admit

tance matrix of the prototype is:

[Yj =

This admittance matrix can be scaled by mutliplying any row and 

corresponding column except the first or last by a real, positive 

constant [4.13] within certain limits, without altering the transfer 

response of the network. In this case, the r’th row and column are 

multiplied by a constant kr> where

resulting in the equal-element prototype of Figure 4.2.

4.2 Capacity Coupled Lumped Element Filter

Figure 4.3 shows the r'th and r+l'th resonators of the filter 

of Figure 4.1(a), coupled through an admittance inverter composed of 

negative and positive capacitors. The negative shunt capacitors can 

generally be absorbed into the adjacent positive capacitor.
V-

It is easily shown that the characteristic admittance of this

P9X -  j l^ i2  0 »»» 0

“j K 12 P92 "jK23 :•
0

-9 K 23 ' .

••♦ -JKr-l,rp9r• •
0 . . .  * pgn

r, r+1



FIGURE 4 .2 Modified P ro to type  fo r 
Coupled-Resonator F ilte rs .



capacitive inverter is just

K . = ooÇ -i r,r+l r,r+l
CO— « o) Cco o r,r+l o

where coq is the centre frequency of ths filter. The inverter can now 

be decomposed by extracting ideal transformers of turns ratio ./cô /co: 1 

and l:/ST7S from its input and output, leaving an ideal inverter, as 

shown in Figure 4.4.

Turning to the resonator, its susceptance is given by

Bo GOCO
__1_
L co o

(0 C (1 - o

2

(0

where 1
= L C (4.1)

o o

is the centre frequency.

The shunt susceptance of each resonator can now be scaled through 

a neighbouring transformer. The resulting network is shown in 

Figure 4.5: all the transformers scale each other out of the network 

except at the input and output, and the resulting resonator susceptance 

is

B * = (co_/oo)B o v cr o
w

w C (1 - “S )o o (4.2)
CO

The appropriate lowpass to bandpass transform for the filter is

hence
co

co -* A ( 1 - “ S ’)
co

If the passband is to lie between oô and oo2, as in Figure 3.17,
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w
-1 = A ( 1 - — r)

w,

«
+ 1 = A(1 - -~)

(4.3)

(4.4)
Wo

which requires, adding (4,3) and (4.4),

2 _ 2(J^ . -ij) = 0
W1 “2

or w
o 2 2
2wl w2

W1 + W2
(4.5)

Substituting in (4.3): 

-1 = A(1 -
2 (Do

= A(-
0),

W1 + W2

Wo

and thus

A =

(«1 + W2

2 2w2 + wx
2 2w2 - w2

(4.6)

Applying the frequency transform derived earlier to the lowpass

prototype of Figure 4.2, the shunt susceptance of a capacitor in the

prototype, wg, , transforms as
2co.

wg. -» A(l - “ 2 ) 9'
to

Thus the terminating resistors of the prototype are scaled to a 

conductance of
w C

r - _2_2.o - A9i

and the admittance inverters scaled accordingly. The resulting admittance 

inverters required are

K , _ K IE. Z ^ o - W i 2
12 " 92 * A9l -

9192
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Kr, r+1
^r,r+l ^1 .

v/g g , Agl  v Jr ar+l

a) C K , o o r,r+l

A -  9r+l

„ W C K .K o o n-l,nn-1, n = --------- *—
v/9 g' v a n-l Jn

Noting from Figure 4.5 that the admittance of the r'th inverter

is co C , i o r,r+l
C . = C k r,r+l o r,r+l

where the coupling parameter of equation (3.23) has been used.

Using the process developed above, the entire filter, within the
-£ r c f u t i *  c j  - v  «tetri'* ̂  X  oP i V ' t f ' C S  # ( S  f r a  a * ■C'orfne.d , CX tA i  * F N c .

input and output transformers are nearly unity for co « coq, so that, 

at least for narrow bandwidths, they can be ignored.

The final filter circuit is shown in Figure 4.6, and the design 

procedure is as follows;

If the required band edges are cô and cô , then the lowpass to 

bandpass transform is
2 2 2 2 2co co„ + co, 2 2co.. co„

co ■> A(1 - -~jr), with A = — 5---- 2 and “o = — 9--- ~~o (4.7)
CO co„ co, 2 2 

CO, + CO 1 22 1
which can be used to find the degree required for a given selectivity

and ripple level, through (3.18). The required centre frequency is

(4.8)
0 2 2

Wo " 2 2
“l + W2

Either a convenient capacitor (Cq) or inductor (L ) can be chosen for 

the frequency range. In either case,

C = o co 2 L o o
or L = o 2 „ co C o o

(4.9)

Given the pass.band ripple and the required degree, use (3.22)





and (3.23) to calculate the prototype parameters gQ, and {kr>r+1}» 

Then the required terminating admittance, Gq, is given by

co C o o
a9„

(4.10)

writing now "go" for "g^1 and the coupling capacitors by

C = C k -. r = 1 -* n-1r,r+1 o r,r+l
C . = 0 r, r+1

(4.11)

The nodal "tuning" capacitors are given by

c = C -  C . - c  . r = 1 n (4.12)r o r-l,r r,r+l v
This completes the filter design. It is often necessary to match

the filter to some other source and load impedance than (1/Gq). In

that case, the circuit of Figure 4.7 can be used, where the filter is

matched to the terminations by the series capacitors C and C ,ox n j n+x
and the detuning effects of these capacitors offset by the negative 

capacitors C and Cn These negative capacitors are absorbed into

the neighbouring positive shunt capacitors

'ol = co V R, ( 1-R-,G ) ’ Cn,n+1 co o x x Ü I R2h-«2Go>

■'ol - C
2 2 2 ’ 1+CD C , R, o ol 1

n, n+1
n+1 , 2„ 2„ 21+co C , R_ o n,n+l 2

(4.13)

(4.14)

4.3 Interdigital Filters

The n-line interdigital filter, described in the introduction, 

can be shown (Riblet [4.15]) to be equivalent to the stub-unit~element 

cascade of Figure 4.8. Here the stubs are represented by t-plane 

inductors of "inductance" Yr> being the characteristic admittance 

to ground of the r’th stub, coupled by unit elements equal in character

istic admittance to the mutual admittance between the stubs. The 

relationship between these characteristic admittances and the parameters 

of the physical structure (in this case the odd and even mode
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capacitances per unit length betu/een the lines) has been discussed by= 

Getsinger [4.16].

One immediate difficulty arises from this decompcsition: at near 

zero-frequency, the unit elements become effectively direct connections, 

the stubs coalesce into a single stub, and the structure posesses only 

a single transmission zero at the origin. Thus it is not possible to 

exactly equate this structure to a low-pass prototype with "n" zeros 

at the origin. As a result, two distinct design procedures exist 

for the interdigital filter. The method developed here, which applies 

for relatively narrow bandwidths, is based on the lumped element lowpass 

prototype. For broad bands, Rhodes has described a method based on 

the distributed prototype [4.17] which is valid even for the widest 

bandwidths physically possible with the device, and to some extent 

supersedes Wenzel's methods [4.18],

The interdigital filter’s passband is centred on the frequency, 

f , at which the lines are quarter of a wavelength long, and the 

structure will be analysed in terms of the real frequency variable

8, where
e - l L
“ 2 fc

Then the transfer matrix of a unit element with characteristics admittance

Y can be written and decomposed thus:
f
cos8 jsin0/Y

jYsin8 cosQ

(
1 0

•jYcote 1

\ . sin8

sine

(1 0

-jYcote 1
;

(4.15)

A shunt short-circuit stub has thus been extracted from the input and 

output of the unit element, to leave a frequency-variable ideal 

admittance inverter, shown in Figure 4.9, where the stubs extracted have 

been combined with the nodal stubs to give a combined stub characteristic



$1

admittance ,

V = Y + Y . + Y . (4.16)rr r , r-1,r r,r+1
Next, an ideal transformer of turns ratio 

,/sin6: 1

is extracted from each port of the ideal inverter, to leave an ideal

frequency-independent inverter. As in the preceding section, these

transformers can be scaled out of the network to leave the network

shown in Figure 4.10, in which each shunt susceptance is of the form

B = - Y cosG r rr
Once again, around f « fc, G & 71/2 , and thus sinG a 1, and, at least for 

narrow bandwidths, the frequency-varying transformer can be ignored 

(but see Chapter 8).

Now considering the equal-element low-pass prototype of Figure 4.2, 

it can be equated to the interdigital structure under the frequency 

transform

a) -» - K cosQ

If the lower band edge of the interdigital filter is to be at f , so that

e„  = l r  < « •« >c

(4.18)

then -1 -» - K cosG1

1or K “ cosG

and the frequency transform becomes 

cosGco ■* - cosG

Applying this transform to the low-pass prototype, the susceptance of a 

shunt capacitor, ooĝ , becomes

cosG
“9l * - Ql S

and thus cosG (4.19)

while the values of the coupling admittances are given directly by the
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off-diagonal terms in the admittance matrix of the lowpass prototype.

Now, the characteristic admittances so far determined can be 

considered to be the admittances normalised to the unity terminations. 

Thus, if the terminations were required to be, for example, 50 ohms, then 

the corresponding admittances could be found by dividing the admittances 

determined above by 50. It happens, though, that the range of 

characteristic admittances easily realisable as the self-admittance of 

a line in an interdigital structure is restricted, and the most 

convenient value corresponds to about 50 ohms. However, the "Y^" 

demanded by (4.19) is likely to be relatively much larger, being propor

tional to (cosO ) \  with 6 # tc/2. Since most coaxial transmission

systems in which the filter will be used are 50 ohm systems, it is

convenient to modify the filter so that the normalised Y is aroundr
unity.

This is achieved by adding to the filter redundant unit elements 

of unity characteristic impedance at the input and output, as in Figure 

4.11. These do not alter the amplitude response of the filter in any 

way, though they add a constant delay. The nodal admittance matrix 

of the resulting structure, using the admittance values found before,
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is:

[V] -  ■

1

y C ?

o

o

This matrix is an (n+2) x (n+2) matrix, though the original array had 

only n lines. It u/ill be shown that this procedure effectively 

introduces extra coupling lines at the input and output, which will be 

numbered 0 and n+1.

Now rows and columns of (4.20) except for the first and last, can 

be scaled without changing the response of the network. The scaling 

factors are chosen to make the diagonal entries of the matrix unity.

Thus the second and n'th row and column are multiplied by 1 [y/l+g^/coswj 

and the r'th row and column by J cosS^/g^.

The resulting matrix is the admittance matrix of a new interdigital 

structure, and by reversing Riblet's procedure |4.15], the self and 

mutual admittances of the structure can be found, and thus the design 

equation established. Once again, the design equations are given in 

terms of the parameters of equations (3.23) and (3.24), g^ and k^ .

0 . . . 0
®1 / 2 K —  ./l-t
9o ____

/ 2 •
, „ K239l A - * •

g, cos8 ---- -al' O t---- •
^ 9293

K239l yi-t2 .
•
•
0 .

l+g1//cos8o yi-t2

, y C 7 i

(4.20)
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The design equations are, referring to Figure 4«12:

01 n, n+1 

1

'1 + cos8

'12
g cosQ o o
J n + cos8 o o

q cos8 o o

'12

n _ ^ , n  Jl +' cosQv  r

n-l,n

{ , = k , cosO , r = 2 -» n-2r,r+l r,r+l o’

= Yn+1 
1 - Y01
1 - Y .  - Y  ,, r = 1 r-l,r r,r+l

(4.21)

(4.22)

(4.23)

(4.24)

These characteristic admittances can be converted to cross-sectional 

dimensions using Getsingers data [4.I6J.

The design procedure here has been derived using techniques 

originally described by Rhodes [4.4]; similar design equations have been 

published in [4.19], These equations and their derivation are substan

tially different from the original method of Hilatthaei |4.2j.

4.4 The Combline Filter

The combline structure is represented in Figure 4.1c. It uses 

an array of parallel-coupled bars similar to the interdigital filter, 

but each bar is shorted to ground at the same end, and is tuned by a 

lumped capacitor at the other. The bars are again coupled by their 

fringing fields. An "open-mire" equivalent circuit for a section of 

the combline filter is shomn in Figure 4.13 [4.2). Considering the 

r'th bar, this behaves as a shunt short-circuited stub of characteristic



ÇG



admittance Y • The couplings are represented as series short-circuited

stubs of typical characteristic admittance Y .. The structure willr,r+l
again be analysed in terms of the real-frequency variable 8. However,

it can be seen that at the quarter-wavelength frequency (8 = 7t/2) the

coupling stubs have zero admittance and the filter therefore exhibits

a transmission zero. The passband must therefore occur at a lower

frequency, and lumped capacitors are provided to resonate the stubs.

The typical section of the filter can now be decomposed into the

form shown in Figure 4.14: a pi-network of stubs couples shunt stubs

of characteristic admittances Y and Y , , » whererr r+l,r+l
Y = Y , + Y + Y .rr r-l,r r r,r+l (4.25)

The pi-network includes elements with negative characteristic 

admittance, and it is easily shown that it behaves as an admittance 

inverter of characteristic admittance

K Y . cote r, r+1
Now suppose that the filter is to be designed to work about a band- 

centre frequency of 8 . The frequency-variation of the admittance 

inverter can be extracted by frequency-variable ideal transformers as 

shown in Figure 4. 15" , where

/cotÔ
cote (4.26)

B = C 0  r r Y cota rr

Now consider the shunt susceptance of a resonator, consisting of 

a stub and lumped capacitor in parallel. The shunt susceptance of 

the r'th resonator is thus

(4.27)

Here, is not a true physical capacitor since it has the frequency 

variation 8 instead of w. However, this is convenient for the 

derivation, and the true value is easily determined after the physical 

design is completed.



C must resonate Y at 8 = 8 , and thus r rr o
C O  - Y cotG = 0 r o rr ' o

and C = r
Y cotO rr_____o

0

Substituting in (4.27), the resonator susceptance is

OcotO
B = Y (— -r rr 0 - cote) (4.28)

o

Nom the frequency-variable ideal transformers can be scaled out of the 

netmork and appear only at the terminations of the filter, as in the 

preceding sections. Once again, the effect of the transformers can 

be neglected near 8 = 0q, The resulting resonator susceptance, 

given by scaling (4.28) by the square of (4.26) is

8 »r
COtQa

r * cote

oie [̂ A
°[ ©.+0.100 J

Thus the appropriate frequency transform is

= Y coi rr
(4.29)

n / ©ta*£) „ \
" ■» B ( szzê. - 1 ) (4.30)

Figure 4.16 shoms the shape of the required response and defines the 

band edges in relation to the quarter-mavelength frequency and the 

band-centre, 0 , In practice, the quarter-mavelength frequency is 

fixed by the designer, and hence 0^ and 0^ are fixed by the required 

band-edge frequencies. Thus B and Oq have to be determined from the 

specification.

When the frequency transform (4.30) is applied to the lompass 

prototype, the lompass band edges, - 1, must be mapped to the bandpass 

band edges, 0^ and 0^. Hence

©. icuo 0.
. ©oi«* 0O

1 = B (4.31)
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+ 1 = B Ofc.’hxw 02.
Q o  © o

Adding (4.31) and (4.32)

(4.32)

(G1 cot8^ + 02 cote2) = Z  90icK«Q0

Thus 8 tan8 o o
8^ cot81 + 82 cot82

(4.33)

To find 8^ from (4.33) requires the solution of a transcendental equation. 

Fortunately, for narrow bandwidths a very close approximation for 8q is 

the arithmetic mean of 0^ and 82# For broader bandwidths, this 

arithmetic mean forms an excellent initial guess to begin a Newton- 

Raphson iteration.

Thus, for narrow bandwidths,

8q = i(81 + 82) (4.34)

For broader bandwidths, let

a =
8^ cotS^ + 82 cot82 

-

The solution of

/ tan/ - a = 0

is required. Let an initial guess to the solution be where

/l = ¿(^ + 82)

Then an improved approximation is

^ CO-Ŝ , ($• Sirtgi. - (XCOŜ , )
2  ̂ <j6, 4- cj), c-oŝ, (4.35)

An even greater accuracy can then be obtained by letting = /2 and 

applying (4.35) repeatedly. An estimate of the accuracy at each step 

is given by the magnitude of the second term on the right-hand side of 

(4.35); typically this will be down to less than 0.01^ of / within

four to five iterations



Having found 8q by on9 means or other, B can be found from (4.32):

0 Z ~fan 02 
0c>iav\ 0O

whence , us!ncj (4-33)

© z+a.ti ©*. +- 0, ia« 01 
0 i ' h x ^  0 - 2 ,  —  0 i  Taw 0,

(4.36)

Consider a shunt capacitor of the lowpass prototype of Figure 4.2, 

Under the frequency transform (4.30) the susceptance of this capacitor 

transforms as

wg1 -* B (0i"<Xv\ Ô 1 ) 9 X©oiftvi Q0
and by comparison with (4.29),

Y = Bg, ~fixr< Q rr -L
Equating the admittance inverters to those of the prototype,

Y 9 cotO = K19 ,12 o 12 J g2

thus Y19 = K19 tanO 12 12 o Ig.

Similarly

Y . r, r+1

Y , n-l,n

= Kr, r+1

= K . n-l,n

tan8 -- - ■ -----

t a n 8 °

r 2 -) n-2

Now, as with the interdigital filter, redundant unit elements are 

incorporated at the input and output of the filter, and nodal admittance 

scaling applied within the filter to adjust the self-admittances of the 

lines to a convenient value for realisation, again bearing in mind that 

the filter will generally be used in a 50 ohm system. The resulting 

normalised characteristic self- and mutual-admittances are defined in 

Figure 4.l7and are given by equations (4.37) to (4.42) with the



prototype parameters again in the form of (3,23) and (3,24):

Y - Y T01 n,n+l (4.37)

V I + s -fan 0e

- Ie,a. / Pot-Q^aT''
V (3 ( l *  Sjlo’tQw. 0O )

B %1h*60)

(4.38)

(4.39)

(4.40)

V . 1.Y, (4.41)
Iw-H -  1 irt,v\+-i

Y = 1 - Y , - Y ., r = 1 -* n (4.42)r r-l,r r,r+l

Finally, the lumped capacitors must be chosen to resonate the character

istic self-admittances of the lines at the real frequency, oô , 

corresponding to 0^. Thus

cot8
C = ----- , r = 1 -* n (4.43)r w0

To conclude, a brief discussion of the choice of the quarter-

wavelength frequency of the lines is necessary. The combline filter

has a transmission zero at this frequency, and a stopband extending to

at least an octave above that. Another resonance between the lumped

capacitor and the line is possible when the line is slightly more than

a half-wavelength long, and there may be a significant amount of

transmission at that resonance. Thus, since the line is generally chosen
h

to be about an eigjth-wavelength long (0q = -rc/4), the combline filter has 

a stopband extending for at least two octaves above the passband. This 

contrasts with the interdigital filter, which has its first spurious



passband at three times the fundamental passband centre frequency.

There are other considerations affecting the choice of Qq. For example, 

if 0^ is made smaller the physical size of the filter can be reduced. 

Also, it has been found that a particular choice of 0q (equivalent to 

53°) permits the resulting filter to be tuned over a wide range of centre 

frequencies while maintaining an acceptable response [4.20],

4.5 Direct-Coupled-Cavity Waveguide Filters

Figure 4.18 shows the distributed lowpass prototype introduced 

in Chapter 3, rearranged so that all the unit elements have unity 

characteristic admittance. This has been achieved by introducing 

redundant admittance inverters at input and output and then scaling 

all the unit element admittances into the inverters. This operation 

has no effect on the frequency response of the network beyond intro

ducing an additional 180° phase shift.

The amplitude response of this network is shown in Figure 4. 19 .

Earlier, the "lowpass" passband was of interest; now, the second 

"harmonic" passband around 6 = % is of interest, this being a "bandpass" 

characteristic.

The particular waveguide structure of interest is the inductive- 

post-coupled filter of Figure 4.1(d). An equivalent circuit of this 

is shown in Figure 4.CIO (a). The posts can be adequately described by 

shunt inductive susceptances, with an appropriate frequency variation 

proportional to guide wavelength. Thus a typical shunt admittance 

of a coupling post is
À

■•in ...H—J r,r+l \go
Here, is a constant equal to the susceptance at the "centre

frequency" of the filter, \g • Because of the cut-off effect in 

waveguide and consequent dispersion, it is convenient to treat the

filter in terms of the guide wavelength In addition, the characteristic
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impedance of a iuavegu5.de (suitably defined) varies with wavelength, so 

it is convenient to normalise the characteristic impedance to unity at 

all frequencies and to only consider normalised admittances. The 

expression above has been found experimentally to adequately characterise 

the actual susceptance of a shunt inductive obstacle in a waveguide over 

quite a wide range of frequencies [4.7j.

As in the previous design procedures, the design procedure fcr this 

filter (due to Levy, [4.7]) proceeds by first analysing the structure to 

determine the frequency dependence of the couplings, and then determines 

a frequency transformation under which the structure can be equated to 

the low-pass prototype.

The original filter structure is characterised by the shunt 

susceptances and the cavity phase-lengths. The phase-lengths are the 

electrical lengths of the cavities at mid band, and are all slightly 

less than % (ie slightly less than a half-wavelength). In Figure 4.'10 (b) 

the r'th cavity of the filter and its associated couplings are decomposed 

into a half-wavelength line embedded between a pair of admittance 

inverters each consisting of a shunt inductive susceptance symmetrically 

located in a positive electrical length of line. The inverter circuit 

is shown again in Figure 4,'lO (c).

The transfer matrix of the network of Figure 4.^&(c) is;

cos t

• • Ìjsin ^

jsin

cos

• ÉLin*—

Ì

fx o' (

/ r je  x!

COE i. • . ài s m  *-jsin

• • ijsin ^ cos t

Here the frequency dependence of jf and B have been ignored, the matrix 

implicitly being formed at mid-band. Multiplying out the matrices,

the overall transfer matrix is
/

cos^. (cos^ + Bsin^). - sin2̂  j|sin^(cos^'+ Bsirr~) + sirTj cos^ |
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For tho circuit to behave as an inverter, "A" and "D" must be zero. 

Hence

cos - sin ^ + Bsin cos

= cos/ + ^ sin/

= 0

and hence

/ = - cot_1(~) (4.45)

Thus the line lengths in the inverters must be negative, and can be 

absorbed in the neighbouring positive lengths. At the input and 

output, they can be absorbed into the convecting lines.

The admittance of the equivalent inverter, K, can be determined 

from the "C" term of the transfer matrix and is

/ / 2 /K = 2sin *  cos ~  - B cos

= sin/ - -| (1 + cos/)

However,

cot/

and hence

Thus

sin/ =
yi + B2A

1___ B/2
, cos/ = -

- I  (1

J l + B2/4

B/2

/ T V  ti2/4 /I + u2/4

1
-----— “  { 1 + B2/4 - |  /l + B2/4 J
,/l V  B2/4

= j\ + B2/4 - B/2

'Now this can be recognised as one solution of the equation 

B = * - K (4.45)
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Thus (4.45) and (4.46) enable an inverter to be designed with a given 

admittance value.

It is important to note that the /(-variable in terms of which the 

waveguide structure was analysed is distinct from the 8-variable character

ising the lowpass prototype.

Levy has shown that these inverters are relatively broad band, and 

that their characteristic admittance is approximately proportional to 

the guide wavelength. He has further shown that this frequency dependence 

can be scaled out of the network, to leave a new network which can be 

equated to the prototype of Figure 4,iS.(a) under the frequency transform

• n A2. • ( ® 0\sinfl r-*- sin (tc —r-~)Ag Ao g
(4.47)

Thus, (4.47) must be used to determine the ba«<lwidth variable sinQ foro
the design of the prototype filter, in terms of the required band edge 

guide wavelengths.

Thus the design procedure can be summarised as follows. Let the 

required response in terms of guide wavelength be as shown in 

Figure 4. 0-\ , with band-edge wavelengths Ag^ and Ag2.

Then the insertion-loss of the filter is of the form 

L. = 10 log.'10
i 2 21 + e Tn [Ag

i  TwVg
T5-  s i n H r r ) / s i n e rAg

J

where
2'(Ag1 + Ag_)

2 1rT AR‘e =10
LOp/l0

- 1

(4.48)

(4.49)

(4.50)

Now, sin8Q must be determined by considering the frequency transform

(4.47) and the required band-edge wavelengths. It can be shown that

sineo can be determined to a close approximation from the equations:

%(\g2 - Ag1)
(Ag2 + Ag1)x (4.51)



*9

sineo = l/(~ + f) (4.52)

Uiith sinQ^ determined, Rhodes explicit formulae ([3.l], pp 139-147) 

may be used to determine the prototype parameters in Figure 4.20(b). 

The following equations then yield the required cavity lengths and 

post susceptances at mid-band (Ag^):

Let Y = Y , = 1, K = K . = 1 o n+1 01 n,n+l

/Y Y
then r r+1 Kr, r+1

r.r+1 K •> /-—  ---1 r» r+1 y  Y Y ,v r r+1
, r = 0 n

y = cot-1 (— ^r~f'1-), r = 0 -> n^r,r+l 2

(4.53)

(4.54)

(4.55)fc = 7t - /  -  /  , r  = 1 -* n*r r-l,r ^r,r+l 7

The dimensions of the posts can then be determined from standard

experimental or theoretical data.

For narrow bandwidths (less than perhaps five percent) this

procedure reduces essentially to that given by Cohn f4.lj.

4.6 Single-Sideband Crystal Filters

A specially important filtering function in line and hf radio

communication systems is the selection of a single sideband voice signal

from a double-sideband suppressed carrier signal generated by a balanced

modulator [4.2l], At carrier frequencies much higher than 100 KHz, the

fractional bandwidth and unwanted-sideband rejection requirements are

so severe that conventional lumped resonators cannot be used, because

of their excessive loss. Quartz crystal resonators are widely used for

this application for their extremely low loss and high stability.

A typical specific ation shape, in this case for a lower-sideband

filter, is shown in Figure 4.7 2 . The important requirements are that

the ripple in the lower sideband does not exceed dB, and the rejection

of the upper sideband should exceed dB, The response shown
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corresponds to a baseband of 300-3000 Hz, adequate for communication- 

quality speech.

A quartz-crystal resonator is a small, thin plate of suitably cut 

and polished quartz, with its opposite faces metallised to form two 

electrodes. llihen an alternating electric field is applied across the 

electrodes, the crystal vibrates, and if the frequency of alternation 

coincides with a natural mode of the plate, then the impedance seen 

"looking at" the electrodes exhibits a series resonance. For filter 

purposes, only the lowest-frequency "fundamental" mode is usually 

considered. The harmonic "overtone" modes are far enough removed in 

frequency not to effect the behaviour of the crystal near the funda

mental resonance, UJith modern crystal design methods, an-harmonic 

modes of resonance can be almost entirely suppressed.

Near fundamental resonance, the crystal itself appears 

electrically to be a series tuned circuit. The parallel-plate 

capacity between the electrodes appears in parallel with the series 

resonator, and produces a parallel resonance at a slightly higher 

frequency. Figure 4.23(a) shows the circuit symbol, equivalent circuit, 

and a plot of the reactance of a crystal, defining the series and

parallel resonant frequencies, f and f . Typically, for a crystals p
in the 10 IYIHz region, f and f will be separated by perhaps 20 KHz.s p
In the diagram, the losses in the crystal have been ignored; typical

5
crystal "Q's" of the order of 10 are not uncommon. Figre 4.23(b)

shows an alternative equivalent circuit which is useful for the purposes

of analysis and filter design. Here and Cq resonate at the parallel

resonance f , while the series capacitor C is the actual total shunt P P
capacity, as would be measured, for example, by a low-frequency bridge.

The double-resonance of a crystal is an embarrassment from the 

point of view of conventional filter design, which aims at achieving a



nGarly symmetrical passband response. The conventional methods of crystal 

filter design use lattice and bridged-tee circuits extensively to 

circumvent this problem. However, the crystal is ideal for realising 

the highly asymmetric response needed for ssb, as in Figure 4.2Z. A 

suitable filter circuit is shown Figure 4.24(a), and uses capacitive 

imptfiance inverters to couple series crystals, and is designed from the 

prototype using series inductors and impedance inverters shown in 

Figure 4.24(b). The inverters in the crystal filter are realised with 

the capacitive tee-network shown in Figure 4.24(c). The negative 

capacitors have to be absorbed in the crystals; this is considered later.

The operation of this filter is simply explained. Around their 

series resonance, the crystals have nearly zero reactance and the 

filter exhibits a passband. Around their parallel resonance, the 

crystals have an almost infinite impedance, and the filter gives a very 

large attenuation. The art of designing the filter lies in choosing 

the series and parallel resonances of the crystals to just satisfy the 

specification.

Only the lower-sideband crystal filter will be considered in 

detail; the design procedure for the upper-sideband filter, which uses 

shunt crystals coupled by series capacitors, follow in a very similar 

fashion.

It is convenient to characterise the crystal in terms of three para

meters, which in this case are chosen to be the parameters:

0^ (see Figure 4.23(b))

fs> the series resonance frequency, or

a) , where co = 2n f s s s
r , where
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It is easily shown that the reactance of the crystal is given by

(4.56)X = _1
wC

/ 2 2 \(« - <*> )

P [w 2(1 + r ) - 2co

Since the ssb filters generally have a very small bandwidth, it 

is convenient to put (4.56) in an approximate, narrow-band form;
co
('CO

CO

CO ■)
X = - coC to [l4Io

CO

CO

CO

For co co , s
CO

CO

CO

CO

Let

then

F =

2(co - co ) 
___ ______________s _

CO

2(to - co ) _______s_
CO

(0 C * (r - F) s p o
(4.57)

Consider now the response of the low-pass prototype filter,shown 

in Figure 4. 25" (a), and the single-sided response shown in Figure 4. ̂  (b). 

A frequency transform will be derived which will map the passband of the 

prototype into the region -1 to - .1 (corresponding to (f - 3000) to 

(f - 300) Hertz), and the stopband to the region + .1 to + 1.0, sc that 

the attenuation levels at each stopband edge are equal, and exceeded 

elsewhere in the stopband. This transform will be of the form:

to -*
aw + w„

w + w_ (4.58)

and it must map the prototype frequencies thus: 

- 1 -» - 1 

+ 1 - 0.1 

+ x + 0.1

x -> + 1
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From these conditions and (4.58), the following equations follow:

10oô  - a 
1 = 10o>2 - 1

10oô  + a 
X = 10co2 + 1

a + oû
X = q-----------1 + co2

(4.59)

(4.50)

(4.61)

(4.62)

From the first three equations, a, oô and o>2, can be put in terms of the 

unknown "x", and are given by:

13x - 9

(1),

13 - 9x
31x + 9
130 - 9 Ox
9x + 31

w2 = 130 - 90x

Substituting for a, oô , oo2 in (4.62) and solving for x gives:

81x2 - 322x + 81 = 0

whence x = 3.705 or 0.2699

Since the value of x determines the minimum stopband rejection, the 

largest possible value is desirable (see Figure 4,t5). Thus 

x = 3.705; the smaller value corresponds to a case where the stopband 

is mapped to the region (-1 < co < -0.1), and the filter is otherwise 

"all-pass".

UJith this value of x, the frequency transform (4.58) becomes 

1.926a) + 0.6087Ü) -» (4.63)0.3162 - oo

but for convenience it will be left in symbolic form until the final 

design equations are given, except for noting the sign of "oo" in the

denominator of (4.63).

Now a further frequency transform will be introduced to map the



single-sided prototype response to an ssb response such as is dotted in

Figure 4.22, This is of the form 

u> ■* K(f - f ) (4.64)

where f^ is the required carrier frequency, K can be determined from

the requirement that when

f = f + f c m

where f is the maximum modulating frequency (3000 Hz in Figure 4.22), 

f should map to to = + 1.

Hence

and

1 = K(f + f - f ) c m c
K = l A m

Substituting (4.64) for co in (4.58). gives the complete transform

aK(f - f ) + to. v c 1co = - K(f - f ) + o)9 c z

Thus the reactance of a prototype inductor (Figure 4.24(b)), ooĝ , 

becomes
f aK(f - fc) + 1

(4.65)

Now, if (4.65) can be put in the general form of (4.57), an 

equivalence can be drawn up between the transformed prototype and 

the crystal filter.

Equation (4.65) can be written

2aK(fc - o^/aK) if - (fc - co^aK)
^ l  2(fc - a)1/aK)J(w2 + Kfc) - Kf

and thus it is possible to identify the variable "F" in (4.57) with
2(f - f - u) /aK c r )

r - u>,/aK

To complete the equivalence, let



where D is an arbitrary constant. Thus it is required that

aKr
2[(o2 + Kfc Kf] = — g2. (fc - ay'aK) - [f - (fc - «/aK)]

from which

and

D = a

2(u>2 + w^/a)
HR? - (»>,/ ac 1

Thus, the required series resonant frequency and r , can be found:

W1f = f - (-=■) f s c v a' m (4.66)

2(w_ + w,/a)Z JLr = — ----- --- - (4.67)
CO

m
(using K = l/f )•

Thus, the reactance of a prototype inductor, ooĝ , becomes, through 

the frequency transform,

aF
7 ~ ~ T f  • 91o

(4.68)

Thus the series and parallel resonances of the required crystals can be

found through (4.66) and (4.67); if the parallel capacity of the crystal

is C , then from (4.57) its series reactance is 
P

v 1 F
-~ 2% F C * T r - FT s p o

By comparison with (4.68) then, an equivalence can be drawn up between 

the crystal filter and the transformed prototype (see Figure 4.24) if

the terminating resistors are raised to a value R^, where

R 2% f C ag, s p i
(4.69)

and the impedance inverters are scaled accordingly. The values of the 

coupling capacitors are found by equating the capacitive inverters to the 

ideal inverters at the series resonant frequency f .

Before finally deriving the explicit design equations for the
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crystal filter, it is necessary to descuss how the negative series 

capacitors of the inverters (Figure 4.2-4-(c)) can be absorbed into the 

crystals. This can be conveniently done by embedding the crystals 

themselves within a capacitive network, as shown in Figure 4 . (a).

The capacitor includes the "holder" capacitance of the crystal, and 

allows the parallel resonant frequency of the crystal to be set precisely, 

while Cn allows the negative inverter capacitance to be absorbed andD
the series resonance to be set precisely. Let the actual parallel 

capacitance of the crystal unit X be C^', anc' the actual series and 

parallel resonant frequencies be fg' and f '. The frequency relation

ships are shown in Figure 4. 26 (b). Then it can easily be shown that,

for the external resonances of X, C„, C„ to be f , f , thenA B s p
ft f _ f t

r _ _L_ (_£--- EL.
lA “ f ' * ' - fp s p> • v

f •(f * - f *)(f - f )s p_____s s p ,
C6 = f «( f ' - f )(f - f ') * p

(4.70)

(4.71)

The resulting parallel capacitance, C^, is

c = - £ _ £
f (f - f )(f ' _ f t)

f t(f _ f •)p p s
. C 'P (4.72)

Finally, the design formulae can be written explicitly, and the

resulting filter circuit is shown in Figure 4.27. The design formulae

are again given in terms of the parameters g and k ofo r,r+l
equations (3.23) and (3.24).

If the passband ripple required is L dB, the unwanted sideband 

rejection Lo dB, then the number of crystals required, n, is given by:

. = . / c X 10 - X

-i i A T 15"n >, 0.504 cosh (-/10£ -D



i OH



i i0

The coupling parameters are:

= sinh(~ sinh"’̂

Z . /'K \ q = —  sin(-r— ) yo v2n

H— L_B i n (̂r7c/n) 
2[cos(7i/n) - cos(2r7i/n)]r,r+l

Now the crystal parameters required can be found, given the carrier 

frequency f and maximum modulating frequency f :

Series resonant frequency: f = f 0.3162 fs c  m
1.265 1.265 fm

ro " f
0.3162

Parallel resonant

frequency: f = fg Jl + rQ

If a crystal unit with series and parallel resonant frequencies f 1

and f ' is available, with f 1 < f < f < f ', and has a parallel p s s p p
capacity C ', then appropriate parallel and series capacitors C. and 

P H
C can be found from equations (4.70) and (4.71) and the equivalent 

parallel capacitance is C^, given by (4.72). Then the component 

values in Figure 4.27 are given by:

"r, r+1

1_
C,

1_
C

1_
c

1
= 12.1 f C g s p o

1.925 C ______ P
" kr,r+1

1
= CB “

1
C12

1 1
" CB " Cn-1

1 1
" CB ' C . r-l,r

r = 2 n-.l



Design Example

Carrier Frequency, f = 12.7936 MHz 

Maximum Baseband Frequency,

f = 3 KHz m
Passband Ripple = 1 dB

Minimum Sideband rejection

= 50 dB

= 0.5088

or

n X 0.504 cosh  ̂

n >, 3.59 

n = 4

= sinh(~ sinh"'*' 

= 0.3646

g = 2.099 o

k12 = 0.6690 = k34 

k23 = 0.5761

^.5088

.5088

Required crystal series resonance,

= 12.7936 - 0.3162 x 3 x 10' 

= 12.7927 MHz 

1.265
“ 12.7936 

3 x 10"°

= 2.967 x 10"'

= 12.7946 MHz

0.3162

Crystals are available with

f ' = 12.787 MHz s
f 1 = 12.807 MHz P



Thus „ - 12.787 ,■ 12.7946 - 12.807N .. , ^r
A = 12.807 ''12.787 - 12.7946; *

= 7.086 pF

C0 = 3.81 pF

C = 2.86 pF P
o _ ____ 1 ______________......-rv — to

12.1 x 12.7927 x 10 x 2.86 x 10 x 2.099

= 1076 ohms

'12 = C34
1.925 x 2.86 

0.669

= 8.229 pF

C23 = 9.557 pF

1 _ ____ 1_ 1
~ 3.01 " 8.229

C1 = 7.095 pF 

= C4
____1_ 1 1

C2 " 3.81 _ 8.229 “ 9.557

C2 = 27.54 pF

The insertion-loss response of this filter is plotted in 

Figure 4.28. This was computed assuming the crystals to have the 

"real" frequency variation (4.56), and the couplings to have a 

realistic frequency variation. The graph shows that the design 

procedure is virtually exact. The passband ripple level and the 

passband edges are exact. The insertion loss at the edges of the 

stopband are equal, and in fact exceed the specification by 5 dB, since 

the number of crystals used is, of course, integral]

Although the derivation of the design procedure was somewhat tedious,

the resulting equations are very simple and easy to apply The only
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requirements placed on the crystals are that their series and parallel 

resonant frequencies should bracket the required resonant frequencies; 

the actual self-capacity of a practical crystal is then easily 

incorporated into the design. The resulting filter circuit uses only 

crystals and capacitors, and all the crystals are identical. This 

should allow an economy of scale in quantity manufacture, as well as 

simplifying store-keeping and reducing construction errors.

4,7 Conclusions

This Chapter has been concerned with developing design procedures 

for coupled-resonator bandpass filters. It has considered the design 

of what are essentially "microwave" filters, of the interdigital, 

combline and waveguide type, and lumped element filters which are 

essentially "low-frequency".

Broadly speaking, all the design procedures have been developed 

by the some method: the filter structure has been analysed in order 

to determine an appropriate lowpass to bandpass transformation; 

this transform is applied to the lowpass prototype; and the resulting 

network equated to the original structure. In the first four cases, 

the frequency dependence of the inter-resonator couplings were allowed 

for; however, this frequency dependence is not significant for the 

very narrow-band crystal single-sideband filters.

The emphasis has been on "direct" design methods, that is, 

methods which can bo used by the engineer with no specialist knowledge 

of filter theory. This limits the designs to methods where explicit 

element values are obtainable for the prototype filters. Only in the 

design procedure for combline filters has a numerical procedure been 

introduced, and even that converges very rapidly and can be applied 

"by hand" using a non-programmable calculator.

The chapter finished by giving an original procedure for designing 

crystal single-sideband filters, using a filter circuit previously



considered by Mason, Sykes, and Dishal ([4.8] - [4.10]). The new 

method is extremely simple to apply, and the computed response of a 

typical filter showed it to be capable of very high performance.
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CHAPTER 5

REVIEW OF DIPLEXER DESIGN 

5.1 Introduction

In the context of this thesis, a diplexsr is a passive device which 

is capable of splitting a signal on one path between two different 

paths, according to the frequency of the signal. The device is assumed 

linear, so an input signal with a br®»«l spectrum of frequency components 

will divide between the outputs, according to the frequency of its 

components.
/■*

Diplexers are generally reciprocal, so they can equally well be 

used for combining signals in different frequency bands onto a common 

path. However, for the purposes of analysis, it is often convenient 

to consider the device as a "splitter" rather than a "combiner".

The diplexer is the simplest case of the multjplexer. Some of the 

methods of diplexer design described in this chapter can be extended to 

multiplexers, and the text indicates where this is so.

Diplexers should be distinguished from devices commonly called 

"power dividers", which merely divide their input power equally between 

two (or often more) output ports irrespective of frequency.

Communication systems use diplexers for a number of purposes, and 

figure 5.1 shows some of these diagrammatically.

In Figure 5.1(a) a diplexer is used to divide the received signal 

from an antenna between two receivers, each handling a different band 

of frequencies. In (b) is shown the corresponding case, where the 

diplexer combines the outputs of two transmitters onto the feed to a 

common antenna. Diplexers are often used to allow a single medium to 

pass signals in both directions, distinguished from each other by their 

different frequencies. figure 5.1(c) and (d) show this principle applied 

both to line and radio systems. In microwave radio systems a device 

performing this function is often referred to as a "diplexer11.
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FIGURE 5.1 Some D iplexer A p p lic a tio n s .



In all the applications shown in Figure 5.1, both channels of the 

diplexer. have a bandpass characteristic, and such diplsxers will be 

referred to as "bandpass/bandpass". However, some applications require 

diplexers where one channel has a lowpass and the other a highpass 

response, and these will be referred to as "highpass/lowpass" diplexers.

Figure 5.2(a) and (b) show two possible responses of a highpass/ 

lowpass diplexer. In (a), the responses of the lowpass and highpass 

channels cross-over at the frequency where each response is at its 

half-power (- 3dB) point. Thus, at this frequency exactly half the 

input power passes to each channel. Such a diplexer is termed 

"contiguous". In (b) however, the channels cross-over at a frequency 

where the attenuation is much higher, and such a diplexer is termed 

"non-contiguous". The band of frequencies between the cut-off 

frequencies of each channel is called the "guard-band". These terms 

apply equally to bandpass/bandpass diplexers.

In the applications shown in Figure 5.1, the diplexers are 

operating in systems where the signals are borne on transmission lines, 

and it is important to the operation of these systems that these trans

mission lines are matched, at least within the individual channel 

passbands. It will be seen later that most of the fundamental 

problems in diplexer design stem from this requirement.

Because diplexers are selective devices, it is inevitable that

their construction should involve filters in some way. One elementary

form of diplexer is shown in Figure 5.3. It uses a pair of bandpass

filters, each of which begins with a parallel resonant circuit, so that
u

their stopband input impedances tend to a short circuit, or, eqivalently,
A

the filters are minimum reactive. The filters are connected in 

series at the "common port", and this forms the diplexer input. The 

impedance seen looking into the common port is, ideally, essentially 

resistive in the passband of each filter, and hence will match to a
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resistive source, and reactive and tending to zero at all other 

frequencies. However, because the stopband input impedance of a 

filter is actually somewhat reactive, the filters interact, especially 

if their passbands are near-contiguous, and this spoils the performance 

of the diplexer. The art of diplexer design lies in compensating for 

this interaction, and this can be approached in two ways; either the 

filters can be designed so that the interactions mutually cancel out, 

or the filters can be interconnected using additional passive devices 

such as hybrids or circulators in such a way as to decouple them.

The first method will be the main concern of the rest of this thesis; 

the second method will be briefly reviewed in section 5.3. Section 5.2 

is concerned with the systems requirements on diplexers, while section

5.4 reviews the limitations on the performance of diplexers which use 

directly connected interacting filters, and reviews the published 

methods of design.

It is perhaps appropriate at this stage to mention that there 

are a number of configurations into which multiplexers in general 

seem to fit. The first of these, shown in Figure 5.4(a) might be 

called a "true multichannel filter", because it cannot be decomposed 

into a combination of any of the other forms. For example, it could 

be composed of a number of minimum-reactive bandpass filters connected 

in series at one port. It can essentially be represented as an 

(n+l) port network, with one"input" and n "output" ports.

Figures 5.4(b) and (c) however, show two multiplexer configurations 

which are assembled from a set of diplexers; Figure 5.4(b) might be 

termed a "tree" type, and uses highpass/lowpass diplexers (though 

bandpass/bandpass would be feasible); Figure 5.4(c) uses a cascade 

of "channel-dropping" diplexers.
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5.2 Systems Requirements on Diplexer Design

Because diplexers themselves are selective devices, it is 

logical where possible to combine the selectivity in a system with 

the diplexing function. Some system requirements on diplexers thus 

stem directly from the selectivity requirements of the system, others 

stem from the diplexing function itself. This can be discussed with 

reference to Figure 5.5 which shows a hypothetical diplexer and its 

responses.

The passband requirements mainly stem from the need for minimum 

distortion of the signals passing through the diplexer, which put 

limitations on the gain flatness in each passband and on the group 

delay variation. Typical system requirements in these respects are 

discussed by Kudsia and O'Donovan |5.1|. Other requirements are 

for "flat loss" in each channel to be as small as possible. These 

losses stem mainly from dissipation within the diplexer structure, 

and result in degradation of noise figure in a "receive" diplexer and 

local heating and power loss in a "transmit" diplexer. The require

ments in this respect do not differ from conventional filter 

requirements.

The other passband response parameter important in diplexers is the 

return loss. This is especially important since it is this parameter 

which is mainly degraded when filters are interconnected. The 

passband return loss will be particularly important for diploxers 

destined for the multiplexer arrangements shown in Figure (5.4(b) and 

(c), since the diplexers have to be cascaded, and the limit of this 

"cascadeability" is governed by the quality of the impedance match at 

each port of the diplexer.

The passband response should also be discussed with reference to 

the stopband selectivity. The earlier discussion of the approximation
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problem brought out the important optimum properties of the equal- 

ripple response. UJhen discussing approximation with reference to 

diplexers the equal-ripple response is also important. It will be 

shown in section 5.4 that, in an ideal lossless diplexer with equal- 

ripple transmission through each channel, the points of perfect trans

mission through one channel must coincide with transmission zeroes in 

the stopband of the other (see Figure 5.6(a)). If this condition 

is met, the selectivity of each channel will be very heavily weighted 

onto the passband of the other. This is generally undesirable, and 

a response nearer to Figure 5.6(b) is preferred, where selectivity is 

available over the entire stopband of each channel. The "ideal" case 

is also generally unrealisable.

Referring again to Figure 5.5, various parameters of the stopband 

response are seen to be important, especially where the diplexer is 

supplying a large part of the system selectivity. Three isolation 

attenuation factors are defined. Assuming the diplexer to be splitting 

a signal at port 1 between ports 2 and 3, I ^  and I13 directly measure 

the amount of signal destined for one channel which enters the other.

One application where this may be important is shown in Figure 5.7, 

which is a crude "surveillance" type of receiver, which shows the 

spectrum occupancy of two neigh bouring frequency bands. Here a 

strong signal in band 1 will also show up as a weak signal in band 2.

The third important isolation figure is which would be important

in the transmit-receive "duplexer" shown in Figure 5.8, and governs 

the amount of transmitter output power which enters the receiver and 

hence its dynamic range. This is of particular importance, for 

example, in satellite communication ground stations, where a highly 

sensitive receiver and very high power transmitter have to share a 

common antenna and feed.

Finally, a word on frequency plans is appropriate. Figure 5.9
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represents the channel responses of a bandpass/bandpass diplexer relative 

to the communication channels which might be passing through it. The 

important point of note is that the closeness of the communication 

channels and the isolation required governs the selectivity requirements 

desirable in each channel. In Figure 5.9(a) the channel responses are 

arranged to be contiguous, and the diplexer channels are hence broader 

than the system demands. In 5.9(b) however, the diplexer channel 

responses are arranged to just pass the communication channels, and 

hence need not be so selective to meet the same isolation requirements. 

Thus a non-contiguous diplexer design technique may allow a saving of 

degree in a given application, and thus a reduction in loss. This is 

important, since most of the published design techniques using 

interacting filters, reviewed in section 5.4, apply only to contiguous 

diplexers. The main advance of the methods reported in later chapters 

of this thesis lies in their ability to produce non-contiguous designs. 

5.3 Methods of "Decoupled" Diplexer Design

Filters can be combined with passive devices such as circulators 

or hybrid junctions so that the filters may be decoupled, and inter

action thus avoided. Certain four-port structures exist which combine 

the hybrid and filtering functions; these are called "directional 

filters". Another diplexer structure involving hybrids but not using 

filters in the conventional sense is the "commutating filter", 

a) Design using circulators [5.2]

A circulator [5.3] is a matched, lossless three- (or sometimes more) 

port network, which is necessarily non-reciprocal. Most circulators 

are also frequency-variant, and will only exhibit circulation, and 

remain matched, over a relatively narrow band of frequencies and are 

only matched within that band. For the purposes of this analysis, the 

circulator will be assumed frequency-independent.





Referring to Figure 5.10, let the circulator have the scattering 

matrix [ s ] . The requirement that all ports be matched implies that 

all the leading diagonal terms of [s] are zero. Furthermore, if the 

circulator is lossless

[S] . [S]T* . [IJ (5.1)

with [I] the unit matrix. From (5.1), multiplying out the matrices, 

gives the conditions

sl2'I2 + 1si3i2 - 1 (5.2)

v I2 + 1s23 ' 2 = 1 (5.3)

S31 I2 ♦ 1S32l = 1 (5.4)

S12 S23* = 0 (5.5)

S12 (5.6)

S21 s * -  nol " U (5.7)

Each of (5.5) to (5.7) can be met only if at least one term on the 

LHS is identically zero. Assuming first that is zero, then from

(5.2) | |  is identically unity. From (5.5) = 0» and thus from

(5.4) | | = 1. Continuing the process, we obtain finally

^i21 = 23 S311 = 1

'13' " '“32 
and [S] can be written

S-i-J = |St;9| - 1̂ 2̂ ! - ^

exp(j/3) 0

expQ^) 0 

0 exp(j/2)

0

Physically, the operation of the circulator is as follows; a wave 

incident at port 1 emerges at port 2, a wave incident at port 2 emerges 

at port 3, a wave incident at port 3 emerges at port 1. It is clear 

that, [S] being asymmetric, it is a non-reciprocal device, and the 

name "circulator" is well-deserved. Circulators can be realised

at microwave frequencies by ferrite Y-junctions, and at low frequency
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using active circuits.

A ciiplexer using a circulator and bandpass filter is shown in 

Figure 5.11(a). (The conventional symbol for a circulator is as 

shown in Figure 5.11(a), tho arrow indicating the direction of 

circulation.) It is clear that the scattering matrix of this 

arrangement is

0

0
S12 exP(ĵ ].) Sn  0XPj(^i + $2 ̂

22 S12 exp(j^2)

exp(j/3) 0

where S^, S^2, $22 are ^0re the scattering coefficients of the 

filter. Wow in its passband, essentially | I = 1» ]S^| = anc ̂

thus power at port 1 within the passband emerges at port 2. In the 

filters stopband, jS^2| = 0 and |S^| w 1, thus power incident at 

port 1 appears at port 3. Thus this circuit behaves as a channel-, 

dropping filter. The responses of the device are shwon in Figure 5.11(b). 

Because of the circulator, the impedances at ports 1 and 3 are purely 

resistive, and the devices can be readily cascaded as shown in 

Figure 5.11(c).

This type of multiplexer has a number of disadvantages from a 

system viewpoint. When channels are reflected from a filter for 

which they are not intended, virtually all the power is reflected but 

the reflected signal suffers group-delay distortion. This can be 

minimised by careful choice of the order in which channels are dropped. 

Circulators are inevitably somewhat lossy, and since they generally 

use ferrite in their construction are prone to non-linearity at high 

power levels. These effects together limit dynamic range. The 

normal realisation of circulators involves a heavy magnet assembly for 

■ each circulator, so there may be a weight penalty when the multiplexer 

is to be used in, for example, a communication satellite. Despite 

these disadvantages, this method of design has great flexibility and •
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has been extensively used in radio-relay systems (see eg reference [5,4]). 

b) Design using hybrids

A "hybrid" is a general term for a lossless matched four-port 

network, described by the scattering matrix:

[s] 1 0 S13 S14
0 S23 S24

13 S23 0 0

14 S24 0 0

(5.8)

The theoretical limitations on such networks are fully discussed by 

Carlin and Giordano [2-1 |. Hybrids are realisable by simple trans

former networks [2-1] from audio frequency up to uhf, and at higher 

frequencies by directional couplers and waveguide "magic tees" [5.5].

Referring to Figure 5.12, the scattering matrix (5.8) imples that 

a signal incident at port 1 is decoupled from port 2 and vice-versa, 

and a signal incident at port 3 decoupled at port 4 and vice-versa.

The network is matched and lossless, so an incident signal at port 1 

is split according to the magnitudes of 5 ^  and between ports 3 

and 4. The first elementary property which follows is thus

1| S i 3 ! 2 *  | s u ! 2

and similarly

IS23̂  + 'S24̂
The unitary condition also gives the relations

,2

(5.9)

and

and

S13 ! 2 l S23

S14 | 2 + 'S24
in conjuncti

S13 1 = S2J

s I = S„„ I14 1 231

= 1

= 1

(5.10)



There is thus a particular symmetry to £he coupling coefficients of 

the hybrid. It is clear that there is no special requirement that 

the hybrid should split an input signal equally between its appropriate 

output ports. For example, directional couplers may give any degree 

of coupling.

Of particular interest in the design of diplexers are hybrids 

described by the scattering matrix (5.11):

(° 0 1
j  \

[s] = ±- 0 0 3 1

/ 2 1 j 0 0

\j 1 0 0 /

Referring to Figure 5.12 again, this hybrid would split a signal at 

port 1 equally between ports 3 and 4, with a 90° phase difference 

between them. Such hybrids are realisable by directional coupler 

circuits [5.5],

A diplexer configuration using hybrids is shown in Figure 5.13, 

where two identical filters are interconnected by a pair of identical 

90° hybrids. The four accessible ports of the diplexer are numbered 

and the number ringed, the other numbers are for reference. Let 

the filters be symmetrical and described by the scattering matrix

S11 S12
s „ sL 12 11

Since both hybrids are matched, the filters are ideally terminated 

at each port. Thus, considering the coupling between ports 1 and 3, 

if waves â  and a^ are incident on ports 1 and 3, we can find the 

waves reflected from the first hybrid straightforwardly as follows:
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b3 = 72
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By simple partitioning,

/ bi

\ h2

_1
/2

0

0

j

1

0

0.

j

1

1

j

0

0
Sllb3

Sllb4

J1 \ 11 
+

n
(5.12)

(5.13)

Substituting (5.13) in (5.12), me get

( V f u
'l j

2 i k\bil - 2 J 1 \a2 /
JS 11

C
M

CO

0

J S11
and thus the coupling coefficient between ports 1 and 3 is just jS^, 

as by symmetry it is also between ports 4 and 2.

If a unit wave is incident on port 1 , the resulting waves 

incident on ports 3 and 4 of the second hybrid are clearly Ŝ /̂/2 and 

j S T h e  resu^ing waves at ports 1 and 2 of the second hybrid

are thus

l 1 j

n  _j 1

S12 (1 + j
2 '(j + J

1° \

U SX2 1

s12//2 \ 

jS12//2

Thus port 1 is decoupled from port 2 and coupled to port 4 by the 

coefficient jS12. Thus the scattering matrix of the hybrid diplexer

is



is

0 0 S11 S12
0 _ 0 S12 S11

S11 S12 0 0

-S12 S11 0 0

It is clear that his network fulfill the conditions of equations (5.8)- 

(5.10) and is thus itself a hybrid.

In Figure 5.13 the filters shown are bandpass types, but it is 

clear that lowpass, highpass or bandstop types could be used. In use, 

port 1 would be regarded as the "input", and port 2 terminated by a 

resistive "dummy" load. The unit then functions as a channel-dropping 

filter, the dropped channel emerging from port 4 and the remainder of 

the input from port 3» The responses of the diplexer are thus 

essentially similar to the circulator type discussed in the preceding 

section, and it is subject to the same disadvantages in respect of group- 

delay distortion. Since two filters are used rather than one, there is 

again a weight penalty, though hybrids are commonly lighter than circu

lators. In addition it may be noted that if the filters used are of 

n'th degree the response is also of n'th degree, but the overall network 

is of 2n'th degree, so the network is highly redundant. The performance 

is also critically dependent on maintaining exact balance in each hybrid 

and each filter path. On the other hand the network can handle high 

powers, and has found application for transmitting combiners.

An equivalent device to the hybrid diplexer just described is the 

directional filter, in which the functions of the hybrid junctions and 

the filters are combined. A good review of directional filters can 

be found in Cohn and Coal [5.12|.

The hybrid diplexer seems to have been first described by Lewis 

and Tillotson [5.6], similar ideas having been put forward by Vos and 

lanvent [5.7] and Bobis 15081. Another application for the hybrid



diplexer appears in [5.9], The first appearance of the directional 

filter is from Carlin [5.10]. Both devices are then developed by a 

number of authors [5.1l]-[5.42]. High-power diplexers have been 

described by Young and Owen [5.16]. The hybrid diplexer has been 

considered as a channel-dropping filter in trunk waveguide systems by 

lYlarcatili [5.18] and fflarcatili and Bisbee [5.19], Saha [5.28], and Shimada
f

et al [5.30], amongst many others, 

c) Waveguide commutating filters

The waveguide commutating filter [5.43], [5.44], is likely to
of

become numerically a very important type of multiplexer because^its 

adoption as the channelling filter in millimetric waveguide trunk 

systems. Superficially it resembles the hybrid diplexer discussed in 

the previous section, but its operating principles are very different. 

Figure.5.14 shows a simple form of commutating filter. It consists 

of a pair of 90° hybrids interconnected by matched transmission lines, 

such that the path lengths differ by a time delay T seconds. In the 

following analysis, it will be assumed for simplicity that there is no 

phase shift in the interconnecting lines apart from the time delay in 

one of them.

Assume that a unit wave is incident on port 1 of hybrid 1. Since 

the hybrid is matched at all its ports, the wave is decoupled from 

port 2, and the waves at ports 3 and 4 are given by

These waves are, incident on ports 3 and 4 of the second hybrid after 

the wave b^ has been delayed by a time T. Since the second hybrid is 

matched there are no reflections from ports 3 and 4, and the waves 

emerging from ports 1 and 2 of the second hybrid are given by
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(5.14)

and these form the outputs and bR of the system.B
From (5.14) the modulus of the output at port A for a unit wave

at port 1 of the first hybrid, which is the appropriate transfer 

coefficient modulus, is given by:

| Sia |2 = l/4 [(cosooT - l)2 + sin2wl]

= 1/4 [ cos2®! - 2coswT + 1 + sin 2o)T]

= 1/2 [1 - coswT]

= sin2 (if) (5.15)

while

|Sln|2 = l/4 [(cosooT + l)2 + sin2wT]

= l/2 [l + cosooT]
= cos2(^|) (5.16)

Thus the division of power between the output ports varies periodically 

with frequency, with a period of to = 27t/T, as shown in Figure 5.15.

Note that
lc 12 ic 12 • 2 /'t° l \  2 ,wTN
IS1 A' + I Sib ■ = sin ("Ip + cos (“7 )

= 1

as expected.

From equation (5.14) again, the phase shift can be determined, and 

for example

ang(S1A) = tan

= tan

= tan

- 2 
2 “

-1

-1

-1

sinooT 
costo! - 1

2sin(™) cos(-f) 

2sin2(-f )

cot (if)'
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This is a linear function of w, and hence the response of the commut

ating filter is inherently linear phase.

For applications such as in the trunk waveguide scheme the com

mutating filter is very suitable for several reasons. Firstly, its 

periodic responses can be used to advantage in planning the multiplexer 

configuration, and the fact that the commutating filter is matched 

simplifies cascading. Second, it has a very lowloss, since no 

resonant elements are used, and an intrinsically linear-phase response. 

It is easy to fabricate in large numbers using numerically controlled 

machine tools.

The commutating filters main disadvantage is its poor selectivity 

in comparison with conventional filter responses. The selectivity 

can be improved by replacing the delay line with all-pass networks with 

a larger rate of change of phase with frequency in the transition region 

between bands [5,45], but at the expense of sacrificing the linear- 

phase response. Nevertheless, the group delay distortion remains 

small.

The commutating filter type of diplexer is also attractive when 

high power handling capacity is needed [5.45]; since there is no 

resonance and therefore little stored energy, local heating and 

ionisation leading to breakdown are less of a problem than in conven

tional filters.

5.4 Design of Directly Interacting Diplexers 

a) Lowpass/highpass diplexers

Consider the input impedance of a doubly-terminated lowpass filter, 

which for the sake of argument can have a Chebyshev insertion-loss 

response. At a finite set of frequencies within the passband, the 

insertion loss of the filter is zero. These frequencies are the 

zeros of the insertion loss function L , whereH
La = 10 log10 (1 + e2 rn2



Thus the frequencies of zero insertion loss are the zeros of the 

Chebyshev polynomial Tn (a)). At the zero-loss frequencies, the input 

impedance of the filter is purely real, and equal to the designed 

source impedance. Thus, in essence, in its passband the filters 

input impedance is real and constant, mhile, if the filter is a 

minimum reactance network, the stopband input impedance is approximately 

zero, and mainly imaginary. Under these conditions, if two filters 

are connected in series at one port as in Figure 5.3, the input impedance 

will be real in the passband of each filter and thus present a match 

to a resistive source, and so the device will function as a diplexer.

However, the behaviour of real filters complicates the situation. 

This is shown by Figure 5,16, which shows the input impedance 

characteristics of lowpass and highpass filters. Although the 

reactive part of the input impedance of one filter is nearly zero in 

its passband, it has a large peak just beyond cutoff, lying within the 

passband of the other, and thus the filters will interact severely if 

they are connected directly in series.

This interaction can be avoided if the filters are designed so 

that their input impedances are actually complex in the passbands, so 

that their imaginary p8|rts are equal and opposite and the real p&rts 

sum to a constant. Such networks are termed "complementary" [5.46].

One example of complementary filters which can be used in a diplexer 

is the maxirnally-flat singly-terminated lowpass/highpass filter pair 

[5.47], Singly-terminated filters were discussed briefly in 

Chapter 3; briefly, the n'th-degree singly-terminated maximally flat 

prototype lowpass filter has an input impedance of the form

ZL(jw) = --- + jXL(u)) (5.17)
1 + w

Thus, if the filter is excited by a current source of one amp, the 

real power absorbed by the filter has the form of the real part on
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the rhs of equation (5.17). Since the filter is lossless, all this 

power is delivered to the load, and hence the insertion-loss ratio 

of the circuit is just

■, 2n

which is of course the maximally-flat form.

If the prototype network is minimum reactance, then X(w) can be 

found by applying the Hilbert transform [5.48]« In this case consider 

the input reactance of the singly terminated lossless lowpass proto

type and the highpass filter obtained from it by applying the frequency 

transform o o - l/co. The input impedance of the highpass filter is 

found by substituting for <o in (5.17), and is of the form

2n
zH(j®)

O) —  * j y « ) (5.18)
1 + oo

Clearly the real parts of (5.17) and (5,18) sum to unity, and thus 

the real part of the total input impedance of the two filters connected 

in series will be unity. Since both filters are minimum reactance 

their sum is also, and hence by the Hilbert transform the input reactanc 

of the diplexer is

X(oo) 1
%

du
CO — u— CO

1
% log(to - u)

= 0

Thus the input impedance of the lowpass and highpass filters connected 

in series is real and constant, and will present an ideal match to 

a unit resistive source at all frequencies. It is clear that, if the 

diplexer is excited from a resistive source, the input current will



therefore be constant, and thus the transfer response of each filter 

will have the maximally-flat form. If port 1 is defined as the common 

port where the filters are connected in series, port 2 the output port 

of the lowpass filters, and port 3 of the highpass filter, it is clear 

that:

IS

IS

IS

11
12

13

2

2

0
1

1 2n+ 0)
2nw

1 + 2n
(JO

and further that

lSl]J + Ŝ12̂  + Ŝ13̂  = 1

The resulting diplexer, having a maximally-flat amplitude 

response, is not sufficiently selective for many applications. If an 

equal ripple response is sought, the fact that an ideal match is 

required at the input places restrictions on the type of response that 

is physically possible. For, if the diplexer is lossless, the 

unitary condition implies that

|5ll|2 * |S12|2 ♦ |S13|2 = 1 

and thus, if is zero,

lS12|2 + |S13|2 = 1 (5.22)
Thus, at any frequency where the insertion loss in one channel is zero

there must'be a transmission zero in the other channel. Thus the 

frequency responses of an equi-ripple ideal lowpass/highpass diplexer 

will be of the form shown in Figure 5.17 and Norton [5.47] has shown 

that the appropriate filters must be elliptic-function. It may be 

noted that the form of the responses is restricted by equation (5.22) 

even if the input match requirement is relaxed, and an exact input 

match required only at the finite set of frequencies where either

filter has zero insertion loss



This restriction on the form of the responses possible in an ideal 

diplexer is particularly arduous in the case of a bandpass/bandpass 

diplexer. In this case, the responses will have the form already seen 

in Figure 5,6(a), with the selectivity of each channel heavily weighted 

onto the passband of the other; in fact, the response of each channel 

resembles more the single-sideband responses of Chapter 4, Thus 

selectivity is not available in the remainder of the stopband where it 

is usually required. In addition, if one channel has greater degree 

than the other, the diplexer will be unrealisable. For these reasons, 

and recognising that the maximally-flat response is insufficiently 

selective, approximate realisations of diplexers are of great importance 

To show that approximate realisations may give acceptable perform

ance, consider the design of a "typical" lowpass-highpass diplexer 

using conventional Chebyshev response channel filters, where each 

filter has a passband ripple of 0.1 dB and a degree of 6, and the

filters responses cross-over at the -3 dB frequencies, ie the diplexer

is contiguous. Assuming that the lowpass channel is normalised for a 

cutoff frequency of unity, the cutoff frequency of the hicjjpass channel 

is then at co = 1.194. The approximate insertion-loss responses of 

these two filters are shown in Figure 5.18, Now suppose that the 

filters are connected in series and a method found to reduce the 

interaction to acceptable proportions. Consider the return-loss 

response in the lowpass channel. A 0.1 dB ripple Chebyshev filter 

will normally have a minimum return loss of approximately 16 dB, and

it is clear that the maximum return loss can exceed 23 dB for over

85/o of the lowpass channel. From this simple treatment it can be 

seen that the adverse affect of the interactions in an approximately 

designed diplexer may not be very serious from a simple "power-flow" 

point of view, as long as the interaction between the input impedances



can bo minimised. It also appears that the proportion of the band over 

which the return-loss peaks can reach an acceptable level decreases 

as the ripple level of the filters decreases; however, it will be seen 

that filters connected in a diplexing configuration exhibit a consider

able apparent increase in selectivity.

The problem of designing Chebyshev lowpass/highpass diplexers 

with a nearly constant and real input impedance has been considered by 

Wenzel [5.49], He has shown that a lowpass/highpass Chebyshev filter 

pair can be very nearly complementary if they are designed on a singly- 

terminated prototype and if:

a) The cut-off frequency of the highpass filter is scaled so

that the filters insertion-loss responses cross-over at 

the -3 dB point. Since the filters are singly terminated, 

this implies that the input (real-port) impedances (assuming 

unit termination) are equal at the same frequency to 

0.5 ohm.

b) The filter cut-off slopes are equal and opposite at the 

cross-over frequency.

Wenzel has shown that both conditions are satisfied by the singly-

terminationed Chebyshev lowpass prototype when the highpass filter is

obtained by directly transforming the lowpass prototype by the

frequency transformation 
k
« (5.23)

where k is given by

k = cosh“ — cosh ^(~) n ve
e being the prototype ripple factor, 

obtainable for the singly-terminated 

ulae |5.501 this method of design is

(5.24)

Since element values are 

prototype from explicit form- 

very simple and direct. One

matter not yet treated is the relationship between the ripple factor



of the singly-terminated prototypes and the resulting ripple of the 

diplexer.

Consider a singly terminated prototype filter uiith a Chebyshev 

transfer response, for which

R (Z. ) =
1 + e T (to) n v

The minimum value of Re(zir]) within the lowpass passband is just

R . = -----*■min , 21 + e

If it is assumed that the imaginary part of the input imedpance is 

exactly cancelled in the diplexer arrangement, then the corresponding 

maximum value of the reflection coefficient at the common port of the 

diplexer is just

2
S = ——----Umax 0 22 + £

2

2
in the usual case for which e << 1. Thus 

„ 4

and thus
11 max

S |2 = 1 - —i2 min 4

(5.25)

(5.26)

(Here it is assumed that port 2 is the output port of the lowpass 

filter and that the insertion loss of the highpass filter is very 

high, so that effectively all the power transmitted is to port 2.)

Thus, as shown by (5.25), the return-loss ripple measured at the

diplexer input is considerably smaller than might be expected from the 

prototype ripple level. For example, consider the 0-5 dQ ripple 

singly terminated prototype. The corresponding value of e is
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= 0.349 •

and thus | -, | 2 = 3.72 x 10~31 11 max
corresponding to a return-loss of about 24 dB (for a conventional 

doubly-terminated prototype, a 0.5 dB ripple corresponds to a return 

loss of about 9.6 dB). At the same time, this decrease in the passband 

ripple is not accompanied by a decrease in the stopband selectivity; 

since the input impedance of the diplexer is sensibly constant, the 

stopband rejection of either filter is not affected since the excit

ation is effectively from a constant-current source.

Quantifying this, let the effective ripple factor of one channel 

of the diplexer be e'. Then, from (5.26) me have

2
whence e' = ”

By considering the effective asymptotic passband attenuation of the 

Chebyshev filter (see Chapter 3) it is easily shown that the stopband 

attenuation of one channel of the diplexer exceeds that of a conven

tional doubly-terminated filter with the same passband ripple by, in 

the limit as o h  » ,

6 + 1 0  log10 (— )
£

For the example considered before, this apparent increase in atten

uation is

6 + 1 0  log, (— -— r )
x 0.349

= 15.1 dB

which is very significant.

With these considerations, the design procedure emerges, and will



be discussed mith reference to the form of specification given in

Figure 5.18. Attenuation and return-loss levels are quoted only for 

the lompass channel, since those for the highpass channel are identical 

through the frequency transform (5,23) and (5.24).

The passband return-loss level required is Ln dB. Thus, froma
(5.25),

e2 = 2 x 10

Norn the stopband attenuation has to exceed Lo 

thus

cosh
n >,, ----

(5.27)

dB at a frequency wq, and

(5.28)
cosh 1 r<A) 1 L o1

In conjunction mith (5.23) and (5.24) and the explicit element-value 

formulae these are the design equations for the Chebyshev lompass/ 

highpass diplexer.

A computer program has been mritten (Appendix 1) to design these 

diplexers using explicit formulae for the element values given the 

degree, and the required return-loss level of the diplexer, and to 

analyse the performance of the resulting circuit. Figure 5.19 shoms 

the performance of a diplexer in rnhich each channel has a degree of 7 

and the designed return-loss level is 22 dB. The performance is 

clearly very good. The only visible degradation in the common-port 

return loss is the absence of the peaks nearest the cross-over 

frequency; homever, an extra return-loss pole has appeared at the 

cross-over frequency to offset this. The lompass channel insertion- 

loss response, also plotted, shoms that, though the in-channel response 

meets the 22 dB return-loss level, the stopband attenuation is 

characteristic of a much higher ripple filter, being some 16 dB more 

selective than a 22 dB return-loss doubly-terminated filter.

These results demonstrate that Wenzel's method permits the rapid
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and accurate design of high performance nearly equi-rippla diplexers. 

Because of the requirements of making the input match almost exact at 

all frequencies, the diplexers are necessarily contiguous. For appli

cations where a higher selectivity than possible with Chebyshev filters 

is needed, Wenzel has extended the method to the design of elliptic- 

function diplexers [5.51],

Application of the lowpass to bandpass transformation to the 

Butterworth or Chebyshev diplexers described so far in this section 

will result in a bandpass/bandstop filter pair which will behave as 

a channel-dropping filter. The design of such filters with maximally- 

flat responses has been considered by lilatthaei and Cristal [5.52], and 

UJenzel |5.64|. They realised the bandpass filter in interdigital form 

and the bandstop filter with parallel-coupled resonators. A wave

guide realisation has been described by Abele [5.53], and a similar 

idea proposed in circular waveguide by Standley [5.54],

Historically, the problem of designing diplexers has been of 

interest since the very earliest days of frequency multiplex communi

cation, and though the earliest "modern-network-theory" attack on the 

problem was that of Norton [5.47J, an image-parameter design method 

existed and a good account of this method is given by Guillemin [5.55],

The development of the theory of diplexers given here has been in 

terms of series-connected minimum-reactance filters, but it should 

be clear that a development in terms of shunt connected minimum 

susceptance networks is equally valid, 

b) Bandpass/bandpass diplexers

With little modification the methods worked out in section (a) can 

be applied to the design of bandpass/bandpass diplexers. The argument 

is simplified if the "quasi-bandpass" diplexer prototype of Figure 5.20 

is considered. Here, the two channels of the diplexer are shifted to
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frequencies - a by shunting each capacitor in the lowpass prototype 

by a frequency-invariant reactance of value + aC^. It is assumed 

that each channel is based on the same singly-terminated prototype.

The value of the band separation factor "a" is chosen so that 

the transfer responses of the two filters cross-over at the - 3 dB 

point, which thus occurs at zero frequency. The value of a is thus 

fixed for a given degree n and ripple factor e, and n and e are found 

as in the last section. a is then given by

a = cosh(—  cosh-'*' — ) (5.29)n e

The input impedance characteristics of the two filters are shown 

in Figure 5.21. It is clear that the real part of the total diplexer 

input impedance is nearly equal to unity over both passbands. Since 

the maximum imaginary part of each impedance occurs at very nearly the 

- 3 dB frequency, the imaginary parts are very nearly equal and 

opposite over the "inner" half of each filters response, but the total 

imaginary part is substantial over the "outer" half of each response. 

The form of the remaining input reactance of the diplexer is therefore 

as shown in Figure 5.22, UJithin the passband of each filter the slop 

of this remaining reactance is negative, and the reactance is positive 

for negative frequencies. Thus the reactance can be approximately 

annulled by a lossless reactive network, the simplest form of which 

is shown in Figure 5.21 as a series, shunt-resonant circuit, L̂ , C^. 

This network can be designed to annuli the remaining reactance exactly 

at two frequencies in the passband of each filter, which are usually 

chosen to be near the band centre and extreme band-edge. Because 

of symmetry, the annulling need only be worked out for one channel.

The resulting diplexer prototype can be directly transformed into a 

■real bandpass/bandpass filter pair using the reactance slope technique

The design of a diplexer prototype will be illustrated by an
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example. Consider a specification for a bandpass/bandpass diplexer 

which requires a 5th-degree filter in each channel, to meet an in

channel return-loss requirement of 26 dB, From equation (5.27) the
2corresponding value of e is 

e2 = 2 x ID"1,3 

so e = 0,317

Now from equation (5.29), a is given by

a cosh(15 cosh 1 ' 
0.317 )

= 1.067

A computer program was written to calculate the real and imaginary 

p$rts of the input impedance of the two bandpass filters connected in 

series, and the result plotted in Figure 5.23. The important para

meters are the band-centre and band-edge reactances and X̂ > which 

determine the series annulling reactance. Because the channels are 

contiguous, it is convenient in most cases, for ease of calculation, 

to consider the reactance at the frequencies oô = 1 and oô, = 2.

From the graph,

X = - 0.2896 at co = 1, 

X2 = - 1.0104 at co = 2

The reactance of the annulling network is 
1

thus

JXA =

X„ =

jwCA + j Z

, 2/ 2 1 - w / %

A

where O)
A la ca

So
1 - 1/co„2 ~ " X1

2L,

1 - 4/to.

(5.30)

(5.31)

and (5.32)
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Dividing (5.30) by (5.31),

1 - 4/o>a2 2 X1

1 - l/ c 7  = ~ 2

and thus
2 4 - 2*1/X2

WA = 1 - 2 X ^ 2
2

and, substituting for u)̂ in (5.31)

LA = Xl^1 " 1//c°A ^
tuhile from (5.30)

(5.33)

(5.34)

(5.35)

For the above example, this gives 

a,.2 = 8.02 

La = 0.2535 

C = 0.4913n
The common-port return loss

of the complete diplexer is

shown in Figure 5.24. Again, the performance comes very close to 

meeting the initial specification. The worst-case return loss occurs 

close to the cross-over, and is about 23.5 dB. Once again, the return 

loss pole nearest to the cross-over has disappeared, but a new return 

loss pole has appeared at the cross-over frequency (oo = 0).

It is clear from the above that the design of bandpass/bandpass 

diplexers using singly terminated filters is rather more involved than 

the design of lowpass/highpass types, involving steps of what are, in 

effect, optimisation. The performance of the diplexer can be improved 

by increasing the degree of the annulling network, complicating the 

design process further, and making the final structure more complex. 

However, the method can be extended to multiplexer design, as indicated
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by Cristal and lYlatthaei [5.56] and Wenzel and Erlinger [5.5?]. When 

the method is applied to iuav/eguide multiplexers, waveguide manifolds 

are frequently used to interconnect the filters, and optimisation 

methods have been used to design the manifold, for example by Atia 

[5.58], Pfitzenmaier [5.59], and Chen et al [5.60]. These methods 

can also be applied to the design of non-contiguous multiplexers [5.6l].

Another method of design which is conceptually similar has been 

proposed by Watthaei and Cristal [5.62], which can be of value in some 

cases where the doubly-terminated method is difficult to apply. This 

involves the use of "forshortened" doubly-terminated filters, which are 

conventional filters with the first resonator removed. Such filters 

can be used in a contiguous diplexer arrangement where each filter 

supplies part of the susceptance required by the other for correct 

operation, an annulling network supplying the rest. This method has 

been applied to the design of extremely compact low-loss diplexers using 

evanescent-mode filters by lYiok [5.63].

5.5 Conclusions

This chapter has briefly surveyed a number of different techniques 

of diplexer design, after a discussion of the principle classes into 

which diplexers fall and of the system requirements on diplexer design.

The problem of interaction between filters can be avoided by 

using circulators or hybrid networks to decouple them. Both methods
I

were discussed from a scattering matrix viewpoint, and it was seen that 

the responses of the resulting "channel-dropping" units were essentially 

similar, though the hybrid type was a reciprocal, and the circulator 

typo a non-reciprocal, device. These methods have the advantage that 

all the ports of the diplexer are ideally matched and they can therefore 

be readily cascaded. Both methods introduce group-delay distortion into 

the "reflected" channels, and carry a weight penalty; one because of



the circulator needed, the other using two identical filters as well 

as two hybrids. The performance of the hybrid-type network also depends 

on the maintenance of exact balance in two parallel paths.

Another method using hybrids is the "commutating filter". This 

device provides selectivity using phase cancellation between two parallel 

paths of different time-delay rather than conventional filters. The 

selectivity thus tends to be poorer than conventional devices, and it 

is again dependent on maintaining balance between two parallel paths.

The device has an intrinsically linear phase response and low-loss, 

and has been adopted for multiplexing in millimetric trunk waveguide 

schemes. Its selectivity can be improved at the expense of linear 

phase by using all-pass delay networks rather than simple delay lines, 

and it can handle high powers, being less prone to breakdown than 

conventional resonant filters.

The classical solution to the problem of designing lowpass/highpass 

diplexing filter pairs using singly-terminated maximally flat filters 

was outlined using Hilbert transforms to prove that these filters were 

complementary. This solution results in a diplexer which is not 

selective enough for many applications, and UJenzel's solution for 

designing approximately complementary Chebyshev diplexers was given.

Using explicit formulae for the element values in singly terminated 

Chebyshev filters^ Wenzel's method provides a very direct and simple 

solution to the design of lowpass/highpass diplexers. The design 

formulae were given, and a trial design, analysed on a computer, 

showed the high performance obtainable. These diplexers are also 

suitable prototypes for transformation to bandpass/bandstop channel- 

dropping filters.

Finally, the design of bandpass/bandpass diplexers was briefly 

considered, using singly terminated filters in conjunction with a 

reactance annulling network. The design procedure was much less 

straightforward, and computer aid is desirable in determining the
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design of the annulling network.

The introductory remarks to the chapter mentioned that non

contiguous design methods are desirable to meet system requirements 

with minimum degree. There is obviously no restriction on the channel 

spacing using the circulator or hybrid-type diplexers, The commut

ating filter is, however, necessarily contiguous. The design methods 

using directly connected interacting filters result in convenient and 

simple structures which tend to be light and compact since they use 

no additional decoupling devices. The design methods given here 

result in contiguous diplexers, this condition being necessary for the 

cancellation of the reactive part of the common-port input impedance. 

Though a non-contiguous image parameter method was mentioned by 

Guillemin [5,55], no coherent "modern network theory" design procedure 

for non-contiguous diplexers has appeared in the literature until 

very recently. The next chapter of this thesis develops a general 

design theory for non-contiguous bandpass diplexers, while Chapter 8 

applies the theory to lowpass/highpass diplexers.



DIRECT DESIGN FORMULAE FOR DIPLEXERS.
CHAPTER 6. iSS

6*1 Introduction.
The last chapter reviewed several methods of design

ing diplexers, emphasising tnose wnere the the filters 
were connected in series or parallel at a common junction. 
The designers's problem is then to compensate for tne 
undesirable interactions between the filters. The dis
cussion can be summarised:

1. The available design methods are applicable only 
to cases where the diplexer passbands are contiguous, 
even though this may be undesirable for the system us
ing the diplexer. This leads to designs using more sel
ective filters, with higher degree and therefore higher 
group-delay distortion and loss, than the channels them
selves demand. For this reason a circulator is often 
used to isolate the filters in a non-contiguous design 
even though this has a large weight, power nandling,
and cost penalty.

2. A direct design procedure, due to Wenzel, is avail
able for contiguous lowpass/nighpass diplexers using 
Chebyshev (and, indeed, elliptic) filters. A similar 
procedure can be used to design contiguous bandpass- 
bandpass diplexers, but a computer analysis is needed
to determine the input impedance characteristics of the 
filter pair in order to determine the design of the react
ance annulling network necessary. Tne design method can
not be considered to be "direct".

This chapter presents the derivation of direct des
ign equations for bandpass diplexers. They allow an 
engineer to design high performance contiguous or non
contiguous diplexers wnicn can be realised using coup-



led resonator filters of the type considered in chapter 
4.

The key property of doubly-terminated filters used 
in the derivation was first applied to the design of 
symmetrical diplexers (in which the channel filters 
are identical except in centre frequency) by J.D.
Rhodes 6*1 . Tne work presented here extends the der
ivation to the general asymmetric case 6*2 .

Following the derivation, computed performance curves 
are given for several prototype diplexers. The per
formance of a practical waveguide diplexer based on 
one of these examples is given in the next chapter.
6*2 Design Philosophy.

The "ideal" bandpass diplexer was described in chap
ter 5 , where it was shown that each channel filter 
would have to have transmission zeros coinciding with 
the required reflection zeros in the passband of the 
other. Such a channel filter would be very difficult 
to realise, and if one channel needed to have a higher 
degree than the other the lower degree channel would be 
unrealisable. For these reasons it is desirable to 
to use conventional filters in a diplexer and to ac
cept the need to compensate for their interactions.

To obtain designs where the channels may be close 
but not necessarily contiguous internal modifications 
are made to the filters, resulting in optimum perform
ance when the filters are diplexed. It is found un
necessary to modify every element in each filter; only 
the first two or three resonators need to be altered, 
to obtain a very high pei'fox'mance design.

To begin with, only the first two resonators of
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each filter tuill be modified for clarity of exposition. In the final

result^ modifications are extended to the first three resonators.

Let the channel filters be based on the normalised, unit-doubly-

terminated prototypes shown in Figure 6.1, Each prototype begins with

a pair of shunt capacitors coupled through an admittance inverter, and

each filter hence has at least a second-order transmission zero at

infinity. The remainder of ths prototypes, l\ll and N2, is arbitrary

and the prototypes could realise conventional minimum-phase responses

or certain typss of linear-phase response.

As in Chapter 5, the prototypes will be transformed to bandpass
+ *channel filters at centre frequencies "- a". The networks l\L and 

are transformed by the direct frequency transforms:

Nl: co a) - a (6.1)
N2; (i) 4 » t a (6.2)

end the resulting diplexer circuit is shown in Figure 6.2. The 

frequency transform applied to each of the first two capacitors of 

each prototype is more complex, and of the form

0) ->o)+ [a + f (a)] (6.3)

Also, the coupling admittance inverters are modified by a factor

Jl + k (a) (6.4)r
and matching transformers of turns ratio 

N = yi + n (a)T' (6.5)

are introduced at the input of each channel. A frequency invariant

annulling reactance X where 3 o
X = x (a) o r' (6. 6 )

is connected in series with the common port of the diplexer. The 

unknown functions f , k^, n^, x̂ , which represent the required 

modifications, can be found when it is recognised that these functions 

have certain symmetry and limiting properties, and that the input 

* oC now being arbitrary.
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admittances of the networks Nl' and N2’ are known in a closed form at a 

finite set of frequencies in the passband of each filter.

The functions f^Ca), kr(a), nr(a ) anc* xr(a ) in (6. 3-6.5) represent 

the modifications which are to be made to the filters to compensate for the 

the interactions when the filters are diplexed. If the channels are 

very widely separated, that is, a is very large, the input impedance 

of each filter in the passband of the other will be virtually zero and 

the interactions negligible. It follows that:

Ljm nr(a )» xr(a )J = 0 (6*7)
a  -> oo

Further, the transformation a-*-- a will interchange the channels, 

and the transformation w will interchange them again.

Application of both transformations will therefore result in a network 

with the same magnitude response as the original; considering the 

effects which each transform must have on the frequency-invariant 

reactances, transformers, and admittance inverters of the network 

implies symmetry conditions on fr> kf, n^, x^:

(6.0)

Considering (6.7) and (6.8) together the element values in 

Figure 6.2 can be represented by power series in the band separation 

variable a, os in equations (6.9) to (6.17) below: 

x,

f r ( - a )  = - f r ( ° - )

k r ( - a )  = k r ( a )

tt

"c31

(-4
c

n r ( a )

X 1 p II - x f ( a )

X = —  o a
1 3
+ 3a

- Cx(a

- C2 {a

a. a. a.11 “13 “15 v
+ a + 3 + 5 +a a

821 a23 a25 v
+ a" + 3 + 5 + ** *a a

(6.9)

(6.10) 

(6.11)
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= D1(a +

= D2(a +

bll + b13 b15
a —  +

a 5a
b b b̂ r-21 23 25
a + 5 5a a

V

1 "12 °143 1 + 2 •j* + 000
a a

1 "22 P24r 1 + + ~ + • • ♦
a a

2 k12 k14
= K j (1 + 2 + —  +a a

2 -i 2 / i h12 h14
- 3 ^ ( 1  + 2 + —  +

a a

...)

...)

(6. 12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Let the original prototype filters have passband reflection zeros 

at the sets of frequencies {o\}, as indicated in Figure 6.1, and

thus perfect transmission at these sets of frequencies. It follows 

that, at these ssts of frequencies, referring to Figure 6.1,

2l(>i) = 1

z-.Uop - 1

Since there is perfect transmission, hence maximum power-transfer, 

through the prototypes at these sets of frequencies, the impedances 

seen looking to left and right from any plane sectioning a prototype 

must be complex conjugate, and hence, again referring to Tigure 6,1, 

Y1(J«i) = Y1,*(ja>i)

K,

and similarly

^Wi C2 + _ +  1

_ 2

Y2(J°i) = °2 + ^ T dT T T

(6.18)

(6.19)

Equations (5.18) and (6.19) are the required closed-form expressions 

for the input admittance of the unmodified part of each filter.

The derivation of the design equations reduces to finding the 

undetermined coefficients in Equations (6,9) to (6.17), and proceeds
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as follows. Using (6,9) to (6,19) the input impedance of each filter 

is found at the set of frequencies + a} in the passband of channel 1,

noting that the expression (6,18) for the input admittance of at 

{u^} is valid for the input admittance of the transformed network N1 * 

at the set of frequencies {u\ + a}. The input impedances are found 

as a power series in a and their sum is the input impedance of the

diplexer in the passband of channel 1, which is of the form, referring 

to Figure 6,2:

zi n ( J + 0,1) = 1 + z ^ a ” 1) + z2(a 2) + z3 (a“ 3) + e(a~4)

( 6. 20 )

where e(-) means "an error of the order of (-)". The coefficients 

(z± > are, in general, functions of {ax}. A similar expansion can be 

made for the input impedance of the diplexer in the passband of 

channel 2, that is at the set of frequencies {o\ - a}, resulting in 

an expansion of the form:

zin(jCo'i - a]) = 1 + z1'(a"1) + z2'(a"2) + z3'(a"3) + e'(a"4)
(6. 21)

where the {z^*} in general are functions of (ot). From these 

expansions can be derived a set of simultaneous equations in the

unknown coefficients whose solution forces the fz. and z.'l to zero.L l i J
Thus the passband input impedance of the diplexer is a match to a 

one-ohm source up to a degree of approximation of a-4. It will be 

seen that this approach concentrates its "compensating ability" on 

those frequencies where the independent filters would normally have 

reflection zeros, and attempts to force this condition on the filters 

when diplexed. (flaking modifications to the first two resonators it 

is possible to force up to the third-order error terms to zero; the 

modifications made are then of third and lower order. If the first 

three resonators are modified, it is also possible to force the



fourth and fifth order error terms to nearly zero, and fourth and 

fifth order modifications are then made.

6.3 DERIVATION OF DESIGN EQUATIONS

Expanding first the input impedance of channel 1 in its passband, 

that is at the set of frequencies {oh + a}, referring to Figure 6.2 
and neglecting coefficients of degree higher than 3:

21 (j[«i + a] ) = - 1 + ni2^a * 0i
jifc^+a)^ - jCi(a+a11/a+a13/a ) 

ci2(lHki / a2+ •••)
f 3 2
'j(oJi+a)C2 - jC2 (a+a21/a+a23/a ) - Ja)iC2 + Ki

1 + 2 /qj + • • •
1 -

— jC^a^^ + ... + (l+k12/a + ...)

a a jC2a21 jC2a23
a a

1 + n ̂ 2/cl + ...

1 - a Clall “ C2a21^1_JüxCl̂
K

+ (l-ja'jC1)

1
_ 2 2 / . .2
C2 321

„ 2 2 K a
K1 k 12

K,

3 v a S Cl013 - h  
K,

023 * C2°2i 
K,2

Ki2ki2 - c2% i 2
K,

x (l-jwiC1)z|i> + £(a 4) (6.22)
The next step in the expansion mill be given in full, to demonstrate 

the general method used. The expression (6.22) has to be expanded

as a pou/er series of the form

ZU  Z12 Z13 . -4.
z i o + “  + ~  + “  + a ( a  }a a

(6.23)



lilultiplying (6.22) and (6.23) by the denominator of (6.22), and 

equating equal-degree terms in a, uie get:

In a , z1Q = 1

_ -1In a * zn  " J

(6.24)

C2S21 ,, . _ ,2 
ci an  - — — (1 - n ci>K ,

= o

zli = J
C2a21 ,, . „ s2 

C1 311 - — 2“ (1 - n VK,
(6.25)

In a , z12 + . C2a21 , . .
ci li ' — T(1 -K,

(l-jwiC1)

2 2
K 2 i<
1 12 K.

f -  (i - = n12

Z12 = nl2
^?321

5  » u  - —  (1 - J“ici>

Ki2 ki2 - r r -

<l- » i ci>

K,

(6.26)

In a~ » zi3 “ J 5  all ' 7 T 1 Z12 +

(l-ja>1C1)

Kl2 k12 - ̂  ' » ‘¿ f 'll

• r ZJL- f C2921
J ̂  C1 ®13 ' K 2 | a23 + K 2 Kl2 k12

_ 2 2
C2 a21 , v2—— ——— (1—j w. C, )
K,

x (!“j^i^i 0 (6.27)



The expression (6.27) for z-^has not been written in full for clarity, 

as some simplification will be possible at a later stage.

An expression can be formed for the input impedance of channel 2 in 

the passband of channel 1, as in (6.28)

z2(jtwi+a]) =
1 + n22Z0,2 +

^11 ^13+ jO^cu- + — J + •••) 
a

312(l+h12/a2+ ...

. , b21 b23 xj ( co_̂+o. )D^ (cl+ ^ + „ + «,#•)
a

(6.28)

1 + n22̂ ^ ■*■•••

bll b132jaD1 + ja)i D1 + jD ^ —  + — 3 + . . . )
a

2 2 31 (l+n12/a + ...)
+ _ _

2jaD2 + jcoiD2 + jD2(-̂ —  + — 3 + ***^a

(6.29)

Now it may be noted that each partial denominator of the continued

fraction (6.29) is of maximum degree a, and thus contributes to the term

in a”"*- in the previous partial denominator. Further inspection thus
_3

shows that if the expansion of (6.29) is required only to degree a , only 

the terms shown will contribute. Thus, equating (6.29) to the power

senes
Z21 Z22 Z23 , -4*-- + — ô + — 7 + el a )
(X ùa a

as before, the coefficients z01 , z ^  can be found:21
2jD^ Z21 ~

=» z21 2D, (6.30)



(63

w.
2j°l Z22 + 2 = °

jwj
^  Z22 = 4Ô" (6.31)

2jD1 “i
f < bn

31
Z23 “ 4 + ■ 2DlD;

Z23 = “ 2D~ { n22 +

2w. ,l 1
4 " 2

) = n22

(bn  2d xd2) (6.32)

Th8 expansions for Z^(j[w +a}) and Z2(j[a>^+a]) can now be 

combined to give an expansion for the input impedance of the diplexer 

in the passband of channel 1. An exactly analogous procedure yields 

the input impedance of the diplexer at the set of frequencies

- a}- in the passband of channel 2. Considering each term of the 

expansions a set of simultaneous equations can be derived whose 

solution yields the required coefficients in (6.9) to (6.17), Before 

considering this step in detail, notice that the total a  ̂input 

impedance in channel 1 is,combining (6.30) and (6.25),

Z!  = J C1 all
C2a21 ,, . „ n2 ---0“ U-JW.C )
K, 2D’+ JX1 (6.33) .

The only way for this expression to be zero independent of œ is 

if a2  ̂= 0, and similarly b2  ̂= 0 from considering the corresponding 

equation in the other passband. Using this allows a considerable 

simplification in the equations. The detailed derivation of the 

expansions at the frequencies êq - â - will not be carried out.

The resulting equations are; from the a * terms:

JC1 811 " 2D7 + JX1 = 0 (6.34a)

JD1 bll + 2C^ + JX1 = 0 (6.34b)



from the a terms:-2

jw.
n12 ' C1 311 " (1“jwiCi^ki2 + 40, = 0 (6.35a)

n22 " D1 bll " (]-jtfiDi^hi2 + 4C, = °
jo'.

(6.35b)

The u\ and dependent terms in (6,35) give independent equations

for k12 and

J»i J-!
> i Clk12 " 4D^ = °> J W l 2  * « 7  = 0

K

12 " '12 ~ 4C1D1 (6.36)

„3From the a ' terms:
f 2 2  (l-jw C )) j^iaii

jClall| ni2 " C1 011 + 4C^0^ J + 4C1D1

{ ^2323 7 2 1
Cial3 " —  (l-2> i Cl - -i C1 > }

a) 2 3 2 T
~ 20^ jn22 + ~T" ~  ̂^bll " 20^2^1 + Jx3 = 0 (6.37a)

2, 2 d - J ^ i ) !  J D ^ n
” jDlbll1 °22 ‘ °1 bll + 4C,D1 1 4C,D,1 1

f b 2b?3 2 2
- •> Dib!3 - ~ T  - ffi °i )

l

_  ' aJ _  ,
+ 2C1 | nl2 + 4 " 2 (an  - 2 c ^ J x3 = 0 (6-37b)

2 2Taking first the o)̂ and dependent terms of (6.36 a and b),

gives;
jC2a23Cl

80,

23 ~ 2
°C1 C2°X

(6.38)



no

JD2b23Dl
BC, = 0

23 8Di V l
(6.39)

Substituting for a^ and b^  in (6.37) and taking the resulting 

co^-dependent terms, gives;

Clail 1
2D1 4C1D1

= 0

Dlbll 1 n
2C1 + 4C1°1 =

(6.40)

11 2D^2

and thus from (6.34a) me get

(6.41)

2C1 2D1 + Jxi = 0

which is satisfied if

This result also follows from (6.34b)4

Substituting for a^, b^, k^» h^2> (6.35) we get

1 1 
n12 2 +  ■

4C1 4C1D1
= 0

_L_ / j l  v
ni2 " 4C1 KC1 ” D1 ' (6.42)

n _1__ __1_
22 2 +

4D1 4C1°1
= 0

1 ,J, J U
22 " 4D^ 'lD1 " C1; (6.43)



Finally, taking the terms in (6.37a) not dependent on o^, we get;

^ l i ^ l  <Ci " Dl> " 4C,2J BC,-D2 ~  + ^Ciai3
1 1 8Ci2°i

1 ,1(A- . i-) _ i(2D, 1 40̂  ̂ VD1 C1; 2V
J / l
20 2 2D, D1 2

+ jx, = 0

_1___ 1_ V
‘13 = BD^C, °2 " C1

(6.44)

while x^ = 0

Similarly, from (6.36b)

K,
13 (72 VC 

8C1 °1 2
(6.45)

also with x^ = 0

This completes the derivation of the third-ordered corrections. 

Before discussing the results, however, the procedure for deriving 

the approximate fourth- and fifth-order corrections will be 

outlined and the results given.

Throughout the preceding work a symmetry between the results 

for the two channels has been obvious. This symmetry makes it 

unnecessary to explicitly consider the derivation of the corrections 

for one channel; they can be obtained by inspection. In making 

fourth and fifth-order corrections it will be assumed that the 

lower-order corrections are independent, and can be assumed to be 

made before deriving the fourth and fifth order error terms. 

Additional corrections will be made to (referring to Figure 6.3);

The input transformers, and the first and second admittance 

inverters of each filter (fourth-order).

Fifth-order corrections to the third frequency-invariant

susceptance of each filter
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Note that corrections are now made to the first three rssonators 

of each filter» and the prototypes must therefore posses at least 

a third-ordered transmission zero at infinity.

Assuming the first- to third-order corrections, the fourth-degree 

term in the expansion of + a] ) can be written:

Z14 " ni4 “ 2C114D.

_ 2 2 
/3i i _n
1 °2 " V  + 8D1

jcoi(l-jwiC1)

16CiDi2

(1 - 2ja)iC1 - ox2^ 2)

16 C1 °1

- (l-j«D±C1) ̂  k14- (K12-ja).C2-a>i2C1C2)
K1

(6,46)

The fourth degree term in the expansion of Z2( j[oô +a] ) is;

40,
J L  ( i _  .  L.) _ -1-  (J L
4°i S  ci Di t2Di

2 2 33, co.__i_ \ __x_
4D„ ; + 4 (6.47)

Inspection of (6.46) shows that there are four error terms to 
o 2 3eliminate, in cô , u^, ocu , uu , with only three parameters to control

(n , k, k-,). The co.° and co. terms can always be nulled, and one 14 14 24 i i
2 3of the co. or co. terms. With the element values usually met in JL J-

3
practice, the cô error is generally the most significant, and the 

following derivation therefore eliminates the co.°, co., and co.3 terms.• L X  X3
The total cô - dependent error is

. '3 k24 . 2 _
J“i 7 2  ci C2 * IsoT

K1 1
= 0

24 16C1 C2D1
(6.48)

Substituting for in (6.46), the co^-dependent terms are



H 4

Jwi

16C1°1

jw- JCO K
—  * > i Clk14 *
8C1 D1 16C1C2D1 16C1201

£jl _1_ ,1_ 1, 1_ / 1 331
4°i 4DX \  " 0X 4 0l “ 4D,

which after some rearrangement yields

K 2
. 1 .L. /-L. i_ 1
14 = 16ClDl Cx < C2 - C1 “ D

1 3I,1 1
- — ) + □" (“n ^  " FT > <6*49)

1 U2 1

Again substituting back for k^ in (6.46), the dependent terms 

yield

P14 + 16C1D1 D2 16ClDl‘
= 0

14 ” ~ (~D^ “ ) ^ * 5°)
16C1D1

The complete expression for the fifth order error terms is 

extremely unwieldy. To simplify the derivation, a fifth-order
4correction is made to only the third resonator, and only the ah 

error term is eliminated. The resulting equation for the fifth-

order coefficient a„c is3b

C12c22c 3°35
2 2 

K1 K2
32D, = 0

2 2 
K1 K2

35
32Cl W ° l

(6.51)

The corresponding corrections in the other channel are found 

analogously, and are:

- 3,

24 ’ 16Dl V l
(6.52)

14

2 2
1 1 31 1 2 1 3K1 ]

75c"d- d" (“d " - ”  - + r  (-c ~  - r °  (5*53)1 1  1 2 1 L1 L1 2 1



nif

(6.54)

b (6.55)
32D12D22D3C1

5,4 •Summary of Results

Combining the results of the foregoing derivation and substituting 

for the unknown coefficients in equation (5.9-6.17), the following 

set of equations results, which are the basic design equations for 

the bandpass channel diplexer. Equations (6.69) and (6.70) are 

derived in a later section, and refer to an improvement in the 

stopband insertion loss of each channel over the passband of the 

other. They are included here as they form part of the necessary 

design information. The formulaegiven below include fourth and 

fifth order corrections, and the element values refer to Figure 6.3.

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)



2 2 3, 3n
3 = D3(a +

32D
a.

A
2_ r 5 
D3Cla

)

2 1 + i
{k ~ "

i
• i1 = 4C]a2 2 4 16D

2 1 + 1
~ k ] “

1
■ i2 “ 24Dxa 2 4 16C Dxa

(6.62)

-) (6.63)

-) (6.64)

'i'2 ■ ki2(1 - 7 7 7
4ClDla

1 1

1
rK 2
K1 1 2 l

2

3 3 1 1 1
c d

| i

n
i i

0
|

+ D ! Do D,

l 1
L 2 1 1J 1 L 2 1^

(6.65)

k2 2 = k2 (1
K

16C12C2D1a4
(6. 66)

'2 2/^  (1
4C^D^a

16C D^a

'

Ji_ 3 2 1 1 1 2 1 k 2 il11 Di D “ D•, ~ C, + T c c.1 . 2 1  l j i L 2 1

*2 2 / 

32 = 32 (1 2 416D DCja

(6.67)

(6.68)

ALl = 6 + 10 1o91q(1 + ---Y~2 ^4D̂  a
(6.69)

¿\Lu = 6 . 10 log (1 * — —
4C_ a

(6.70)

6,5 Discussion of Design Equations

lilhat offset does application of the diplexer design procedure have 

on the independent bandpass filter designs?

It can be seen that all even-order (in a) corrections change



the values of the input matching transformers (normally 1:1) and

the coupling admittance inverters. The odd-order corrections 

effect the frequency-invariant susceptances of each filter, and 

since the odd-order correction terms are all positive, it can be seen 

that the main affect is to push the resonant frequencies of the first 

two or three resonators au/ay from the centre frequency of the diplexer

The design procedure forces the reflection coefficient at the 

diplexer input to approximate zero at the sets of real frequencies 

where the independent channel filter would normally have reflection 

zeroes: what effect does it have on the passband insertion-loss of 

the channels, and the return loss at the other ports?

Identifying the common port as port 1, and the channel 1 and 2 

ports as 2 and 3 respectively, the effect of the modifications the 

design procedure generates is to force

and thus there is to at least this degree of precision, maximum power 

transfer from the source to the entire network. Consider the

from the source to the entire network up to the third degree in a; 

up to this degree in a the input impedance of channel 2 is purely 

reactive and thus no power enters channel 2; therefore to the same 

degree of approximation there is maximum power transfer into 

channel 1, Also, the network N1 is entirely lossless; thus it 

follows that

(6.71)

diplexer at the frequencies there is maximum power transfer

(6.72)

Thus the design procedure

(6.73)
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optimises the common-port and the othsr port return losses, and the 

passband insertion loss of each channel, simultaneously and 

automatically.

In addition, the diplexing of the filters combined uiith the 

modifications produces a significant increase in the stopband 

insertion loss of each channel over the passband of the other. To 

calculate the approximate magnitude of this increase, consider the 

circuit of Figure 6.4. This shou/s the first-order equivalent circuit 

of the diplexer input near the centre of the passband of channel 1.

If the channels are sufficiently separated, the contribution of 

to the insertion loss of channel 2 can be found approximately by 

simple potential-divider theory. On this basis, the contribution 

of is given by

LD(j[wi+aJ)
1 + 1 +

2C, 2a'D1 ■)- 2D^a

_ -rl_
- 4Dla

__ 1___
2 2 16D a

In isolation, at the same frequency (2a)

given by
2D aI f 1

ld 1 _ _J-_
2D]La

the contribution of D1 is

« L ' 2 10 0 u /n 2 2 4D^ a + 1

The ratio

ld
2 /n 2 2 40^ a + 1

v
2 216D^ a



and, expressed in decibels, this is the increase in insertion loss 

required, of channel 2 over the passband of channel 1. A similar 

argument follows for channel 1 over the passband of channel 2. Thus

A LL = 6 + 10 l o 910 i 1 + — T T   ̂ (6 .7 4 )4D^ a

and similarly

ALU = 6 + 1 0  log1Q (1 + ---(6.75)
4C^ a

The estimate of the increase given by (6.74) and (6.75) is 

asymptotically correct in the limit as a -> °°, when the increase is 

6 dB. For normal values of a, the actual increase is larger, 

typically by about 0.5-2 dB, so these equations give a conservative 

estimate. The additional increase is due to higher-order inter

actions. This increase in stopband attenuation is most worthwhile, 

and may allow a saving of degree to meet a given specification, with 

the benefit of reduced dissipation loss in a practical diplexer.

6.6 Performance of Prototype Diplexers

To investigate the performance available using the new design 

method, a computer program has been written (Appendix 2) which designs 

prototype diplexers using Chebyshev channel filters and analyses the 

resulting design.

Figure 6.5(a)-(c) shows the response of a diplexer with the 

following specification:

' _I_ Bandwidth Centre Frequency Degree

Channel 1 2 rads/sec 1.5 rads/sec 5

Channel 2 2 rads/sec -1,5 rads/sec 5

The original return-loss specification of the channels was 26 dB.

This example is also considered in [G.lJ.

Figure 6.5(a) shows (full line) the common-port return loss over
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the passband of Channel 1, ufith the same response of an unmodified 

filter directly diplexed (dotted line) for comparison. The improvement 

is very marked: the reflection zeros of the filter have been restored, 

and except for a small region, the return loss is actually greater than 

the specification of the original filters. The return loss at the 

output port of channel 1 is also plotted (broken line) and is again 

very satisfactory.

Figure 6.5(b) compares the insertion loss of channel 1 over the 

passband of channel 2 with the response of the channel 1 filter in 

isolation; the improvement is very marked, and is of the order of 

8 dB. For this diplexer, = 0.767, a = 1.5, and the predicted

improvement is hence

aL = 6 + 1 0  log u 10 4 x 2.25 x .767

= 6.75 dB

which is an under-estimate of the actual improvement. It can be seen 

that the degradation of the return loss of channel 1 in the passband is 

very small, so the improvement in insertion loss is not at the expense 

of the passband match as is the case with a filter working in isolation.

Finally, Figure 6.5(c) shows the insertion loss of both channels.

Of note is the transmission zero in each channel at the far side of 

the passband of the other. This has no advantage in meeting normal 

specification.

The response of this fifth-degree diplexer for the limiting 

contiguous case is shown in Figure 6.6, which can be compared with

the response of a corresponding "singly terminated" design given in the
-S-

last chapter (Figure 5). In the present case the modifications to 

the filters result in the value of a being somewhat lower than in that 

design because of the increase in selectivity, and the exact value of a
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mas found by trial and error to be 1.2 (as compared with 1.067).

The return-loss- performance of the diplexer is clearly acceptable 

and thus the new design technique is a viable alternative to the 

"singly terminated" design even for the limiting contiguous case.

However, it may be noted that, because the channel filters are based 

on doubly-terminated prototypes, the increase in stopband insertion 

loss of each channel over the passband of the other is considerably 

less. The computed value is 9 dB, compared with a theoretical value 

of 7.17 d8 (Equation 6.75), whereas the singly terminated design gave 

16.2 dB. This should be considered in the context of the argument 

developed in Chatper 5, that contiguous designs will frequently not be 

necessary where non-contiguous design methods are available.

UJhen the bandwidths of the two channels are unequal, the performance 

of the diplexer suffers because of the unequal interactions between the 

channels. This can be corrected by increasing the degree of the 

broader channel, hence increasing its selectivity. One criterion for 

this is to increase the degree until the insertion losses of each 

channel at the passband edge of the other are equal, but it has been 

found that best results are obtained by iteration, testing different 

designs using a computer analysis program to obtain the desired 

response.

The next two examples give the prototype responses of the wave

guide diplexers fully described in the next chapter.

Figure 6.7 shows the responses of a diplexer to the

following specification:

I I I
Bandwidth 
(Rads/ sec)

Degree Centre Frequency 
(Rads/sec)

Return-Loss
(dB)

Channel 1 2.0 3 -2.5 26

Channel 2 4.0 7 + 2.5 27.31

Here the degree and ripple-level of channel 2 have been chosen so that
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the insertionloss responses cross-over at o> = o. The response shown 

in Figure 6.7 is of a design including fourth- and fifth-order 

corrections, while the waveguide design (also described in [6.2] ) 

included only up to third-order corrections. Noteworthy are the 

kinks in the skirt response of Channel 1 over the passband of 

Channel 2, and the improvement in selectivity in the same region, which 

is about 9 dB, compared to a theoretical value (Equation 6,75) of

6.4 dB. Channel 2 also exhibits the expected improvement in its 

stopband loss, of about 8 dB. Again, these figures are somewhat 

larger than predicted by the asymptotic formulae, confirming that 

these formulae tend to under-estimate the increase in loss.

The final example is more stringent, the channels being closer 

together and having a high degree. The specification is:

IV
Centre Frequency 
rads/ sec

Degree Bandwidth 
rads/ sec

Return
dB

Channel 1 -1.59 15 2.0 22

Channel + 1.59 15 2.94 22

The common-port return-loss of this diplexer is plotted in

Figure 6.8(a) and (b). The performance is very good, neither channel

being significantly degraded from its response in isolation.

6.7 Conclusions

This Chapter has presented the derivation of design equations for 

non-contiguous bandpass channel diplexers. The derivation depends on 

certain power transfer properties of doubly-terminated filters, and 

certain symmetry properties which a bandpass diplexer prototype 

possesses, and generates formulae for modified element values in the 

first two or three resonators of each filter. The rest of the 

filter being arbitrary, the design technique can be applied to 

conventional, minimum-phase filters, or to filters having linear-phase

response
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The effect of applying the modifications is to change the input 

impedance characteristics of each filter so that, u/hen the filters 

are "diplexed" the return-loss performance at the common-port is optim

ised. However, it has also been shown that the same procedure 

simultaneously optimises the return-loss at each of the other two 

ports of the diplexer and the insertionloss of each channel.

Physically, the modifications alter the resonant frequencies of the 

first two or three resonators of each filter, such as to push the 

resonant frequencies away from the cross-over frequency of the diplexer 

responses. In addition, the coupling from the source into the first 

cavity, and the first and second inter-cavity couplings of each filter 

are modified. Finally, if the filters have a different degree or 

bandwidth or both, a series frequency-invariant annulling susceptance 

is introduced at the common-port.

The interactions between the filters, and the modifications, have 

the effect of slightly increasing the insertion loss of each filter 

over the passband of the other. An approximate first-order calcul

ation shows this increase to be asymptotic to 6 dB for large band 

separations, and of the order of 7-8 dB for small band separations.

Computed responses for several prototype diplexers have shown 

the high performance the new design method makes possible, and 

confirms the existence of the insertion-loss improvement, and that 

all the significant return and insertion loss responses of the 

diplexer are optimised. The results show that the stopband insertion-

loss increase is actually somewhat greater than predicted because of
I

second-order interation s not allowed for in the derivation.

The new design technique gives good results even when the diplexer 

channels are contiguous, and thus can be considered a viable altern

ative to the "singly terminated" method of design, with the advantage 

of directness and speed.



CHAPTER 7. Design and Performance of Experimental
.Waveguide Diplexers.

7.1 Introduction
This chapter briefly describes the application 

of the new theory developed in the last chapter to the 
design of real diplexers using direct-coupled cavity 
waveguide filters. Rhodes [6*l] has reported success
ful results for a symmetrical diplexer: here the theory 
is applied to two asymmetric designs. One is a very nar
row band diplexer around 5.8Ghz, the other a broad-band 
design between 7.25 and 8.4Ghz.
7.2 General Design Principles.

The design process for a diplexer begins with a 
specification which defines the band edges of the channels 
or their band centres.and bandwidths, the selectivity and 
the insertion- or return-loss ripple. From the latter, the 
degree needed can be calculated, bearing in mind the imp
rovement in insertion-loss experienced when filters are 
diplexed. The design equations derived in the last chap
ter were given in terms of a prototype diplexer, and the 
prototype has to be related to the real bandpass filters. 
This is very easy to do for narrow-band diplexers.

Consider the channels of a diplexer shown in figure 
7 *1 (a), which defines the centre frequencies and band- 
widths. The degree and ripple factors have been for the 
moment ignored; it is assumed that suitable low-pass 
prototypes are available.

Now, this channel layout has to be related to the 
prototype channel layout shown in figure 7*1(b). Here, 
the band separation is "2<x", and the bandwidth of the
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channel is "W". It is convenient to assume that the 
bandwidth of the tower channel is 2 radians/sec.

Assuming that the channels are narrow compared to 
the centre frequency, it is easy to see that "oc" and 
"V/" can be related to the real channel spacing and band- 
widths by:

S = 2ÇÇ 
B1 2

¥  = B9 
2 B^

and thus c* = S
, B i

= f0*~f0> (7*1)
B,

W = 2B2 (7*2)
B 1

Knowing W, the element values in the prototype for 
the lower channel can be scaled accordingly, so that the 
lower channel of the prototype diplexer has a bandwidth 
W. The design formulae given in the last chapter can now 
be applied to optimise the element values.

The final step is to translate the modifications to 
the prototype into modifications of the actual bandpass 
filters. Consider the modified prototype filter shown in 
figure 7*2(a). Since most bandpass filter design proced
ures are given in terms of the prototype capacitors and 
admittance inverters, it is perhaps simplest to elimin
ate the input transformer by scaling it into the first 

ty admittance inverter, to give the circuit of figure 7 .2(b),

i °l I

with



MX

(7*3)

K1
i t

=K 1' //l+r(«) (7*4)
Turning now to the frequency-invariant susceptances 

in the prototype diplexer, these could be realised through 
the reactance-slope technique discussed in chapter 3 . 
However, it is simplest to allow for them by à direct 
perturbation of the resonant frequencies of the first 
three resonators.

Consider the r'th shunt capacitor and its associated 
frequency-invariant susceptance of one of the filters in 
the prototype diplexer. From chapter 6 , the susceptance 
of the combination is

where $ (<*) represents the modifications made to the sus
ceptance. The resonant frequency of the combination oc
curs when its susceptance is zero, that is when 

= *+£(*)
Thus the shift in the resonant frequency is just £(«•).
In order to apply this shift to the real bandpass filter 
this shift has to be related to the channel separation. 
It is clear that the actual shift in tne resonant fre
quency of the corresponding resonator is

where s is again the channel separation. This procedure 
is valid as long as the reactance slope of the bandpass 
resonators is nearly constant over the total band of the 
diplexer. This is true, in particular, for waveguide res
onators over a fairly broad band.

Br= ^ C r -Cr(*+£(«*))

(7*5)



7 . 3  A Narrow-Band Waveguide Diplexer.
The initial specification of this diplexer is given

below.
Return-loss 
Ripple (dB)

Degree Centre fre
quency (Ghz)

Bandwidth
(Mhz)

Channel 1 26 3 5-S75 20
Channel 2 27-31 7 6*025 40
The different degrees and return loss levels of the 
channels were chosen so that the insertion-loss respons
es of the filters should cross-over at 6 Ghz.
Applying (7*1) and (7.2),

oi = (6«025-5.<r/5).1Q3 
20

« 2*5 '
W = 2x40 

20

= 4
Thus this example corresponds to the third case analysed 
in chapter 6 , and the corresponding prototype perform
ance was plotted in figure 6*7. However, the waveguide 
diplexer was designed before the approximate fourth and 
fifth order corrections were worked out, and incorporated 
only up to third-order corrections.

Figure 7.3 shows the waveguide diplexer, made in 
waveguide WG14 (WR137). The series connection of the 
filters was made with a simple H-plane Tee-junction. The 
filters themselves used single posts for the input and 
output couplings, and triple posts for the internal couplings 
Tuning screws were located at the centre of each cavity. 
The design procedure used was essentially that given in 
chapter 4 , but using the lumped-element prototype since 
the bandwidth was very narrow. The modifications were in
corporated into the waveguide structure as described in 
section 7 *2 , except that the resonant frequency correct-
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ions, being very small, were not explicitly allowed for 
but taken up by the tuning screws.

Figure 7*4 shows a "close-up" of the Tee-junction.
It shows the small offsets, labelled x̂  and Xg, of the 
first of each filter from the edge of the branch
wave guide. These are necessary to absorb the negative 
lengths of guide associated with the input admittance 
inverters. Unfortunately, these offsets were not includ
ed in the initial design! Instead, the posts were placed 
level with the edges of the branch guide.

Large tuning screws were placed on the centre line 
of the Tee-junction, one on the centre line of the main 
guide and the other at its edge, to provide the junction 
annulling susceptance.

The diplexer was tuned using a swept-frequency ref- 
lectometer arrangement connected to the common port. The 
other ports were terminated with matched loads.

The tuning procedure used was essentially that des
cribed by Dishal [7»1j. Although this procedure is really 
intended for filters in isolation, no special difficult
ies arise when it is applied to this type of diplexer 
as long as the initial design is substantially correct. 
This is in contrast to diplexers or multiplexers using 
singly-terminated filters, for which special alignment 
procedures are necessary (see, for example, [5*60]).

Very early on in the tuning of the 6*0 Ghz. diplexer 
it was found that the filters interacted in a peculiar 
way, the resonant frequencies of the first cavity of 
the two filters being interdependent. Careful investig
ation of the pnase of the reflection coefficient using 
a Hewlett-Packard network analyser indicated that this 
seemed to be because the negative lengths of guide at the
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filter inputs had not heen allowed for. Further invest
igation showed that the filters did seem to be effectiv
ely in series around 5*8 Ghz, and that there was enough 
tuning range with the screws fitted to tune the entire 
diplexer down to this frequency. For experimental pur
poses, therefore, the rest of the tests on the diplexer 
were made with the channel centre frequencies at 5*775  

and 5*825 Ghz. Since the shunt susceptance of an induct
ive post is proportional to guide wavelength, the sus
ceptances were too high at the reduced centre frequency. 
Capacitive tuning screws were therefore provided bet
ween the posts to slightly reduce the coupling suscept
ances (figure 7.5).

With these modifications, the diplexer proved rel
atively easy to tune, and gave performance gratifying- 
ly close to the computed prototype response. She perf
ormance of the experimental diplexer is plotted in 
figure 7 *6(a) and (b).
7•4 A Broadband Waveguide Diplexer.

The specification of this diplexer is given below.
Return-loss Degree Bandedges (Ghz.)
Ripple (dB) Lower Upper

Channel 1 22 15 7*25 7*75
Channel 2 22 15 7.9 8.4

Waveguide : WG15 (WR112).
Since the channels are rather wide, the band edges
to be found in terms of guide wavelength to determine 
W and <* . Also, the individual filters have to be based 
on distributed rather than lumped prototypes. This int
roduces an interesting problem, since the original design 
equations werederived for filters whose input impedan
ces could be described as continued fractions in their •4*



I
N
S
E
R
T
I
O
N
 
LO

S
S
 
dB

 
R
E
T
U
R
N
 
LO

S
S
 
dB

FIGURE 76
(b)

Response of the waveguide diplexer. (a) Return loss, (b) Insertion loss.



element values. This is not the case for distributed 
filters, but it was decided to try designing the dip- 
lexer as if the lumped description was valid. This can 
be justified by the argument that the departure of the 
distributed prototype from the lumped is faily small, 
so the continued-fraction description should not be 
too far from the truth, at least in the passband of 
the filter. A computer program was written (Appendix £) 
to design and analyse broadband waveguide diplexers, 
using a fully distributed model for the filters and a 
realistic frequency variation for the coupling suscept
ances.

Going back to the specification, the band-edges 
are given below as guide wavelengths :

Bandedges (centimetres).
Lower Upper

Channel 1 6*018 5*274
Channel 2 5*093 4.583
From these, normalising the band separation and the 
bandwidth of channel 1 to the bandwidth of channel 2 , 

c* - 1*584 
W = 2*918

These are essentially the parameters of the final 
example in chapter 6 .

The computer program designed the diplexer, treating 
the distributed prototype values as if they were the ele 
ment values in lumped filters, Tne corrections to the 
coupling irises were made as in the last example, and 
in addition, the lengths of the cavities were altered 
to produce the relative resonant frequency shifts. For 
the computation of the performance, it was assumed that 
the cavities could be treated as simple lengths of trans
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The computed, common-port return loss of the distributed 
diplexer is shown in figure ?.?• This response shows a someshat 
greater degradation than experienced by the "lumped" diplexer to 
the same specification (figure 6.8.), but is still entirely 
acceptable, and it should be borne in mind that waveguide filters 
of this bandwidth in isolation would show some degradation of 
performance.

The applicability of the new design formulas to broadband 
waveguide diplexers arises since the explicit formula-̂  used to 
design the broadband prototypes themselves attempt to force the 
distributed prototype to behave as if it were lumped, around the 
centre frequency.

This diplexer has been constructed, in WG1 5, using a similar 
layout to figure 7.3, but up to the tijje of writing it has not 
been successfully aligned.

7.5 Conelusions
This chapter has briefly considered the design of waveguide 

diplexers using tne theory developed in chapter 6. The particu
lar arrangement used consisted of a pair of inductive-post coupled 
filters made in rectangular waveguide connected by an H-plaxie 
waveguide Tee.

After an initial design error had been allowed for, a narrow- 
band diplexer gave excellent performance, con -



mission line, and the coupling posts as inductive
susceptances with frequency variation ( X / X  n ) .  

Finally,it was assumed that the annulling reactance 
could he realised as an equivalent series reactance 
with frequency variation (Xg0/Xg)*

The computed common-port return-loss response of 
the distributed diplexer is plotted in figure 7 *7 .
Not only is this response acceptable, but considering 
that the design theory should not strictly apply to 
the distributed diplexer, it is remarkable.

This diplexer has been built in Wg15 using the 
same layout as the narrow band diplexer, but making 
allowance for the negative length of guide at the in
puts of the filters. Up to the time of writing, it has 
not been possible to tune up this diplexer correctly. 
However, from the experience gained with it so far, it 
seems that the filters are interacting in the right way 
and the main problem is to get the filters aligned. It 
is well-known that broadband waveguide filters are much 
more difficult to tune than narrow-band types.
7*5 Conclusions.

This chapter has briefly considered the design of 
waveguide diplexers with the theory developed in chap
ter 6 . The particular arrangement used consisted of a 
pair of inductive-post coupled filters made in rectan
gular waveguide connected together by an H-pIane wave
guide Tee. This is a convenient arrangement for exper
imental purposes, but may not be convenient in:'a pract
ical application.

After an initial design error had been allowed for, 
a narrow-band diplexer gave excellent performance,con-



sistent with theoretical predictions. With the results 
already obtained by Rhodes this indicates that
the direct design of narrow-band diplexers can be reg
arded as routine.

The design theory has also been applied to broad
band waveguide diplexers. The theoretical basis of the 
method would indicate that it should not strictly apply 
to such diplexers as they must be designed from a dist
ributed prototype while the theory assumes a lumped one. 
Nevertheless, the computed response shows that the met
hod should be capable of excellent results even for 
broadband diplexers. It has not yet been possible to 
confirm this with experimental results.



ADDENDA
Table 1 gives the prototype values for the narrow-band 

waveguide diplexer. From these values, the relative significance 
of the modifications to the cavity resonant frequencies will be 
assessed. Considering the l.f. channel filter first, only the 
first two cavities were modified (only up to third-order corrections, 
being made). Thus comparing and B̂  indicates the shift of the 
first cavity resonance, which is seen to be at

-2.5 x 1 .9 0 7 = -2.98 rads/sec.
1.601

Thus the resonance has been shifted away from the diplexer*s centre 
frequency by about 10% of the band separation or 29% of the filter's 
bandwidth. Similarly, it can be shown that the second cavity 
resonance is shifted away from the diplexer centre frequency by 
approximately 2.5% of the band separation.

For the high frequency channel filter, comparing A-j with Ay, 
the first cavity resonant frequency is shifted from +2.5 to +3.76 
rads/sec., a shift of 25% of the channel separation and 32% of the 
fitler's bandwidth. The second resonant frequency is shifted 
upward in frequency by 12% of the band separation.

Table 2 gives the normalised coupling susceptance required 
in the waveguide realisation of the diplexer. Comparing the input 
(i.e. common-port) and output (un-modified) susceptances of the l.f. 
filter, the input coupling susceptance Bq^, has been increased by 
5.5%, while the greatest change is to the first inter-resonator 
coupling, hi; . which in increased by 9.2%.



For the h.f. channel, the first coupling susceptance has 
been decreased by 5°/o, and the first inter-resonator coupling 
susceptance increased by The input coupling susceptance of
the two filters behave differently because of the asymmetry of 
the diplexer. If the channels and filters were symmetrical both 
susceptances would be equally modified.

In this narrowband diplexer the resonant frequency corrections 
were small compared to the centre frequency and made by adjustment 
of the cavity tuning screws. The modifications to the coupling 
susceptances were substantial and had to be allowed for in the 
physical design of the coupling posts.

The difficulties with the electrical characterisation of 
the Tee-junction of the filters in the narrow-band diplexer were 
not adequately resolved. An experimental approach was used to 
investigate the junction properties and determine a centre frequency 
for the diplexer around which the filters interacted correctly.
For design purposes though, a theoretical characterisation is 
necessary.

In the experimental approach, a network analyser wa’s set up 
to obtain a swept-frequency display of the common-port reflection- 
coefficient phase of the diplexer over the frequency range of 
interest (Figure 7 .8 ). All the cavities of each filter were 
completely detuped except for the first cavity of each, bach of 
these cavities then produced its own "kink" in the phase display, 
as shown in figure 7«9. If the filters are effectively connected 
in series at the common-port, each kink can be tuned independantly



cof the other as the resonances of the two cavities are then 
essentially uncoupled. With the diplexer, it was found that 1 
cavity tunings interacted severely around 6 GHz, but that the 
resonances were independent around 5 . 6  GHz, over a band large 
enough to cover the filter passbands. 5 . 6  GHz was therefore chosen 
as the diplexer centre freyneucy.
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Observation of Mitosis in root tip cells

Procedure -
Place 1cm of the root tip in a watchglass containing approx. 10 drops 
of acetic orcein stain.
If the stain isnot acidified the root must be placed in a solution 
containing 10 parts stain and 1 part hydrochloric acid.
Warm over a small flame for 5 minutes.

Zl. Place specimen on a microscope slide and cut in half. Retain the tip, 
and add 2-5 drops of acetic orcein stain, Break up tip with a blunt 
seeker needle.

3. Lower on a. coverslip, cover with a layer of filter paper and 
GENTLY squash against the slide.
Warm for 10 seconds.

4» View the onion root tip with low and high power of a light microscope. 

Observation -
Acetic orcein shows up the chromosomes in dividing cells. Most of the 
dividing cells will be found near the very tip of the root.
It may also be possible to count the number of chromosomes in the nucleus.
Are there the same numbers in each cell?
Draw accurate diagrams of any stages visible.



CHAPTER 0

EXTENSION AND FURTHER APPLICATIONS 

8.1 INTRODUCTION

This chapter deals with three further applications of the basic 

theory introduced in Chapter 6, to diplexer and filter design.

Section 8.2 develops a different solution for the bandpass/ 

bandpass diplexer for the special symmetrical case. It is shown 

that, in the symmetrical case, another solution to the equations 

defining the modifications (equations 6,34-6.50) exis ts where an 

annulling inductor is connected in series with the common port.

This solution does not exist for the more general asymmetrical case, 

but is presented for completeness and because it corresponds to a 

useful practical arrangement with diplexers using filters which show 

a common ground connection.

Although much of Chapter 5, and Chapter 6, concentrated on 

bandpass diplexers, lowpass/highpass diplexers are important, and the 

conventional methods of design again are only applicable to contiguous 

diplexers. Section 0.3 presents a design theory for general non

contiguous lowpass/highpass diplexers, using filters constrained to 

have at least two transmission zeros at the origin or infinity.

One way of looking at the design theory is that each filter is 

modified so that its passband input impedance is a conjugate match for 

the stopband reactance of the other filter in series with the suurce 

resistance. An obvious application is then to filters which must 

operate with frequancy-varying load impedances. An example is an 

interdigital filter, which was shown in Chapter 4 to be equivalent 

to a conventional lumped lowpass filter operating between source and 

load resistors with a cosine-dependence on frequency. Section 8,4 

develops a design theory for broadband interdigital filter prototypes,
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luhere the first and last two elements of the conventional lowpass proto

types are modified to partly compensate for this frequency-dependence, 

and indicates further extensions of the idea.

8.2 SYMMETRIC DIPLEXER UJITH SERIES INDUCTOR

If an inductor in series with the common port is included in the 

diplexer solution, the symmetry considerations of Section 6,2 indicate 

that the inductor value must be an even function of the band separation 

variable a. Furthermore, in the symmetric case the frequency-invariant 

annulling reactance Xq (refer to Figure 6.2) must be exactly zero.

The diplexer circuit now is shown in Figure 8.1; the expansions for the 

input impedances can be derived directly from the expressions in 

Chapter 6 substituting

D!  = Cl ’ °2 = C2’ °3 = S

31 = Kl* J2 = K2
The symmetry of the problem makes the expansion in channel 2 passband 

redundant. Let the element values of Figure 8.1 be given by:

a,
B1 “ C1 a + '11 al3

a a
(8.1)

B2 =  C2 a + 23
a

(8.2)

B3 = C3 a + 35
a

(8.3)

r\ n .i 2 4
R ~ 1 2 + 4a a

(8.4)

2 2 
Kl' = Ki 1 kl2 1 + 2

a

K?’2 = Ko2
k24'

2 2 + 4L a

(8.5)

(8.6)

u .h.o 2 a
(8.7)
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Considering the input impedance of the diplexer at the set of real 

frequencies {ox + a}., thB inductor contributes a reactance

X, = j(o). + a)

t,
a

2 "it>
* J— ra a

-1  -2containing terms in both a and a . Forming the expansions of the 

input impedances of both channels at the set of frequencies (ecu + a}, 

and equating the error terms of first, second and third degree to

( 6. 8 )

(8.9)

(8.10) 

(8.1 1)

(8.12)

zero, we get the equations:

_1 „ 1 ¿2 = 0In a C1811 ” 2C1 +

-2 r 2 2In a n2 ~ C1 all - k12 =

C k, „ + j] 1 + oiii*01 12 4CX 2

In a-3
K,

23

S11 k12
-3

BCl S

BC,

A further equation in a arises from terms independent of tô , which 

will be solved later. Note that the value of a ^  is identical to that 

obtained in equation (6.38), and is available independently of the 

solution for the lower-order terms.

Substituting for k.^ from (8.12) in (8.10) gives:

+ —rr~ + -- 04C^ 2

Subtracting from (8.8), and multiplying through by a^, elminates ^

and gives a quadratic in a.^:

r 2 ^ 1 1  _ J _
1 11 " 4CX + 3 0
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whence 1 +
11 " 4C 2 21 / 16C 2C' ____ 1______1

2C,

Thus a11 = 2 0r 2 1 2C 4C1
(8.13)

The first solution is identical to that obtained before, where the 

corresponding value of l is found by substituting in (8.8):

2C^ " 2C^ + e2 = °

or *2 = 0
as expected. The value of corresponding to the second solution is 

found from;

whence

2C1 + l 2 ~  0

l2 ~ 4C, (8.14)

Now from (8.10),

Clk12 + 4C1 + 4 ^  " °

thus "12 "  2 
2C1

(8.15)

Substituting for a and kJ2 in (8.9),

n r 2 1 1 n
n2 ” C1 4 + 2 “ 016C1 2C

whence n2 16C,
(8.16)

Finally, it can be shown that

_ £
31 ” ? (r “ /, r ^

0C “ “2
(8.17)

The fourth- and fifth-order corrections are made as before, and
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are found to be;

(8.21)

(8.2 0 )

(8.19)

(8.18)

It is interesting to note that and a ^  have precisely the values

found previously.

If the solution is attempted for the asymmetric case, it is found 

impossible to simultaneously null both the first and third-order terms. 

Thus the solution with a series inductor is less general than the 

previous asymmetric solution. It may have practical importance, as 

indicated in Figure 8.2(a), which shows an alternative arrangement 

electrically equivalent to Figure 8.1. Here the filters are paralled 

through admittance inverters, and the series inductor replaced with a 

shunt capacitor at the common junction. Figure 8.2(b) shows a micro- 

wave stripline equivalent, using combline filters coupled to a common 

resonator at the centre. It may be noted that the "series" connection 

of stripline filters may present considerable difficulty at high 

frequencies.

The computed performance (see Appendix 3) of a prototype diplexer 

incorporating a series inductor, with a similar specification to the 

first example in section 6.6, is plotted in Figure 8.3(a) and (b).

Figure 8.3(a) shows that the degradation of the common-port return-loss 

is rather large. One reflection zero has been lost and the others much 

attenuated. The overall return-loss level is, however, still fairly

high
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a*0

It can easily be shown that the theoretical insertion-loss 

improvement of one channel at the centre of the others passband is still 

given by equation (6.75). Thus the theoretical improvement is again 

6.75 dB, while the computed improvement is seen from Figure 8.3(b) to 

be again 8 dB.

Figure 8.4 gives the common-port return loss of a diplexer to 

the following specification:

Centre Frequency Bandwidth Degree Return-Loss

(rads/sec) (dB)

2 5 22

2 5 22

This is similar to the first example but has a slightly great channel 

separation, and a lower designed return loss. The performance of this 

diplexer is extremely good, showing very little return-loss degradation. 

It thus seems that this approach to diplexer design will be useful for 

applications where the convenient physical arrangement is preferable 

and channel separation not too small, while the approach of Chapter 6 

can give good performance even when the channels are contiguous.

Finally, the design equations for the diplexer using the series 

inductor are given below, equations (8.22)-(8.28).

(rads/sec)

Channel 1 -2

Channel 2 +2

L =
0 o c /

R = 1 - 7 1
v c22 216Ĉ  a 4C1‘5a4

1 1 K 2
.(ii-
'̂ 2

9CL + 2 
4C. a

1* »7 »-»on J 3 8C1 a ■ 4Cl

(8.22)

(8.23)

(8.24)

« - K 2< 1 - — i---1 1 1 „ „ 2 2 1 ( ■ >
27

9r /.p '~>n ^ 16Cj cl cl 2 1
(8.25)
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v  t

°2 = '2 r  + 8C V

K2, 2 = K 22 1

B3 = C3 1 a +

K,

16C]L3C2a4 J
2 2 

K1 K2
32Ci3C2C3a5

(8.26)

(8.27)

(8.28)

8.3 DESIGN THEORY FOR NON-CONTIGUOUS LP-HP DIPLEXERS

Consider the prototype lowpass and highpass filters shown in 

Figure 8.5(a), with the prototype responses shown in Figure 8.5(b).

Let the filters have zero insertion-loss at the sets of frequencies 

{co.} and (o l) respectively. Because it is possible to freely scale 

the cut-off frequency of each filter by an arbitrary positive constant, 

there is no loss of generality in assuming that all the (o>.} are less 

than unity, and the (ch } greater than unity.

Now the filters, which are each minimurn-reactance, will be 

connected in series as shown in Figure 8.6 to form a diplexer, and the 

values of the first two elements in each filter will be modified, 

becoming C^', C2', L ', L2', to give optimum performance.

Consider the subnetwork N^ of the lowpass filter at the set of 

frequencies {w^}. Because there is maximum power transfer through the 

network at this set of frequencies, it follows that

1/Z2(J“i> ' - -¡“iC2 * 1 - j».C, <8-29>1 1

Using (8.29) it is easy to show that the passband input impedance of 

the lowpass filter is given by:

V n )
K12+ju)i(C2'-C2)+co.2C1(C2'-C2)

K1 +jwiKl (c1'-C1)-a).2(C2 '-C2) + ju)iJC1C1'(C2 '-C2)

(8.30)
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FIGURE 8 .7  (continued)



Now, since the (au) are assumed less than 1, then the impedance Z^{jcô ) 

can be expanded as a power series in uk about the origin* The 

expansion can conveniently be carried out by the method used in Chapter 6 

The resulting expansion is;

< V - C 2) - K ^ . - c p

2C1'(C2'-C2) _ K / ^ C ^ - C ^ 2

+ ^(an3) (8.31)

Zl(>i) = 1
JWjL

œ.

At the same set of frequencies, the input impedance of the highpass 

filter is given by

Z3(jü).) = ju>iL1* + £(00̂ )  (8.32)

by a straightforward expansion. Notice that, because the highpass 

filter has at least two transmission zeros at the origin, the even- 

degree terms in the expansion of are identically zero up to at least 

the fourth power of w..

A similar procedure yields series expansions for the passband input 

impedance of the highpass filter at the set of frequencies {i/o'.} and 

the corresponding stopband reactance of the lowpass filter. These 

expansions are found to be;

1 ___ 1

° i 2 t L l ’ L 2 ’ L 2

+ e ( d \  3 ) (8.33)

V-j/a.) o'. C, ’ 
1 1

+ es(tr." ) (8.34)

Equating the first and second-degree terms of the input impedance of



t\ls

the diplexer (ie Z^ + to zero in each passband gives a set of 

simultaneous equations in the unknou/n primed element values»' (8„35)-(8.38).

4 ' " 4
( V  “ Cl ) + 4 '  = 0 (8.35)

2C»(C >-C )
_ J _ 2 -------—  - (C • - C_)2= 0

K,

4 '  4 4 '  4

3 \  ’J1 4

1 1 1 1
L * ~ L L, • 12 2. L i lj

+ c , = 0 
4

= o

(8.36)

(8.37)

(8.38)

Although this set of equations is non-linear, a simple and 

direct solution exists. From (8.36):

f • - C z:4  2
Ki 2 ( 4 '  - Cx)2

2f '¿ 4

Substituting in (8.35) and rearranging gives

C, - Cn 2C,’ L, ''1 " “1 ’ '1 1

From (8.37) and (8.38), a similar procedure yields
2 2 21 1 L1 1I * C * --------4  4  - 2 2  

4  i

(8.39)

(8.40)

Substituting (8.40) for the product term f,2C^* * * ’» and also for 

in (8,39) yields the equation:

4L \  t2 4L ,2L 2
5 2 - \  1 ■—  * — i— T  - 0

< 4  - 4 '  > 4  - 4 '
„ 2,, 2 ,2.2 „ 2, ,4
4  ( 4  - 4  > = 44  4 ’

=5> 2 2 L -L 11 1
2L L ’1 1

2 2 2 4
4  = 4 ’ (~ E 7  *  D



in

I ' - ---1 / 2L
+ 1)

Substituting for L^* in (8,40), me get

C 'L4  L1 21

/ 2L1 " 2L1
y< -¡r * +

2L 2 L

1 - 2L,
+ 1

21
+ 1 - 1

(8.41)

= 4 4
/2L.

C 14 + 1 (8.42)

There are no equivalent compact explicit expressions for 1 and 

l_2‘; they can be found from (8.36) and (8.38) by substituting for C^'

and L^', and are given by:

4' = C2 + 2C1I ^4' ” 4 ^

i l
L„

2
-i l i

1 1 4  f 1 1 '
L + 2 'L 1 ~ LL2 1 L1

(8.43)

(8.44)

Expressions (8.41) to (8.44) are then the design formulas for general 

non-contiguous louipass-highpass diplexers.

It is in principle possible to make modifications to the first 

three elements of each filter, and to force the input impedance of 

the diplexer to be exactly unity up to the third degree in cô .

However, the resulting set of non-linear equations corresponding to 

(8.35)-(8.38) has so far defied solution.

A computer program has been written which designs and analyses 

LP/HP diplexers using the new formulae (see Appendix 4), using 

conventional Chebyshev channel filters. The program assumes that the



LP channel cutoff frequency is at 1 rad/sec, and the designer can 

specify the HP cutoff, and the degree and return-loss ripple in each 

channel.

Figure 8.7(a) gives the common-port return-loss response of a 

diplexer where each channel has seven elements, a designed return- 

loss ripple of 22 dB, and the HP channel cuts off at 1.5 rads/sec.

It can be seen that the inband return loss is very little degraded, 

being better than 20 dB, and all the return-loss peaks are preserved. 

Figure 8.7(b) shows the lowpass-channel insertion loss, with the 

insertion loss of an equivalent filter in isolation for comparison. 

There is an improvement of approximately 9 dB in insertion loss at 

the edge of the HP channel (u> = 1.5), which is maintained over the 

entire HP channel passband.

The performance of the new HP/LP diplexer is not maintained when

the channel spacing is much smaller, and it is not possible, for

example, to use the new method to design contiguous diplexers.

However, in such cases IDenzel's method [5.4?Jcan be used, which is

very direct and capable of excellent results. Thus this new method

of design can be regarded as complementary to Wenzel's method, and

useful when non-contiguous designs are required.

8.4 DESIGN FORMULAE FOR INTERDIGITAL FILTERS

Chapter 4 presented a derivation of the design formulae for inter-

digital filters, in which it was shown that an equivalent circuit to

the interdigital structure could be drawn as in Figure 8.8. In this

circuit, the shunt susceptances, 8r> have the value

B = - Y cos(G) r r
and the frequency-variant input and output transformers have ratio 

r =-v/(sin(8))

where 0 is the electrical length of the n-wire line and is the
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total characteristic admittance at the r'th node.

If 6 is re-defined as the difference between the electrical 

length and the quarter-wave-length, then, noting that 

cos(G + 7̂ /2) = - sin(G)

sin(8 + 71/2 ) = cos(Q)

B and r can be written in terms of the new variable as r
B = Y sin(Q) (8.45)r r
r =/y/(cos(8)) (8.45)

To a first order, the filter can be designed by equating the 

shunt susceptances of this circuit to the shunt susceptances in a 

lumped low-pass prototype, as shown in Figure 3.13,

under the transform

« a sinG (8.47)

The constant a can be found by noting that a shunt susceptance of 

the distributed circuit must be equal to the corresponding lumped 

susceptance at the bandedge. Thus, from (8.47),

1 = a sin(8 ) 0

or a = l/sin(Go) (8.48)

Thus C = Y sin(0 ) r r 0

or Y = a Cr r (8.49)

Consider the circuit of Figure 8. B , where the output of the 

equivalent circuit has been loaded with a one-ohm resistor before the 

output frequency-varying transformer. Thus the input impedance is 

equal to one ohm at a finite set of frequencies {6^}, because of the 

maximum-power-transfer properties of the lumped prototype. It thus 

follows that

Now,

Y2(jSi) = - jaC1 sin(OjL) + 

at this set of frequencies

1 - jaC2sin(Q ) (8.50)

, the impedance seen looking at



aai

the source through the input transformer is just

Zl’(j6i) =- cos(eT7

V'(l-sin2(Qi)
(8.51)

Let the first tiuo elements of the loui-pass lumped prototype be modified, 

becoming C^1, C^'» to approximately compensate for the variation of 

the source resistance in the interdigital filter. Using (B.50), it 

is possible to expand Z ^ j e ^  as a power series in sin^); from 

equation (8.31) the result is:

jasin(&.)
Z1(jG.) = 1 +

2 . 2 , n .a sin (0.)
“ k?

( V  " C2> " K1 < V  " Cl>

2C1,(C2' “ C2} " Kl2(Cl' “ Cl)2

Expanding (8.51)

Zl/(jOi) = 1 + 2  sin20i + ...

For an exact match up to the second order,

fi [<C2' - - Kl2(Cl' - V = 0

and a
K,

2C1'(C2' - C2) - Kx (Cx« - ClY X
-  2

Substituting (8.54) into (8.55),

2Ci ' « V  - V  -  < V  -  cd 2 = 2a

(8.52)

(8.53)

V  " C2 = Ki <ci' " Ci) (8*54)

(8.55)

2C ' - 2f. 'C1 ZL1 L1 V Cl2 * 2Cl' C1 ■ ~22a

2 2 1 r ' - C + —
1 1 2a2

- J  (Cj2 * (8.56)
2a



22Ï

and thus, from (8.54)

C2' = C2 + K12(C1» - Cx) (8.57)

Having modified the first two elements in this way, the maximum power- 

transfer properties of the filter, and reciprocity, ensure that 

the impedance looking back at the source from the output of the filter 

(see Figure 8.10), must be given by;

Z3 = 1 + e(sin30i)

and thus the last two elements can also be modified by the same 

equations, ie

C ' =a/(C 2 + ~~) (8.58)
2a 
2,

Cn-l' = Cn-1 * Kn-l<C„' - Cn> <6-59>
A computer program has been u/ritten which designs prototype inter-

digital filters using these equations, based on lumped filters with 

Chebyshev response (see Appendix 5), and analyses the design, plotting 

the return loss as a function of frequency. Figure 8.10 (curve (a)) 

shows the response of a tenth-degree design, with a prototype ripple 

of 22 dB and a cutoff electrical length of 45°. This represents a 

3:1 bandwidth, and is near the attainable physical limit for the inter

digital structure. For comparison, curve (b) is the response of an

unmodified filter. The improvement resulting from the modifications

is clear, though the worst-case in-band return loss is degraded to 

15 dB. The two highest frequency return-loss poles have been 

recovered, and the bandwidth is exactly as designed. The performance 

is considerably better than obtainable using the original design 

procedure, though not comparable with the results given by a design 

using explicit formulas [8,lJ. However, these results indicate that 

the new method may bo of value for designing broadband coupled-resonator 

bandpass filters where no explicit formulas are available for the

structure, as is the case for example, the combline filters and
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lumped-element filters considered in Chapter 4.

8.5 CONCLUSIONS

Section 8.2 gav/e the derivation of alternative direct design 

formulas for symmetrical bandpass diplexers, tuhere a series annulling 

inductor is connected in the common port. This contrasts u/ith the 

original case covered in Chapter 6, where the symmetrical diplexer 

used no annulling components. It was shown that the new solution 

gave worse performance for the same channel separation, but was 

equivalent to a physical configuration which was easier to realise, 

particular using strip-line filters such as the combline type.

Section 8.3 considered a new approach to the design of highpass/ 

lowpass diplexers, using the same general procedure earlier presented 

for the bandpass diplexer. The new technique is particularly valuable 

as it permits the design of non-contiguous HP/LP diplexers, which is 

not possible using the conventional approach. Computer results were 

given for a diplexer with a HP cutoff at 1.5 times the lowpass cutoff, 

which showed that good results can be obtained using the new design 

procedure. The new design formulae are particularly simple.

Finally, section 8.4 demonstrated that the basic theory of the 

approach to diplexer design can be applied to the design of coupled- 

resonator filters where the couplings vary with frequency. The 

computed results clearly showed the value of the technique when applied 

to the design of broadband interdigital filters, and further extensions 

to (for example) combline and lumped-element filters may be useful.



CHAPTER 9. Conclusions.

9*1 Bandpass Filters.
A wide range of bandpass filters can be designed 

by transformation of a lowpass prototype. The proto
types considered were of a class often called "all-pole" 
which have all their transmission zeros at infinity.
The optimum response of this class for meeting amplit
ude specifications with minimum degree was shown to be 
the Chebyshev or equal-ripple response.

Five representative types of bandpass filter were 
considered, as far as possible from a unified viewpoint. 
These were of the sort sometimes known as coupled reson
ator filters. Design procedures were developed for a type 
of lumped-constant filter, for transmission-line filters 
of the interdigital and combline type, for direct-coupled 
cavity waveguide filters, and finally a new design proced 
ure was given for quartz-crystal single sideband filters.

It is interesting to note that such apparently differ 
ent types of filter can all be successfully designed by 
essentially the same theory. This is evidence of the 
great power of the underlying ideas. Indeed, the ideas 
can be further extended to filters using virtually any 
type of resonator, and these resonators need not be elec
trical .

The design procedures all satisfied the criterion 
outlined in the introduction. They can be applied by an 
engineer unskilled in filter theory, and translate the 
initial specification for the filter directly into tne 
appropriate parameters of a physical realisation. Such 
design methods' are called "direct". In every case the



computations needed in the design were well within the 
scope of an ordinary scientific calculating machine.
9i2 Diplexers.

Diplexers are linear three-ports which combine sig
nals in two different frequency bands at two of the 
ports onto the third port with minimum loss, and mini
mum mismatch, at least within the bands. They generally 
use some combination of filters. The inevitable interact
ions between the filters can be avoided either by using 
additional devices to decouple them, or by designing the 
filters so that the interactions are necessary to the 
correct operation of the diplexer.

For decoupling, either circulators or hybrids can be 
used. Both methods were considered from a scattering mat
rix viewpoint. An alternative diplexing method using hy
brids was also considered. This is the commutating filter 
which has received a lot of attention in recent years.

All these methods carry a weight penalty since they 
use additional passive devices. In addition, the circul
ator may limit the system dynamic range through non
linear effects in the ferrite, while the performance of 
the hybrid methods is critically dependant on maintaining 
exact balance between separate transmission paths.

The traditional methods of designing diplexers using 
directly interacting filters are based on singly-termin
ated filter prototypes. The exact maximally-flat lowpass- 
highpass solution has been known for many years, but is 
not selective enough for many applications. The corres
ponding exact equi-ripple solution uses elliptic filters 
which may be difficult to realise, especially at micro- 
wave frequencies. However, Wenzel has shown that convent



ional singly-terminated Chebyshev filters give excellent 
results as long as simple design rules are observed.
This was confirmed by the computed response of an example 
design, and a direct design procedure for these lowpass- 
highpass diplexers indicated.

The corresponding bandpass-bandpass case is more
rules

complicated. Very similar/.for the design apply, using 
singly-terminated filters. However, a reactance-annulling 
network is needed at the common junction, and its design 
requires numerical (ie computer) analysis of the filters’ 
input impedances. Thus the design of bandpass-bandpass 
diplexers by the traditional method is rather far from 
being "direct".

A common disadvantage of methods based on the use of 
singly-terminated filters is that the diplexer passbands 
are constrained to be contiguous. However, communication 
channels are rarely contiguous, and this leads in most 
cases to the degree of the filters in the diplexer 
being excessive to ensure sufficient isolation between 
the channels. This indicates the need for a non-contig- 
uous design method for diplexers.
9•3 Direct Design of Non-Contiguous Diplexers.

A new design procedure was derived for non-contig- 
uous bandpass diplexers. This procedure gives correct
ions which can be applied to a pair of bandpass filters 
so that they give optimum performance when "diplexed".
The design formulae are given in terms of the elements 
of the original prototypes and a simply-defined band 
separation variable. The method directly optimises the 
common-port return loss of the diplexer, but it was 
shown that it simultaneously optimises the insertion- 
loss of each filter and the return loss at the other



ports. An interesting by-product of the procedure is a 
worthwhile improvement in the insertion loss of each 
filter over the passband of the other.

Computed responses were given for several prototype 
diplexers, demonstrating the high performance possible 
with the new technique. Then the design of waveguide di
plexers was considered. First, the design of a narrow- 
band diplexer around 5*8 Ghz. was described. After al
lowing for an initial design error, the measured per
formance of the design was found to agree very well with 
theoretical predictions. Also, no special problems arose 
in tuning the diplexer once the initial design mistake 
was allowed for. Together with the earlier results rep
orted by Rhodes this indicates that the design of nar
row band diplexors can be considered routine.

It was found by computer analysis of typical designs 
that the new design method worked well even when applied 
to broadband waveguide filters. This was surprising 
since the derivation of the design formulae assumed a 
lumped prototype while broadband waveguide filters are 
essentially distributed networks. The method probably 
works because the lumped description applies fairly 
well to the waveguide filter at least around the pass- 
band. Whatever the reason, the result is welcome, and 
the design of broadband waveguide diplexers should pre
sent little problem.

A broadband diplexer has been constructed for the 
7*25-8*4 Ghz. band. The theoretical performance of this 
diplexer was very good. It has not yet been possible 
to confirm the performance experimentally because of 
problems in aligning the filters.



Some further work on diplexers has also been report
ed in the thesis. Another solution of the bandpass dip- 
lexer problem was investigated, which existed only for 
the symmeti’ical case. This solution incorporated an ad
ditional inductor in series with the input port of the 
diplexer. It was shown that this form of the diplexer 
was not capable of such high performance as the first 
version investigated. However, in some cases it could 
lead to a better physical arrangement of the filters, 
especially in stripline systems.

Next the basic theory which had been applied to 
bandpass diplexers was applied to the design of lowpass- 
highpass diplexers. A direct design method for non
contiguous diplexers was developed, which can be regard
ed as complementary to Wenzel's method for contiguous 
types. .Again, computed results were given for a typical 
design to demonstrate that high performance was possible.

Finally, the theory was used to obtain improved des
ign formulae for interdigital filters of large bandwidth. 
This was done by modifying the first and last two ele
ments of the filter to compensate for the apparent 
variation of the source and load impedances with freq
uency. The computed results showed that the method work
ed, though the improvement obtained was not enough to 
make the method competitive with the explicit formulas 
derived by Rhodes. However, it does indicate that the 
method may be valuable for the design of other bandpass 
structures for which explicit formulas are not available.



9• 4 Further Work on Diplexers.
The methods developed here allow the direct design 

of non-contiguous bandpass-bandpass and lowpass-highpass 
diplexers. Other types of response are sometimes needed 
for special system requirements. One such arises when 
a diplexer is needed for two channels which are very 
close together and a very high isolation is needed bet
ween them. A very high degree would be needed in each 
channel if this specification was to be met using a con
ventional bandpass diplexer. If tne ether attenuation 
requirements permit, single-sided designs discussed by 
Rhodes in [4*1 2] are ideal for this sort of specification 
and a suitable design procedure may be developed by 
applying the frequency transformation developed for 
crystal filters to the non-contiguous lowpass-highpass 
diplexer prototype. Work is planned to develop an ap
propriate waveguide realisation.
9* 5 Extension to Multiplexers.

The most obvious and urgent extension of this work 
is to the design of non-contiguous multiplexers having 
an arbitrary number of channels. Some work has been 
done on this, and the problem is not trivial.

If the solution to the multiplexer is attempted 
directly using the methods of chapter 6 it is found 
that the exact cancellation of all the error terms up 
to the third order obtained for the diplexer does not 
occur. There are in fact insufficient variables to allow 
a determinate solution to the problem. If an additional 
element is introduced as in chapter 8 for the diplexer, 
a solution is possible for the triplexer. The extension 
to the multiplexer will require yet more additional 
elements to be introduced,
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APPENDIX ONB.

10 »"DESIGNS W ESI Z EL TYPE. HP/LP DIPL EX ER. ••
20 DIM QC20),LC20),KC20>, JC20), AS (8 0)
25 DIM AC 20) , DC 20), tSC 20)
30 ; 'N.Lft?”
48 INPUT N, L
50 E= SGFC C 10t CL/20)- l)/2)
60 B=LOGC E+ SGRC E* E- 1) )
70 B=EXPCB/N)
80 B= C B+ 1/B) t 2/4
85 ; "CROSSO VER FREGUEN CY= "J SQFcCB)
9 0 E=LOGC E+SGRC E* E+1) )/N 
100 E= EX PC E)
1 10 E= C E- 1/E)/ 2
1 1 5 P= 3. 1 41 59
120 FOR 1=1 10 N
138 AC I >= SINC C 2*1- 1 )* P/2/N)
140 DC I ) = C E* E+ SIN C P* I / 2/N ) t 2) * CO SC I * P/ 2/N ) t g 
1 50 KC I >= 1 
160 JCI) = 1 .
170 NEXT I
180 GC 1) = AC 1>/E .
190 FO« 1=2 TO N-
200 GC I >= AC I )* AC I- 1)/DCI- 1) / GC I - 1)
210 CCN+ 1-I>= GC I 5
228 NEXT I ,
230 CCN)= GC IT 
240 FOP 1= 1 TO N 
250 LC I)= l/B/ec IT 
260 NEXT I 
270 N 1=N 
250 N 2=N
300 i "FI, DEL. F-- r 2? "
310 IN PUT F 1, X, F2
31 1 > "PLOT OF L R= 1: "
312 INPUT 0
313 ; "SCAL E FACTOR? "
31 4 INPUT D ‘
31 5 GO SUB 1 48 0
320 M=0
330 F=F1+M*X
340 Al= i
350 A2= 0
360 A3= F* CC IT
370 A4= 1 . .
38 0 FOR 1=2 TO Nl
390 Bl=-F* CCI )/K C I-
400 B2= 1/X C I - 1) •
410 B3=KCI- H  
420 B4=0
430 S= A 1* B 1- A2* B3 
440 A2= A 1* B2+ A2* B 4 
450 A 1= S
460 S= A3* B1+ A4* B3 
470 A4= A4* B4-A3* B2 
48 0 A3= S



49 0 N EX T I 
500 131= 1 
510 B2= 0
520 B3=- 1/F/L CI)
530 B4= 1 '  ̂■
540 FOB 1=2 70 N 2 
550 Cl= 1/JCI- 1)/F/L CI)
560 C2= 1/JC I - 1)
570 C3= J C I - 1)
58 0 C 4= 0
59 0 S=B1*C1-B2*C3 
600 B2= Bl* C2+ B2* C4 
610' B 1= S
620 £= B3* C 1+B4* C3 
630 B4= B 4* C 4- B3* C2 
640 E3=S 
650 N EXT I
660 Z 1= C Bl* B4+ B2* B3)/ C B3* 2+ B4* 2)
670 Z 2= C B2* B4- B 1* B3) / C B3t 2+ B4t 2)
680 V1-A1+ A4*Z 1-A3+Z2 
69 0 V2=A2+ A4*Z2+ A3*Z 1
700 £1= C C V1+ A4) t 2+ ( V2+ A3) t 2)/ C C VT- A4) f 2+ C V2- A3) » 2) 
710 Vl= C Vl+A4) t 2+C V2+A3) t 2 
720 £2= 4. 3429*L0 GC Vl/4)
730 Sl=4. 3429*L0GC Sl)
731 I F 0=1 GOTO 734
732 Y= IN TC £2/D+. 5)
733 GOTO 735
734 Y= IN TC S 1/ I> . 5)
735 I F Y> 70 GOTO 738
736 5 "I "i TABCY), "
737 GOTO 7 50
738 í "I M
7 50 IF F< F2 GOTO 7 70 
7 55 GOSUB 1480 
7 60 GOTO 300 
770 M = M*i 
78 0 GOTO 330
1 48 0 FOR 1=0 TO 6 ’
149 0 FOB J= 1 TO 10
1 500 K= 10*I*J ..,..W
1 £10 A£CK> K )*••'* **
1.520 N EXT J . . • • - .
1530 K= 1 0* C I + 1 > ■*
1540 ASCK» K ) = "I "
1 550 N EXT I
1560 ; A$ .
1 57 0 RETURN 
1 58 0 EN D 
BASI C 
*



APPENDIX TVi O 1 4 6

10 ; -THIS PROGRAM DESI CMS AMD AM AL Y SES A PROTOTYPE DI FL EX ER. "
20 î "CHANNEL 1 IS ASSUMED 10 HAVE A BANDWIDTH OF 2 RADS/SEC. "
30 ; "TY PE IN THE BANDWIDTH OF CHANNEL 2:"
40 IN PUT B t 
45 B=B/2
50 ; "TYPE IN DEGREE & RIPPLE LEVEL OF CH. 1."
60 IN PUT N 1»L1
70 î "TY PE IN DEGREE l RIPPLE LEVEL OF CH. 2. "
50 INPUT N2,L2
90 ; "TYPE IN THE BAND SEPARATION."
100 INPUT S 
1 1 0 A= S/ 2
120 DIM CC 20)/ DC20),KC2.0), JC 20)
125 DIM ASC80)
130 E=SGRC 10t<L 1/10)-17 
140 E=LOGC E+ SGRC E* E+ 17 )
1 50 E= EX PC E/N 1)
1 60 E= . 5* ( E- 1 / E)
1 65 P= 3. 1 41 59 
170 FOR' 1= 1 TO N 1
180 CCI ) = 2* SI N ( C 2* I - 1 >■* P/ 2/ N 1 ) / E 
19 0 IF I=N 1 GOTO 210 
200 KC I )= SORC E* E+ SINC I+P/N 1) » 2)/ E 
210 N EXT I
220 E= SQRC 1 0t CL 2/ 10)- 1)
230 E=LO GC E+ SQRC £* E+ 1) )
240 E= EX PC E/N 2)
250 E=. 5* C E- 1/ E)
260 FOR 1= 1 TO N 2
270 DC I )= 2* SIN ( ( 2*1 - 1 )* P/2/N2)/E
27 5 DC I )= DC I )/8
28 0 IF I = N 2 GOTO 300
290 J C I )= SGRC E* E+ SIN C I* P/N2) t 2)/E 
300 N EXT I 
310 Cl= CC !>
320 C2= CC 2)
330 C3= CC 3)
340 K 1 = K C 1)
350 K 2=KC 27 
360 Dl= DC 1)
370 D2= DC 2)
38 0 D3= DC 3) '
39 0 J 1 = J( i>
400 J 2= J ( 2>
410 DIM AC 20) / B( 20)
420 AC 1 ) = - Cl* C A+ 1/2/ Cl / Cl/A+ C J 11 2/ D2- 1/ C 1 ) / C 8* D1 t 2* C 1* At 3) )
430 AC 2) = -C2* C A+K It 2/C8* Clt 2* C2* Dl* At 3) )
440 AC 3) = - C3*CA+K It 2*K2t 2/C 32* C 11 2* C2t 2* C3* Dl* At 5))
450 FOR 1= 4 TO N 1 .
460 AC I ) = - CCI)* A 
470 N EXT I
480 R 1= SGRC 1+C 1/C 1- 1/ Dl ) / C 4* Cl* At 2) - C J It 2/ D2- 1/ Dl > / C 1 6* C 1* Dl t 2* At 4) )



14-149 0 1=1-1/ 4/ CI/ Dl/ A» 2
500 T= T- C (K 1 * 2/ C2- 1/ C 1- 2/ Dl ) / C 1+ C 3* J 11 2/ D2- 1/Dl)/Dl)/16/Cl/Dl/At4 
510 KC 1 ) = K 1* SQRC T)
520 KC 2>=K2* SQRC 1-K 1» 2/C 1 6*C1T 2* C2* Dl* A» 4) )
530 BC 1 > = D1*C A+ 1/2/ Dl/Dl/ A+ CK H  2/ C2- 1/ Dl ) / ( 8* C 1t 2* Dl* At 3) >
540 B( 2)= D2* ( A+J 11 2/( 8* Dl t 2* D2* C 1* At 3) )
550 BC 3) = D3*CA+J 1t 2*J2t 2/C 32* Dlt 2* D2t 2* D3*C1*AT 5) )
560 FOR 1=4 TO N2
570 B(I)=D<n*A '
58 0 N EX 7 I
59 0 R2= SQRC 1+ C 1/ Dl- 1/ C 1 )/ C 4* D 1* At 2) - CK 1 » 2/ C2- 1/ CI >/ C 1 6* D1 * C 1 t 2* At ; 
600 T= 1- 1/4/CI/DI/At 2
610 T= T- C C J 1t 2/ D2- 1/D1- 2/C1)/ Dl+C 3+K 1t 2/ C2- 1/ CI ) / CI ) / 1 6/ CI / Dl/A.t 4 
620 JC 1) = J 1* SQRC T)
630 JC 2> = J2* SQRC 1- J 1 t 2/ 1 6/ D1t 2/ D2/ Cl / A.t 4)
640 I'LISTING OF ELEMENT VFL U ES? C1=YES)"
650 INPUT Q
660 I'F 0= 1 GO TO 68 0
67 0 GOTO 8 40 
680 i "CHANN EL I: "
69 0 ; "R l=  Rl 1
700 J "CAPACI TOR", "SUSCEPTAN CE", "ADMITTAN CE INVERTER"
710 FOR 1=1 TO NI 
720 ; CCI), A C H  
730 I F I = N 1 GOTO 750 
7 40 J " ", " ", KC I>
7 50 N EX T I
7 60 i "CHANN EL 2: *'
770 J "R2= "J R2
780 i "CAPACI TOR", "SUSCEPTANCE", "ACMI TTANCE INVERTER"
79 0 FO R 1=1 TO N 2 
800'; DCI>, BCI)
8 10 I F I = N 2 GOTO 830 
8 20 ; " ", " ", J e n
830 N EXT I .
834 i "ANN ILLING REACTAN CE= "; X0
8 40 ; "RESPONSE AN AL Y SI S: TY P E IN START, ST EP, FINI SH FREQUEN CI ES. "
8 50 INPUT Fl, D, F2
8 60 ; "PLOT OF CH. 1 RETURN OR INSERTION LÖSS? C 1=RL.V 
870 INPUT Q
87 5 GO SUB 1 48 0
88 0 M= 0
89 0 F= F 1 + M* D
9 00 A 1= I 
9 1 0 A 2= 0
920 A3= F* CC 1 ) * AC ! )
9 30 A 4= 1
9 40 FO R 1=1 TO N 1 - 1 
9 50 B= AC 1+ 1)+ F*CC 1+ 1)
9 60 K = K C I) -
970 Bl=-B* Al/K-K* A2 
980 B2=A1/K 
99 0 B3= - B* A3/K + K* A4 
1000 B 4= - A3/K 
1010■A 1= B1 
1020 A2=B2 
1030 A3=B3 
1040 A 4= B4 
1050 N EXT I 
1060 A 1= RI* Al 
1070 A2= R 1 * A2



1080 A3=A3/R1 
1090 A 4= A 4/ R1 '
1 100 Bl= 1 ' ,
1110 B2=0 ■
1 120 B3= F* DC 1 )+ BC 1 )
1130 B4= 1
1140 FO R 1=1 TO N2- 1
1150 B= B( 1+ 1 ) + F* D( 1+ 1 ) ,
1160 J=JC I ) -
1170 C 1 = - B* B 1/J-J* B2 
1180 C2= B 1/J1190C3=“ B,<:B3/J + J*B4
1200 C4=-B3/J 
1210 B 1= C 1 
1220 B2= C2 
1230 B3=C3 
1240 B4=C4 
1250 N EX7 I 
12 60 B 1= R2* B 1 
1270 B2= R2* B2
128 0 B3=B3/R2
129 0 B4=B4/R2
1300 Z 1= C Bl*B4*-B2*B3)/( B3T 2+ B4* 2)
1320 V 1= Al* A4*Z 1- A3*Z 2 
1330 V2= A2+ A3*Z 1+ A4+Z 2
1340 Sl= < C V1+ A4) t 2+ ( V2+A3) t 2) / ( ( V 1-A4) t 2+ ( V2- A3)* 2)
1342 Vl= V 1+ A4
1343 V2= V2+ A3
1350 S2=( V P  2+V2t 2)/4 
1360 I F Q= 1 THEN 1380 
1370 Y= IN T( 4. 3429+LO GC S2) >
1 37 5 GO TO 1 39 0
1380 Y= IN 7( 4. 3429*L0 G( Si ) )
139 0 I F Y> 7 0 GOTO 1410 
1400 ! '*1 "i TABCY+ 1), ”
1 40 5 GOTO 1 420 
1410 f "I **
1 420 I F F< F2 GOTO 1 440 
1430 GOTO 1460 ;
1440 M=M+1 
1450 GO TO 89 0 
1 460 GOSUB 1480
147 0 GOTO 8 40
148 0 FOR 1=0 TO 6
149 0 FO R. \J = 1 TO 10 
1 500 K= 1 0* 1 +J 
1510 AS(K* K )= "* '*
1520 N EXT J
1530 K=10+CI+1)
1 540 ASCK/X)=-,,I*° , . •
1 550 N EXT ! .
1560 JAS ' '
1 570 RETURN 
1 580 EN D 
BASI C



APPENDIX THREE 1 4 \

10 ,*"THIS p r o g r a m d e s i g n s  a n d  a n a l y s e s  a SYMMETRICAL DIPL EX ER" 
20 i "USING A SERIES ANN ILL IN G INDUCTOR.”
30 > "DEGREE? M
40 INPUT N .
50 i "RI PFL È? " '
60 INPUT L
70 J "BAN D SEPARATION?"
80 INPUT S 
9 0 A= S/ 2
1 00 E= SQR( 1 0t CL/ 1 0)- 1 )
1 1 0 E=LO GC E+ SQRC E* E+ 1)>
120 E= EX PC E/N )
130 E=. 5*C E- 1/ F)
1 40 P= 3. 1 41 S9 ,
150 DIM CC20),KC20), BC20)
155 DIM ASC80)
160 FOR 1=1 TO N
170 CC I >=2* SINC C 2*1- 1 >*P/2/N>/E 
175 BC I ) = A* CC I )
180 IF I =N TH EN 200
19 0 K C I ) = SQRC E* E+ SIN C I* P/N) t 2)/ E
200 N EXT I
210 Cl= CC J>
220 C2= CC 2)
230 C3= CC 3)
240 K 1 = KC 1)
250 K 2=K C 2)
260 BC 1 ) = C 1* C A+ 1/ 4/' C 2 * 2/ A-r CK 1 t 2/ C2- 9/ 4/ C 1 ) /8/ C 1t 3/ At 3)
270 BC 2) = C2* C A+K 11 2/8/C It 3/ C2/At 3)
28 0 BC3)=C3*C A+CK 1*K2/Cl/C2)t 2/32/C3/At 5/Cl)
28 5 N 1 = N
29 0 N= l-7/16/Clt2/At2-CK It2'/C2- l/C3)/4/Clt 3/At 4 300 R=SQRCN)
305 N = N 1
310 K C 2) = K C 2)* SQRC 1 -K 11 2/ 1 6/ C ! t 3/  C2/At 4)
320 K = 1- 1 / 2/ C 11 2/ At 2- C K 1T 2/ C2- 2 7/ 1 C 1 ) / 4/ C 11 3/ At 4 
330 KC 1 > = K C 1)*SQKCK)
3 40 L 2= 1 / 4/ C 1 / A/ A
350 J "LI ST OF EL E. VALUES? 1 = YES."
360 INPUT Q
370 IF 6=1 GOTO 380
37 5 GOTO 460
380 i" CAPACI TOR", "SUSCEPTANCE", "in VERTER"39 0 FOR 1=1 TO N- 
400 ; CC I )> BC I )
410 IF I = N TH EN 430
420 i " ", " KCI) ‘
430 N EXT I
440 ; "INPUT TRANSFORM ER="; R ,
450 ; "SERI ES IN DUCTO R= L 2 '
460 ; "FI, DEL. F, F2? "
470 INPUT FI, D, F2
47 1 i "SCALE FACTOR?" '
472 INPUT G
47 3 J "L R. O R L A ?  1 = LR. "
474 INPUT Q \
47 5 GO SUB 1 48 0
48 0 M=0
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1 48 0 FO R 1=0 TO 6 
149 0 FOR J=1 TO 10 
1500 K = 10*I+J 
1 510 AS(K, «>=••*••
1 520 N EXT J 
1 530 K= 10*(I+ 1 )
1 540 A5(K> K >= ”1 "
1 550 N EXT I 
1560 i AS 
1570 RETURN 
1 53 0 EN! D 
BASI C



APPENDIX. FOUR
10 J " "IH I S PROGRAM DESIGNS AMD ANALYSES A LP/HP DIFLEXER." 
20 ; "THE LP CHAMiMEL CUTOFF I S AT 1 RAD/SEC. "
30 J "INPUT HP CUTOFF:"
40 INPUT B
50 ; "LP CHANN EL:N,L R. ? "
60 IN PUT N 1, L 1
70 5 "HP CHANN EL:N,IR?"
80 INPUT N2,L2
85 DIM CC 20),LC 20),KC 20), J( 20)
86 DIM- A$C 8 0)
90 E= SQRC 10: CL 1/10)-1> ,■ .
100 E=LOGC E+SORC E: 2+1 > )/N 1 
110 E= . 5+ ( EX P C E) - EX P C - E> )
1 1 5 P= 3. 1 41 59
120 FOR 1= 1 TO N 1
130 CC I )= 2* SIN C C 2* I- 1 )* P/2/N 1)/E
140 K C I ) = SQRC E: 2+ SlNC I* P/N 1 ) : 2) / E
150 N EX T I
160 E= SORC 10: CL 2/ 10)- 1) •
170 E=LOGC E+SGRC Et 2+ 1) )/N2
18 0, E=. 5*C EX PC E)-EXPC- E) )
19 0 FOR 1= 1 TO N 2
200 L C I ) = E/ 2/ SIN C C 2* I - 1 ) * P/ 2/N 2) / B 
210 JC I ) = SQRC E: 2+ SINC I * P/N 2) : 2)/ E
220 N EXT Ì .
230 L 1 = LC 2) . •
240 C1=CC 15
250 K= SQRC 1-r 2*L 1/C1)
260 L C 1 )=L 1/K 
270 CC1)= C1*K
28 0 CC 2)= CC 2)+.K C 1) : 2* C CC 1 ) - Cl) : 2/2/CC 1)
29 0 LC2) = 1/C 1/LC2)+JC 1): 2*L C 1)*C 1/LC 1) - 1/L 1 ) : 2/ 2)
300 ; "FI, DEL- F, F2? "
310 INPUT Fi,X, F2 '
31 1 J "PLO T OF Lfei:"
312 INPUT G
313 i "SCAL E FACTOR?"
314 INPUT D
315 GO SUB 1 48 0 
320 M=0
330 F=F1+M*X '
340 A 1=1 • •
3 50 A2=0 
360 A3= F* CC 1 >
370 A 4= 1 '
38 0 FOR 1=2 TO- Ml '• - .
39 0 Bl = -F* CC I )/KC I- 1 > ’ '
400 B2= 1/K C I- 1)
410 B3=KC I - 1) ;• X
420 B4=0
430 S= A 1* B 1- A2* B3 •
440 A2=A1*B2+A2*B4 
450 A 1= S
460 S= A3* B1+ A4* B3 
470 A4= A4* B4- A3* B2 
480 A3= S



Ib3

490 N EXT I
500 Bl= 1
510 B2= 0
520 B3= - 1/ E/L < 1)
530 B4= 1
540 FOR 1=2 10 N2 
5 50 Cl= 1/J(I- D/F/LCI)
560 C2= 1/J( I- 1)
570 C3=J( I- 1)
53 0 C 4= 0 ■
59 0 S=B1*C1-B2*C3 
600 B2= Bl* C2+ B2* C4 
610 B 1= S
630 B4=B4*C4-B3*C2 
640 B3= S 
650 N EXT I
660 Z 1= ( Bl* B4+ 82* B3) / C B3» 2+ B4» 2)
670 Z 2= C B2* B4-Bl* B3>/( B3* 2+B4T 2>
63 0 V1=A1+A¿*Z 1-A3+Z2 '
69 0 V2= .42+ A Z 2+ A3* Z 1
700 Sl= < C V1+ A 4) t 2+ ( V2+ A3)T2)/( ( VI - A 4) » 2+C V2- A3) t 2) 
710 V1=C V1+A4)t 2+C V2+A3)t 2 
720 S2= 4. 3429 + LO G( Vi/4)
7 30 Sl= A. 3429+LOGC S!)
731 IF 0=1 GOTO 734 
7 32 Y=IM TC 52/ D+. 5)
733 GOTO 735
734 Y= IN T( 51/ D+ • 5)
735 IF Y>7e GOTO 738
736 J "I TAB< Y)í ”. **
737 GOTO 7 50
738 J *’I "
7 50 I F F< F2 GO TO 770 
755 GOSUB 1430 
7 60 GOTO 300 
770 M=M+I 
78 0 GOTO 330
1 48 0 FO R I = 0 TO 6 
1496 FOR J=1 10 10
1500 K= 10*1+J
1 510 A$(K,K )= "* ** - :
1 520 N EXT J 
1530 K=10*(1+ 1>
1 540 AS (K,K )= "I"
1 550 N EXT I 
1 560 JAS
157 0 RETURM
158 0 END 
BASIC
* . >



APPENDIX PIVE 1 S 4

10 ; "THI S PROGRAM DESIGNS A BROADBAND INTERDIGITAL FILTER”
20 ¿"USING APPROXIMATE MODIFICATIONS."
30 ; "N/LR?"
40 INPUT N»L 
50 DIM C( 20) > K ( 20)
55 DIM AS<80)
60 E= SOR( 1 0t CL/ 1 0)- 1)
70 E=LOGC E+SQRC Et 2+1) )/N 
80 E=EXP(E)
9 0 E=. 5* ( E- 1/ E)
100 ¿"CUTOFF ELECTRICAL LENGTH (DEGREES)?".
1 1 0 INPUT W
120 P= 3. 1 41 59
130 W= 1/SINC W*P/ JS0)
U 0  FOR 1=1 TD N
150 CCI >=2*SINCC2*I-l)*P/2/N)/E 
160 K (I ) = SQRC E* 2-*-SIN C I* P/N ) t 2)/E 
170 N EXT I
18 0 CCN )= CC 15* SQRC 1+ 1/2/ Wr 2/ CC i ) t 2)
19 0 'CCN-1 )= CC 2) + K C 1 ) t 2* ( CCN )-CC 1 >>
200 C( 1) = CCN)
210 CC 2)= CCN- 1 )
211 FOR 1=1 TO N
212 C(I)=CCI)*W
21 3 N EXT I
220 ¿ ”FU DEL. Ft F2? "
230 INPUT Fi, D> F2 
270 GO SUB I48 6
28 0 M= 0
29 0 F= Fl + M* D -- '
300 C= CO SC F*P/ 18 0)
310 S= SIN C F+P/ 180)
320 Al=1 
330 A2=0 
340 A3= CC 1 )* S 
350 A 4= l
360 FOR 1 = 2 TO N 
370 B1=-C(I)*S/KCI-J>
380 B2= 1/KC I- 1) •
39 0 E3=KC I- 1 >
400 B4=0
410 X= Al* Bl - A2* B3 ' '
420 A2= A 1* B2+ A2* B 4 
430 A 1= X
440 X= A3* B1+ A4* B3 . \
450 A 4= A4* B4- A3* B2 '
460 A3“ X 
470 NEXT I
48 0 A2= A2* C
49 0 A3=A3/C .
500 S= C ( A1+ A 4) t 2+ C A2+ A3) t 2) / ( ( A 1- A 4) t 2+ C A2- A3) * 2)
510 Y= IN T( • 5+ 4. 3429*L0 GC S) )
520 IF Y> 70 GO TO 550 
540 ¿ "I TABC Y ) > ". "
545 GOTO 560



% (f5

550 J "I *'
,560 IF F> F2 GOTO 600
570 «sM+1
55 0 GO TO 29 0
600 GOSUB 148 0
610 GOTO 220
1 48 0 FOR 1=0 IO 6
149 0 FOR J= 1 TO 10
1500 K=IC*I+J
1510 ASCK,i< )="*’•'
1 520 M EXT J
1 530 K= 1 0* f 1+ 1) ' ì
1 540 A5(Kj> K )= f,I «
1 550 N EXT I 
1560 ; Ai 
1 570 RETURM 
1 58 0 EN D 
BASI C
*



APPENDIX SIX.

10 {"DESIGN AND ANALYSIS OF WAVEGUIDE DI PL EX ER. "
12 ; "VERSION ¡NO. 3 11/5/77 WITH 4 ’ TH £5 ' TH ORDER CORRECTION
20 GOTO 8 00
21 > "FLO T O E  IN SERTION C = 1) OR RETURNC = 0> LOSS?"
22 INPUT 01
31 {"ENTER START, STEP, FINISH FREQUENCIES:"
32 INPUT FI, D, F2
33 GO SUB 670
34 M=0
35 F= Fl + M* D
36 L= . 3/ SQRC F* F- T)
45 0=-. 5* A TN C 2/ B 1 C 1 ) ) * L 1 /L 
50 A 1= CO SCO)
60 A2= SIN ( G)
70 A3=A2
8 0 A4=A1 >
90 FOR 1=1 TO N1 
100 C= COSC C1C I >*L 1/L)
110 S= SINC C1C I >*L I/L)
120 B=B1(I)*L/L1 
130 A= A 1* C- A2* C S- B* C)
140 A2= Al* S+ A2* C B* St- C)
150 A 1= A
160 A= A 3* C+ A 4* C S- B* C >
170 a 4= A 4* C Ei*S+C)-A3*S
180 A3= A
190 N EXT I
200 B= B 1 (N 1+ 1)*L/L 1
210 A 1= A 1+ A2* B
220 A 3= A 3- B* A 4
230 G=- . 5+ATNC2/EC 1))*L2/L
240 B 1= CO SC Q)
250 B2= SIN C G)
260 B3= E2 
270 B4=B1
28 0 FO R 1=1 TO N 2
29 0 C=C0SCCCI)*L2/L>
300 S= SIN C CC 1 ) *L 2/L )
310 B=BC I )*L/L2
320 A= B 1* C- B2* C S- B* C>
330 B2= Bl* S+ E2* C B* S+ C)
340 B 1= A
350 A= B3* C+ B4* C S- C)
360 B4= B4*C B* S+ C)~ B3*S '*
370 B3= A •
38 0 N EX T r
39 0 B= BCN 2+ 1) *L/L 2 
400 B 1 = .E 1+ B* B2
410 B3= B3- B* B4
550 Z 1= C Bl* B4+ B2* B3) / C B3* B3+ B4* B4)
560 Z 2= C B2* B4- Bl* B3)/ C B3* B3+ B4* B4)
565 X= X 0* CL 1 + L2) / 2/L 
570 V 1= A 1+ A4*Z 1-A3+CZ2+X)
580 V2= A2+A3*Z 1+A4* CZ 2+X)
59 0 S 1= C C V1+ A4) t 2+ C V2+ A3) t 2)/ C C Vl - A 4) * 2+ C V2- A3)* 2)
600 V 1 = V 1 + A 4 
610 V2= V2+ A3



-IGl

620 S2= ( VI t 2+ V2t 2)/ 4
630 Y= IN T( 4. 3429*L0 GC SI ) )
631 X= IN T( 4. 3429+LO GC S2) )
632 IF Q 1= 0 GO 10 634
633 Y=X
634 I F Y> 70 GO TO 633
635 ; ”1 "i TABCY), "
636 GOTO 640 
638 J F, Y
640 M = M + 1 . . '
650 I F F< F2 GOTO 3 5 
6S? GO SI IR A7R 
655 GOTO 21 
670 FOR 1=0 TO 6
680 FOR J=1 TO 10 '
69 0 K= 10*1+J V . ' '
700 A3CK,K )="*M
710 NEXT J
720 K = 1 0* I + 10
730 ASCK,K ) = "I *’
740 NEXT I 
7 50 ; AS 
760 RETURN
770 E=SQRC 10» CL/10)- 1) •
772 E=LO GC E+SGRC E* E+ 1 ) )/N
77 4 E= EXPC E)
7 7 6 E= . 5* C E- 1 / E)
778 FOR 1= 1 TO N
780 YC I >= 2* SIN C C 2* I- i >* P/ 2/N)/E/ A
78 2 YC I ) = YC I )- A*C E* E+ SIN C I * P/N ) » 2) / C 4+ E* SIN C C 2* 1+ 1 )*P/2/N) )
78 4 YCI) = YCI)-A*CE*E+SINCCI-1)*P/N)»2)/C4*E*SINCC2*I-3)*P/ 2/N ) )
78 6 NEXT I
788 FOR 1=1 TO N-l
79 0 K C I )= SGRC E* E+ SI N Cl* P/N ) t 2)/ E 
792 NEXT I
79 4 RETURN}
800 REM ................. THE'PROGRAM STARTS
810 DIM ASC80), EC 40), CC 40), El C 40), Cl C 40)
820 DIM YC 40),KC 40), Y 1C 40),K 1C 40), Y2C 40),K2C 40)
830 ; "WAVEGUIDE WIDTH?"
8 40 INPUT T
8 50 7= C 5- 9 0 6/ T ) * 2
8 60 P= 3. ! 41 59
870 ; "CHANNEL 1 : F 1, F2, DEGR EE, Ri PPL E? C H F. CHANNEL!)"
880 IN PUT FI, F2,N i, Ri 
89 0 L 1 = . 3/SGRC F2* F2-T)
9 00 L2=. 3/SQRC FI* FI-T)
9 10 X = P* C L 2- L 1 ) / C L 2+ L 1 )
-9 20 X= 1/C 1/X+X/ 6)
9 30 A=X
9 40 L= Rl -
9 50 N = N I 
9 60 GO SUB 770 
.9 70 FOR 1=1 TO NT
980 Y 1C I) = Y CI)* A .
99 0 IF I = N 1 GOTO 1010 ' '
1000 K 1 Cl) = KC I 5 •
1010 N EXT I .
1020 J "CHANN El. 2: FI, F2, DEGREE, RI PFL E? CL F. CH ANN EL > " ^  r '
1030 IN PUT FI, F2,N2, R2 
1040 L 3=. 3/ SQRC F2» 2- T)



1050 L 4=. 3/SQRC F1* F1-T)
1060 Y=P*CL 4-L3)/CL 4+-L3)
1070 Y= 1/C 1/Y+Y/ 6)
108 0 A= Y
109 0 L = R2
1.1 00 N = N 2 • „
1110 GO SUB 770 
1120 FOR 1=1 TO N2 
1130 Y2C I ) = Y C I >*X 
11 40 I F I=N 2 GO TO 1 1 60 
1150 K 2( I)=KC I )
1 160 NEXT I . '
1170 S= ( L 3+ L 4- L 1-121/2
1171 B=L 2-L 1
1172 L 1= CL1 + L 2)/2 
1174 L 2= (L 3+L 4) / 2 
1180 A=S/B
1 190 D 1 = Y 1(1)
1200 D2= Y 1 ( 2)
1205 D3= Y 1 C 3)
1220 C2= Y2( 2)
1225 C3= Y 2( 3)
1230 El= 1/C 2* Dl* Dl* A* A)+ 1/ (8* Cl* Cl* Dl* At 4) * (K 2( 1 ) t 2/ C2- 1/ D1 ) 
1235 El C 1 ) = - S* P/ 2/L 1* El
1240 El C 2) = - S* P*K 1C 1) » 2/C 1 6*L 1* Dl* Dl* D2* Cl* At 4)
124 5 E1C 3)=K 1C 1 ) t 2*K 1 C 2) t 2/ C 32* D H 2 *  D2t 2* D3* Cl* At 6)
1246 El ( 3) = - S* P* El C 3) / 2/L 1
1250 E2= 1/C 2* Cl* Cl* A* A)+ 1/C 8* Di* Dl* Cl* At 4)* CK K  1)t 2/ D2- 1/C1 )
125 5 E2C 1 ) = S* P/ 2/L 2* E2
1260 E2(2)=S*P*K2C 1)t 2/C 1 6*L2*C1*C1*C2* D1*AT 4)
1262 E2C 3) =K 2( 1 ) t 2*K 2C 2) t 2/ ( 32* CIt 2* C2t 2* C3* Dl* AT 6)
1263 E2C 3)= S* P* E2C 3)/2/L2
1265 X0= C 1/Dl- 1/C1 )/2/A .. '
1266 X0=-X0
127 0 Rl= 1+C 1/D1-1/CD/C 4* Di*À*A>
127 2 R1=R1-CK2C 1)t 2/C2- 1/C 1 ) / C 1 6* C 1 t 2* D 1* AT 4)
1274 R 1= SQRC RI )
1280 R2= 1+C 1/C1- i/DD/C 4*C1*A*A)
128 2 R2= R2- CK i C 1 ) t 2/ D2- 1/Dl ) / C 1 6* Dl t 2* C 1* At 4)
128 4 R2= SQRC R25
1290 Z = 1- 1/C 4* C 1* Dl* A* A)
1291 X1=CK1CÎ)t 2/ D2- 1/ Dl -  2/ Cl )/  4/ D1+ ( 3*K 2C 1 ) t 2/ C2- 1/ Cl ) / 4/ C i
129 2 X 1 = -X 1/ 4/ Cl/ Dl
1300 X2= CK 2C 1 ) t 2/ C2- 1/C1-2/DD/4/C1+ C 3* K 1C 1) t 2/ D2- 1/ Dl )/ 4/ Dl
1301 X 2= - X 2/ 4/ D 1 / C î
1303 Y 1= ( - 1 )*K 1 C i ) t 2/C 1 6* Dit 2* D2* Cl )
130 4 Y2=C - 1)*K2C 1>t 2/ C 1 6* Cl? 2*C2* Dl )
1305 K 1C 1)=K 1C ! )* SQRCZ+X 1/AT 4)
1306 K 1C 2) = K 1C 2)* SQRC 1 + Y 1/AT 4)
1307 K2C 1) = K2C i>* SGRCZ+X2/AT 4)
1308 K 2C 2)=K 2C 25* SQRC 1 + Y2/At 4)
1320 Y 1C 1 ) = Y ICI)/ Rî/Rl
1330 Y2C 1 ) = Y2C 1)/R2/R2 
1340 K 1C 1) = K 1C 1>/R 1 
1350 K2C 1 ) = K 2(1)/ R2 
1360 K 1C 0)= i 
1 370 K K N  1 >= 1 
1380 K 2C 0)= 1
139 0 K 2CN 2)= ! ¡
1 400 Y 1 C 0) = X



2 £4

1410 Y K N  1+ 1);X 
1420 Y 2(0>-X 
1 430 Y2CN 2+ 1) = X 
1440 FDR 1=0 TO N1
1450 Y=SQR(Y1(I)*Y1(I+1> ) /X/K 1 C I ) ’
1 460 Bl C 1+ 1 ) = Y- 1/Y ■ «
1470 IF 1=0 GOTO 1510
1 48 0 Cl ( I )= P- . 5* ( ATM C 2/ Bl CI D ) +A7N( 2/ Bl C 1+ 1 ) ) )
1490 IF I>=4 GOTO 1510 
1500 C1CI)=C1CI)+E1(I>
1510 NEXT I 
1 540 FOR 1=0 TO N 2
1 550 Y= S0RCY2CI )*Y2( 1+ D)/X/K 2(1 )
1560 BCI+1) = Y- 1/Y 
1 570 I F 1=0 GOTO 1 610
1 580 C(I)=P-. 5+(ATN(2/B(I)) + ATN(2/B(I+ 1)>>
1590 IF I>=4 GOTO 1610 
1 600 C( I )= CCI )+ E2U )
1610 NEXT I
1612 ; "PRINTOUT OF VALUES? 1 = YES"
1 61 4 IN' PUT Q 
1 61 6 I F 0= 1 GOTO 1 620 
1618 crOTO 21
1620 ; "CM. 1 :MI DB AM D GUIDE WAVEL EN GTH= "; L 1* 1 00; "CM S» " 
1630 ; "SUSC. ", "L ENGTH"
1 640 FOR 1=1 TO Nl+1 
1650 ; BiCI)
1 660 IF I=M1+! GOTO 1650 
1 67 0 ", Cl ( I >*L 1* 6. 2659
1 68 0 N EX T I
1 69 0 ; CH• 2. M I DEAN D GUI DE V.A VEL EN GTH= "j L 2+ 1 00; "CM S. " 
1700 ; "SUSC", "L ES» GTH" • •
1710 FOR 1= ! TO N2+ 1 
1720 » B( I )
1730 IF I=N2+1 GOTO 1750 
17 40 ;" ", C< I >*L 2* 6. 2 659 
17 50 N EXT I
1770 ; "AM ILL IN G REACTAN CE= "; X0
.1780 GOTO 2Í ‘ ! •
179 0 EM D 
BASI C
* CLO SEI
*


