2,442 research outputs found

    DIFFERENTIAL EVOLUTION FOR OPTIMIZATION OF PID GAIN IN ELECTRICAL DISCHARGE MACHINING CONTROL SYSTEM

    Get PDF
    ABSTRACT PID controller of servo control system maintains the gap between Electrode and workpiece in Electrical Dis- charge Machining (EDM). Capability of the controller is significant since machining process is a stochastic phenomenon and physical behaviour of the discharge is unpredictable. Therefore, a Proportional Integral Derivative (PID) controller using Differential Evolution (DE) algorithm is designed and applied to an EDM servo actuator system in order to find suitable gain parameters. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID gain to maintain the electrode position. Keywords: servo control system; electrical discharge machining; proportional integral derivative; con- troller tuning; differential evolution

    Comparative Studies on Decentralized Multiloop PID Controller Design Using Evolutionary Algorithms

    Full text link
    Decentralized PID controllers have been designed in this paper for simultaneous tracking of individual process variables in multivariable systems under step reference input. The controller design framework takes into account the minimization of a weighted sum of Integral of Time multiplied Squared Error (ITSE) and Integral of Squared Controller Output (ISCO) so as to balance the overall tracking errors for the process variables and required variation in the corresponding manipulated variables. Decentralized PID gains are tuned using three popular Evolutionary Algorithms (EAs) viz. Genetic Algorithm (GA), Evolutionary Strategy (ES) and Cultural Algorithm (CA). Credible simulation comparisons have been reported for four benchmark 2x2 multivariable processes.Comment: 6 pages, 9 figure

    A Data-driven Approach to Robust Control of Multivariable Systems by Convex Optimization

    Get PDF
    The frequency-domain data of a multivariable system in different operating points is used to design a robust controller with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance specifications like H2H_2, HH_\infty and loop shaping are considered in a unified framework for continuous- and discrete-time systems. The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the concave part around an initial controller. The performance criterion converges monotonically to a local optimal solution in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controllers using non-smooth optimization and with full-order optimal controllers via simulation examples. Finally, the experimental data of a gyroscope is used to design a data-driven controller that is successfully applied on the real system

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Simulation of Rapidly-Exploring Random Trees in Membrane Computing with P-Lingua and Automatic Programming

    Get PDF
    Methods based on Rapidly-exploring Random Trees (RRTs) have been widely used in robotics to solve motion planning problems. On the other hand, in the membrane computing framework, models based on Enzymatic Numerical P systems (ENPS) have been applied to robot controllers, but today there is a lack of planning algorithms based on membrane computing for robotics. With this motivation, we provide a variant of ENPS called Random Enzymatic Numerical P systems with Proteins and Shared Memory (RENPSM) addressed to implement RRT algorithms and we illustrate it by simulating the bidirectional RRT algorithm. This paper is an extension of [21]a. The software presented in [21] was an ad-hoc simulator, i.e, a tool for simulating computations of one and only one model that has been hard-coded. The main contribution of this paper with respect to [21] is the introduction of a novel solution for membrane computing simulators based on automatic programming. First, we have extended the P-Lingua syntax –a language to define membrane computing models– to write RENPSM models. Second, we have implemented a new parser based on Flex and Bison to read RENPSM models and produce source code in C language for multicore processors with OpenMP. Finally, additional experiments are presented.Ministerio de Economía, Industria y Competitividad TIN2017-89842-

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    Deep Reinforcement Learning for Event-Triggered Control

    Full text link
    Event-triggered control (ETC) methods can achieve high-performance control with a significantly lower number of samples compared to usual, time-triggered methods. These frameworks are often based on a mathematical model of the system and specific designs of controller and event trigger. In this paper, we show how deep reinforcement learning (DRL) algorithms can be leveraged to simultaneously learn control and communication behavior from scratch, and present a DRL approach that is particularly suitable for ETC. To our knowledge, this is the first work to apply DRL to ETC. We validate the approach on multiple control tasks and compare it to model-based event-triggering frameworks. In particular, we demonstrate that it can, other than many model-based ETC designs, be straightforwardly applied to nonlinear systems

    PI/PID controller stabilizing sets of uncertain nonlinear systems: an efficient surrogate model-based approach

    Get PDF
    AbstractClosed forms of stabilizing sets are generally only available for linearized systems. An innovative numerical strategy to estimate stabilizing sets of PI or PID controllers tackling (uncertain) nonlinear systems is proposed. The stability of the closed-loop system is characterized by the sign of the largest Lyapunov exponent (LLE). In this framework, the bottleneck is the computational cost associated with the solution of the system, particularly including uncertainties. To overcome this issue, an adaptive surrogate algorithm, the Monte Carlo intersite Voronoi (MiVor) scheme, is adopted to pertinently explore the domain of the controller parameters and classify it into stable/unstable regions from a low number of nonlinear estimations. The result of the random analysis is a stochastic set providing probability information regarding the capabilities of PI or PID controllers to stabilize the nonlinear system and the risk of instabilities. The minimum of the LLE is proposed as tuning rule of the controller parameters. It is expected that using a tuning rule like this results in PID controllers producing the highest closed-loop convergence rate, thus being robust against model parametric uncertainties and capable of avoiding large fluctuating behavior. The capabilities of the innovative approach are demonstrated by estimating robust stabilizing sets for the blood glucose regulation problem in type 1 diabetes patients
    corecore