Many uncertainty sets encountered in control systems analysis and design can
be expressed in terms of semialgebraic sets, that is as the intersection of
sets described by means of polynomial inequalities. Important examples are for
instance the solution set of linear matrix inequalities or the Schur/Hurwitz
stability domains. These sets often have very complicated shapes (non-convex,
and even non-connected), which renders very difficult their manipulation. It is
therefore of considerable importance to find simple-enough approximations of
these sets, able to capture their main characteristics while maintaining a low
level of complexity. For these reasons, in the past years several convex
approximations, based for instance on hyperrect-angles, polytopes, or
ellipsoids have been proposed. In this work, we move a step further, and
propose possibly non-convex approximations , based on a small volume polynomial
superlevel set of a single positive polynomial of given degree. We show how
these sets can be easily approximated by minimizing the L1 norm of the
polynomial over the semialgebraic set, subject to positivity constraints.
Intuitively, this corresponds to the trace minimization heuristic commonly
encounter in minimum volume ellipsoid problems. From a computational viewpoint,
we design a hierarchy of linear matrix inequality problems to generate these
approximations, and we provide theoretically rigorous convergence results, in
the sense that the hierarchy of outer approximations converges in volume (or,
equivalently, almost everywhere and almost uniformly) to the original set. Two
main applications of the proposed approach are considered. The first one aims
at reconstruction/approximation of sets from a finite number of samples. In the
second one, we show how the concept of polynomial superlevel set can be used to
generate samples uniformly distributed on a given semialgebraic set. The
efficiency of the proposed approach is demonstrated by different numerical
examples