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Abstract 

In the majority of microwave receiving and transmitting systems, a requirement is to 

have a filter immediately adjacent to the antenna or antenna array. Conventionally the filter 

and antenna are designed as separate components and a matching circuit is used in order to 

get maximum power transfer between them. This thesis presents a new methodology for 

antenna design where a filter is either fully or partially integrated with the antenna elements. 

The design of this antenna-filter follows the well-established coupled-resonator filter design 

theory, in which each resonator can not only be used as a filter element but also as a radiator.  

In order to verify the concept, dipole antennas have been employed as antenna 

elements, and in addition to their radiating properties they are treated as the resonators in the 

filter circuit. For this purpose, an inductor has been integrated with each dipole antenna 

forming the resonator circuit. A two-port bandpass filter designed using dipole antennas is the 

first work in this thesis to verify the use of dipole antennas as resonators; this confirms the 

design concepts. The coupling matrix has been used to obtain the filter response. Further work 

demonstrates one-port antenna-filters made out of one, two and three dipoles; in these cases 

the designed filtering response uses the dipoles as resonators as well as radiating elements. 

The simulation and measurement results are in good agreement. 

The method has also been utilised to implement X-band waveguide antenna 

components, here the radiation is from the open end of a waveguide.  An antenna-filter, 

antenna-power divider and an antenna-diplexer are all demonstrated. The antenna-filter is 

designed for improve the selectivity. The other two components are three-port components 

and designed using the coupling matrix. The antenna power divider is designed so that the 

radiation pattern can be controlled in addition to providing the filtering. The antenna-diplexer 



 
 

is designed in order to include the radiation element into a structure which also provides 

power splitting at two different frequencies. These three variations of the waveguide antenna-

filter has been designed, simulated, fabricated and measured. The results are in good 

agreement. They have provided verification of the method, showing the antenna and filter 

theories and can be applied to miniaturise these components. The results have application in 

the wireless communication and radar systems. 
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Chapter 1 

Introduction 

 

1.1 Overview of Integration of Antenna and Bandpass Filter Components   

Recently attention in the design of microwave circuits has been directed towards 

miniaturisation and low profile for components in wireless communication systems.  An 

antenna and a bandpass filter are essential components employed at the front-ends. Examples 

of the use of an antenna and a bandpass filter at the front-end of Radio Frequency (RF) 

transmitter and receiver are shown in Figure 1.1. For the transmitter shown in Figure 1.1(a), a 

bandpass filter follows a power amplifier and used for selecting a transmission frequency and 

rejecting out of band frequency before being sent to an antenna for broadcasting the RF 

signal. On the other hand, an antenna is the first device of the receiving system as shown in 

Figure 1.1(b). The antenna is placed at the front of the receiver to receive the RF signal and 

sent to a bandpass filter. It also acts as a pre-selector for the reception carrier frequency to the 

input of a low-noise amplifier. This arrangement of the antenna and filter reduces noise and 

interference before converting lower frequency by mixer and oscillator [1]. However, a 

degradation of the front-end performance is caused by mismatched impedance of an antenna 

and a bandpass filter. A matching network [1] is therefore needed for the front-end circuit to 

match impedance between antenna and filter. The matching network may improve the 

performance of the systems, but the circuit size may also be increased. In general, bandpass 

filters are designed based on coupled resonator circuits. This bandpass filter is named a 

coupled resonator filter [2]. Figure 1.2 shows an example diagram of nth order coupled-
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resonator bandpass filter, where white circles represent resonators, and the solid lines linking 

resonators represent coupling.  

 

(a) 

 

(b) 

Figure 1.1 Block diagram of (a) An RF transmitter and (b) Block diagram of an RF receiver 

[1]. 

 

 

Figure 1.2 An example diagram of nth order coupled-resonator bandpass filter. 

 

As mentioned above, the main function of an antenna is to radiate the RF signal to free space. 

It can also act as a resonator of the filter when it resonates at the operating frequency. It is 

possible to demonstrate the relation of antenna and resonator by analysing and comparing the 

resonant antenna circuit (i.e. the reactance (X) or the susceptance (B) of the reactive element is 
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zero) with the conventional resonant circuit. Two examples of the equivalent circuits of 

resonant antennas are a dipole antenna and a patch antenna from [3]. The structure of dipole 

and patch antennas are shown in Figure 1.3(a) and 1.3(c), respectively. The equivalent circuits 

of both antennas are represented as lossy resonant circuits and shown in Figure 1.3(b) and 

1.3(d); where Rr is the radiation resistance of an antenna, La is the antenna inductance, Ca is 

the antenna capacitance, Xa is the antenna reactance and Ba is the antenna susceptance. 

 

                    (a)                                         (b) 

 

                   (c)                                        (d) 

Figure 1.3 Antenna examples and their equivalent circuits. (a) Dipole antenna. (b) Dipole 

antenna’s equivalent circuit. (c) Patch antenna. (d) Patch antenna’s equivalent circuit [3]. 

 

These examples show that the resonant antenna can be treated as one of resonators in coupled 

resonator filters. This allows the design of antenna and filter integration to be a single 

component named an antenna-filter by following the coupled resonator filter theory [2]. The 

advantage is that the matching network is eliminated, reducing the circuit size and the 
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problem of a connection between antenna and bandpass filter. This is the main work and will 

be discussed in this thesis. 

 

1.2 Literature Review 

This section presents a literature review of antenna-filter approaches. In general, the 

antenna-filter is usually designed using a matching network to cascade between an antenna 

and a bandpass filter as described in the previous section. The design approaches using the 

matching network were presented in [4], [5]. The advantage of the method is to enhance the 

bandwidth of the microstrip antenna. A design approach of the antenna and filter integration 

without the matching network has been firstly presented in [6] with the use of the filter 

synthesis. The method was to consider an antenna as equivalent to a last resonator in the filter 

circuit. This has been used to implement a slot-line dipole antenna with a coplanar filter. The 

approached design can improve the filtering response by tuning the radiation resistance of the 

resonant antenna to match the load resistance of filter circuits at the resonant frequency. In 

addition, the filter synthesis has been implemented on the various structures for size 

reduction, e.g. [7], [8] which show a microstrip filter integrated with a patch antenna, an E-

plane waveguide filter integrated with a patch antenna [9]. A multilayer technology is of 

interest to RF circuit designer and can be employed to miniaturise the RF circuits and 

integrate RF components into a single module. In [10], a composite ceramic-foam substrate 

with the multilayer technology has been implemented to design a microstrip patch antenna 

integrated with a filter. A similar concept in [6] is employed to design the antenna-filter 

component. Moreover, the approach [10] has firstly introduced the design of antenna-filter 

using the principle of the coupled-resonator filter design. The design method was simple by 
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considering the quality factor of the antenna as the same external quality factor of the last 

resonator of filter circuits. The circuit diagram of the approach in [10] is shown in Figure 1.4.  

 

Figure 1.4 The diagram of the antenna integrated in the bandpass filter circuits [10]. 

 

A cavity filter integrated into a horn antenna has been presented in [11]. This work exhibited a 

good two-pole filter response and radiation pattern shape. The integration of ultra-wide band 

(UWB) antenna with a filter was presented in [12], [13]. These approaches have been 

implemented on the planar structure in order to miniaturise the size. In [14], the design of a 

patch antenna integrated with the folded step-impedance resonator (SIR) filter can be applied 

to reject the unwanted harmonic response. In [15], multi-layer circuit technology has been 

used to implement a multi-layer antenna-filter structure. The approach [15] has been used to 

design a hairpin filter positioned at the bottom layer combined with the patch antenna placed 

on the top layer of the component. This work exhibited a two-pole response and well-shaped 

radiation pattern. In [16], the design approach presented the dual-band filter integrated with 

the dual-band patch antenna. This component was designed for use in the modern wireless 

system, e.g. the wireless LAN system. The concept of filter design has again been utilised 

with the co-design of antenna and filter integration. The co-design approaches were 

implemented on the microstrip filter with an inverted-L antenna [17], the microstrip filter with 

-shaped antenna [18], the substrate-integrated waveguide (SIW) filters with patch antenna 
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[19], the waveguide slot antenna with integrated filters [20], the aperture evanescent 

waveguide antenna with filter [21], [22], and the integration of aperture antenna and filter for 

the SIW structure [23].    

Antenna arrays can be used to improve radiation performance compared with single 

antennas. The antenna array has been incorporated with the antenna-filter design for various 

structures. For example, four-slot antenna arrays integrated with cavity filters [24], Yagi 

antenna combined with a high Q-resonator [25] and four-patch antenna array integrated with 

power dividers and filters [26].  In addition, it is possible to design the antenna and filter with 

multi-band response. Previously, a dual-band antenna has been designed with an integrated 

diplexer and presented in [27]. The approach exhibited a new combined component for the 

transceiver of the wireless LAN system with a compact size and good filter performance. In 

[28], the microstrip patch antenna was designed and combined with two bandpass filters to 

create a single module. 

A type of antenna with filtering function has been presented in [29] and is called a 

filtering antenna or a filtenna. This component is designed by integrating a bandpass filter 

into an antenna in order to enhance the filtering functionality of the antenna. Also cost and 

size reductions are required for the component. Following the filtenna's design concept, the 

gain response of filtenna can exhibit flat in-band gain, high out of band gain suppression and 

high harmonic rejection. The approach presented in [29] aims to show a design technique of 

filtenna implemented on horn structure by covering a substrate integrated waveguide cavity 

(SIWC) FSS filter at the aperture of a horn antenna. The SIWC-FSS acts as a frequency 

selector placed at the aperture to suppress the unwanted frequency from the received signals 

before being sent to the input of receiver. This component is suitably utilised as a receiving 

antenna. The planar filtennas have been presented in [30]-[32]. In [30], an SIW filter was 
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designed with the inductive window structure and integrated with a planar coaxial collinear 

(COCO) radiation element. The performance of this co-design exhibited a very good return 

loss response and the best omnidirectional radiation pattern. In [31], a tunable bandpass filter 

using a varactor was designed and integrated with a wideband Vivaldi antenna. This approach 

aims to show a design of a reconfigurable filtenna using the tunable filter. The filtenna 

exhibited the good agreement of frequency response in simulation and measurement for 

tuning frequencies from 6.16 to 6.6 GHz. In [32], a coplarnar waveguide (CPW) was designed 

as a compact microstrip resonant cell (CMRC) that is integrated with a patch antenna. This 

approach exhibited good suppressions for 2nd and 3rd harmonic frequency and high suppressed 

cross-polarisation. A bandstop filter or a notch filter can be used to design a filtenna 

implemented on a horn structure. The notch filter was used to block a frequency in order to 

extend the dual-passband frequency response which is similar to the response of a dual-band 

filter. The approach was presented in [33] and was designed using an open-ring dual-band-

notch filter taken into a horn antenna. The performance of approach [33] exhibited the high 

gain response with two different notched-bands. 

As mentioned above, it can be concluded that the antenna-filter is an RF front-end 

component designed by integrating an antenna into a filter, where the last resonator of filter is 

replaced by the antenna. Similarly, the filtenna is also the RF front-end component designed 

by integrating a filter into an antenna, where the filter is placed before the input of antenna 

and also is treated as a balun. Both components are the similar components that achieve 

filtering and radiating functions simultaneously. Almost those approaches have been designed 

using basic filter design principles. Some approach has been designed without the use of filter 

synthesis, e.g. a design uses an active component for tuning frequency bandwidth. This thesis 

aims to present a new design of antenna-filters using the coupling matrix synthesis whilst 
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those antenna-filter and filtenna approaches have not been designed using this technique. This 

new design approach using the coupling matrix has significant advantages, which are not only 

used to design the antenna-filters, but also used to design antennas integrated with different 

components. For examples, an antenna integrated with two-array antennas and power divider, 

and an antenna integrated with the diplexer. They have been achieved in designs using the 

coupling matrix and will be discussed in Chapter 5.   

 

1.3 Thesis Motivation 

There have been many designs of integrated antenna and bandpass filter in order to 

miniaturise the circuit area and improve the performance as described in the literature review 

of Section 1.2. A diagram of the new antenna-filter approach is shown in Figure 1.5(b) and is 

compared to a diagram of conventional design shown in Figure 1.5(a). The new combined 

component (antenna-filter) has no a matching network, because the antenna is matched in the 

coupled resonator circuit and also treated as the last resonator of the filter.  

 

   (a)                (b) 

 

Figure 1.5 A conventional design of antenna and bandpass filter integration using a matching 

network (a) compared to the new approach (b). 

 

However, the previous approaches presented in the literature review did not show good 

filtering performance (good skirt selectivity at the passband-edge and high-suppression at out-
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of-band) or good radiating performance (high antenna gain and well-shaped radiation pattern). 

The main reasons for the problems in the antenna-filter approaches are (i) Poor match of 

antenna to filter (ii) inaccurate values of the coupling coefficient and the external quality 

factor in the design, and (iii) a small number of antenna elements which cannot enhance the 

antenna gain.  

This thesis addresses the development of a novel antenna-filter design technique based 

on the coupled resonator filter using the coupling matrix synthesis. This technique will reduce 

the complexity in the design procedure, enhance the design accuracy and allow more complex 

antenna-filters to be designed. As a first step, dipole antennas are chosen with inductors 

completing the resonator circuits. The proposed dipole antennas, integrated with inductors, 

are employed to design a two-port dipole antenna-filter using the coupling matrix synthesis, 

as shown in Figure 1.6. This circuit maybe of little application, but it allows the design 

procedure to be investigated.  The proposed dipole antennas can then be employed to design a 

one-port dipole antenna-filter as shown in Figure 1.7. It can be seen that the layout of the 

dipole antenna-filter can be represented as the structure of coupled resonators as well as a 

multi-element array for the requirement of both the filtering and radiating efficiency. 

                   

Figure 1.6 A two-port dipole antenna-filter. 
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Figure 1.7 A one-port dipole antenna-filter. 

 

A directional antenna such a waveguide antenna (e.g. aperture, slot and horn antennas) is one 

of the most popular antennas due to it providing a very good performance in terms of the 

antenna efficiency, bandwidth and radiation pattern. A waveguide aperture antenna will be 

discussed in this thesis and employed in the novel design of the waveguide filter-antennas 

with the use of coupling matrix synthesis for the antenna-filter component. 

 

 1.4 Thesis Overview 

This thesis consists of six chapters which have been organised as follows: 

Chapter 1 provides an introduction to the thesis. The overviews of the antenna-filter and the 

literature review are discussed. Thesis motivation and thesis overview are presented. 

Chapter 2 provides the fundamental theories required for this research. It includes the theory 

of antennas (i.e. dipole and waveguide antennas, antenna array), theory of microwave filter 

based on the coupled resonator circuit, and the integration of antenna and filter using the 

coupling matrix synthesis.  
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Chapter 3 presents a new design technique of resonators using dipole antennas. The technique 

is based on the antenna theory utilised to analyse the equivalent circuit of dipole antennas [3]. 

Inductors are employed with dipole antennas in order to complete to the resonator circuit. It 

can be achieved by designing a bandpass filter using dipole antennas with inductors based on 

the design of a direct-coupled resonator filter [34]. The coupling matrix is employed for this 

approach with the comparison of S-parameters. The fabrication and measurement are also 

provided. 

Chapter 4 uses a similar design technique to that described in Chapter 3. This is intended to 

design an antenna-filter as a single-port component with new coupling matrix synthesis. The 

synthesis was derived from the equivalent circuit of the antenna-filter as described in Chapter 

2. The approach for the work in this chapter has completed in fabrication for the single, two 

and three resonator dipole antenna-filters. 

Chapter 5 is the continuation of the work presented in chapter 4 which is employed to design 

a waveguide antenna integrated with a cavity filter. This work is presented to show different 

coupling topologies of the antenna-filter integrated with the physical structure of the 

rectangular waveguide. The approach for this work has been used to implement three new 

designs, which consist of five-resonator antenna-filter, three-resonator antenna power divider 

and three-resonator antenna-diplexer. 

Chapter 6 concludes the thesis with inclusion of the future work. 
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Chapter 2 

Fundamental Theory 

 

This chapter presents a review of the relevant theory in three topic areas, firstly basic antenna 

theory, secondly microwave filter theory and the thirdly integration of antenna and filter. Each 

will be studied ready for the new design approaches presented in this thesis. Section 2.1 

reviews the antenna theory used in the proposed design for the dipole antenna and aperture 

antenna. Section 2.2 reviews the microwave filter theory to introduce the filter concept. Both 

antenna and filter theories can be applied in the design of an antenna-filter presented in this 

thesis. Section 2.3 presents the coupling matrix for antenna-filter utilised for the design 

approaches in this thesis. CST microwave studio software instruction is also provided and is 

presented in Section 2.4. 

 

2.1 Antenna Theory 

2.1.1 Overview of Antennas 

An antenna is a passive device used for transmitting or receiving radio frequency (RF) signals 

used in wireless communication systems. Figure 2.1 illustrates the functions of antennas in a 

wireless communication link. For the transmitting function, the transmitting antenna delivers 

the EM wave from the feeding source, and radiates the EM wave into the free-space. For the 

receiving function, the receiving antenna receives the EM wave from the space and sends it 

into the receiver.   
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Figure 2.1 An example showing the antennas function in a wireless communication link [1]. 

 

 

Figure 2.2 Examples of typical antennas. (a) Dipole antenna, (b) Rectangular patch antenna, 

(c) Waveguide aperture antenna, (d) Horn antenna [2]. 

 

Figure 2.2 illustrates examples of typical antennas. A dipole antenna, shown in Figure 2.2(a), 

is a wire antenna and is widely used in basic applications such as television, FM radio, etc.. 

The rectangular patch antenna, in Figure 2.2(b), is a microstrip antenna and consists of a 

rectangular flat sheet on top of a ground plane, connected with a feed line. This antenna is 

simple, low cost and can be fabricated using the printed circuit board (PCB) technology. An 
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open-ended waveguide antenna shown in Figure 2.2(c), is Type of aperture antenna and is 

configured so the direction of EM radiation direction is based on the orientation of the 

waveguide propagation mode (normally TE10 mode). This antenna is simple, efficient and can 

also be installed on the surface of the spacecraft or aircraft [2]. A horn antenna, shown in 

Figure 2.2(d), is also a waveguide aperture antenna that has a large aperture at the end for 

improving the antenna gain and radiation patterns.  

 

 (a) 

 

 (b) 

Figure 2.3 (a) Three-dimensional radiation pattern of an antenna. (b) Two-dimensional 

radiation pattern of an antenna [2]. 
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The performance of antennas can be described in terms of bandwidth, radiation 

patterns, directivity, efficiency and gain. Figure 2.3 illustrates a typical radiation pattern of an 

antenna. The lobes of the radiation pattern have different shapes, and can be divided into: 

main, minor, side and back lobes [2]. The main lobe represents direction of the maximum 

radiation intensity of an antenna. The half-power beam width (HPBW) can be calculated from 

the main lobe. The HPBW is the angular width of the main lobe, as measured at the half-

power points. The zero level of the main lobe introduces the first null of the radiation pattern. 

The angular distance between two first nulls is called the first-null beamwidth (FNBW). The 

FNBW can also be used to estimate the HPBW of an antenna with a uniform distribution by 

FNBW/2 HPBW [2]. A side lobe is close to the main lobe and is usually expressed as a 

ratio of the radiation intensity between main lobe and side lobe. This is called the side lobe 

level. A back lobe is in the opposite direction (180o) from the main lobe. A minor lobe is any 

lobe except for the main lobe, side lobe and back lobe and represents the radiation in an 

undesired direction [2]. 

The radiation performance of an antenna can be expressed in terms of directivity. The 

directivity of an antenna is defined as [2] 

 
0 rad

4U U
D

U P


        (2.1a) 

In  decibels; 

 10(dB) 10 logD D       (2.1b) 

where   D is the directivity. 

 U is the radiation intensity (W/unit solid angle). 

 U0 is the radiation intensity of isotropic source (W/unit solid angle). 

 Prad is the total radiated power (W). 
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Figure 2.4 A basic diagram of antenna usage [2]. 

 

A diagram of antenna usage shown in Figure 2.4 is used to describe the antenna efficiency 

which is related to the antenna gain and directivity. Antenna gain is an antenna parameter 

used to describe the transmitted power in the maximum radiation direction. It is associated 

with the directivity and antenna efficiency, defined as [2] 

0G e D       (2.2) 

where G is the gain of the antenna. 

 e0 is the total efficiency of the antenna. 

 

The total efficiency of an antenna is defined as [2] 

0 r c de e e e          (2.3) 

Where  er = 1 – ||2 is the reflection or mismatch efficiency. 

  is the voltage reflection coefficient at the input terminals of the antenna by 

 = (ZL – Z0)/(ZL – Z0) where ZL is the load impedance at input terminals of  

an antenna, Z0 is the characteristic impedance of the transmission line. 

 ec is the conduction efficiency. 

 ed is the dielectric efficiency. 

 VSWR = (1 + ||)/(1 – ||) is the voltage standing wave ratio. 
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Essential background for antennas presented in this thesis is described in Section 2.1.2 for 

dipole antennas and Section 2.1.3 for waveguide aperture antenna. 

 

2.1.2 Dipole Antennas 

A dipole antenna is a basic simple antenna with a good closed form expression available to 

describe its properties. The structure of a dipole antenna consists of two identical straight 

wires being positioned along the z-axis and is shown in Figure 2.5.  

 

Figure 2.5 The geometry of a dipole antenna [3]. 

 

The dipole antenna is usually fed at the centre with a transmission line. The currents on each 

wire are opposite in direction and can be obtained from the geometry of the dipole antenna. 

The current distribution along a dipole antenna for a small diameter d (thin wire dipole) can 

be defined as [2] 

sin ,      0
2 2

( )

sin ,      - 0
2 2

d d
m

e

d d
m

l l
I k z z

I z
l l

I k z z

            
          

    (2.4) 
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where   Ie is the current distribution along a thin wire dipole antenna. 

Im is the maximum current magnitude. 

 k = 2/ is the propagation constant. 

 ld is the total dipole length. 

The radiation pattern of the dipole antenna can be obtained from the line integral of the 

current along the z-axis, given by [3] 

 

 
/ 2 cos

/ 2
sin sin

4

d

d

jkr
l jkz

z el

e
E j A j I z e dz

r



   





        (2.5) 

E
H 

 
          (2.6) 

 

where E is the electric field in the far field. 

 H is the magnetic field in the far field. 

zA  is the potential vector of the current along z-axis. 

2 f   is the radian frequency (rad/s). 

 is the permeability (H/m). 

0

0

376.73 120  
 


      is the intrinsic impedance of free-space (ohms)  

 

Substituting the current equation from (2.4) to (2.5) gives 

0 cos

/ 2

/ 2 cos

0

sin sin
4 2

                                sin                                        (2.7)
2

d

d

jkr
jkzd

ml

l jkzd
m

le
E j I k z e dz

r

l
I k z e dz
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Solving the integral equation (2.7) gives 

 

   cos / 2 cos cos / 2

2 sin

jkr
d dm

kl klI e
E j

r




 

          (2.8) 

 

The magnetic field can be obtained as 

 

   cos / 2 cos cos / 2

2 sin

jkr
d dm

kl klE I e
H j

r





  

          (2.9) 

 

The current distribution and the normalised radiation pattern (E-field) for different dipole 

lengths dl  are obtained using equations (2.4) and (2.8), and shown in Table 2.1. 
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Table 2.1 The current distribution and the normalised radiation for different length dipoles 

Dipole 

length ( dl ) 
Current distribution [Equation 2.4] 

Normalised radiation pattern 

(E-field) [Equation 2.8] 
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2.1.2.1 Equivalent Circuit of Dipole Antenna 

This section is to study an equivalent circuit of a dipole antenna, which is initially analysed 

from an antenna impedance (ZA). The antenna impedance ZA is the ratio of voltage (V) to 

current (I) at a pair of terminals. It is corresponded to a diagram of the use of dipole antenna 

in transmitting mode, as shown in Figure 2.6(a). The dipole antenna shown in Figure 2.6(a), is 

equivalent to a series circuit of an antenna resistance (RA) and an antenna reactance (XA), as 

illustrated in Figure 2.6(b).  

            

  (a)                                                          (b) 

Figure 2.6 (a) Dipole antenna usage. (b) Equivalent circuit. 

 

Referring to Figure 2.6(b), the impedance of the dipole antenna is defined as 

A A A

V
Z R jX

I
          (2.10) 

where   ZA is the antenna impedance (ohms). 

  RA is the antenna resistance (ohms). 

  XA is the antenna reactance (ohms). 
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For the resistive part of ZA, it represents RA by 

RA = Rr + Rl       (2.11) 

where   Rr is the radiation resistance (ohms). 

  Rl is the loss resistance (ohms). 

 

For the reactive part of ZA, it represents XA, which can be a positive or a negative value. For 

positive XA, it is equivalent to an antenna inductance (LA). For negative XA, it is equivalent to 

an antenna capacitance (CA).  

 

The equations used to calculate Rr and XA element values for finite length dipoles are derived 

using the induced EMF method, given by [2] 

         

        

1
( ) ln sin 2 2

2 2
1

             cos ln / 2 2                                            (2.12)
2

r d d i d d i d i d

d d i d i d

R l C kl C kl kl S kl S kl

kl C kl C kl C kl




      

     

 

and 

       

     
2

( ) 2 cos 2 2
4

2
              sin 2 2                                                 (2.13)

A d i d d i d i d

d i d i d i
d

X l S kl kl S kl S kl

ka
kl C kl C kl C

l




    

        
   

 

where ld is the length of the dipole antenna, a is the wire radius, k is the propagation constant 

(k = 2/0), C = 0.5772 (Euler’s constant) and Ci(x) and Si(x) are the cosine and sine integrals 

and given by 

  cosx

i

y
C x dy

y
         (2.14) 

 
0

sinx

i

y
S x dy

y
         (2.15) 
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An example of Rr and XA calculation using equations (2.12) and (2.15) for a half-wavelength 

(0.5) lossless dipole antenna (Rl = 0 ), the results shows that Rr is 73 ohms and XA is 42.5 

ohms, which corresponded to the antenna theory. 

The loss resistance Rl of wire dipole antenna represents the conductor loss and is considered 

in a case of lossy dipole. Rl is calculated based on the current distribution, given by [3] 

For a uniform current distribution, 

 0

4
d

l

l f
R

a

 
 

      (2.16) 

For a triangular current distribution, 

 0

6
d

l

l f
R

a

 
 

      (2.17) 

where  a is the wire radius of dipole antenna. 

  f is the frequency (Hz). 

 0 is the permeability of free-space (4 x10-7 H/m). 

  is the conductivity of the metal (S/m). 

For example, a loss resistance Rl of an half wave length dipole antenna made from the copper 

( = 5.7x107 S/m), wire radius a is 3x10-4. The Rl is calculated at f of 100 MHz using 

equation (2.16) that is equal to 0.349 ohms. For equation (2.17), it is used to calculate Rl for a 

short dipole antenna (ld << ). 
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Figure 2.7 The current distribution of a wire dipole antenna in a case of Iin Im [2]. 

 

Previously, the radiation resistance Rr and the antenna reactance XA of dipole antennas were 

obtained using equations (2.12) and (2.13). These equations are only valid for some dipole 

lengths (ld  = /4, 3/4, , etc.), that the maximum current (Im) is equal to the current (Iin) at 

input terminals. It should be noted that the maximum current Im may not be equal to the 

current Iin for a particular length ld. It can be considered from a diagram shown in Figure 2.7. 

Assuming the input power (Pin) is equal to the radiated power (Pr) as 

2 2

2 2
in m

in r

I I
R R      (2.18a) 

or 

2

m
in r

in

I
R R

I

 
  
 

      (2.18b) 

 

where    Rin is the radiation resistance at input (feed) terminals. 

   Rr is the radiation resistance at current maximum obtained from equation (2.12). 

   Im is the current maximum. 

   Iin is the current at input terminals. 
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Referring to Figure 2.7, the current Iin is related to the maximum current Im for a length ld and 

is given by [2] 

sin
2

d
in m

kl
I I

   
 

      (2.19) 

Substituting equations from (2.20) to (2.19), thus equation (2.19) can be written as 

2sin
2

r
in

d

R
R

kl


 
 
 

      (2.20) 

Also the antenna reactance (Xin) at input terminals of dipole antenna can be written as [2] 

2sin
2

A
in

d

X
X

kl


 
 
 

      (2.21) 

Substituting equations from (2.12) to (2.21) and from (2.13) to (2.22) thus, 
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It is concluded that the input impedance (Zin) of a lossless dipole antenna is  

in
in in in

in

V
Z R jX

I
          (2.24) 
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Figure 2.8 Equivalent circuit of a lossless dipole antenna. 

 
(a)  

 
 (b) 

Figure 2.9 (a) The Rin calculated using equation (2.22) for different values of ld. (b) The Xin 

calculated using equation (2.23) for different values of ld. 
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It is represented as an equivalent circuit shown in Figure 2.8. The equivalent circuit of lossless 

dipole will be used to define its quality factor that is a parameter in order to design a resonator 

using dipole antenna in Chapter3. Figure 2.9 shows Rin and Xin calculated using equations 

(2.23) and (2.24) for the length ld between 0.1 and 0.5. These Rin and Xin calculation will 

then be utilised to calculate the quality factor (Q) of dipole antenna in Section 2.1.2.2. 

 

2.1.2.2 Quality Factor of Dipole Antenna 

The equivalent circuit of dipole antenna was analysed for different antenna lengths, as 

described in Section 2.1.2.1. An antenna element can also be described as a resonator in terms 

of the quality factor (Q). In this thesis, the dipole antenna will be initially studied and 

designed for a lossless dipole (Rl = 0 ). This is because it is a simple way to determine its 

quality factor, which is only related to the radiation or is named the radiation quality factor 

Qr. The Qr can be obtained from the equivalent circuit of a lossless dipole, which is analysed 

at the input. As mentioned in Section 2.1.2.1, a lossless dipole was equivalent to a Rin and Xin 

series circuit. In this case, Qr of a lossless dipole can be calculated using the values of Rin and 

Xin considering at f0, given by [4] 

 

   
   000

0
0 02

inin
r

in

X fdX ff
Q f

R f df f

 
   

 
    (2.25) 

 

where f0 is the centre frequency (Hz), Rin(f0) is the radiation resistance at the centre frequency 

(), Xin(f0) is the antenna reactance at the centre frequency (), 
 0indX f

df
is the derivative of 

Xin at the centre frequency and can also be defined as  



32 
 

 

     0 0 0

2
in in indX f X f f X f f
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and f is a small change in f 

 

The value of f must be small to improve the accuracy of the calculation of Qr. The value 

selected is about 1% of the bandwidth or 0.01 for this calculation. 

 

The radiation quality factor Qr is calculated using equation (2.25) with the calculated values 

of Rin and Xin for equations (2.23) and (2.24). A curve of Qr for the length ld between 0.1 and 

0.5 are shown in Figure 2.10. Equation (2.25) will then be utilised for obtaining Qr of a 

lossless dipole from CST simulation software [5], which will be presented in Chapter 3. 

 

 

Figure 2.10 The radiation quality factor Qr calculated using equation (2.25). 
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 2.1.3 Waveguide Aperture Antennas  

A waveguide aperture antenna is a simple antenna structure and is usually designed with an 

opening at the end of a rectangular waveguide. The aperture area of the waveguide is used to 

radiate the electromagnetic wave. Figure 2.11 shows the structure of the waveguide antenna 

and the distribution of the E and H fields inside of the waveguide for the dominant TE10 

mode. 

 

Figure 2.11 The geometry of an open-ended waveguide antenna. 

 
For the open-ended waveguide, the radiated power does not use the full physical aperture (Ap) 

due to E-fields at the sidewall that becomes zero for TE10 propagation mode. Thus, the 

effective area Ae of the aperture is less than the physical aperture Ap and corresponds to the 

aperture efficiency ap of the antenna as given by [2] 

e
ap

p

A

A
       (2.26) 

The radiated power of the aperture antenna can be obtained by integrating the average 

Poynting vector Wav and is given by [2] 

2

0

4rad av

S

E
P W dS ab


        (2.27) 

The maximum radiation intensity Umax at  = 0o is given by [2] 
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     (2.28) 

 

The maximum directivity D0 of the aperture antenna is obtained using equation [2]:  

 

max
0 2 2 2 2 2

4 8 4 4 4 4
0.81 0.81 p em

rad

U
D ab ab A A

P

    
    

                                  
 (2.29) 

  

where  Ap = a x b is the physical aperture for the open-ended waveguide antenna.  

Aem = apAp = 0.81Ap is the maximum effective aperture for the open-ended  

waveguide antenna. 

 

Thus, the aperture efficiency ap for the waveguide aperture antenna is equal to 0.81, which 

indicates 81% efficiency of the physical aperture Ap can be utilised for radiating EM energy. 

It is noted that the equation (2.29) is only valid for the aperture mounted on the infinite 

ground plane.  

 

 

2.2 Microwave Filter Theory 

2.2.1 Overview of Microwave Filters 

As this project is about combining antennas and filters we now move on the filter theory. A 

microwave filter is a two-port passive component utilised for selecting a required frequency 

and rejecting an unwanted frequency in the microwave frequency range (300 MHz–300 GHz) 

[6]. The microwave filter is represented by a two-port network [7], as shown in Figure 2.12.  



35 
 

 

Figure 2.12 Two-port network representation of a microwave filter. V1, V2 and I1, I2 are the 

voltage and current at the port 1 and 2, Z01 and Z02 are the terminal impedances [7]. 

 

The input/output transmission and reflection coefficients for the two-port network in Figure 

2.12 is represented by the incident waves (a) and the reflected wave (b). These variables are 

defined from the voltage (V) and current (I) variables, as computed by [7]  
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   (2.30) 

The performances of microwave filters are commonly described by S-parameters. The S-

parameters for a two-port network are related to the incident waves (a) and the reflected wave 

(b).  Reflected waves in terms of incident waves are presented in matrix form as follows 

1 11 12 1

2 21 22 2

b S S a

b S S a

     
     

     
     (2.31) 

where 
2

1
11

1 0a

b
S

a


 is the input reflection coefficient with output properly terminated. 

2

2
21

1 0a

b
S

a


 is the forward transmission coefficient from port 1 to port 2. 

1

2
22

2 0a

b
S

a


 is the output reflection coefficient with input properly terminated. 
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1

1
12

2 0a

b
S

a


 is the reverse transmission coefficient from port 2 to port 1. 

The characteristics of filters are shown by the transmission loss LA and the return loss LR 

which are obtained from the magnitude of S-parameters for the two-port network in decibels, 

as follows 

 10 2120logAL S    dB      (2.32a) 

 10 1120logRL S    dB      (2.32b) 

The transmission and return losses are assumed to have positive values. The relation between 

the transmission loss LA and return loss LR for a lossless network only are given by [7] 

 /10
1010log 1 10 RL

AL      dB     (2.33a) 

 /10
1010log 1 10 AL

RL      dB     (2.33b) 

 

(a) 

g0

g1

g2

g3

gn gn+1

(n even)

gn

gn+1

(n odd)

or

 

(b) 

Figure 2.13 Lowpass prototype filters for all-pole filters with (a) A ladder circuit beginning 

with a shunt element and (b) A ladder circuit beginning with a series element [7]. 
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In designing a filter, the circuit inside of a two-port filter network is initially assumed to be a 

lumped element circuit, having the form of a ladder network also known as a lowpass 

prototype filter circuit [7], as shown in Figure 2.13.  

 

The lowpass prototype g values can be obtained from the filter response. The Chebyshev filter 

response is selected for designing the filters in this thesis. The response of Chebyshev 

lowpass filter has an equal-ripple passband response and maximally flat stopband [7] and as 

illustrated in Figure 2.14. 

 

Figure 2.14 Chebyshev lowpass response [7]. 

 

The amplitude-squared transfer function for a lossless filter with Chebyshev response is [7] 

   
2

21 2 2
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1 n

S j
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     (2.34) 

and the amplitude-squared input function for a lossless filter with Chebyshev response is 

     
2 2

11 21 2 2

1
1 1

1 n

S j S j
T

     
 

   (2.35) 

where  is the angular frequency, is the ripple constant, which is obtained from the 

passband ripple LAr in dB by 
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          (2.36) 

A Chebyshev function Tn() of the nth order filter can be defined as [7] 
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   (2.37) 

The g values for a lowpass prototype filter having the Chebyshev response the passband 

ripple is LAr in dB and the cutoff frequency c = 1 can be calculated using equations below 

[7]: In these equations  
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Using these equations a low pass prototype filters can be calculated and the g element values 

shown in Figure 2.13 calculated. 
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2.2.2 Microwave Resonators 

Microwave resonators are microwave devices utilised in microwave coupled resonator filters. 

Examples are microstrip resonators, cavity resonators, dielectric resonators, etc.. The 

microwave resonator can be modeled as a similar circuit to a lumped-element resonator (i.e. a 

series or parallel resonant circuit). Figure 2.15 shows the equivalent circuit of several 

microwave resonators. A lossless resonator is an ideal resonator with no loss, i.e. R = 0 in 

Figure 2.15(a) for a series circuit and Figure 2.15(b) for a parallel circuit. 

   

     (a)            (b) 

 

      (c)             (d) 

 

Figure 2.15 The resonant circuits represented as microwave resonators. (a) Series lossless 

resonant circuit. (b) Parallel lossless resonant circuit. (c) Series lossy resonant circuit.  

(d) Parallel lossy resonant circuit. 
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For lossy resonators, the losses in the resonator are conventionally represented by the 

resistance (R) in the resonant circuit of Figure 2.15(c) or the conductance (G) in the resonant 

circuit of Figure 2.15(d). The unloaded quality factor (Qu) is a parameter used to describe the 

losses of a resonant circuit. For example, a low loss implies a high Qu, whereas a high loss 

implies a low Qu. For the series lossy resonant circuit, the unloaded quality factor Qu is 

defined by [7] 

u

L
Q

R


       (2.39) 

For the parallel lossy resonant circuit, The unloaded quality factor Qu is defined by [7] 

u

C
Q

G


       (2.40) 

In principle, the general definition of the unloaded quality factor Qu is [7] 

 

Time-average energy stored in resonator

Average power lost in resonatoruQ     (2.41) 

 

The losses in the resonator are usually associated with the conductors, dielectrics in the 

resonator and radiation from the resonator. Thus, the total unloaded quality factor Qu can be 

determined by including these losses together [7] 

 

1 1 1 1

u c d rQ Q Q Q
        (2.42) 

 

where Qc is the conductor quality factor, Qd is the dielectric quality factor and Qr is the 

radiation quality factor. 
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In filter design, the passband response of the filters may be distorted due to the losses in the 

resonators of the filter circuits. The value of unloaded quality factor Qu can be used to 

calculate the insertion loss in the bandpass filter design using the resonators with finite Qu, 

given by [7] 

C
0

1

4.343   (dB)
n

A i
i ui

L g
FBW Q


 

     (2.43) 

 

where 0AL is the increase of passband insertion loss in dB, FBW is the fractional bandwidth 

(FBW =  (f2 – f1)/2), f2 – f1 is the passband bandwidth, C is the cut-off frequency (C = 1), gi 

is the g values for i elements obtained from the filter response and Qui is the unloaded quality 

factor for i resonator. 

 

2.2.3 Rectangular Waveguide Cavity Resonator 

A rectangular waveguide cavity resonator can be made from a section of a rectangular 

waveguide that is terminated at both ends with conducting plates. Figure 2.16 shows the 

geometry of a rectangular waveguide cavity where a is the width, b is the height and d is the 

length. 

 

Figure 2.16 A rectangular waveguide cavity [6]. 
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The transverse electric fields (Ex, Ey) of the TEmn and TMmn mode for the rectangular 

waveguide cavity can be written as [6] 

( , , ) ( , ) mn mnj z j z
tE x y z e x y A e A e          (2.44) 

where ( , )e x y are the transverse variations of the mode in the x and y directions, A+ and A– are 

the arbitrary amplitude of the travelling waves in the +z and –z directions and mn is the 

propagation constant and is given by [6] 

2 2
2

mn

m n
k

a b

          
   

      (2.45) 

where 02k f  , and  and  are the permeability and permittivity of the material filling 

the waveguide. 

For the boundary condition of the waveguide cavity at z = 0 and z = d, it requires

( , , ) 0tE x y z  .  Applying the condition 0tE  at z = 0 to equation (2.44) becomes A+ = –A–. 

Also, applying the condition 0tE  at z = d, equation (2.44) becomes d = l(/mn) = l(g/2) 

where l = 1, 2, 3... This condition means that the cavity length (d) must be an integer multiple 

of a half-guide wavelength (g/2) at the resonant frequency [6]. The resonant wavenumber of 

the rectangular waveguide cavity can be defined as [6]    

2 2 2

mnl

m n l
k

a b d

              
     

     (2.46) 

where the indices m, n, l indicate the number of half wavelength variations in the x, y, z 

directions, respectively. The resonant frequency of the TEmnl or the TMmnl can be defined as 

[6] 

2 2 2

2 2
mnl

mnl

r r r r

ck c m n l
f

a b d

  
     

             
     

  (2.47) 
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where c = 3 x 108 m/s is the light speed, and r and r  are the relative permeability and 

permittivity of the material filling the waveguide. In the case of b < a < d, the mode with the 

lowest resonant frequency is known as the dominant mode and will be TE101 mode. The 

electromagnetic-field configuration associated with TE101 mode rectangular cavity resonator 

is shown in Figure 2.17. 

 

Figure 2.17 Electromagnetic-field configuration of TE101 mode [8]. 

 

For a design example, a WR-90 rectangular waveguide operates at X-band frequencies (8.2 

GHz to 12.4 GHz) and has the width a of 22.86 mm and the height b of 10.16 mm. The 

guided wavelength of the WR-90 waveguide at the middle band frequency (about 10 GHz) 

can be calculated using the equation [8], given by    

 
0

g 2

0 c

λ
λ

1 λ / λ



      (2.48) 

where  0 = c/f is the free-space wavelength, f is frequency (Hz). 

   
c 2 2

2
λ

/ /m a n b



is the cut-off wavelength. 

Thus, the guide wavelength of a WR-90 waveguide at 10 GHz is calculated using equation 

(2.48). This yields a value of 39.76 mm. The WR-90 waveguide can be used to design a 
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cavity resonator terminated at both ends with conducting plates. The resonator is half a guide 

wavelength long. Using equation (2.47), and assuming that the inside of cavity is filled with 

air (i.e. 1r r   ), the calculated resonant frequency (f101) of the TE101 mode is 10 GHz. 

 

2.2.4 Coupled Resonator Filters 

Microwave bandpass filter is usually designed based on coupled resonator circuit. The filter 

can be simply designed by combining all resonators using coupling theory, as described in 

[7]. 

 

 

Figure 2.18 The coupling topology diagram of n-coupled resonator filter. 

 

Figure 2.18 shows the coupling topology for the nth coupled resonator filter, where the white 

circles represent resonators and the lines linking resonators represent couplings.  For 

designing an nth coupled resonator bandpass filter, the coupling coefficient (Mi,i+1) and the 

external quality factor (Qe1 and Qen) are the design parameters. The design parameters can be 

obtained from the filter specifications with equations [7]: 
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    (2.49) 
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In the normalised form, 
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   (2.50) 

 

where  Mi,i+1 is the coupling coefficient between adjacent resonators. 

Qe1 and Qen are the external quality factors of the input and output resonators.
 

2 1

0

f f
FBW

f


  is the fractional bandwidth. 

f2 – f1 is the design bandwidth. 

f0 is the centre frequency. 

mi,i+1 is the normalised coupling coefficient between adjacent resonators. 

qe1 and qen are the normalised external quality factors of the input and output  

             resonators.
 

g is the g value obtained from the filter response (e.g. Chebyshev filter response from 

equation (2.38)). 

The normalised design parameters will then be utilised with the coupling matrix to calculate 

the filter response corresponding to filter specifications. 

 

2.2.5 Coupling Matrix for Coupled Resonator Filters 

The coupled resonator filters are conventionally designed using the coupling coefficient 

(Mi,i+1) and the external quality factors (Qe1 and Qen), as described in the previous section. The 
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coupling matrix is a general technique for analysing the filter response of coupled resonator 

filters based on the coupling coefficient and the external quality factor with couplings 

potentially between any every pair of resonators. The coupling matrix is derived from the 

coupled resonator circuits and can be applicable to design filters for different coupling 

topologies. The calculated coupling values, from the coupling matrix, can then be utilised for 

defining the physical dimensions for the filter structure. The coupling coefficient and the 

external quality factor extraction technique are dependent on the filter structure and will be 

described in the next chapters. This section derives the coupling matrix equations for coupled 

resonator filters with the lossy and lossless resonators. Here the lossy resonators are assumed 

in the filter circuit when deriving the coupling matrix equation in the case of filter circuits 

with finite Qu. The n-coupled resonator filter circuits with finite Qu for the magnetic coupling 

and the electric coupling circuits are shown in Figure 2.19. 

 
(a) 

 
(b) 

Figure 2.19 Equivalent circuits of n-coupled resonator filters with lossy resonators.  

(a) Magnetic coupling circuits. (b) Electric coupling circuits. 
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Figure 2.19(a) illustrates an equivalent circuit of an n-coupled resonator filter with lossy 

resonators for the case of magnetic coupling, where L, C and R are the inductance, 

capacitance and resistance, respectively; Rs is the source resistance, Rl is the load resistance, i 

represents the loop current and es is the voltage source. For this equivalent circuit, the 

resonators are coupled by mutual inductances (i.e. magnetic couplings). The circuit shown in 

Figure 2.19(a) is analysed by the loop equations using Kirchhoff’s voltage law and can be 

written is the matrix form as [75] 
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   (2.51) 

 

or 

     Z i e   

 

where [Z] is an n × n impedance matrix. For simplicity, the coupling circuit for this filter is 

derived on the assumption of synchronous tuning where the resonant frequency of all 

resonators are the same frequency. The angular resonant frequency 0 1/ LC  , where L = 

L1 = L2 =...= Ln and C = C1 = C2 =...= Cn. For a narrow-band approximation assuming 0  , 

equation (2.51) can be simplified as [7] 
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   (2.52) 

where Z   is the normalised impedance matrix. 
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is the complex frequency variable. 

 1 1  e eq FBW Q  is the normalised external quality factor of input resonator. 

 0
1e

s

L
Q

R


 is the external quality factor of input resonator. 

 en enq FBW Q  is the normalised external quality factor of output resonator.  

 0
en

l

L
Q

R


  is the external quality factor of output resonator. 

  (for 1,2, ,  )ui uiq FBW Q i n    is the normalised unloaded quality factor  

                     of resonator i. 

 0  (for 1, 2, ,  )ui
i

L
Q i n

R


   is the unloaded quality factor of resonator i. 

 ij
ij

M
m

FBW
 is the normalised coupling coefficient of resonator i and j. 

 ij
ij

L
M

L
 is the coupling coefficient of resonator i and j. 

 

All resonators of the circuit of Figure 2.19(a) may have different resonant frequencies in the 

case of asynchronously tuned coupled-resonator circuits [7]. The normalised self-coupling 
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coefficient mii accounts for asynchronous tuning and is related to the self-resonant frequency 

of each resonator. The mii can be added into the diagonal entries in Z   , for asynchronous 

tuning as [7] 
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 (2.53) 

 

 

 (a) 

 

(b) 

 

Figure 2.20 Network representation of two-port circuit in (a) Figure 2.19(a) and (b) Figure 

2.19 (b). 
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The network representation for the circuit of Figure 2.19(a) is shown in Figure 2.20(a), where 

a1, b1 and a2, b2 are the wave variables and V1, I1 and V2, I2 are the voltage and current 

variables. Port 1 connected to resonator 1 and port 2 is connected to the resonator n.  

 

The wave variables can be defined from the voltage (V) and current (I) variable. The 

expressions are similar to these given in Section 2.2.1, defined by 

1

2
n

n n

V
a RI

R

   
 

 and 
1

2
n

n n

V
b RI

R

   
 

   (2.54) 

where n is the port number, R corresponds to Rs for port 1 and Rl is for port 2. Comparing the 

circuit in Figure 2.19(a) with the network in Figure 2.20(a) we can calculate that I1 = i1, I2 = –

in and V1 = es – i1Rs. Thus, the wave variables equation (2.54) can be rewritten as 
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     (2.55) 

The S-parameters can be obtained from the wave variables as follows, 
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       (2.56b) 

i1 and i2 can be found by solving (2.51), 

1

1 11
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L FBW


   
      (2.57a) 

1
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0
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      (2.57b) 

Substituting (2.57) into (2.56) gives, 
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     (2.58a) 
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     (2.58b) 

Rewriting (2.58) in terms of the normalised external quality factors ( 1 0 /e sq L FBW R   and

0 /en lq L FBW R  ). Thus, S-parameters become, 
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      (2.59b) 

Similarly, the equivalent circuit of the resonators coupled by mutual capacitances (i.e. electric 

couplings) shown in Figure 2.19(b) can be analysed by the node equation using Kirchhoff’s 

current law. The normalised admittance matrix Y    for the filter of Figure 2.19(b) can be 

defined as  
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 (2.60) 

 

The S-parameters for the filter circuit in Figure 2.19(b) can be defined in a similar way  to that 

for the magnetic coupling circuit  
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     (2.61b) 

It can be concluded that the normalised impedance matrix Z   and the normalised admittance 

matrix Y    are of the same form. Thus, the S-parameters for these coupling circuits may be 

defined as  
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where the matrix [A] is  
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       (2.63) 

or        A q p U j m    

 

where [A] is the sum of three n x n matrices, [U] is the n x n identity matrix, [q] is an n x n 

quality factor matrix, [m] is an n x n coupling matrix. 

 

In a case of filters with lossless resonators, the coupling matrix equation is derived in a 

similar way to that for filters with finite Qu by not considering the loss resistance in the all 

resonators. Thus, the matrix [A] for the lossless filter is defined as [7] 
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   (2.64) 

The S-parameter equations for the lossless filter circuits are the same as the equations for the 

filter with finite Qu (equations (2.62a) and (2.62b)). 

 

2.3 Coupling Matrix for Antenna-Filters  

Previously, the antenna and microwave filter theories have been presented and related to the 

work in this thesis. Both theories will be used for the new design, involving antenna and filter 

integration based on the coupled resonator filter theory [7]. The antenna theory will then be 

applied to design the dipole antennas in Chapter 3 and 4, and waveguide aperture antennas in 

Chapter 5. The antennas will then be designed to perform as resonators integrated into the 

coupled resonator circuit. As a first step, we will follow the study of the coupled resonator 

filter theory to design a conventional two-port bandpass filter using all the dipole antennas as 

resonators presented in Chapter3. The principle of the work will then be used to design an 

antenna-filter in which all resonators are dipole antennas with the second port replaced as the 

radiation port. All the designs in this work are presented in Chapter 4 and are designed using 

the coupling matrix synthesis. Figure 2.21(a) shows a topology of n-coupled resonator 

antenna-filter; where the white circles represent resonators, the solid lines linking resonators 

represent couplings and a dashed line with an arrow represents radiation from the antenna. 

The coupling matrix equation for this topology can be derived in a similar way of to that 

given in Section 2.2.5, considering the external output as the source of radiation (qen = qrn) 
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and assuming the antenna is lossless. The coupling matrix equation of the topology in Figure 

2.21(a) is defined as   
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           (2.65) 

or        A q p U j m    

where [A] is the sum of three n x n matrices, [U] is an n x n identity matrix, [q] is an n x n 

quality factor matrix,   [m] is an n x n matrix of coupling factors. 

 

 

(a) 

 

(b) 

Figure 2.21 The coupling topology diagram of n-coupled resonator antenna-filter for (a) The 

last resonator is the antenna (Chapter 5), (b) All resonators are antennas (Chapter 4). 

 

Figure 2.21(b) shows the topology of an n-coupled resonator antenna-filter in which all 

resonators are antennas, the white circles represent antennas. The coupling matrix equation 

for this topology can be derived in a similar way to that shown in Section 2.2.5, assuming that 

the antennas are lossless. The coupling matrix equation of the topology in Figure 2.21(b) is 

defined as 
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(2.66) 

or        A q p U j m    

where [A] is the sum of three n x n matrices, [U] is the n x n identity matrix, [q] is an n x n 

quality factor matrix,   [m] is an n x n coupling matrix. 

 

This is a one port component which is considered only the reflection coefficient S11. The 

magnitude of S11, for this coupling matrix is given by  
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e
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      (2.67) 

 

The coupling matrix for equation (2.66) can be utilised to design the antenna-filter using the 

dipole antennas which will be presented in Chapter 4. Also, the coupling matrix for equation 

(2.65) can be utilised in the design of waveguide antenna-filters in Chapter 5. 

 

2.4 CST Microwave Studio  

High frequency (HF) components are usually designed and simulated using Electromagnetic 

(EM) simulators in order to analyse their parameters such as S-parameters, radiation 

patterns,..etc..  The EM simulator uses the Maxwell’s equation solver to analyse the modeled 

structure depending on the boundary conditions. It also uses numerical methods in order to 
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obtain accurate results. The numerical methods consist of finite element method (FEM), finite 

different time domain method (FDTD), method of moment (MOM) and integral equation 

method (IEM). Each method is suitable for specific type of calculation. The main 

requirements of users for the EM simulator are easy in use, fast simulation and high accurate 

results. The structures of designed components presented in this thesis have been simulated 

using CST Microwave studio software [5]. This section provides an overview of CST 

software in Section 2.4.1 and a few instruction of CST usage. 

 

2.4.1 CST Microwave Studio Overview 

CST Microwave studio [5] is an EM commercial simulation software and can provide those 

requirements of users. This software includes 3D solver, circuit simulator and optimiser. The 

solvers in CST software package consist of a transient domain (TD) solver, frequency domain 

(FD) solver, Eigenmode (EM) solver, Integral equation (IE) solver, Asymptotic (A) solver 

and TLM solver. The work presented in this thesis is to design an antenna-filter which will be 

simulated in the open boundary with add space using a solver in CST software package. Here 

TD solver is a simulation tool for structures designed in the opened boundary using the finite 

frequency domain (FDTD) method. This solver is suitable for use in this work and shows 

good agreement between simulation and the measurement results. 

 

 2.4.2 Instruction for using CST Microwave Studio  

Figure 2.22 shows a beginning of opened CST software usage.  It shows a new project creator 

which provides the supporting templates for user in order to set up the new project. It can be 
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used for selecting a appropriate template to design a component. For an example, ‘Antenna 

(Wire)’ is for design a wire dipole antenna. 

 

Figure 2.22 Design templates for the new project in CST. 

 

Figure 2.23 First use of CST microwave studio software. 
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After created the project, the CST microwave studio software will be displayed in Figure 

2.23. In the CST software, there are many tools displayed as small icons.  It is used for setting 

up the design project. Here we will describe only the most tools shown in Figure 2.23 for 

basic users. The tool box usage in CST microwave studio software will be described in step 

by step as follows: 

 

Figure 2.24 Unit setting menu. 

 

Step 1, the units is firstly setting up in a design of component and is shown in Figure 2.24. It 

can be set the required units that normally include the dimension, frequency, temperature and 

time units.  

 

Figure 2.25 Background property setting menu. 
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Step 2, the background properties in CST are used for setting the material property 

environment in the simulation, as shown in Figure 2.25. This can be selected the material type 

that includes normal, PEC, Anisotropic and lossy material depending on the design. In this 

thesis, a normal material has been chosen to design antenna-filters and is also a lossless 

material in the free-space.  

 

Figure 2.26 Frequency setting menu. 

Step 3, the frequency operation for a design component can be set in the CST simulation by 

selecting a frequency range icon shown in Figure 2.23. Figure 2.26 shows a frequency setting 

menu and displays Fmin and Fmax, where Fmin is a frequency minimum and Fmax is a 

frequency maximum (Fmax). For example, an X-band frequency is set for Fmin = 8 GHz and 

for Fmax = 12 GHz.  

 

Figure 2.27 Boundary condition setting menu. 
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Step 4, this step is to describe the use of object tool and boundary condition setting menu for 

designing the structure. The object tools are used to create the structure by selecting the small 

icons shown on the left of Figure 2.23. It can be used to create a brick, a sphere, cylindrical, 

cone and torus shape. Materials of objects can be selected in the object’s menu. After created 

objects, the boundary conditions for the structure need to be set in any direction as shown in 

Figure 2.27. It is depended on a type of component. For examples, an opened with add space 

boundary condition in all directions is set for an antenna in simulation, an electric (Et = 0) 

boundary condition in all directions is set for a waveguide cavity filter in simulation.  

 

Figure 2.28 Waveguide port setting menu. 



61 
 

 

Figure 2.29 Discrete edge port setting menu. 

 

Step 5, ports or input/output terminations of components in CST software is depended on a 

component type and can be made as a waveguide port and a discrete edge port. Figure 2.28 

shows a menu for setting ports that is used to define a waveguide port in simulation. This can 

be set a label port, orientation in positive or negative, and coordinates in full plane for a 

waveguide and in free plane for a microstrip. Figure 2.29 shows a menu for setting ports that 

is used to define a discrete edge port in simulation. This can be set a label port, impedance 

(default as 50 ohms), radius of the port and location of the port. This port is usually defined 

for a wire dipole antenna and will be presented in this thesis. 
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Figure 2.30 Lumped network element setting menu. 
 

 Step 6, lumped network element can be set in 3D simulation by choosing the menu shown in 

Figure 2.30. It can be selected to create three lumped element circuit types which include a 

RLC serial, RLC parallel and diode circuit. This menu can be used to set the values of each 

element, radius of element and location of element. The lumped network element will be used 

to design an inductor presented in Chapter 3 and 4. 

 

Figure 2.31 TD solver setting menu. 
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 After completed all of those setting, we can simulate the structure using solvers in CST 

software. Here time domain (TD) solver is only selected for antenna-filter design in this 

thesis. TD solver has a menu shown in Figure 2.31 and is used to set the accuracy (medium is 

'-50 dB') before starting to run the simulation. The CST optimiser is shown on the right of the 

TD solver menu. After opened optimiser, the CST optimiser menu will be displayed in Figure 

2.32. Before running optimisation, the optimiser needs to be set the initial dimension 

parameter values (it is normally set to be vary about 5 %) with algorithm (default is 'Trust 

Region Framework') to search the best matched values depending on the goals. The goal 

setting menu is used to set the condition to achieve the desired S-parameter values and is 

shown in Figure 2.33. For an example, the goal is set to achieve the target for the S11 < -20dB 

in the frequency range from 9 GHz to 11 GHz. 

 

Figure 2.32 CST optimiser setting menu. 
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Figure 2.33 Goal setting menu in CST optimiser. 
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Chapter 3 

Two-Port Dipole Bandpass Filter 

 

3.1 Introduction 

The advantages of integrating RF/microwave components into a single module are to reduce 

the microwave component count and miniaturise the total circuit area, and additionally 

improve the noise and interference performance in the system. An antenna and a bandpass 

filter are essential components employed at the front-end. An antenna is used for transmitting 

and receiving RF signals [1], whereas a bandpass filter selects the required frequencies and 

rejects unwanted frequencies. Usually the input impedance of the antenna and the output 

impedance of the bandpass filter are different. A matching network is therefore required [2] to 

improve power transfer. The integration of an antenna and a bandpass filter is considered here 

as a new RF component called an antenna-filter.  

 In this chapter, a new design approach of antenna and filter integration will be started 

from a bandpass filter designed using the antennas. This work is to demonstrate the antenna 

elements which can serve as resonators of the filter, as well as performing their role as 

radiating elements [3]. Here a dipole antenna is selected to design a resonator. The structure 

of dipole is simple and can be arrayed as a side-by-side structure corresponding to the 

structure of a coupled resonator filters [4]. The antenna and filter theories in [1] and [4] are 

used in order to simplify the problem initially and get a good understanding in the design 

approach. From a filter point of view the radiation from the antennas represent significant 

source of loss for each resonator. At this stage no account is taken of the radiation pattern. 

This design describes the initial concepts of an antenna-filter design based on the coupled 
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resonator filter theory. The proposed component will be called a Two-port dipole bandpass 

filter. The measurements for the fabricated prototype are also presented in this chapter. 

   

3.2 Resonator Design  

This section presents a new method in the resonator design based on the structure of dipole 

antennas. This work is firstly to study an equivalent circuit of a dipole antenna, which is 

considered as a series resonant circuit [2]. This equivalent circuit will then be considered for 

extracting the quality factor of antennas [5]. Here the quality factor of dipole is only 

considered as the radiation quality factor (Qr), since the antenna is made from a lossless 

material. This will be described in Section 3.2.1. The dipole antenna will be designed as a 

resonator with an inductor to control the Qr and the centre frequency f0. This will be presented 

in Section 3.2.2. The unloaded quality factor of resonator dipole antenna is presented in 

Section 3.2.3.  

 

3.2.1 Equivalent Circuit of Dipole Antenna in Simulation 

In this section, a dipole antenna is selected and is designed at the centre frequency (f0) of 1 

GHz [1]. For simplicity in the design, the dipole antenna is assumed to be made from a 

lossless material (i.e. a Perfect Electric Conductor or PEC) in the CST simulation software [6] 

and shown in Figure 3.1(a).  
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injX

 

(a)                                                            (b) 

Figure 3.1 A lossless dipole antenna (a) Geometry of the dipole antenna in CST simulation 

software [6]. a = 0/400, g = 0/60, ld = 0.10 – 0.50. (b) Equivalent circuit of Figure 3.1(a). 

 

The simulated antenna structure shown in Figure 3.1(a) is designed corresponding to the ideal 

dipole antenna. The structure is considered as a lossless dipole antenna due to no conductor 

loss taken in simulation. According to the theory described in Section 2.1.2.1, the equivalent 

circuit of Figure 3.1(a) is therefore considered as a Rin and Xin series circuit and is shown in 

Figure 3.1(b); where Rin is the radiation resistance at input terminals, Xin is the antenna 

reactance at input terminals. Here, both Rin and Xin element values can be extracted from the 

simulation results of its input impedance (Zin) obtained at 1 GHz (f0) using CST simulation 

software [6]. Rin is extracted from the simulated real part (Re.) of Zin. Xin is extracted from the 

simulated imaginary part (Im.) of Zin. In this work, both Rin and Xin values of the simulated 

dipole will be obtained for different values of dipole length ld. In this work, we will select the 
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dipole length ld from 0.10 to 0., which are suitable lengths for use to fabricate the devices.  

These Rin and Xin will then be used to obtained its quality factor (Q) used to design the 

resonator in Section 3.2.2. The curves of simulated values of Rin and Xin versus ld are shown in 

Figure 3.2(a) and 3.2(b), respectively. The simulated values of Rin and Xin show the 

corresponding results with the calculation results presented in Section 2.1.2.1. 

 

      (a) 

 

        (b) 

 
Figure 3.2 (a) The simulated Rr for different values of ld. (b) The simulated XA for different 

values of ld. 
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  3.2.2 Design of Dipole Antenna with Inductor 

This section presents the resonator design method based on the structure of dipole 

antenna comparing with its quality factor Q. The quality factor Q is a parameter which is 

firstly considered and used to design a resonator in this work. It will then be extracted from 

the simulated structure of lossless dipole antenna in Section 3.2.1. The quality factor of 

lossless dipole antenna is only considered for the radiation and is defined as the radiation 

quality factor (Qr). Here Qr can be extracted in a similar way described in from Section 

2.1.2.2 using the simulated values of Rin and Xin with the use of equation (2.25). A curve of 

simulated Qr versus the length ld is shown in Figure 3.3. The simulated values of Qr show that 

it is corresponded to the calculated results presented in Section 2.1.2.2. 

S
im

ul
at

ed
Q

r 

 

Figure 3.3 The radiation quality factor Qr obtained from CST simulation. 

  

For designing a dipole antenna to serve as a resonator, the reactive element (Xin) of a dipole 

antenna is considered to analyse the circuit behavior. The dipole behaves as a capacitive 

element (CA) for ld from about 0.10 to 0.470. To form a complete RLC series resonant 

circuit [2] an inductor (L) is required in order to complete the resonant circuit. Here this 
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inductor is integrated with the dipole antenna to achieve a resonant frequency of 1 GHz. 

Figure 3.4(a) shows a simulation model for a dipole antenna with an inductor L. The 

equivalent circuit of the simulated structure, shown in Figure 3.4(a), can be represented as a 

RLC series resonant circuit, as presented in Figure 3.4(b).  

Port 1

L (nH)

ldg

a

L

Rin

CA

-jXin

jXin

(Xin is negative)

Dipole antenna

Port 1

1

1' Zaa = Zin

a

a'
 

                            (a)                                                              (b) 

 

Figure 3.4 (a) The lossless dipole antenna with an inductor (L). (b) The equivalent circuit of a 

lossless dipole antenna with the inductor (L). 

 

Figure 3.5 The inductance of L for different values of ld, obtained from calculations and CST 

simulations enabling it to resonate at 1 GHz.  
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An inductor L, for each ld value, can be designed using the antenna reactance Xin value 

obtained from calculation and simulation at the centre frequency (f0) and is defined as 

   0

02
in

d

X f
L l

f



    

     (3.1) 

Equation (3.1) can be used to extract the required inductance of L versus the dipole length ld 

by using calculated and simulated Xin values. Simulation results of inductance variations as a 

function of length ld are compared with the calculation results as shown in Figure 3.5. The 

centre frequency f0 is taken at 1 GHz. An 0.10 dipole antenna integrated with an inductor of 

120 nH is an example to demonstrate its design. The simulated reflection coefficient (S11) 

illustrated in Figure 3.6 exhibits a resonant frequency of 1 GHz corresponding to a response 

of a resonator of filter designed at 1 GHz. This can be confirmed that dipole antenna with an 

inductor serves as a resonator of filter.   

 

Figure 3.6 An example of simulated response of S11 (dB) for the 0.10 dipole (a = 0/400, g = 

0/60) with the inductor of 120 nH conforming resonance at 1 GHz. 
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3.2.3 Unloaded Quality Factor  

The total unloaded quality factor of a resonator (a dipole antenna with an inductor) may be 

defined by adding these losses as follows [4], 

1 1 1 1

u c r indQ Q Q Q
         (3.2) 

where Qc, Qr, Qind are the conductor, radiation and inductor quality factors, respectively. 

In this work, the dipole antenna is made from copper. This is associated with the loss 

resistance (Rl) of antennas, which is considered to obtain the quality factor Qc described in 

Section 2.1.2.1. The loss resistance Rl of a dipole antenna is calculated using equation (2.17). 

The Rl value will then be used instead of Rin (f0) in equation (2.25) to obtained Qc of dipole 

antenna. For example, the calculated Rl value for a 0.10 dipole antenna operating at 1 GHz is 

found using equation (2.17), to be 0.0175 ohms. The calculated Rl is employed to calculate 

the Qc value, using equation (2.25). The calculated Qc is about 4.9x104.  It implies that the Qc 

value has negligible effect on the total unloaded Q of resonator. Thus, the total unloaded Q 

factor of a resonator (a dipole antenna with an inductor) can be defined as  

1 1 1

u ind rQ Q Q
        (3.3) 

where Qr obtained from simulation is 380 for a 0.10 dipole antenna and the Qind can be 

obtained from the physical dimensions of the inductor and is 320, which will be described in 

Section 3.4. Thus, the total Qu results as 174. 

 

3.3 Design of Two-Port Dipole Bandpass Filter  

A new design of a third-order bandpass filter using dipole antennas is presented in this 

section. The proposed component is designed using the concept of conventional coupled 
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resonator filter [4]. The structure of the dipole bandpass filter with two electrical ports (not 

including radiation as a port) is shown in Figure 3.7. It consists of an array of three dipole 

antennas with inductors (i.e. resonators) and two input/output feeds. The proposed structure 

corresponds to an inline topology, as shown in Figure 3.8.  

 

Figure 3.7 The structure of the 3rd dipole bandpass filter in three-dimensions. The blue parts 

are inductors. The red symbols represent the ports. 

 

Figure 3.8 The coupling topology of 3rd order dipole bandpass filter.  

 

The third-order dipole bandpass filter is designed to have a 2% fractional bandwidth (FBW = 

0.02) at a centre frequency of 1 GHz (f0 = 1GHz). A third-order Chebyshev lowpass prototype 

with a return loss of 20 dB is chosen. The corresponding g values for the 3rd order Chebyshev 

lowpass prototype filter with a 20 dB return loss calculated using equation (2.38) are: g0 =1.0, 

g1 = 0.8516, g2 = 1.1032, g3 = 0.8516, and g4 = 1.0. The g-element values are used to calculate 
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the external quality factors (Qe) and coupling coefficients (M) using the equations (2.49) 

given below  

  0 1 1
1 , 1

1

,  ,     for 1 to 1n n
e en i i

i i

g g g g FBW
Q Q M i n

FBW FBW g g





      (3.4) 

From the bandpass filter’s specifications, Qe1, Qen and Mi,i+1 are calculated to be:  Qe1 = Qe3 = 

42.58 and M12 = M23 = 0.0206. These Qe and M values correspond to the coupling topology 

shown in Figure 3.8. The coupling matrix for a lossless filter, given in Chapter 2, is employed 

to observe the frequency response of bandpass filter using the obtained values for Qe and M. 

Figure 3.9 shows the ideal response of the designed bandpass filter plotted using equations 

(2.62) from Chapter 2. This calculated response is assumed no losses including in the design 

for observing the filter performance. It should be noted that the performance of the proposed 

design might not be realised as similar to the performance of this ideal filter, since it does not 

take into account losses from the radiation and loss resistance of inductors.   

 

 

Figure 3.9 Ideal S-parameter response of the 3rd order dipole bandpass filter calculated from 

the coupling matrix.   
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3.4 Realisation of Two-Port Dipole Bandpass Filter 

This section presents design, simulation and measurement of two-port dipole bandpass filter. 

In order to realise dipole antennas as resonators, the inductors are firstly considered in the 

resonator design based on the frequency of operation, size and quality factor. In this work, air 

coil inductors are chosen in fabrication. The design procedure and fabrication will be 

described in Section 3.4.1. The inductor parameters (L, Qind) obtained from Section 3.4.1 will 

then be taken into the CST simulations to obtain physical dimensions in terms of quality 

factors (Q) and coupling coefficient (M) in Section 3.4.2 and 3.4.3, respectively. The 

simulation and measurement results are discussed and presented in Section 3.4.4 and in 

Section 3.4.5, respectively     

 

3.4.1 Air Coil Inductor Design  

This section presents the design procedure of air coil inductor following the conventional 

design in [7]. The layout in two-dimensions of the air coil is illustrated in Figure 3.10. 

 

 

Figure 3.10 Air coil model in the calculation of inductance [7]. 

 

The inductance (L) of an air coil can be obtained approximately from the geometry shown in 

Figure 3.10, given by [7] 
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2 2
0

0.9

a n
L

b a

 



       (3.5)

 

where L is coil inductance (H), 0 is the permeability of free space (0 = 4 x 10-7 H/m), n is 

total number of turns, a is coil radius (mm), b is coil length (mm). 

 

The inductor presented in this work is designed to exhibit an inductance of 120 nH. Equation 

(3.5) is used to estimate the air coil dimensions in order to match the inductance of 120 nH. 

The air coil dimensions are: the coil radius (a) is 0.7925 mm; the coil length (b) is 3.9 mm; 

and the number of turn (n) is 15 turns. The dimensions are used to fabricate the air coil 

inductors. Copper wire was employed for this purpose The wire had an American gage 

number 30 (AWG-30), which is 0.255 mm in diameter. The fabricated inductor was measured 

using a network analyser, as shown in Figure 3.11.  The result is shown in Figure 3.12.  It can 

be seen that the measured inductances corresponded to the desired values. 

 

Figure 3.11 The measurement of an air coil inductance using the network analyser. 
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Figure 3.12 The measured inductance of an air coil from the network analyser. 

 
In this work, the inductor will be made from a lossy conductor (i.e. copper wire), which will 

be considered to obtain the Q value of inductor. Here, the quality factor (Qind) of an air coil 

inductor is depended on the conductivity of material and the physical dimension. The quality 

factor Qind can be calculated using Wheeler’s equation, given by [7]  

1 0.9
ind

a
Q

a
b




       

     (3.6) 

where Qind is the quality factor of air coil inductor, a is the coil radius (mm), b is the coil 

length (mm), and  is the skin depth of the metal, given by [7] 

0

1

f


  
      (3.7) 

where f is the frequency (Hz), 0 is the permeability of free space (0 = 4 x 10-7 H/m), and  

is the conductivity of the metal (S/m). 

 

The inductor quality factor (Qind) is associated with the loss resistance (Rind) of the inductor, 

which will be modeled, in the CST simulation [6], using a lumped network element. The 
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lumped network element in CST simulation is used to model the equivalent circuit of lossy 

inductor, as shown in Figure 3.13. 

 

Figure 3.13 A lumped element in CST simulation is equivalent to a lossy inductor. 
 

The inductor quality factor (Qind) in terms of lumped elements is defined by [4] 

 2
ind

ind

fL
Q

R


       (3.8) 

Rearranging equation (3.8), 

2
ind

ind

fL
R

Q


       (3.9) 

where Qind is the quality factor of the air coil inductor, Rind is the loss resistance of the air coil 

inductor (ohms), L is the inductance of the air coil (H), f is the frequency (f = 1 GHz) 

Thus, the loss resistance Rind can be calculated using equation (3.9). In this work, Qind 

calculated using equation (3.6), is 320 and Rind, calculated at 1 GHz, is 2.32 ohms. 

 

 3.4.2 Extraction of External Quality Factor  

The external quality factor (Qe) of the input/output resonator, in the arrangement of the dipole 

antenna structure, shown in Figure 3.14 will be extracted. The input impedance for this pair of 

coupled dipoles may be changed due to the mutual coupling impedance between the elements 

[1]. The inductor needs to be recalculated using equation (3.1) with the simulated input 

reactance at 1 GHz, given as 87 nH. The Qe value is obtained from the simulated magnitude 
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of S11 using the Q calculation method in [9]. The Qe values versus the different length of lf are 

shown in Figure 3.15.  

 

Figure 3.14 An antenna arrangement to extract Qe. 

 

Figure 3.15 External quality factor (Qe) obtained from CST simulation. 

 

 

 



81 
 

3.4.3 Extraction of Coupling Coefficient 

In this section, the coupling coefficient between resonators will be extracted by rearranging 

two resonator dipole antennas to create weak input/output couplings, as shown in Figure 

3.16(a). Simulated S21 response for the simulated structure of Figure 3.16(a) is depicted in 

Fig. 3.16(b). Two peak frequency (f1 and f2) are used to calculate the coupling coefficient 

value (M) using the equation given by [4] 

2 2
2 1
2 2

2 1

f f
M

f f





      (3.10) 

 

 
(a) 

 

 
 (b) 

 

Figure 3.16 (a) Coupling structure of two coupled resonators. (b) Simulated resonant response 

of two coupled resonators for dM = 9 mm.  
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The coupling coefficient (M) for different distances dM between the two resonant dipole 

antennas is obtained from the simulated S21  with the use of equation (3.10) and is shown in 

Figure 3.17. 
M

 

Figure 3.17 Coupling coefficients (M) as a function of dM obtained from CST simulation. 

 

3.4.4 Simulation Results 

All of the dimensions of the 3rd order dipole bandpass filter are defined from the designed 

values (i.e. Qe1 = Qe3 = 42.58 and M12 = M23 = 0.0206) presented in Section 3.3. These 

designed values will then be compared with the Qe values from the curve of Figure 3.15 and 

M value from the curve of Figure 3.17, in order to obtain the length lf and the coupling 

distance dM values, respectively. The lf value corresponding with Qe = 42.58 shown in Figure 

3.15 is found to be 28.82 mm. Additionally, the dM value corresponding with M = 0.0206 

shown in Figure 3.17 is found to be 19.9 mm. These lf and dM values are utilised as the initial 

physical dimensions of the whole structure. The simulated S-parameter responses of the initial 

structure (before optimisation) are shown in Figure 3.18. The simulated response does not 

meet the requirement and can be improved with the use of the optimiser in CST software 
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package [6]. Starting from the initial response, the dipole bandpass filter has been optimised 

the length lf of input/output feeds and coupling distance dM between resonators to meet the 

goal (i.e. S11 <= 20 dB) at the passpand frequency. The final simulated S-parameter responses 

(after optimisation) are shown in Figure 3.18. The optimised structure corresponding to all of 

the dimensions parameters are depicted in Figure 3.19.  

 

Figure 3.18 Simulated responses of 3rd order dipole bandpass filter before and after 

optimisation. 

 

Figure 3.19 The layout of 3rd order dipole bandpass filter. a = 0.75, g = 5, l1 = 12.4, l2 = 12.5, 

d1 = 2.5, d2 = 20.2. Unit: mm. 
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The optimised responses in Figure 3.18 show that the passband has the maximum insertion 

loss of -3.21 dB and the maximum return loss is -18 dB. A degradation of the passband 

insertion loss may cause from the loss resistance Rind of inductor included in resonator. This 

can be proven by comparing the S-parameter responses for the filter with Rind and the filter 

without Rind using the CST simulation software [6].  

 

Figure 3.20 Simulated responses of 3rd order dipole bandpass filter with Rind and without Rind. 

 

Figure 3.21 Simulated total antenna efficiency of 3rd order dipole bandpass filter with Rind and 

without Rind.  
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The responses of the dipole filter with Rind and without Rind are compared and shown in Figure 

3.20. It is seen that the S21 response of the filter without Rind is higher than the filter with Rind, 

and it has the maximum value closed to zero at the lower band-edge (0.99 GHz), whereas the 

S21 level around the higher band-edge (1 GHz to 1.01 GHz) is dramatically decreased due to 

high radiation occurred. The whole device is made using dipole structure, which it can be 

observed a cause of degradation of the filter performance from the total antenna efficiency 

(et). Figure 3.21 shows the total antenna efficiency for the filter with Rind and without Rind. 

The total antenna efficiency is also related to the loss resistance Rind which will affect to 

degrade the antenna conduction efficiency (ec) when Rind is high.  The total antenna efficiency 

of the filter without Rind at the passband frequency has a maximum value of 77% at 1.008 

GHz, whereas the total efficiency of the filter with Rind has a lower value of 25% due to low 

conduction efficiency (ec). This might be related to a missing one reflection zero of the S11 

response at the higher band-edge shown in Figure 3.20.  

 

3.4.5 Fabrication and Measurement 

The 3rd order dipole bandpass filter has been fabricated. The photograph of the fabricated two-

port dipole bandpass filter is shown in Figure 3.22. The measured S-parameter responses are 

compared with the simulated response, as shown in Figure 3.23. The measurement results are 

agreed well with the simulation results. The results show that the passband insertion loss for 

the measurement is -3.44 dB, whereas the simulation is -3.21 dB. From a filter point of view , 

the degraded performance is occurred due to the loss resistance Rind in the filter circuit, which 

has been described in Section 3.4.4. Also, Rind is represented as the loss resistance in the 

resonator, which is associated with the unloaded quality factor (Qu). In this case, the total Qu 

of a dipole with an inductor can be obtained as follows an equation (3.3), given by 
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Figure 3.23 The simulated and measured responses of 3rd order dipole bandpass filter. 

 

3.5 Conclusions 

A 3rd order bandpass filter designed based on the dipole structure has been simulated and 

fabricated. The simulated and measured results are in good agreement. The degradation of the 

filter performance occurred due to a cause of the radiation from the structure which has been 

made from dipole antennas. Also, the loss resistance Rind of inductors was included in the 

circuit. The Rind will affect to degrade the antenna efficiency in terms of conduction and also 

the Qu value of resonators. The Qu-factor will be taken into account in the calculation of 

coupling matrix for the design in Chapter 4. The structure of the proposed bandpass filter is 

similar to a structure of dipole array which is suite for designing one-port dipole antenna-

filters in Chapter 4.  
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Chapter 4 

One-Port Dipole Antenna-Filter 

 

4.1 Introduction 

In Chapter 3, a two-port dipole bandpass filter was designed based on the concept of coupled 

resonator filter theory [1]. In this chapter, the design method of the two-port dipole bandpass 

filter can be applied to the one-port dipole antenna-filter design (with radiation not considered 

as a port). This chapter presents the three new designs of dipole antennas and bandpass filters 

integrated into a single module using the coupling matrix synthesis. The coupling matrix can 

be utilised to optimise design parameters (coupling coefficients and external quality factor) in 

order to improve the frequency response corresponding to the specifications. The optimised 

parameters will then be utilised to find the physical dimensions of dipole antenna-filters using 

standard techniques [1]. The work presented in this chapter has been divided in three sections 

as follows. Section 4.2 presents a one-resonator dipole antenna-filter in order to understand 

the basic idea with the simplest antenna-filter. Section 4.3 presents a two-resonator dipole 

antenna-filter. The two-resonator design provides improved passband return loss S11 and the 

realised gain of the antenna-filter. Section 4.4 presents a three-resonator dipole antenna-filter. 

Each of these three sections includes the design method using the coupling matrix, the 

calculation and simulation results, and fabrication and measurement. The conclusion is 

provided in Section 4.5. 
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4.2 One-Resonator Dipole Antenna-Filter 

4.2.1 Antenna-Filter Design 

This section presents a design of a one-resonator dipole antenna-filter using the coupling 

matrix synthesis. The one-resonator dipole antenna-filter is considered with the topology 

shown in Figure 4.1; the white circle is the resonator, the dashed line with an arrow is the 

radiation from the antenna-filter which can be replaced by the radiation quality factor (Qr) and 

the solid line is coupling between the port 1 and the resonator replacing the external quality 

factor (Qe). 

  

 

Figure 4.1 Topology of the designed one-resonator dipole antenna filter. 

 

The topology shown in Figure 4.1 is related to the coupling matrix including source [2], and 

can be expressed as follows; 

       

  1 1

1 1

          

00 0 0
                                (4.1a)

00 0 0 1
s s ss

s s

A R p U j m

m R jmR
A P j

m jm P

  

      
         
       

 

where         Rs = 1  is the source impedance. 

        P =  + j is the normalised complex frequency. 

          = 1/FBWQu1 is the normalised attenuation constant.            (4.1b) 

         Qu1 is the normalised unloaded quality factor of the resonator 1. 
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 is the normalised frequency variable. 
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         f is the frequency (Hz). 

         f0 is the centre frequency (Hz). 

         1

1
s

e

m
FBW Q




is the normalised coupling coefficient between                 (4.1b) 

     the input source (port 1) and the resonator 1. 

        Qe1 is the normalised external quality factor of the input resonator. 

The matrix [A] is used to calculate the frequency response of reflection coefficient (S11), given 

by [2] 

    1

11 11
1 2 sS f R A

        (4.2) 

where         Rs = 1  is the source impedance. 

The inverse matrix   1
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  may be determined by  
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Substituting (4.3) into (4.2) yields 
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S f
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     (4.4) 

The equation (4.4) will be used to recalculate the design parameters of the antenna-filter in 

Section 4.2.3. 

 

4.2.2 Extraction of Design Parameters from Physical Structure 

In this work, a dipole antenna and an inductor are chosen to design as a resonator of a one-

resonator dipole antenna-filter. The proposed structure is resonator 1 coupled to a feed 

element, as shown in Figure 4.2. The proposed design corresponds to the coupling topology 

shown in Section 4.2.1. Here the resonator is designed to operate at 1 GHz using a dipole 
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antenna with an inductor L. The design methodology of the resonator dipole antenna has been 

described in Chapter 3. In practice, the losses of the resonator are considered to occur due to 

radiation, the resistance of the material (i.e. copper) and the loss within the inductor. Here the 

total unloaded quality factor Qu1 of resonator 1 is considered from these losses and is 

associated with the radiation quality factor Qr, the conductivity quality factor Qc and the 

inductor quality factor Qind by 

1

1 1 1 1

u r c indQ Q Q Q
         (4.5) 

The radiation quality factor Qr for an antenna length of 0.150 and is about 127. Qc is the 

conductivity quality factor of the copper which is about 16000. Qind is the quality factor of the 

87 nH inductor which is about 313. Thus, the total Qu1 is about 90 with the radiation quality 

factor being dominant. All the Q-factor values can be obtained by following the method 

described in Chapter 3. 

 

Figure 4.2 The layout of 1st order dipole antenna filter. a = 0.75 mm, g = 5 mm, l = 20 mm. 

 

The parameters of the design for the 1st order dipole antenna-filter consist of the unloaded 

quality factor Qu1, the external quality factor Qe1 and the centre frequency f0. They are 
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extracted from the simulated response of S11 using CST simulation software [3] with the use 

of Q-calculation method for the one-port component in [4]. 

df = 3 mm
df = 5 mm
df = 7 mm
df = 9 mm
df = 11 mm
df = 13 mm
df = 15 mm

 
 (a) 

         
 (b) 

Figure 4.3 (a) Simulated S11 responses of the structure in Figure 4.2 for different values of df. 

(b) Simulated Qe1, Qu1 and f0 values for different values of df. 

  

This structure can tune the S11 response by moving the feed or adjusting the separation df. The 

simulated S11 response of the 1st order dipole antenna-filter for different value of df is shown 

in Figure 4.3(a). At df = 3 mm, the S11 response of antenna-filter exhibits a large bandwidth 
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and the S11 magnitude (|S11(f0)|) at f0 = 0.88 GHz as about -4 dB due to strong coupling 

occurred between feed and resonator. When df is increased to be 5 mm, the bandwidth will be 

narrower and f0 will be higher with the lower value of |S11| as about -16 dB due to critical 

coupling nearly occurred. For df is above 5 mm, the bandwidth will be a bit smaller and the f0 

will be higher with the higher value of |S11| due to weak coupling occurred between feed and 

resonator. As described above, the S11 responses tuned following df values corresponds to 

types of coupling between feed and resonator. It is also related to the extracted values of Qu1, 

Qe and f0 from the simulated S11. The simulated values of Qu1, Qe1 and f0 for different values 

of df are plotted in Figure 4.3(b). These parameters correspond to the bandwidth, f0 and S11 

magnitude of the S11 responses shown in Figure 4.3(a). The plotted values of Qu1, Qe1 and f0 in 

Figure 4.3(b) will be utilised to define the physical dimensions of the antenna-filter structure. 

These parameters correspond to the designed parameters obtained from the coupling matrix 

for the final design in Section 4.2.3.  

 The simulated values of Qu1, Qe1 and f0 shown in Figure 4.3(b) are corresponded to the 

coupling theory in [1], which can be described as follows; The strong coupling of an input 

feed and a resonator is related to a small value of Qe and a large value of Qu1. This 

corresponds to the S11 response for a small value of coupling distance df below 5 mm. On the 

other hands, a large value of Qe and a small value of Qu1 represent the weak coupling of an 

input feed and a resonator. This corresponds to the S11 response for a large value of coupling 

distance df above 5 mm. The critical coupling of an input feed and a resonator can be occurred 

when Qe value is equal to Qu1 value. Here the critical coupling for the 1st order dipole 

antenna-filter corresponds to df = 5.8 mm for both Qe and Qu1 values are 79.32. The S11 

response for the critical coupling will be discussed in Section 4.2.3. 
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4.2.3 Calculation and Simulation Results 

The coupling matrix presented in Section 4.2.1 is employed to design the antenna-filter in this 

section. Equation (4.4) is utilised to recalculate the values of the designed parameters to meet 

the required response of the reflection coefficient S11. Equation (4.4) can be rewritten using 

equation (4.1b) as  

 
 

 

0
1 1 1 1

0
11

0
1 1 1 1

0

u e u e

u e u e

ff
Q Q jQ Q

f f
S f

ff
Q Q jQ Q

f f

 
   

 
 

   
 

    (4.6) 

 

The magnitude of the reflection coefficient  11S f  of the 1st order antenna filter can be 

calculated using the equation (4.6) with the use of simulated values of Qu1, Qe1 and f0. The S11 

response of 1st order dipole antenna-filter can perfectly be matched at f0 when a Qu1 value is 

equal to Qe1. In this design, Figure 4.3(b) is used to search for the best matched values of Qu1 

and Qe1. The values of Qu1, Qe and f0 shown in Figure 4.3(b) are varied following the df value 

as described in Section 4.2.2.  The best matched values of Qu1 and Qe1 can be found for both 

Q values of 79.32, where the Qu1 line crosses to the Qe1 line at df = 5.8 mm that corresponds to 

f0 = 1.006 GHz. The simulated S11 of the antenna-filter structure for a df of 5.8 mm is 

compared with the calculated S11 using equation (4.6) with the use of simulated values of Qu1, 

Qe1 and f0 for a df of 5.8 mm, as shown in Figure 4.4. The simulated S11 response shows good 

agreement with the calculation. However, simulated |S11(f0)| value at f0 = 1.006 GHz does not 

go to the minimum value (not showing the best match) as comparing to calculated |S11(f0)| 

value at the same frequency f0. It might be a cause from the accuracy of CST simulation 

software [3]. Also a small error occurs from the matched values of Qu1 and Qe at df = 5.8 mm 

which are estimated from the reading values of a curve in Figure 4.3(b).  
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Figure 4.4 The calculated and simulated responses of S11 of the designed 1st order dipole 

antenna-filter. 

 

4.2.4 Fabrication and Measurement 

 The 1st order dipole antenna-filter has been fabricated. The photograph of the 

fabricated dipole antenna-filter is shown in Figure 4.5. The rigid foam (ROHACELL 71 HF) 

can be considered as air and made as the core of the structure (the white material). The cotton 

wires are used to mount the coaxial cable underneath the rigid foam. The fabricated structure 

can adjust the separation (df) between the feed and the resonator. The fabricated antenna-filter 

is measured for different positions of the df value.  

 
Figure 4.5 The photograph of the fabricated 1st order dipole antenna-filter. 
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The measured responses of the reflection coefficient S11 for different values of df are shown in 

Figure 4.6(a). The measurement Q values are extracted from the measured S-parameters using 

the calculation technique in [4]. The measurement Qu1, Qe1 and f0 for different value of df are 

shown in Figure 4.6(b). 

  

(a) 

              

(b) 

Figure 4.6 (a) Measured S11 responses of the 1st order dipole antenna filter for different values 

of df. (b) Simulated and measured Qe1, Qu1 and f0 curves for different values of df.  
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In this experiment, the response of the fabricated antenna-filter can be matched at the centre 

frequency f0 when the values of Qu1 and Qe1 are the same.  Both measurement values of Qu1 

and Qe1 can be found from the plotted graph in Figure 4.6(b). The matched values of Qu1 and 

Qe1 are about 62 at the df value of 5.8 mm. The measured S-parameter response of the 

fabricated antenna-filter for df of 5.8 mm shows good agreement with the simulated response, 

as shown in Figure 4.7. 

 

Figure 4.7 The simulated and measured responses of S11 of 1st order dipole antenna-filter for 

df = 5.8 mm. 

 

The 1st order dipole antenna-filter has been measured inside an anechoic chamber using an 

HP8722D vector network analyzer (VNA) and a dual polarised horn antenna (3164-03 from 

ESCO Technology Company, a reference antenna) to obtain the frequency response of the 

realised gain. The realised gain is an actual gain of antenna used to describe the effective 

radiated power in the main direction. In this thesis, the frequency response of the realised gain 

is an important parameter to demonstrate the filtering capability of antenna-filters and can be 

measured using the comparison method [5]. The measured realised gain is compared with 
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simulation, as shown in Figure 4.8. The measured realised gain shows a response similar to 

the 1st order bandpass filter and is in good agreement with the simulation. The maximum 

measured realised gain is about -1.09 dB, whereas the simulation is about -0.75 dB. The 

difference between the simulated and measured realised gain is due to the additional losses 

(materials and inductor) in the fabricated component. The realised gain of the antenna-filter 

can be improved for the next design which presented in Section 4.3 and 4.4.  

 

Figure 4.8 Simulated and measured realised gain of 1st order dipole antenna-filter for  

df = 5.8 mm. 

 

The simulated and measured radiation patterns of the 1st order dipole antenna-filter are 

shown in Figure 4.9. The measured radiation patterns in H and E plane are in good agreement 

with the simulation. The maximum level of the cross polarisation in H-plane is below  

-10 dB in the simulation and the measurement, whereas the maximum level of the cross 

polarisation in E-plane are below -6 dB in the simulation and below -10 dB in the 

measurement. The 3 dB beamwidth in E-plane is 88 degrees in the simulation and 81 degrees 
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in the measurement, whereas The 3 dB beamwidth in H-plane cannot be estimated due to its 

radiation pattern that exhibits an omnidirectional pattern in H-plane. 

Port1 Cable 0o
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E


Z

X
Y

 

                                (a)              (b) 

Figure 4.9 (a) Normalised simulated and measured radiation patterns at 1 GHz for (a) H (XY) 

plane.  (b) E (YZ) plane. (Radial units are dB. Circumferential scale is  in degrees.) 

 

4.3 Two-Resonator Dipole Antenna-Filter 

4.3.1 Antenna-Filter Design 

In this section, the antenna-filter is designed based on the structure of a coupled dipole 

antenna using the coupling matrix, presented in Chapter 2. Figure 4.10 shows the topology of 

two-coupled resonator antenna-filter; the input is port 1 and radiation occurs from both 

resonators.   
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(4.7b) 

 

Figure 4.10 Topology of designed two-resonator dipole antenna filter. 

 

The coupling matrix equations for the designed topology, shown in Figure 4.10, are given 

as 
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where qe1 = FBW·Qe1 is the normalised external quality factor of the input resonator. 

 qui = FBW·Qui is the normalised unloaded quality factor of the resonator i;  

                   i =1, 2. 

m12 = M12/FBW is the normalised coupling coefficient between the resonator 1 

              and the resonator 2.                  

0

0

fj f
p

FBW f f

 
  

 
 is the complex frequency variable. 

 

The reflection coefficient S11 is obtained from the matrix [A] given by  

    1

11 11
1

2
1

e

S f A
q

        (4.8) 

The inversed matrix   1

11
A

  may be determined by 
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          (4.9) 

 

Substituting (4.9) into (4.8) yields 
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   (4.10) 

Equation (4.10) is utilised to calculate the reflection coefficient (S11) for only this design. 

Here the equation (4.10) will be used to recalculate the designed parameters to meet the 

required S11 magnitude at the centre frequency (f0).  

Substituting f = f0 into the equation (4.10) yields   

  
2

1 2 12
1

11 0
2

1 2 12
1

1
1

Re           
1

1

e u
u

e u
u

q q m
q

S f

q q m
q

 
  

 
 

  
 

    (4.11) 

Rearranging the equation (4.11) and using (4.7b), 
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    (4.12) 

where Qe1 is the external quality factor, Qu1 is the unloaded quality factor of resonator 1, Qu2 is 

the unloaded quality factor of resonator 2, M12 is the coupling coefficient between resonator 1 

and resonator 2 and Re{S11(f0)} is the real part of S11 magnitude at the centre frequency. The 

Equation (4.12) will be utilised to find the Qe1 value for optimising the return loss S11 in this 

design. 
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The 2nd order antenna-filter is initially designed with a return loss (LR) of 20 dB and a 

fractional bandwidth of 2% (FBW = 0.02) at a centre frequency (f0) of 1 GHz. The g-values 

for 2nd order Chebyshev lowpass prototype filter with a return loss of 20 dB (or passband 

ripple LAr = 0.04321) are calculated using the equation (2.21) to result in g0 =1.0, g1 = 0.6648, 

g2 = 0.5445 and g3 = 1.2210. Initially, the unloaded quality factor (Qun) of the last resonator 

has to be equal to the external quality factor (Qe1) of the input resonator to be similar to the 

conventional coupled-resonator filter design. The external quality factors and coupling 

coefficients of the design are calculated from specifications using equations (2.27), given by 

 

 0 1 1
1 , 1

1

,  ,     for 1 to 1n n
e un en i i

i i

g g g g FBW
Q Q Q M i n

FBW FBW g g





       (4.13) 

 

The values of the designed parameters are calculated using equations (4.13) given as 

Qe1 = Qu2 = 33.324 and M12 = 0.03324. In this design, all resonators are antennas which are 

considered as lossy resonators. In this design, the initial Qu1 value is assumed above 100.  

It will then be used to calculate the new Qe1 value using equation (4.12) in order to preserve 

the filter characteristics. Thus, a 0.130 dipole antenna with an inductor is chosen and has a 

total unloaded Q value (Qu1) of about 112. The initial design values are used with the equation 

(4.8) to obtain the initial response of S11 as shown in Figure 4.11. The initial response is not 

matched to the specification due to low Qu1 value. The response can be improved with the 

newly calculated value of Qe1 = 26.72, obtained using equation (4.12) as 26.72. Figure 4.11 

shows the calculated final response of S11 compared with the calculated initial response from 

the coupling matrix. The calculated final response shows the good result that is obtained from 
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the new calculated values. These values will be used to get the physical dimensions of the 

dipole antenna structure using the methods in Chapter 3. 

 

Figure 4.11 Comparison between initial and final responses of S11 for the 2nd order antenna-

filter calculated from the coupling matrix.  

 

4.3.2 Calculation and Simulation Results 

The physical dimensions of the two-resonator antenna-filter are defined from the 

design parameters given in the previous section. The layout of the designed antenna-filter 

with all the physical dimensions is shown in Figure 4.12. The structure is similar to an end-

fire Yagi-Uda dipole array. This can be gained the benefit from this structure to improve the 

radiation pattern and realised gain which will be discussed in Section 4.4. The simulated 

return loss S11 curve is compared with the calculation, as shown in Figure 4.13. The 

simulation result is in reasonable agreement with the calculation result. The simulated 

passband bandwidth of S11 at -20 dB is 16 MHz, whereas the calculated passband bandwidth 

is 20 MHz. An inaccurate simulated result may occur from a small physical dimension error 

obtained from the curves of Qe versus lf and M versus dM using CST simulation software [3]. 
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Figure 4.12 Geometry of 2nd order dipole antenna filter are a = 0.75 mm, g = 5mm, l1 = 16.1 

mm, l2 = 17 mm, l3 = 32.75 mm, d1 = 2.5 mm, d2 = 21.3 mm. 

 

 

Figure 4.13 Calculated and simulated response of S11 of 2nd order dipole antenna-filter. 
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Figure 4.16 Simulated and measured realised gain of 2nd order dipole antenna filter. 

 

Figure 4.16 shows the measured realised gain response of the two-resonator antenna-filter 

compared with the simulation. The measurement and simulation results are in good 

agreement. The maximum measured realised gain is 1.5 dB whereas the maximum simulated 

realised gain is 1.7 dB. The 2nd order dipole antenna-filter has the maximum cross-

polarisation levels in H-plane at 1 GHz shown in Figure 4.17(b) that are -7 dB in the 

simulation and -12.35 dB in the measurement, whereas the maximum cross-polarisation levels 

in E-plane at 1 GHz shown in Figure 4.17(e) are -14 dB in the simulation and -14.72 dB in the 

measurement. The 3 dB beamwidth in the E-plane is 84 degrees according to simulation and it 

is 76 degrees in the measurement. It is smaller than the 1st order antenna-filters by about 4 

degrees in simulation and 5 degrees in measurement. The 3 dB beamwidth in H-plane is 

larger than in E-plane as about 246 degrees in the simulation and 250 degrees in the 

measurement. This is because its radiation pattern is similar to an omnidirectional pattern. The 

antenna-filter can be designed being narrower the 3 dB beamwidth for H-plane since it has 

more elements like an Uda-Yagi antenna. The performance of the 2nd order dipole antenna-

filter is summarised and presented in Table 4.1. 
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Figure 4.17 Normalised simulated and measured radiation patterns of 2nd order dipole antenna 

filter at 0.99 GHz, 1 GHz, 1.01 GHz for H (XY) plane (a, b, c) and E (YZ) plane (d, e, f). 

(Radial units are dB. Circumferential scale is  in degrees.) 
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Table 4.1 Summary of the 2nd order dipole antenna-filter performance 

Parameters Frequency 

(GHz) 

3 dB 

Beamwidth 

(deg.) 

Back lobe level 

(dB) 

 

Cross-

polarisation level 

(dB) 

Sim. Mea. Sim. Mea. Sim. Mea. 

 

 

H-plane 

 

 

0.99 

1.00 

1.01 

 

300 

330 

310 

 

308 

326 

320 

 

-2.46 

-1.86 

-2.02 

 

-1.80 

-1.87 

-1.96 

 

-8.42 

-7.00 

-7.88 

 

-14.00 

-12.35 

-12.9 

 

 

E-plane 

 

0.99 

1.00 

1.01 

 

78 

84 

80 

 

72 

76 

74 

 

-2.46 

-1.86 

-2.02 

 

-3.076 

-1.55 

-2.04 

 

-13.65 

-14.00 

-13.79 

 

-14.96 

-14.72 

-15.94 

 

 

4.4 Three-Resonator Dipole Antenna-Filter 

4.4.1 Antenna-Filter Design 

 This section presents the design of a 3rd order antenna-filter using dipole antennas 

based on the coupling matrix, similar to the design in Section 4.3. Figure 4.18 shows the 

topology of three-coupled resonator antenna-filter; the input is port 1 and the radiation is from 

all three resonators.   

 

Figure 4.18 Topology of designed three-resonator dipole antenna filter. 
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The coupling matrix equation of the topology shown in Figure 4.18 can be expressed as 
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                                                    (4.14)

 

 

where     qe1 = FBW·Qe1 is the normalised external quality factor of the input resonator. 

    qui = FBW·Qui is the normalised unloaded quality factor of the resonator i; i =1, 2, 3. 

    m12 = M12/FBW is the normalised coupling coefficient between the resonator 1  

              and the resonator 2. 

    m23 = M23/FBW is the normalised coupling coefficient between the resonator 2  

              and the resonator 3. 

   0

0

fj f
p

FBW f f

 
  

 
 is the complex frequency variable. 

The 3rd order antenna-filter is initially designed with a return loss (LR) of 20 dB and  

a fractional bandwidth of 2% (FBW = 0.02) at the centre frequency (f0) of 1 GHz.  

The g-values for 3rd order Chebyshev lowpass prototype filter with a return loss of 20 dB (or 
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passband ripple LAr = 0.04321) are chosen. The g-values are calculated using the equation 

(2.21) as g0 =1.0, g1 = 0.8516, g2 = 1.1032, g3 = 0.8516 and g4 = 1.0. 

 

Figure 4.19 Comparison of calculated responses of 3rd Chebyshev filter and initial responses 

of 3rd order antenna-filter.  

 

 The antenna-filer is initially designed using equation (4.14) to be similar to the design 

of 2nd antenna-filter, in Section 4.3. The initial designed values are given as Qu1 = Qu2 = 112, 

Qu3 = Qe1 = 42.58 and M12 = M23 = 0.02063. Figure 4.19 shows the calculated initial response 

of the antenna-filter compared with the ideal response of 3rd order Chebyshev filter. The 

initial response of S11 does not match with the Chebyshev response and only shows one pole 

due to additional losses of resonators defined by Qu that are included in this calculation. The 

response of the designed 3rd order antenna-filter can be further improved by adjusting the 

value of the coupling coefficient M23. Figure 4.20 shows the curve of max value of S11 

(S11,max) within the passband against the M23 value. This curve is used to estimate the required 

S11 level at the passband frequency. This can be found by reducing the value of M23 to meet 
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the S11,max value of -20 dB. This calculated value of M23 is found to be 0.017 which 

corresponded to the S11,max of -20 dB, as depicted in Figure 4.20. The final response is plotted 

and compared with the initial response, as shown in Figure 4.21. The final curve shows a 

three-pole filter response with the passband and a return loss S11 of 20 dB as corresponding to 

the specifications. 

 
Figure 4.20 Max value of S11 (S11,max) within the passband obtained from the calculation of 

coupling matrix for different values of M23. 

 

Figure 4.21 Initial and final responses of S11 in dB calculated from the coupling matrix. 
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Figure 4.22 Geometry of 3rd order dipole antenna filter and all dimensions are a = 0.75 mm,  

g = 5 mm, l1 = 14.6 mm, l2 = 17 mm, l3 = 29.45 mm, d1 =2.5 mm, d2 = 19.8 mm, d3 = 30.8 

mm. 

 

4.4.2 Calculation and Simulation Results 

Figure 4.22 shows the completed structure of the 3rd order dipole antenna-filter. All of 

the dimensions shown in Figure 4.22 have been defined and correspond to the calculated 

design parameters. The length of the 3rd resonator is longer than the others because that length 

can ensure Qu3 that is equal to Qe1 value for this design.  The simulated response of the return 

loss S11 is compared with that obtained through calculation, as shown in Figure 4.23. The 

simulation and calculation results are in reasonable agreement. The simulated passband S11 

level is about -17.5 dB whereas the calculation is -20 dB. The difference between simulation 

and calculation occurs as a result of additional losses included in the designed structure and 

may affect the response. 
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Figure 4.25 Simulated and measured S11 response of 3rd order dipole antenna filter.

 

Figure 4.26 Simulated and measured realised gain of 3rd order dipole antenna filter. 

 

The realised gain response of three-pole antenna filter was measured and compared 

with the simulation, as shown in Figure 4.26. The measured results are in good agreement 

with the simulations. The maximum measured realised gain is 2.6 dB whereas simulated 

value is 2.56 dB. The response shape of realised gain shows the filtering response that is 

similar to the bandpass filter.  
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Figure 4.27 The simulated results of 3rd order dipole antenna-filter at 1 GHz shown in three-

dimensions (3D) for the surface current (a, b) and the E-field propagation (c, d). 

 

The directional radiation pattern of the dipole antenna-filter can be identified by looking at the 

current distribution and E-field propagation at the centre frequency f0 of 1 GHz obtained using 

CST simulation software [3]. The simulated currents on the structure of 3rd order dipole 

antenna-filter at 1 GHz are shown in Figure 4.27(a) for the phase of 0o and 4.27(b) for the 

phase of 90o. The simulated E-field propagations at 1 GHz are represented as the voltage 

surrounding the structure and are shown in Figure 4.27(c) for the phase of 0o and 4.27(d) for 

the phase of 90o. Looking at the current at phase = 0o in Figure 4.27(a), it can be seen that the 
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maximum amplitude of current distribution occurs at the middle of the back-side of the 

structure where is a feed or a driven element.  Also, the current at the feed is higher than the 

current amplitude occurred at the front-side where it is the third dipole element. However, the 

third element is longer than the feed and performs as similar to a reflector of an end-fire Yagi-

Uda dipole array. This can be verified based on the impedance of a reflector element that 

represents the inductive using CST simulation software [3]. Looking at the phase = 0o, the 

current surrounding on the third element shown in Figure 4.27(a) is high, whereas the voltage 

surrounding the third element shown in Figure 4.27(c) is low. On the other hands, at the phase 

= 90o, the current on the third element shown in Figure 4.27(b) is low, whereas the voltage 

surrounding the third element shown in Figure 4.27(d) is high. The results show that the 

current on the third element lags the voltage induced on the third element in 90 degrees, 

which its impedance represents the inductive as similar to a reflector element of an end-fire 

Yagi-Uda dipole array. In addition, the radiated power (Pr) is related to the maximum current 

(Im) excited on the structure corresponding to an equation [6]; Pr = |Im|2/Rr. Thus, the main 

directional radiation pattern will be occurred at the back-side of this structure where is the 

maximum current Im occurred, as shown in Figure 4.28. It can be concluded that the main 

directional radiation pattern of the 3rd order dipole antenna-filter goes to the back-side (at  = 

180o), because (i) the third dipole element serves as the reflector and (ii) the maximum 

amplitude of the current on the structure occurs at the feed or the back-side of the structure. 

Thus, the radiation pattern of this design is not the omnidirectional like a single dipole but it is 

more similar to an end-fire Yagi-Uda dipole array. Also, the structure of the antenna-filter has 

three-radiation elements arraying as similar to an end-fire Yagi-Uda dipole array. 
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The measured radiation patterns at frequencies within the passband are in good agreement 

with the simulation, as shown in Figure 4.29. The 3rd order dipole antenna-filter has the 

maximum cross-polarisation levels in H-plane at 1 GHz shown in Figure 4.29(b) that are -13 

dB in the simulation and -13.31 dB in the measurement, whereas the maximum cross-

polarisation levels in E-plane at 1 GHz shown in Figure 4.29(e) are -14 dB in the simulation 

and -20.44 dB in the measurement.  The 3 dB beamwidth at 1 GHz, in the E-plane, is 78 

degrees according to simulation and 74 degrees in the measurement. It is smaller than the 2nd 

order antenna-filters by about 6 degrees in simulation and 2 degrees in measurement. The 

performance of the 3rd order dipole antenna-filter is summarised and presented in Table 4.2. 

 

 

 

 

Figure 4.28 The simulated radiation pattern of 3rd order dipole antenna-filter at 1 GHz in 

three-dimensions (3D). 
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Figure 4.29 Normalised simulated and measured radiation patterns of 3rd order dipole antenna 

filter at 0.99 GHz, 1 GHz, 1.01 GHz for H (XY) plane (a, b, c) and E (YZ) plane (d, e, f). 

(Radial units are dB. Circumferential scale is  in degrees.) 
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Table 4.2 Summary of the 3rd order dipole antenna-filter performance 

Parameters Frequency 

(GHz) 

3 dB 

Beamwidth 

(deg.) 

Back lobe level 

(dB) 

 

Cross-

polarisation level 

(dB) 

Sim. Mea. Sim. Mea. Sim. Mea. 

 

 

H-plane 

 

 

0.99 

1.00 

1.01 

 

164 

164 

162 

 

195 

194 

192 

 

-6.32 

-7.81 

-7.96 

 

-1.20 

-1.91 

-2.13 

 

-15.32 

-13.00 

-16.38 

 

-14.57 

-13.31 

-17.18 

 

 

E-plane 

 

0.99 

1.00 

1.01 

 

76 

78 

82 

 

66 

74 

86 

 

-6.32 

-7.81 

-7.96 

 

-1.20 

-2.84 

-3.14 

 

-14.09 

-14.00 

-20.18 

 

-18.87 

-20.44 

-19.00 

 

The directivity, radiation and total efficiencies of dipole antenna-filters are obtained from the 

simulation and are used to compare their performances. These three parameters are related to 

the realised gain responses of dipole antenna-filters which will be shown below. The 

simulated directivity versus frequency of three dipole antenna-filters is shown in Figure 4.30. 

The simulated directivity of 3rd order dipole antenna-filter at the centre frequency (f0) of 1 

GHz has the highest value comparing with 2nd and 1st order dipole antenna-filters by about 2.2 

dBi and 2.9 dBi, respectively. The simulated radiation and total efficiencies are used to 

describe the radiation performance of antenna-filters and are shown in Figure 4.31 and 4.32, 

respectively. It can be observed that the 3rd order dipole antenna filter exhibits good stop-band 

suppression comparing with others for both radiation and total efficiencies. However, the 

radiation efficiency at 1 GHz for the 3rd order dipole antenna-filter is lower than the 2nd order 
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dipole antenna-filter as 17.34 %, but it is higher than the 1st order dipole antenna-filter as 

3.72%. Similarly, the total efficiency at 1 GHz for the 3rd order dipole antenna-filter is lower 

than the 2nd order dipole antenna-filter as 16.64 %, but it is higher than the 1st order dipole 

antenna-filter as 31.59%. Although the antenna efficiencies of the 3rd order dipole antenna-

filter is not higher than the 2nd order dipole antenna-filter, but its realised gain is higher than 

2nd order dipole antenna-filter in the passband. This is because the directivity of the 3rd order 

dipole antenna-filter is higher than the directivity of the 2nd order dipole antenna-filter in the 

passband bandwidth of interest. It is noted that the realised gain is usually obtained from the 

sum of total antenna efficiency and antenna directivity in the unit of decibel (dB). This can be 

seen the realised gain responses of three dipole antenna-filters obtained from simulation and 

measurement, as shown in Figure 4.33.  

 

 

Figure 4.30 Simulated directivity versus frequency of three dipole antenna-filters. 
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Figure 4.31 Simulated radiation efficiency versus frequency of three dipole antenna-filters. 

 

 

Figure 4.32 Simulated total efficiency versus frequency of three dipole antenna-filters. 

 

The simulated realised gain of the 3rd order dipole antenna-filter observed in the passband is 

higher than 1st and 2nd order dipole antenna-filters as 3.31 dB and 1.56 dB, respectively, 

whereas the measured result is higher than 1st and 2nd order dipole antenna-filters as 3.63 dB 

and 1.24 dB, respectively. The simulated stopband rejection of the 3rd order dipole antenna-

filter is estimated at the out-of-band of the realised gain response and is higher than 1st and 2nd 
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order dipole antenna-filters as about 3.38 dB and 1.39 dB, respectively, whereas the measured 

result is higher than 1st and 2nd order dipole antenna-filters as about 3.73 dB and 0.76 dB, 

respectively. The results of 3rd order dipole antenna-filter show good filtering performance for 

the realised gain that is better than 1st and 2nd order dipole antenna-filters as expected. The 

performance of three-dipole antenna-filters is summarised and shown in Table 4.3. 

 

(a) 

 

(b) 

Figure 4.33 Realised gain responses of three dipole antenna-filters obtained from (a) 

simulation. (b) measurement. 
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Table 4.3 Summary of three dipole antenna-filter performance.  

Component 

Passband return loss 

S11 (dB) 

Passband realised 

gain (dB) 

Stopband rejection 

(dB) 

Sim. Mea. Sim. Mea. Sim. Mea. 

 

1st order dipole 

antenna-filter 

 

-26.84 

 

-26.25 

 

-0.75 

 

-1.09 

 

9.22 

 

8.75 

 

2nd order dipole 

antenna-filter 

 

-19.18 

 

-20.39 

 

1.00 

 

1.30 

 

11.21 

 

11.72 

 

3rd order dipole 

antenna-filter 

 

-17.36 

 

-17.51 

 

2.56 

 

2.54 

 

12.60 

 

12.48 

 

 

The performance improvement of the designed 3rd order dipole antenna-filter can be 

verified by comparing with a single dipole antenna. This dipole antenna-filter has better 

performance in comparison with a single dipole operating at the same frequency. The length ld 

of the dipole is 140 mm, whereas the longest length l of the antenna-filter (resonator 3) is 64 

mm. Figure 4.34 shows the comparison between the simulated realised gain of the dipole 

antenna-filter and the single dipole antenna. It is shown that the gain of the antenna-filter is 

0.37 dB higher than that of the gain of the dipole. The response of antenna-filter shows the 

filtering response with the improvement of out-of-band suppression. This can be further 

improved by increasing the number of resonator used (i.e. dipoles with inductors).  

 



125 
 

Port1 Cable

ld = 140 mm

Port1 Cable

l = 64 mm

 

Figure 4.34 Comparison of simulated realised gain between single dipole antenna and 3rd 

order dipole antenna-filter. 

 

4.5 Conclusions 

The coupling matrix for the one-port component has been used to design and optimise the 

filtering responses of three dipole antenna-filter components. The design approaches show the 

progression of antenna-filters in order to understand the design principle based on the 

coupled-resonator filter theory. The performance of the 3rd order dipole antenna-filter shows 

the improvement in the realised gain compared with the single dipole antenna, and the size is 

also smaller. The realised gain response shows the filtering response with good stop-band 

rejection and a flat in that passband. The structure of 3rd order dipole antenna-filter is similar 

to an end fire Yagi-Uda dipole array and exhibits the main directional radiation pattern at  = 

180o. This is because the last element served as the reflector and also the maximum current 

occurred at the feed. Three proposed dipole antenna-filters have small sizes, are light in 

weight and are suitable to use in wireless communication system. 
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Chapter 5 

Waveguide Antenna-Filters 

 

5.1 Introduction 

Chapter 4 presented design methodology for a one-port dipole antenna-filter. This 

methodology involved using the coupling matrix for lossy resonator circuits, to optimise 

return loss (S11) of low Qu resonators. In general, all resonators in the filter circuit require a 

high unloaded quality factor in order to improve the passband frequency response [1]. For 

example, a rectangular waveguide cavity resonator can provide high unloaded quality factor. 

The structure of a rectangular cavity [2] when enclosed has low energy loss in the resonator. 

The design is simple and can be utilised to combine with other waveguide components such 

as waveguide aperture antennas. This chapter presents three design approaches for X-band 

waveguide aperture antennas which are integrated with the rectangular waveguide cavity 

resonators. Figure 5.1(a) shows a diagram of the first design. The concept is to replace the last 

resonator of the filter circuit with an antenna. In this case, the antenna can serve 

simultaneously in as one of the resonators of the filter and a radiator. In addition, the approach 

shown in Figure 5.1 (b) is called an antenna power divider. The principle of the filter design 

is used here to combine the bandpass filter, the power divider and two-antenna array into a 

single component. The third approach shown in Figure 5.1 (c), which involved integrating 

with a pair of bandpass filters for splitting two frequency bands and is named an antenna-

diplexer. The three design approaches presented here may be of interest in the reduction of 

sizes in comparison with the conventional designs. Coupling matrix synthesis is employed for 

all three-designs. The three design approaches, mentioned above, have been fabricated. They 
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are a 5-resonator antenna-filter, a 3-resonator power divider, and a 3-resonator antenna-

diplexer. These three components are designed to operate at X-band frequencies using 

waveguide technology. They have been fabricated and measured. 

 

 

(a)  

 

 (b)  

 

(c) 

 

Figure 5.1 Block diagrams comparing the new approach (diagrams on the right) to that of 

conventional antenna (on the left): (a) Antenna-filter (b) Antenna power divider  

(c) Antenna-diplexer. 
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In this chapter, Section 5.2 presents the overview of the rectangular waveguide cavity. Section 

5.3 presents the design of the waveguide aperture antenna. Section 5.4 describes the 

methodology for extracting the coupling coefficient extraction from the physical structure of 

waveguide components. The coupling matrix synthesis is presented in Section 5.5. The 

design, simulation, fabrication and measurement of the X-band 5-resonator antenna-filter, the 

X-band 3-resonator antenna power divider and the X-band 3-resonator antenna diplexer are 

discussed in Section 5.6, Section 5.7 and Section 5.8, respectively. A conclusion is given in 

Section 5.9.   

 

5.2. Quality Factors of Cavity Resonators 

The cavity resonator design has been described in Chapter 2. The total quality factor of a 

cavity resonator coupled to an external circuit can be expressed using the loaded quality factor 

(Ql), which may be defined as [3] 

 
1 1 1

l e uQ Q Q
        (5.1) 

where  Qe is the external quality factor associated with the external coupling at the input port. 

 Qu is the unloaded quality factor associated with losses in the resonator. 

The total Qu of the cavity resonator may be defined by adding these losses together as follows 

[3] 

1 1 1 1

u c d rQ Q Q Q
         (5.2) 

where Qc, Qd and Qr are the conductor, dielectric and radiation quality factors, respectively. 

For an air-filled waveguide cavity resonator, the resonator has an enclosed structure covered 

with conducting material and no dielectric material within the cavity walls. It implies that the 
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total Qu of the cavity resonator only considers the conductor quality factor (Qc). The Qc of the 

rectangular waveguide cavity resonator for TE101 mode is defined as [2]    

 
 

3

101

2 3 3 3 32 2 2
c

s

k a d b
Q

R a b bd a d ad




 


  
    (5.3) 

where  /   is the wave impedance. 

  = r0 is the permeability (H/m). 

 r is the relative permeability of a material. 

0 = 4 x 10-7 H/m is the permeability of free space. 

  = r0 is the permittivity (F/m). 

 r is the relative permittivity of a material. 

0 = 8.854 x 10-12 F/m is the permittivity of free space.   

Rs is the surface resistance of the conducting wall is given by [2] 

2sR



         (5.4) 

where    = 2f is the angular frequency (rad/sec). 

  is the conductivity of materials (S/m). 

 

For example, the copper cavity in [4] has a surface resistance Rs = 0.022  and a conductor 

quality factor Qc = 12,700. The cavity size was a = b = d = 3 cm, that corresponds to the 

resonant frequency of 7,070 MHz. 

 

5.2.1 Extraction of External Quality Factor from Physical Structure 

This section presents the methodology for extraction of the external quality factor from the 

physical structure of a rectangular waveguide cavity, using CST simulation software [5].  
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In this work, the WR-90 waveguide is employed to design a resonant cavity circuit.  

The initial dimension of the WR-90 waveguide cavity resonator has been defined, as 

described in Chapter 2. The geometry of the cavity resonator coupled to the input/output ports 

is shown in Figure 5.2. 

 

Figure 5.2 Geometry of a cavity resonator coupled to the input/output ports. a = 22.86 mm,  

b = 10.16 mm, l = 19.88 mm. 

 

The waveguide cavity structure, shown in Figure 5.2, has been made in the CST simulation 

software [5]; the blue part is the vacuum, which is covered with a perfect electrical 

conducting material (PEC). This material is a lossless material, which is no conductor loss 

considered in the resonator. The input port needs to be weakly coupled to the cavity through a 

small aperture of an inductive iris [6] for this approach to work. The inductive iris is located 

between the cavity and the output port. The aperture d can be adjusted in order to change the 

value of Qe. The thickness of the iris is selected as 2 mm. The external quality factor Qe can 

be obtained from the simulated magnitude of S21 response using a formula [1], given as 

0

3
e

dB

f
Q

f



      (5.5) 

where f0 is the centre frequency of the loaded resonator, 3 2 1dBf f f    is the 3 dB bandwidth, 

f1 and f2 are frequency points in the 3 dB bandwidth as indicated in Figure 5.3. 
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Figure 5.3 The simulated magnitude of S21 response of the structure in Figure 5.4. In this case 

Qe = 20.96. 

 
The simulated structure, shown in Figure 5.2, is a prototype structure used to obtain the Qe 

values for different values of d. This is achieved using from the simulated S21 response using 

the equation (5.5). Here l has been adjusted to keep the centre frequency of 10 GHz. The Qe 

and l values for different values of d are plotted in Figure 5.4. This plotted Qe graph will be 

utilised in the design of the antenna-filter in Section 5.6. 

 

Figure 5.4 Qe and l values of the waveguide cavity resonator obtained from the simulated S21 

response with a centre frequency of 10 GHz for different values of d. 
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5.3 Waveguide Aperture Antennas 

This section presents a design for a waveguide aperture antenna which utilises the 

inductive irises. The structure of a single resonator waveguide aperture antenna is represented, 

as depicted in Figure 5.5. Here Qe and Qr are the quality factors associated with the external 

coupling at the input port and the radiation resistance. The total Ql for the waveguide aperture 

antenna can be defined as 

 

1 1 1

l e rQ Q Q
         (5.6) 

 

In the simulation, the antenna structure has been made from a PEC material. The resonator 

antenna is weakly coupled to the input port with an inductive iris. The coupling coefficient 

between the resonator and the external circuit is determined using the formula in [3], given as    

 

0

e u

e

P Q

P Q
          (5.7) 

 

where   is the coupling coefficient between the resonator and the external circuit. 

 Pe is the average power loss from the resonator to the external circuit. 

P0 is the average power loss in the resonator. 

 

Following equation (5.7), weak coupling means the value of coupling coefficient can be 

approximated to be zero  0   leading to a Qe value of infinity. Thus, equation (5.6) can be 

approximated as Ql = Qr. 
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Figure 5.5 The structure of a waveguide aperture antenna with top cover removed. a = 22.86, 

b = 10.16, di = 3, li = 20 and t = 2. Unit: mm. 

 

dr (mm)

Q
r

l1

Qr

l 1
(m

m
)

 

Figure 5.6 The Qr and l1 values of a waveguide aperture antenna obtained from the simulated 

S11 response with a resonant frequency of 10 GHz for different values of dr.  

 

The antenna structure shown in Figure 5.5 is utilised to obtain the Qr value using CST 

simulation software [5]. The Qr value is extracted from the simulated response of S11 

magnitude using a Q-calculation for a one-port component [3]. The antenna structure, shown 

in Figure 5.5 can be designed to increase the value of Qr by reducing dr. Here l1 has been 
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adjusted to keep the centre frequency at 10 GHz. The value of Qr is obtained from CST 

simulation [5]. A curve of Qr values versus dr is plotted in Figure 5.8. Qr will be employed in 

the design of the antenna-filters, in Section 5.6. Specifically, it will be used to define the 

physical aperture dimensions to match the Qe of the filter with the Qr of the design. 

 

5.4 Coupling Coefficient Extraction from Physical Structure 

This section presents the methodology for extraction of the coupling coefficient from the 

physical structure incorporating two-coupled cavities. This is achieved using the CST 

simulation software [5]. Figure 5.7 shows an example of the waveguide structure utilised to 

extract the coupling coefficient (M). The structure represents two cavity resonators coupled 

together with an inductive iris. The input and output ports are weakly coupled to the cavity 

resonator with inductive irises having a small aperture size.  

 
Figure 5.7 The simulated structure of two-coupled waveguide cavity resonators. a = 22.86 

mm, b = 10.16 mm. 

 

The coupling coefficient can be obtained from the simulated response of S21 magnitude using 

a formula for a synchronously tuned coupled resonator from [1] as 
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2 2
2 1

2 2
2 1

p p

p p

f f
M

f f





       (5.8) 

where M is the coupling coefficient, fp2 is the higher resonant peak of S21 and fp1 is the lower 

resonant peak of S21, as indicated in Figure 5.8. 

 

 

Figure 5.8 The simulated magnitude of S21 for the structure shown in Figure 5.7. The coupling 

coefficient here is M = 0.0942. 

 

 

Figure 5.9 M and l2 values of the two-coupled waveguide cavity resonators obtained from the 

simulated S21 response with a centre frequency of 10 GHz for different values of d2. 
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The simulated structure, shown in Figure 5.7, can be utilised to obtain the M values for 

different values of d2 from the simulated S21 response using equation (5.8). Here l2 has been 

adjusted to keep the centre frequency of 10 GHz. The M and l2 values for different values of 

d2 are plotted in Figure 5.9. The graph showing M will be utilised in the design of antenna-

filter, in Section 5.6. 

The self-coupling coefficient Mii is related to the self-resonant frequency of the 

resonator i in a filter. For the case of asynchronous tuning, it is defined by [7] 

2 2
0 0
2 2

0 0

2 i
ii

i

f f
M

f f

 
   

      (5.9) 

where f0i is the resonant frequency of the resonator i and f0 is the desired centre frequency. 

Equation (5.9) can be used to extracting the self-coupling coefficient Mii from the waveguide 

structure for the design of an antenna-diplexer, in Section 5.8. 

 

5.5 Coupling Matrix Synthesis for Multiple Port Antenna-Filters 

In this work, the coupling matrix of the antenna-filter circuit is chosen for the design. 

It is used in a similar way to the coupled-resonator two-port filter circuits [1] and Chapter 2. 

Here the radiation inputs/outputs of proposed antenna-filters are considered as the 

input/output ports of the equivalent filter. Matrix [A] can be expressed as [8] 

 

[ ] [ ] [ ] [ ]A q p U j m                             (5.10) 

 

where [U] is the n x n unit matrix, p is the complex frequency variable i.e. p = (j/FBW)(f/f0 – 

f0/f), f0 is the centre frequency and FBW is the fractional bandwidth, [q] is an n x n matrix  

with all entries zero, except for qii = 1/qei for the input/output ports and qii = 1/qri for the 
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radiation inputs/outputs, i stands for the index of the resonator connected to input/output ports 

and radiation inputs/outputs, qei is the normalised external quality factor of the resonators at 

the input/output ports (i.e. qei = FBW·Qei), qri is the normalised radiation quality factor of the 

antennas at the radiation inputs/outputs (i.e. qri = FBW·Qri). Both Qei and Qri are the external 

quality factor at the input/output ports and the radiation quality factors at the radiation 

inputs/outputs. They are calculated from the normalised quality factors qei and qri by 

ei
ei

q
Q

FBW
                          (5.11) 

and  

ri
ri

q
Q

FBW
                          (5.12) 

These Qei and Qri values are utilised as the Qe and Qr values extracted from the physical 

dimensions of the waveguide structure in order to realise the waveguide device. Also, [m] is 

the normalised coupling matrix whose elements are the normalised coupling coefficient 

between resonator i and j (i.e. mij = Mij/FBW) and the self-couplings mii = Mii/FBW. Here Mij 

is the coupling coefficient between resonator i and j, Mii is the self-coupling coefficient of 

resonator i. Both Mij and Mii are calculated from the normalised coupling coefficients mij and 

mii by 

ij ijM FBW m                           (5.13) 

and  

ii iiM FBW m                           (5.14) 

 

These Mij and Mii values are utilised as the M and Mii values extracted from the physical 

dimensions of the waveguide structure in order to realise the waveguide device. 
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Assuming that we have a 3-port circuit, the S-parameters, for the coupling topology shown in 

Figure 5.1(b) and 5.1(c), can be derived from the matrix [A] in (5.10) as, 

 

  12
1ii ii

ei

S A
q

 
   

 
      (5.15) 

  1

23 23
2 3

2

e e

S A
q q




      (5.16) 

 
where Sii is the reflection coefficient at the input/output waveguide port i, S23 is the isolation 

of the proposed antenna-diplexer between waveguide port 2 and port 3, qei is the normalised 

external quality factor of resonator i, qe2 is the normalised external quality factor of resonator 

2 and qe3 is the normalised external quality factor of resonator 3. In the case where one port is 

a radiation port. S21 and S31 are related to the frequency response of the gain, but are not 

considered here. A more generalised equation for three-port network, based on more than 3 

resonators, is given in [8]. This multi-port matrix is used in Section 5.7 and 5.8. 

 

5.6 X-Band 5-Resonator Waveguide Antenna-Filter 

5.6.1 Waveguide Antenna-Filter Design 

This section presents the design of a 5-resonator waveguide aperture antenna-filter. The 

coupling model of a 5-resonator waveguide antenna-filter is designed as an in-line topology, 

as shown in Figure 5.10. The antenna-filter is designed to have a 2% fractional bandwidth 

(FBW = 0.02) at the centre frequency f0 of 10 GHz. A fifth-order Chebyshev lowpass 

prototype with a return loss of -20 dB is chosen. The coupling coefficients, external and 

radiation quality factors of the proposed design are calculated from the normalised 

conventional design equation (2.50) presented in Chapter 2; as in the matrix form,  
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0 0.866 0 0 0

0.866 0 0.636 0 0

0 0.636 0 0.636 0

0 0 0.636 0 0.866

0 0 0 0.866 0

m

 
 
 
 
 
 
  

 

   qe1 = qr5 = 0.9714  

 

The calculated response of the S11 can be calculated from the values of [m], qe1 and qr5, using 

equation (5.15), the result is shown in Figure 5.11. 

 

 

Figure 5.10 Topology of the designed waveguide antenna-filter. 

 

 

Figure 5.11 S11 in dB for the designed waveguide antenna-filter calculated from the coupling 

matrix. 
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Figure 5.12 The three-dimensional schematic of the X-band 5-resonator antenna-filter. 

 

Figure 5.12 shows the layout of the antenna-filter in three-dimensions. The antenna-filter has 

a direct-coupled resonator structure. The waveguide structure is designed for manufacturing 

using a CNC milling machine. All of the inside corners are rounded with a radius of 1.6 mm. 

These corners have only a minor effect on the performance of the antenna-filter.  In order to 

define the physical dimensions of the waveguide structure, the coupling coefficient, the 

external quality factor and the radiation quality factor are calculated for FBW = 0.02 using 

equations (5.11) to (5.14) and found to be M12 = M45 = 0.01732, M23 = M34 = 0.01272, Qe1 = 

Qr5 = 48.57. These values will be utilised to find the initial physical dimensions of the 

waveguide structure as described in Section 5.2, 5.3 and 5.4, respectively. The whole 

waveguide structure of the antenna-filter is initially designed to have these initial physical 

dimensions. The simulated S11 response of the initial structure, is shown in Figure 5.13. The 

response can be improved by optimising the waveguide structure using the optimiser in the 

CST software package [5]. Starting from the initial response, the waveguide antenna-filter has 

been optimised to meet goals related to the passband performance (i.e. S11 <= -20 dB from 9.9 
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GHz to 10.1 GHz). This involved varying the length of cavity and antenna, the width of the 

coupling irises and the width of the aperture. The final simulated S11 response is shown in 

Figure 5.14. All dimensions of the optimised structure corresponding to the parameters shown 

in Figure 5.12 are: a = 22.86, b = 10.16, d1 = 10.38, d2= 6.42, d3 = 5.84, d4 = 5.84, d5 = 6.52, 

d6 = 10.49, l = 20, l1 = 17.13, l2 = 18.7, l3 = 18.84, l4 = 18.7, l5 = 16.87, t = 2 (Unit: mm). 

 
Figure 5.13 Simulated initial and final response of the X-band 5-resonator antenna-filter. 

 
 

The simulated return loss (S11) of the antenna-filter, compared with the response calculated 

from the coupling matrix, is shown in Figure 5.14. They are in good agreement.  

 
Figure 5.14 The S11 response of the X-band 5-resonator antenna-filter from coupling matrix (a 

dashed line) and simulation (a solid line). 
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5.6.2 Fabrication and Measurement 

The X-band 5-resonator antenna-filter has been fabricated from aluminum alloy 5083 

(RS components) using a CNC milling machine. Figure 5.15 shows a photograph of the 

antenna-filter. The simulated and measured return loss of antenna-filter, depicted in Figure 

5.16(a), shows good agreement. The measurement shows that the passband has a maximum 

return loss of -18.6 dB. 

 

Figure 5.15 Photograph of the fabricated antenna-filter. 

 

The antenna-filter has been measured inside an anechoic chamber using an HP8722D vector 

network analyzer (VNA) and an X-band horn antenna (1624 from Flann Microwave 

Company, a reference antenna) to obtain the frequency response of the realised gain. The 

measured realised gain is compared with the simulation results as shown in Figure 5.16(b). 

The antenna-filter is found to have a passband gain of about 5.7 dB, and measured stopband 

rejection is about 55.7 dB. The simulated total efficiency versus frequency of antenna-filter is 

plotted in Figure 5.17. It can be seen that the total efficiency exhibits very good filtering 

performances, and similar to the 5th order bandpass filter of the actual device. The total 
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efficiency in the passband (9.9 to 10.1 GHz) is about 70%, while the maximum efficiency is 

occurred at the centre frequency (10 GHz) as about 93.83%. The results shows very high 

antenna efficiency occurred around the passband corresponding to the realised gain response 

of antenna-filter.   

 

(a) 

 

(b) 

Figure 5.16 Simulated and measured results for the X-band 5-resonator antenna-filter. (a) 

Return loss S11 (b) Realised gain. 
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Figure 5.17 Simulated total efficiency for the X-band 5-resonator antenna-filter. 

 

0o

H


E


Z

X
Y

 
                             (a)                                                                                     (b) 
 
Figure 5.18 Normalised simulated and measured radiation patterns for the antenna-filter at  

10 GHz in co-polarisation: (a) H (XY) plane. (b) E (YZ) plane. (Radial units are dB. 

Circumferential scale is  in degrees.) 
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The simulated and measured radiation patterns of the antenna-filter are shown in Figure 5.18. 

It can be seen that the antenna-filter exhibits good agreement in terms of radiation pattern in 

H and E-plane orientation. The cross polarisation levels in H-plane are below -50 dB in the 

measurements and below -80 dB in the simulations, as shown in Table 5.1. The performance 

of the antenna-filter is summarised and presented in Table 5.1. The results show flat response 

in the passband gain, good out-of-band rejection and low levels of cross-polarisation. 

Table 5.1 Summary of the antenna-filter performance  

Parameters Frequency 
(GHz) 

3 dB Beamwidth 
(deg.) 

Side lobe level 
(dB) 

 

Cross-
polarisation level 

(dB) 
Sim. Mea. Sim. Mea. Sim. Mea. 

H-plane 

E-plane 

10 

10 

85 

99 

72 

96 

-8.7 

-9.5 

-9.59 

-9.95 

-80 

-81 

-50 

-49.8 

 

5.7 X-Band 3-Resonator Antenna Power Divider 

5.7.1 Waveguide Antenna Power Divider Design 

This section presents the design of a 3-resonator antenna power divider. This circuit 

includes power division as well as basic filtering functionally whilst using two of the three 

resonators as a two-element array. This allows the antenna array feature in order to improve 

the directional radiation characteristics with integrated filter. The topology of a designed 

three-resonator antenna power divider is shown in Figure 5.19.  

 

Figure 5.19 Topology of the designed waveguide antenna power divider. 
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The antenna power divider is designed to have 2% fractional bandwidth (FBW = 0.02) at the 

centre frequency f0 of 10 GHz and a passband return loss of -20 dB. A gradient-based local 

optimisation algorithm [8] has been utilised here to get the coupling matrix. The optimised 

normalised coupling coefficients, external and radiation quality factors are:  

  

 
0 1.175 1.175

1.175 0 0

1.175 0 0

m

 
   
  

 

  qe1 = qr2 = qr3 = 0.6648  

The calculated response of the S11 from the values of [m], qe1, qr2 and qr3 using the equation 

(5.15) is shown in Figure 5.20. The coupling coefficients and the external quality factors are 

computed for FBW = 0.02 and found to be M12 = M13 = 0.0235, Qe1 = Qr2 = Qr3 = 33.24. 

These values will then be utilised for defining the physical dimensions of the waveguide 

structure using a procedure similar to that described in Section 5.6.1.  

 

 

Figure 5.20 The calculated response of S11 in dB of the designed waveguide antenna power 

divider from the coupling matrix. 
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The 3D structure of the X-band 3-resonator antenna power divider is illustrated in 

Figure 5.21, it has one waveguide port and two-apertures separated by 0/2 (15 mm) forming 

a simple array. The waveguide structure, shown in Figure 5.21 is equivalent to the coupling 

topology of the three-resonator power divider, discussed in [8]. The implementation of the 

antenna power divider has again been designed based on X-band waveguide with an inductive 

iris. The physical dimensions of the waveguide antenna-diplexer have been initially defined 

and optimised in a similar way to that presented in Section 5.6.1. All dimensions of the 

optimised structure corresponding to the parameters shown in Figure 5.20 are: a = 22.86, b = 

10.16, d1 = 11.32, d2 = d3 = 9.4, d4 = d5 = 11.32, l = 20, l1 = 15.6, l2 = l3 = 17.5, t = 2 (Unit: 

mm). All of the inside corners are rounded with a radius of 1.6 mm. The simulated return loss 

S11 for the proposed antenna power divider is in good agreement with the calculated response, 

as shown in Figure 5.22. The realised gain and radiation patterns will be discussed in Section 

5.7.2.  
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Figure 5.21 X-band 3-resonator antenna power divider. 
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Figure 5.22 S11 of the X-band 3-resonator antenna power divider derived from the coupling 

matrix (dashed lines) and CST simulation (solid lines). 

 

5.7.2 Fabrication and Measurement 

The X-band 3-resonator antenna power divider is also made from aluminum alloy and a 

photograph of it is shown in Figure 5.23. The simulated and measured return loss curves are 

depicted in Figure 5.24(a). The measured response is in good agreement with the simulated 

response. The measurement shows a maximum return loss of -21.5 dB with a passband 

bandwidth of 202 MHz, whereas the expected maximum return loss obtained from CST 

simulations is -20 dB with a passband bandwidth of 200 MHz. 
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Figure 5.23 Photograph of the fabricated antenna power divider. 

 

Figure 5.24(b) shows the measured realised gain, which exhibits good agreement with the 

simulation. It can be seen that a measured passband gain is about 8.9 dB, which is 3.2dB more 

than that of the single aperture antenna-filter presented in Section 5.6.2. The measured 

stopband rejection is about 14 dB. The simulated total efficiency versus frequency of antenna 

power divider is plotted in Figure 5.25. The total efficiency in the passband (9.9 to 10.1 GHz) 

is about 97.2% which is higher than the antenna-filter as 27.2%, while the efficieny at the 

centre frequency (10 GHz) is slightly dropped from the maximum efficiency of 98.4% as 

about 1.27%. The results show very high antenna efficiency around the passband 

corresponding to the realised gain response. However, this antenna power divider dose not 

exhibit the good responses of realised gain and total efficiency as well as the 5th order 

antenna-filter, because this design has a lower filter order (2nd order filter). 
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        (a) 

 

 

        (b) 

 

Figure 5.24 Simulated and measured results for the X-band 3-resonator antenna power 

divider. (a) Return loss S11 (b) Realised gain. 
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Figure 5.25 Simulated total efficiency for the X-band 3-resonator antenna power divider. 

 

The simulated and measured radiation patterns for the antenna power divider are shown in 

Figure 5.26. It can be seen that the antenna power divider exhibits good radiation pattern 

shape in H and E plane orientations. The cross polarisation levels are measured in the H-plane 

as -49.2 dB and in the E-plane as -48.9 dB, whereas the simulated levels in H-plane are -59.7 

dB and -67.9 dB for the E-plane. The performance of the antenna power divider is 

summarised in Table 5.2. As expected, the antenna power divider has better performance 

compared to the 5-resonator aperture antenna-filter in terms of higher passband gain, and 

narrower 3dB beamwidth. 

 

Table 5.2 Summary of the antenna power divider performance 
 

Parameters Frequency 
(GHz) 

3 dB 
Beamwidth 

(deg.) 

Side lobe level (dB) 
 

Cross-
polarisation 

level (dB) 
Sim. Mea. Sim. Mea. Sim. Mea. 

 

H-plane 

E-plane 

 

10 

10 

 

  52 

  74.4 

 

51 

68 

 

-14.4 

-10.5 

 

-15.14 

-10.88 

 

-59.7 

-67.9 

 

-49.2 

-48.9 
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       (a)                                                                                   (b) 
 
 

Figure 5.26 Normalised simulated and measured radiation patterns for the antenna power 

divider at 10 GHz in co-polarisation: (a) H (XY) plane. (b) E (YZ) plane. (Radial units are 

dB. Circumferential scale is  in degrees.) 

 

5.8 X-Band 3-Resonator Antenna-Diplexer 

5.8.1 Waveguide Antenna-Diplexer Design 

Both of the previous designs operated in a single frequency band. This work presents an 

additional new component where the waveguide aperture antenna is designed to work at two 

frequency bands in a similar fashion to a diplexer. This component is an antenna-diplexer. 

The proposed design can be employed as a receiving component for separating two-frequency 

channels as would a conventional diplexer circuit, placed after the receiving antenna. The 

passband centre frequency is 9.93 GHz for channel 1 and 10.07 GHz for channel 2; the 

bandwidth of each channel is 0.1 GHz. The overall fractional bandwidth (two passbands and 

an intervening stop band) is 2.4% (FBW = 0.024). This design has a return loss of -20 dB and 
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uses 2 poles for each channel. Figure 5.27 shows the topology of the designed antenna-

diplexer represented, as a three port device. 

 

Figure 5.27 Topology of the designed waveguide antenna diplexer. 

The coupling matrix of this antenna-diplexer has been optimised using the gradient-based 

local optimisation algorithm [8]. The optimised results give the normalised coupling 

coefficients, and external and radiation quality factors as: 

 

  

 
0 0.835 0.835

0.835 0.446 0

0.835 0 0.446

m

 
   
  

 

  qr1 = 1.944, qe2 = qe3 = 1.468  

 

The S-parameter response obtained using the values of [m], qr1, qe2 and qe3 using equations 

(5.15) and (5.16) are shown in Figure 5.28. The coupling coefficients and the external quality 

factors are computed for FBW = 0.024 and found to be M22 = 0.0107, M33 = -0.0107, M12 = 

M13 = 0.02, Qr2 = 81, Qe2 = Qe3 = 61.17.  

 



155 
 

 

Figure 5.28 The S-parameters in dB for the designed waveguide antenna diplexer calculated 

from the coupling matrix. 

 

The three dimensional structure of the X-band 3-resonator antenna-diplexer is 

illustrated in Figure 5.29. It is a three-port component including one antenna port. The 

proposed antenna-diplexer has been designed using an inductively coupled waveguide cavity 

resonator. The physical dimensions of the waveguide antenna-diplexer have been obtained 

using the designed parameters (i.e. the actual values of M, Qe and Qr) and is optimised using 

the procedure presented in Section 5.6.1. All dimensions of the optimised structure 

corresponding to the parameters shown in Figure 5.27 are a = 22.86, b = 10.16, d1 = 9.9, d2 = 

9.35, d3 = 9.39, d4 = 11.84, d5 = 12.08, l = 20, l1 = 16.14, l2 = 16.84, l3 = 17.16, l4 = 20.32, t = 

2 (Unit: mm). All of the inside corners are rounded with a radius of 1.6 mm. The simulated S-

parameters for the proposed antenna-diplexer are compared with the calculated response 

obtained from the coupling matrix and are seen to be in good agreement, as shown in Figure 

5.30. It should be noted that the above antenna-diplexer exhibits poor isolation performance 

between two output ports. This work aims to show the principles of the methods by which this 
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isolation can be improved by utilising more resonators or by separating the operating 

frequency bands. 

 

Figure 5.29 X-band 3-resonator antenna-diplexer. 

 

Figure 5.30 S-parameter responses of the X-band 3-resonator antenna-diplexer obtained from 

the coupling matrix (dashed lines) and simulation (solid lines).      
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5.8.2 Fabrication and Measurement 

The X-band 3-resonator antenna-diplexer is made from aluminum alloy and is shown 

in Figure 5.31. The simulated and measured S-parameters of the antenna-diplexer are 

depicted in Figure 5.32(a). The measured response is in excellent agreement with the 

simulated response. The measurement shows that the passband of channel 1 has maximum 

return loss of -20.1 dB, whereas for channel 2 it is -21.0 dB. The isolation between the centre 

frequencies of two bands is measured to be 5.2 dB. 
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Figure 5.31 Photograph of the fabricated antenna-diplexer. 

  



158 
 

 
      (a) 

 

 
        (b) 

 
Figure 5.32 Simulated and measured results of the antenna-diplexer. (a) S-parameters.  

(b) Realised gain. 

 

The realised gain for each channel of the antenna-diplexer has been measured 

comparing with the simulation results, as shown in Figure 5.32(b). The passband of channel 1 

has a measured maximum gain of 6.25 dB at 9.88 GHz, whereas the passband of channel 2 

has a measured maximum gain of 6.1 dB at 10.12 GHz. The stopband rejection of each 

channel was measured and is about 21 dB. The total efficiency versus frequency of antenna-
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diplexer is plotted with the simulation results, as shown in Figure 5.33. The passband of 

channel 1 has a maximum total efficiency of 74.3% at 9.88 GHz, whereas the passband of 

channel 2 has a maximum total efficiency of 71.38% dB at 10.12 GHz. The results show the 

corresponding maximum realised gains with the maximum total efficiency at the same 

frequency of each channel. However, the total efficiency and realised gain of antenna-diplexer 

does not achieve better than previous designs. It can be achievable the good performance 

since the number of antenna is increased with the antenna array design technique.  

It should be noted that the results of Figure 5.32(a) show that on port 2, 20% of 

received energy at the centre frequency goes to port 3 and vice versa. This work aims to show 

the principle of the design method and this leaking of received energy between two output 

ports can be improved by utilising more resonators and/or separating the bands. 

 

Figure 5.33 Simulated total efficiency for the X-band 3-resonator antenna-diplexer. 
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                            (a)                                                                                        (b) 
 
Figure 5.34 Normalised simulated and measured radiation patterns of the antenna-diplexer in 

co-polarisation at the middle band frequency and two passband centre frequencies for each 

channels: (a) H (XY) plane. (b) E (XZ) plane. (Radial units are dB. Circumferential scale is  

in degrees.)  

 

The simulated and measured radiation patterns of the antenna-diplexer are compared 

at the centre frequencies of each channel and are shown in Figure 5.34. It can be seen that the 

antenna-diplexer exhibits good radiation pattern shape in H and E-planes. The radiation 

pattern level measured at 10 GHz is lower than the measured maximum level by about 3 dB, 

which corresponds to the gain results at 10 GHz, depicted in Figure 5.32(b). The measured 

cross polarisation levels are below 49 dB, whereas the simulated cross polarisation levels are 

below 72 dB. The performance of the antenna diplexer is summarised and presented in Table 

5.3. 
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Table 5.3 Summary of the antenna-diplexer performance 

Parameters Frequency 

(GHz) 

3 dB 

Beamwidth 

(deg.) 

Side lobe level 

(dB) 

 

Cross-

polarisation level 

(dB) 

Sim. Mea. Sim. Mea. Sim. Mea. 

 

 

H-plane 

 

 

9.93 

10 

10.07 

 

  62.7 

  63.7 

  64.9 

 

58 

60 

57 

 

  -4.8 

  -4.9 

  -5.1 

 

 -4.64 

 -4.9 

 -4.46 

 

  -72.2 

  -72.9 

  -74.9 

 

  -46.1 

  -49.6 

  -45.5 

 

 

E-plane 

 

9.93 

10 

10.07 

 

  66.3 

  68.5 

  70.7 

 

73 

64 

70 

 

  -4.1 

  -4.2 

  -4.3 

 

 -4.4 

 -5.24 

 -4.67 

 

  -72.2 

  -73 

  -74.8 

 

  -48.8 

  -51.1 

  -48.8 

 

5.9 Conclusions 

The multiport coupling matrix has been used to demonstrate three components which 

utilise the resonant properties of antennas for filtering. The coupling matrix approach is 

general and can be used for any waveguide aperture antenna. The approach can, in principle, 

be executed using a larger number of radiations and/or filtering elements to configure 

complex functionality whilst minimising the weight and volume of the component. The 

bandwidth of the antenna-filters is limited by the radiation Q of the radiating resonator(s), 

however this can be adjusted by altering the aperture size, in the examples given here.  

A prototype for the X-band 5 resonator antenna-filter was built. There is good 

agreement between the measurement and simulation results pertaining to the return loss and 

radiation pattern shapes. An X-band 3 resonator antenna power divider is designed in order to 
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improve antenna gain with compact size and is suitable for use in a transmitter. An X-band 3 

resonator antenna-diplexer is designed for use in a receiver where it could be utilised as a 

frequency splitter with compact size. The measurement results for this and the antenna-

diplexer agree very well with simulations. These proposed components have compact sizes, 

light weights and small number of front-end microwave components, and as such they are 

suitable for use of modern communication systems   

 

References 

[1] Hong J. S. and Lancaster M. J. Microstrip Filters for RF/Microwave Applications. New 

York, USA: John Wiley & Sons; 2001. 

[2] Pozar D. M. Microwave Engineering. 3rd ed. USA: John Wiley & Sons; 2005. 

[3] Lancaster M. J. Passive Microwave Device Applications of High-Temperature 

Superconductors. Cambridge, UK: Cambridge University Press; 1997. 

[4] Collin R. E. Foundation for Microwave Engineering. 2nd ed. USA: John Wiley & Sons; 

2011. 

[5] Computer Simulation Technology (CST), Microwave Studio [Internet]. 2014 Available 

from URL: http://www.cst.com.  

[6] Matthaei G. L., Young L., Jones E.M.T. Microwave Filters, Impedance-matching 

Networks and Coupling Structures. North Bergen, NJ, USA: Artech House, 1980. 

[7] Talal F. Skaik, Synthesis of Coupled Resonator Circuits with Multiple Outputs using 

Coupling Matrix Optimization, PhD thesis, University of Birmingham, UK, 2011.  

[8] Skaik T., Lancaster M. J., and Huang F. Synthesis of multiple output coupled resonator 

microwave circuits using coupling matrix optimization. IET J. Microw., Antennas, 

Propag. 2011 Jun.; 5(9): 1081–1088. 



163 
 

Chapter 6  

Conclusions and Future Work 

6.1 Conclusions 

This thesis presented new design techniques for antenna-filters involving use of 

coupling matrix synthesis. The approach is applied to dipole and waveguide structures. The 

work has been divided into three main parts: two port dipole antenna-filter, one port dipole 

antenna-filter and waveguide antenna-filter.  

The objective of the work presented in Chapter 3 was to design a coupled resonator 

filter using antennas in order to help understand the antenna. In this work the antenna is 

treated as a resonator within a filter circuit. A dipole antenna is selected as the resonator type 

in this work. The structure of this antenna is simple and suited for designing the resonator. 

The antennas can be arrayed to form an in-line structure which is suitable for design the two-

port coupled-resonator filter.  The coupling matrix has been utilised to obtain the filter 

response of the two-port dipole antenna-filter from specifications resulting in the design 

parameters (quality factors and coupling coefficient). However, any loss in the filter needs to 

be considered which consist of radiation, material and inductor loss. These losses are 

associated with the low Qu value of the resonators which causes. The insertion loss of the 

two-port dipole antenna-filter is 3.1 dB in simulation and is 3.4 dB in measurement, which are 

in good agreement with the calculation obtained using the method in [1] which is about 3.5 

dB. The proposed antenna-filter in Chapter 3 is a two-port device and has similar in structure 

which is a conventional dipole antenna array. The design method used for two-port filter in 

Chapter 3 can be utilised to design a one-port dipole antenna-filter presented in Chapter 4. 
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The work presented in Chapter 4 aimed to integrate the dipole antenna into a filter 

circuit replacing the second port with a radiation port. All resonators in this antenna-filter are 

dipole antennas integrated with inductors and can also be radiating elements. The work in 

Chapter 4 has started looking at a 1st order antenna-filter for a clear understanding of the 

concept of antenna and filter integration. The design of the 1st order dipole antenna-filter used 

the coupling matrix synthesis to optimise the filter response with the optimised design 

parameters (Qe1 and Qu1). The 1st order antenna-filter adjusts the Qe1 and Qu1 values by 

changing the position between a feed and a resonator antenna. The realised gain response of 

the 1st order antenna-filter has showed the similar shape of 1st order bandpass filter. The poor 

realised gain for this design can be improved when the number of antenna elements is 

increased as presented in 2nd and 3rd order designs. The 2nd order antenna-filter design is based 

on the design concept of the antenna-filter work in the filter literature by assuming the Qu 

value of the last resonator is the same Qe value of the input resonator to preserve the filter 

characteristic. The design can be achieved with the optimised Qe value for this design as 

described in Section 4.2.1. The measurement and simulation results showed in good 

agreement. The realised gain of the 3rd order antenna-filter showed the filtering response with 

good agreement between simulation and measurement. The work in Chapter4 has been 

achieved following the principle theory of antenna and filter and the coupling matrix synthesis 

for the antenna-filter component. This design method can be applicable in the coupled 

resonator antenna-filter for different topologies, one of which is presented in Chapter 5.  

The third part in Chapter 5 presented three design approaches of antenna-filters using 

a waveguide structure [2]. All approaches have utilised waveguide aperture antennas as 

resonators. A 5-resonator antenna-filter is the first design of this work and has an in-line 

coupling topology with one input electrical port and one output is the radiation. The designed 
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waveguide antenna-filter is higher order than the dipole antenna-filter in Chapter 4. This can 

improve the filtering response for the realised gain (flat in the passband and high suppression 

in the stopband). A coupling matrix optimisation technique [3] has been utilised in the second 

and third design approaches to find the optimum values for the coupling coefficient, the 

external quality factor and the radiation quality factor corresponding to the desired 

specifications. The second design has developed a two-antenna array integrated with the 

coupled resonator power divider [3]. The aim of this work was to improve the antenna 

performances (i.e. realised gain and radiation pattern) using a two-antenna array which 

included the filtering function. The third component is a three-port component that works in 

two different frequencies. This is to integrate the antenna into the coupled resonator diplexer 

for reducing the number of components in the front-ends and also to reduce the circuit size. 

The degradation of isolation between output ports (S23) occurred due to the small number of 

resonators in the circuit. This can be improved by increasing the number of resonators in 

future designs. 

 

6.2 Future work 

The work on antenna-filters based on the coupled resonator filter theory can be further 

developed to design antenna-filters with a larger number of resonators with different coupling 

topologies by using the coupling matrix optimisation technique [3]. The coupling structure 

with the cross coupling between resonators can be applicable to the future design for 

controlling the transmission zeros of the gain response. Figure 6.1 shows topology example of 

4-resonator antenna-filter with cross coupling; where black circles represent resonators, solid 

lines represent couplings and a dashed line represents a cross coupling.  
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Figure 6.1 A topology example of 4-resonator antenna-filter with cross coupling. 

 

The technique can be applicable to the coupling between antenna elements considered as the 

cross coupling in the designed coupling structure for reducing the number of resonators in the 

circuit. The cross coupling technique can generate the transmission zero in the gain response 

of antenna-filters which can improve the selectivity of antenna-filters as well as cutting out 

unwanted signals at specific frequencies. The antenna power divider can be further improved 

with increasing the number of antenna elements and keeping the half wavelength spacing.  

Figure 6.2 shows a tree topology example of 15-resonator antenna power divider. The 

coupling structure of this further design can improve the filter response using the coupling 

matrix optimisation. Also the technique can improve the antenna performances such as high 

gain, narrow beamwidth and low side lobe level. The principle of antenna-diplexer design can 

be further modified for the integration design of antenna and multiplexer. The coupling 

topology model for this future work may be designed in the similar way of the coupled 

resonator multiplexer in [4]. Figure 6.3 shows a tree topology example of 15-resonator 

antenna-multiplexer. More work is required in controlling the radiation patterns of the 

structures. This may focus on the design of N-element antenna arrays integrated with filters 

for the future designs. 
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Figure 6.2 A tree topology example of 15-resonator antenna power divider. [4] 

 

 

 

 

Figure 6.3 A tree topology example of 15-resonator antenna-multiplexer. [4] 

 

 



168 
 

References 

[1] Hong J. S. and Lancaster M. J. Microstrip Filters for RF/Microwave Applications. New 

York, USA: John Wiley & Sons; 2001. 

[2] Pozar D. M. Microwave Engineering. 3rd ed. USA: John Wiley & Sons; 2005. 

[3] Skaik T., Lancaster M. J., and Huang F. Synthesis of multiple output coupled resonator 

microwave circuits using coupling matrix optimization. IET J. Microw., Antennas, 

Propag. 2011 Jun.; 5(9): 1081–1088. 

[4] Shang X., Wang Y., Xia W., Lancaster M. J. Novel Multiplexer Topologies Based on 

All-Resonator Structures. IEEE Trans. Microw. Theory Tech. 2013 Nov.; 61(11): 3838–

3845.  

 

 

 

 

 

 

 

 

 

 

 

 



169 
 

APPENDIX A 

Q calculation method for the one-port component 

This appendix presents a Q calculation method for a one-port component. For example, an 

antenna is the one-port component in the work of this thesis. The method is useful to obtain 

Q-factors for the antenna in this thesis. A diagram of one-port component coupled to an 

external source is shown in Figure A.1(a). When the component is coupled to the external 

source, the circuit will behave as a resonant circuit with a coupling circuit in a case of 

resonant mode, as shown in Figure A.1(b). In this case, quality factors of this component can 

be extracted from the reflection coefficient (S11). 

 

 (a) 

 

 (b) 

Figure A.1 (a) A one-port component coupled to an external source (b) Equivalent circuit of a 

component for one-port measurements [1]. 
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The derived equation of reflection coefficient S11 from the circuit shown in Figure A.1(b) is 

given by [1] 
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where  Qu is the unloaded quality factor. 
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 f is the frequency variable (Hz) 

 f0 is the centre frequency (Hz). 
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is the coupling coefficient                (A.3) 

The  may be three-coupled modes which are considered from the smith chart as shown in 

Figure A.2. 
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Figure A.2 A Smith chart of two resonant circuits; one is overcoupled, two is undercoupled 

and three is critical coupled [1]. 



171 
 

The quality factors of the component can be calculated from the magnitude of reflection 

coefficient (|S11(f)|) using the equation (A.1) which is rearranged as [1] 
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where  Qui , i = 1, 2, ...,n is the unloaded quality factor obtained from different  

frequencies in the passband excepted for the centre frequency f0. 

  Qua is the average unloaded quality factor. 

  Qe is the external quality factor. 

  Ql is the loaded quality factor.  

This method can be used to extract Q-factors for the one-port component from the EM 

simulation software. Here an half-wavelength dipole antenna made from a copper material is 

an example for this Q calculation method. The dipole antenna is designed and made in the 

CST simulation software, as shown in Figure A.3.  
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Figure A.3 A simulated structure of an half-wavelength dipole antenna.  

 

Figure A.4 The simulated |S11(f)| of an half-wavelength dipole antenna. 

 

The antenna has been simulated to obtain the response of S11 magnitude (|S11(f)|). The 

simulated response of |S11(f)| is shown in Figure A.4. The coupling coefficient  of this 

example can be found from a simulated smith chart shown in the inset of Figure A.4. This 

coupling coefficient represents as the undercoupled (the circle is smaller than one) and is 

calculated from the magnitude of S11(f0) at the centre frequency of 0.9 GHz using an equation 
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(A.3). The calculated  value using the equation (A.3) is 0.725. The Q-factors are calculated 

from different values of |S11(f)| around half magnitude (0.15-0.65) of |S11(f)| within the 

passband frequency (0.8 GHz–1.1 GHz) using equations (A.4) to (A.7). The calculated results 

of average Q-factors are Qua = 5.26, Qe = 7.25 and Ql = 3.04. This is shown a calculation 

example of the method and will be utilised in the work of this thesis. The method can be used 

to obtain the radiation quality factor (Qr) for different antenna structure when the antenna is 

made from a perfect electric conductor (PEC) material which considers the total Qu = Qr. This 

has been described in Chapter 5. 
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